
Online Appendix for ‘Bureaucratic Minimal Squawk Behavior:

Theory and Evidence from Regulatory Agencies’

This Appendix consider the cases where γ ∈ (1− θS, 1− θD) and γ ∈ (θD, θS).

No Reputation Benchmark. First, take the case where γ ∈ (1 − θS, 1 − θD). Using (2),

the (l, θD) regulator chooses g since she realizes that her low cost signal is more likely to be

incorrect than correct. All other types behave as in the text. Alternatively, take the case where

γ ∈ (θD, θS). Using (2), the (h, θD) regulator now chooses t since she realizes that her high cost
signal is more likely to be incorrect than correct. Again, all other types behave as in the text.

In both cases, the regulator behaves efficiently; a signal that is likely to be incorrect should be

ignored.

No Squawk Benchmark.

Lemma 1. The subgame following no disclosure (d = ∅) has a unique equilibrium. There are
critical values, δp0∅ = δp0∅(γ, z) > 0 and δ

q0
∅ = δq0∅(γ, z) > 0, such that the (l, θS) regulator chooses

t, (h, θS) chooses g, and:

(i) if the prior on low cost satisfies, 1− θS < γ < 1− θD, then (h, θD) chooses g, and

(a) if reputation is of low importance, δ ≤ δp0∅, (l, θD) chooses g

(b) if reputation is of high importance, δ > δp0∅, there is tough bias: (l, θD) plays t with

probability p(d = ∅, δ, γ, z) ∈ (0, 1);

(ii) if the prior on low cost satisfies θD < γ < θS , then (l, θD) chooses t, and

(a) if reputation is of low importance, δ ≤ δq0∅, (h, θD) chooses t

(b) if reputation is of high importance, δ > δq0∅, there is generous bias: (h, θD) plays t

with probability q(d = ∅, δ, γ, z) ∈ (0, 1).

Proof. Pure Strategy Equilibrium, Part (i) (a). The regulator’s equilibrium strategy is

σ = (1, 0, 0, 0). The task is to show that, when 1− θS < γ < 1− θD and the evaluator expects

σ̃ = (1, 0, 0, 0), (A.1) is positive for (l, θS) and negative for (l, θD) and (h, θ) if

δ < δp0∅ =
−Π(l, θD, γ)W

∆∅(σ̃ = (1, 0, 0, 0), γ)
.

From (A.5),∆∅(σ̃ = (1, 0, 0, 0), γ) > 0. Step 1 : (A.1) is negative for (l, θD) becauseΠ(l, θD, γ) <

0 and δ < δp0∅. Step 2 : (A.1) is positive for (l, θS) because Π(l, θS , γ) > 0 and ∆∅ > 0. Step 3 :

It follows from Step 1 and (A.2) that (A.1) is negative for (h, θD). This, together with (A.4)

implies that (A.1) is negative for (h, θS).



Tough Hybrid Equilibrium, Part (i) (b). The regulator’s equilibrium strategy

is σ = (1, 0, p, 0), with p ∈ (0, 1). The task is to show that, when the evaluator expects

σ̃ = (1, 0, p̃, 0), we can find a value of δ > δp0∅ such that (A.1) is equal to zero for (l, θD),

positive for (l, θS) and negative for (h, θ). Step 1 : With Π(l, θD, γ) < 0, p̃ must ensure that

∆∅(σ̃ = (1, 0, p̃, 0), γ) > 0. Indeed, the smaller δ the more positive this term must be. Suppose

δ < δp0∅. We saw above that, with p̃ = 0, such a value of δ ensures that (A.1) is negative for

(l, θD). With ∆∅(σ̃ = (1, 0, p̃, 0), γ) decreasing in p̃ it follows that there cannot be a value of

p̃ such that (A.1) is equal to zero. Alternatively, suppose that δ = δp0∅. A value of p̃ = 0 will

ensure that (A.1) is equal to zero for (l, θD). Now increase δ slightly. To keep (A.1) equal to

zero, we simply require a larger value of p̃. From (A.5), ∆∅(σ̃ = (1, 0, 1, 1), γ) < 0 for all γ.

This ensures that p(d = ∅, δ, γ, z) is bounded away from one. Step 2 : It follows from Step

1 and (A.2) that (A.1) is negative for (h, θD). Step 3 : It follows from Step 1 and (A.3) that

(A.1) is positive for (l, θS). Likewise, it follows from Step 2 and (A.4) that (A.1) is negative

for (h, θS).

Pure Strategy Equilibrium, Part (ii) (a). The regulator’s equilibrium strategy

is σ = (1, 0, 1, 1). The task is to show that, when θD < γ < θS and the evaluator expects

σ̃ = (1, 0, 1, 1), (A.1) is positive for (l, θ) and (h, θD) and negative for (h, θS) if

δ < δq0∅(γ, z) =
Π(h, θD, γ)W

−∆∅(σ̃ = (1, 0, 1, 1), γ)
.

From (A.5), ∆∅(σ̃ = (1, 0, 1, 1), γ) < 0 for all γ. Step 1 : (A.1) is positive for (h, θD) because

Π(h, θD, γ) > 0 and δ < δq0∅. Step 2 : (A.1) is negative for (h, θS) because Π(h, θS , γ) < 0 and

∆∅ < 0. Step 3 : It follows from Step 1 and (A.2) that (A.1) is positive for (l, θD). Likewise, it

follows from Step 1 and (A.3) that (A.1) is positive for (l, θS).

Generous Hybrid Equilibrium, Part (ii) (b). The regulator’s equilibrium strategy

is σ = (1, 0, 1, q), with q ∈ (0, 1). The task is to show that, when the evaluator expects

σ̃ = (1, 0, 1, q̃), we can find a value of δ > δq0∅ such that (A.1) is equal to zero for (h, θD),

positive for (l, θ) and negative for (h, θS). Step 1 : With Π(h, θD, γ) > 0, q̃ must ensure that

∆∅(σ̃ = (1, 0, 1, q̃), γ) < 0. Indeed, the smaller δ the more negative this term must be. Suppose

δ < δq0∅. We saw above that, with q̃ = 1, such a value of δ ensures that (A.1) is positive for

(h, θD). With ∆∅(σ̃ = (1, 0, 1, q̃), γ) decreasing in q̃ it follows that there cannot be a value of

q̃ such that (A.1) is equal to zero. Alternatively, suppose that δ = δq0∅. A value of q̃ = 1 will

ensure that (A.1) is equal to zero for (h, θD). Now increase δ slightly. To keep (A.1) equal to

zero, we simply require a smaller value of q̃. From (A.5), ∆∅(σ̃ = (1, 0, 1, 0), γ) > 0 for γ > 1
2 .

This ensures that q(d = ∅, δ, γ, z) is bounded away from zero. Step 2 : It follows from Step

1 and (A.2) that (A.1) is positive for (l, θD). Step 3 : It follows from Step 2 and (A.3) that

(A.1) is positive for (l, θS). Likewise, it follows from Step 1 and (A.4) that (A.1) is negative

for (h, θS).
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Squawk Model Recall that γ(z) can be bigger or smaller than θD. To ease the comparison

with Lemma 1 above, I will assume that γ(z) < θD (this ensures that (l, θD) chooses t for all

γ > θD and so, if anything, makes squawking on tough less attractive).

Lemma 2. The subgame following squawk on tough (d = t) has a unique equilibrium. There

is a critical value, 0 < δq0t = δq0t (γ, z) < δq0∅, such that the (l, θS) regulator chooses t, (h, θS)

chooses g, and:

(i) if the prior on low cost satisfies 1− θS < γ < 1− θD, then (h, θD) chooses g and

(a) if reputation is of low importance, δ ≤ δp0∅, (l, θD) chooses g

(b) if reputation is of high importance, δ > δp0∅, there is tough bias: (l, θD) plays t with

probability p(d = t, δ, γ, z) < p(d = ∅, δ, γ, z) ∈ (0, 1).

(ii) if the prior on low cost satisfies θD < γ < θS , then (l, θD) chooses t and

(a) if reputation is of low importance, δ ≤ δq0t , (h, θD) chooses t

(b) if reputation is of high importance, δ > δq0t , there is generous bias: (h, θD) plays t

with probability q(d = t, δ, γ, z) < q(d = ∅, δ, γ, z) ∈ (0, 1].

Proof. Pure Strategy Equilibrium, Part (i) (a). The regulator’s equilibrium strategy is

σ = (1, 0, 0, 0). The task is to show that, when 1− θS < γ < 1− θD and the evaluator expects

σ̃ = (1, 0, 0, 0), (A.8) is positive for (l, θS) and negative for (h, θ) and (l, θD) if δ < δp0∅. Under

these beliefs μ(ω = l, a = t, σ̃) = μ(ω = h, a = t, σ̃) = μ(a = t, σ̃) = 1 > μ(a = g, σ̃), implying

that∆t(s, θ, σ̃ = (1, 0, 0, 0), γ) = ∆∅(σ̃ = (1, 0, 0, 0), γ) > 0. Step 1 : (A.8) is negative for (l, θD)

because Π(l, θD, γ) < 0 and δ < δp0∅. Step 2 : (A.8) is positive for (l, θS) becauseΠ(l, θS, γ) > 0

and ∆t > 0. Step 3 : It follows from Step 1 and (A.9) that (A.8) is negative for (h, θD). This,

together with (A.11) implies that (A.8) is negative for (h, θS).

Tough Hybrid Equilibrium, Part (i) (b). The regulator’s equilibrium strategy

is σ = (1, 0, p, 0), with p ∈ (0, 1). The task is to show that, when the evaluator expects

σ̃ = (1, 0, p̃, 0), we can find a value of δ > δp0∅ such that (A.8) is equal to zero for (l, θD), positive

for (l, θS) and negative for (h, θ). Step 1. With Π(l, θD, γ) < 0, p̃ must ensure that ∆t(l, θD, σ̃ =

(1, 0, p̃, 0), γ) > 0. Indeed, the smaller δ the more positive this term must be. Suppose δ < δp0∅.

We saw above that, with p̃ = 0, such a value of δ ensures that (A.8) is negative for (l, θD).

With ∆t(l, θD, σ̃ = (1, 0, p̃, 0), γ) decreasing in p̃ it follows that there cannot be a value of p̃ such

that (A.8) is equal to zero. Alternatively, suppose that δ = δp0∅. A value of p̃ = 0 will ensure

that (A.8) is equal to zero for (l, θD). Now increase δ slightly. To keep (A.8) equal to zero, we

simply require a larger value of p̃. Since ∆t(l, θD, σ̃ = (1, 0, 1, 1), γ) < 0 for all γ, p(d = t, δ, γ, z)

is bounded away from one. Note ∆t(l, θD, σ̃ = (1, 0, p̃, 0), γ) < ∆∅(σ̃ = (1, 0, p̃, 0), γ) for any

p̃ > 0. This fact ensures that p(d = t, δ, γ, z) < p(d = ∅, δ, γ, z). Step 2 : It follows from Step
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1 and (A.9) that (A.8) is negative for (h, θD). Step 3 : It follows from Step 1 and (A.10) that

(A.8) is positive for (l, θS). Likewise, it follows from Step 2 and (A.11) that (A.7) is negative

for (h, θS).

Pure Strategy Equilibrium, Part (ii) (a). The regulator’s equilibrium strategy

is σ = (1, 0, 1, 1). The task is show that, when θD < γ < θS and the evaluator expects

σ̃ = (1, 0, 1, 1), (A.8) is positive for (l, θ) and (h, θD) and negative for (h, θS) if

δ ≤ δq0t (γ, z) =
Π(h, θD, γ)W

−∆t(h, θD, σ̃ = (1, 0, 1, 1), γ)
.

Given these beliefs, μ(a = t, σ̃) ≤ μ(a = g, σ̃) = 1 implying that ∆t(s, θ, σ̃ = (1, 0, 1, 1), γ) < 0

for all γ. Equation (8) establishes that ∆t(h, θD, σ̃ = (1, 0, 1, 1), γ) < ∆∅(σ̃ = (1, 0, 1, 1), γ) for

all γ, and hence that δq0t < δq0∅. Step 1 : (A.8) is positive for (h, θD) because Π(h, θD, γ) > 0

and δ < δq0t . Step 2 : (A.8) is negative for (h, θS) because Π(h, θS, γ) < 0 and ∆t < 0. Step 3 :

It follows from Step 1 and (A.9) that (A.8) is positive for (l, θD). This, together with (A.10)

implies that (A.8) is positive for (l, θS).

Generous Hybrid Equilibrium, Part (ii) (b). The regulator’s equilibrium strategy

is σ = (1, 0, 1, q), with q ∈ (0, 1). The task is to show that, when the evaluator expects

σ̃ = (1, 0, 1, q̃), we can find a value of δ > δq0t such that (A.8) is equal to zero for (h, θD),

positive for (l, θ) and negative for (h, θS). Step 1. With Π(h, θD, γ) > 0, q̃ must ensure that

∆t(h, θD, σ̃ = (1, 0, 1, q̃), γ) < 0. Indeed, the smaller δ the more negative this term must be.

Suppose δ < δq0t .We saw above that, with q̃ = 1, such a value of δ ensures that (A.8) is positive

for (h, θD). With ∆t(h, θD, σ̃ = (1, 0, 1, q̃), γ) decreasing in q̃ it follows that there cannot be a

value of q̃ such that (A.8) is equal to zero. Alternatively, suppose that δ = δq0t . A value of q̃ = 1

will ensure that (A.8) is equal to zero for (h, θD). Now increase δ slightly. To keep (A.8) equal

to zero, we simply require a smaller value of q̃. Recall that ∆t(h, θD, σ̃ = (1, 0, 1, 0), γ) > 0 for

γ > γ, where γ > θD. Consequently, if γ ≥ γ, q(d = t, δ, γ, z) is bounded away from zero for all

δ. If γ < γ, then for δ sufficiently high a value of q̃ = 0 ensures (A.8) is equal to zero. (Beyond,

this we have a generous pure strategy equilibrium). Step 2 : It follows from Step 1 and (A.9)

that (A.8) is positive for (l, θD). Step 3 : It follows from Step 2 and (A.10) that (A.8) is positive

for (l, θS). Likewise, it follows from Step 1 and (A.11) that (A.8) is negative for (h, θS).

Recall that γ(z) can be bigger or smaller than 1 − θD. To ease the comparison with

Lemmas 1 and 2 above, I will assume that γ(z) > 1− θD (this ensures that (h, θD) chooses g

for all γ < 1− θD and so, if anything, makes squawking on generous more attractive).
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Lemma 3. The subgame following squawk on generous (d = g) has a unique equilibrium.

There is a critical value, 0 < δp0g = δp0g (γ, z) < δp0∅, such that the (l, θS) regulator chooses t,

(h, θS) chooses g, and:

(i) if the prior on low cost satisfies 1− θS < γ < 1− θD, (h, θD) chooses g and

(a) if reputation is of low importance, δ ≤ δp0g , (l, θD) chooses g

(b) if reputation is of high importance, δ > δp0g , there is tough bias: (l, θD) plays t with

probability p(d = g, δ, γ, z) > p(d = ∅, δ, γ, z) ∈ (0, 1);

(ii) if the prior on low cost satisfies θD < γ < θS , (l, θD) chooses t and

(a) if reputation is of low importance, δ ≤ δq0∅, (h, θD) chooses t

(b) if reputation is of high importance, δ > δq0∅, there is generous bias: (h, θD) plays t

with prob q(d = g, δ, γ, z) > q(d = ∅, δ, γ, z) ∈ (0, 1].

Proof. The (s, θ) regulator’s expected net payoff from choosing t rather than g is

[Pr(ω = l | s, θ)− Pr(ω = h | s, θ)]W + δ{μ(a = t, σ̃)−
Pr(ω = l|s, θ) · μ(ω = l, a = g, σ̃)− [1− Pr(ω = l|s, θ)] · μ(ω = h, a = g, σ̃)}.

Let ∆g(s, θ, σ̃, γ) denote the term in curly brackets and define

δp0g (γ, z) =
Π(l, θD, γ)W

−∆g(l, θD, σ̃ = (1, 0, 0, 0), γ)

The proof then proceeds analogously to Lemma 2.

Lemma 4. The subgame following full disclosure (d = f) has a unique equilibrium. The (l, θS)

regulator chooses t, (h, θS) chooses g, and:

(i) if the prior on low cost satisfies 1− θS < γ < 1− θD, (h, θD) chooses g and

(a) if the importance of reputation satisfies δ ≤ δp0g , (l, θD) chooses g

(b) if the importance of reputation satisfies δ > δp0g , there is tough bias: (l, θD) plays t

with probability p(d = f, δ, γ, z) > p(d = ∅, δ, γ, z) ∈ [0, 1);

(ii) if the prior on low cost satisfies θD < γ < θS , (l, θD) chooses t and

(a) if the importance of reputation satisfies δ ≤ δq0t , (h, θD) chooses t

(b) if the importance of reputation satisfies δ > δq0t , there is generous bias: (h, θD) plays

t with probability q(d = f, δ, γ, z, ) > q(δ, z, d = ∅) ∈ (0, 1).
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Proof. Under full disclosure, the (s, θ) regulator’s expected net payoff from choosing t is

[Pr(ω = l | s, θ)− Pr(ω = h | s, θ)]W+

δ{Pr(ω = l|s, θ) · μ(ω = l, a = t, σ̃) + [1− Pr(ω = l|s, θ)] · μ(ω = h, a = t, σ̃)−
Pr(ω = l|s, θ) · μ(ω = l, a = g, σ̃)− [1− Pr(ω = l|s, θ)] · μ(ω = h, a = g, σ̃)}. (SA.1)

Let ∆f (s, θ, σ̃, γ) denote the term in curly brackets. Substracting the (h, θ) regulator’s net

payoff from that of (l, θ) gives

(Pr(ω = s|s, θ)− Pr(ω 6= s|s, θ)) ·
(2W + δ {μ(ω = l, a = t, σ̃)− μ(ω = h, a = t, σ̃) + μ(ω = h, a = g, σ̃)− μ(ω = l, a = g, σ̃)}) > 0,

(SA.2)

where the inequality holds for any σ̃(1, 0, p̃, q̃) since this ensures that the term in curly brackets

is weakly positive. Substracting the (l, θD) regulator’s net payoff from that of (l, θS) gives

(Pr(ω = l|s = l, θ = θS)− Pr(ω = l|s = l, θ = θD)) ·
(2W + δ {μ(ω = l, a = t, σ̃)− μ(ω = h, a = t, σ̃) + μ(ω = h, a = g, σ̃)− μ(ω = l, a = g, σ̃)}) > 0.

(SA.3)

Finally, substracting the (h, θS) regulator’s net payoff from that of (h, θD) gives

(Pr(ω = h|s = h, θ = θS)− Pr(ω = h|s = h, θ = θD)) ·
(2W + δ {μ(ω = l, a = t, σ̃)− μ(ω = h, a = t, σ̃) + μ(ω = h, a = g, σ̃)− μ(ω = l, a = g, σ̃)}) > 0.

(SA.4)

The same logic as (5)-(7) establishes

Pr(ω = l|s, θ = θD) · μ(ω = l, a = g, σ̃)+

[1− Pr(ω = l|s, θ = θD)] · μ(ω = h, a = g, σ̃)− μ(a = g, σ̃) < 0 ∀s = l, h. (SA.5)

Pure Strategy Equilibrium, Part (i) (a). The regulator’s equilibrium strategy is

σ = (1, 0, 0, 0). The task is show that, when 1 − θS < γ < 1 − θD and the evaluator expects

σ̃ = (1, 0, 0, 0), (SA.1) is positive for (l, θS) and negative for (h, θ) and (l, θD) if δ ≤ δp0g .

Given this conjecture, μ(ω = h, a = t, σ̃) = μ(ω = l, a = t, σ̃) = 1 implying that ∆f (s, θ, σ̃ =

(1, 0, 0, 0), γ) > 0 for all γ. Equation (SA.5) establishes that ∆f (s, θ, σ̃ = (1, 0, 0, 0), γ) >

∆∅(σ̃ = (1, 0, 0, 0), γ). Step 1 : (SA.1) is negative for (l, θD) because Π(l, θD, γ) < 0 and

δ < δp0g . Step 2 : (SA.1) is positive for (l, θS) because Π(l, θD, γ) < 0 and ∆f > 0. Step 3 : It

follows from Step 1 and (SA.2) that (SA.1) is negative for (h, θD). This, together with (SA.4)

implies that (SA.1) is negative for (h, θS).
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Tough Hybrid Equilibrium, Part (i) (b). The regulator’s equilibrium strategy

is σ = (1, 0, p, 0), with p ∈ (0, 1). The task is to show that, when the evaluator expects

σ̃ = (1, 0, p̃, 0), we can find a value of δ > δp0g such that (SA.1) is equal to zero for (l, θD),

positive for (l, θS) and negative for (h, θ). Step 1 : With Π(l, θD, γ) < 0, p̃ must ensure that

∆f (l, θD, σ̃ = (1, 0, p̃, 0), γ) > 0. Indeed, the smaller δ the more positive this term must be.

Suppose δ < δp0g .We saw above that, with p̃ = 0, such a value of δ ensures that (SA.1) is negative

for (l, θD). With ∆f (l, θD, σ̃ = (1, 0, p̃, 0), γ) decreasing in p̃ it follows that there cannot be a

value of p̃ such that (SA.1) is equal to zero. Alternatively, suppose that δ = δp0g . A value of

p̃ = 0 will ensure that (SA.1) is equal to zero for (l, θD). Now increase δ slightly. To keep (SA.1)

equal to zero, we simply require a larger value of p̃. Since ∆f (s, θ, σ̃ = (1, 0, 1, 1), γ) < 0 for

all γ, p(d = f, δ, γ, z) is bounded away from one. From (SA.5), ∆f (l, θD, σ̃ = (1, 0, 1, p̃), γ) >

∆t(σ̃ = (l, θD, 1, 0, 1, p̃), γ). This fact ensures that p(d = f, δ, γ, z) < p(d = t, δ, γ, z). Step 2 : It

follows from Step 1 and (SA.2) that (SA.1) is negative for (h, θD). Step 3 : It follows from Step

1 and (SA.3) that (SA.1) is positive for (l, θS). Likewise, it follows from Step 2 and (SA.4)

that (SA.1) is negative for (h, θS).

Pure Strategy Equilibrium, Part (ii) (a). The regulator’s equilibrium strategy

is σ = (1, 0, 1, 1). The task is show that, when θD < γ < θS and the evaluator expects

σ̃ = (1, 0, 1, 1), (SA.1) is positive for (l, θ) and (h, θD) and negative for (h, θS) if δ ≤ δq0t . Given

this conjecture, μ(ω = h, a = g, σ̃) = μ(ω = l, a = g, σ̃) = 1 implying that ∆f (s, θ, σ̃ =

(1, 0, 1, 1), γ) < 0 for all γ. Equation (8) establishes that ∆f (h, θD, σ̃ = (1, 0, 1, 1), γ) =

∆t(h, θD, σ̃ = (1, 0, 1, 1), γ) < ∆∅(σ̃ = (1, 0, 1, 1), γ). Step 1 : (SA.1) is positive for (h, θD) be-

cause Π(h, θD, γ) > 0 and δ < δq0t . Step 2 : (SA.1) is negative for (h, θS) because Π(h, θS, γ) < 0

and ∆f < 0. Step 3 : It follows from Step 1 and (SA.2) that (SA.1) is positive for (l, θD). This,

together with (SA.3) implies that (SA.1) is positive for (l, θS).

Generous Hybrid Equilibrium, Part (ii) (b). The regulator’s equilibrium strategy

is σ = (1, 0, 1, q), with q ∈ (0, 1). The task is to show that, when the evaluator expects

σ̃ = (1, 0, 1, q̃), we can find a value of δ > δq0t such that (SA.1) is equal to zero for (h, θD),

positive for (l, θ) and negative for (h, θS). Step 1 : With Π(h, θD, γ) > 0, q̃ must ensure that

∆f (h, θD, σ̃ = (1, 0, 1, q̃), γ) < 0. Indeed, the smaller δ the more negative this term must be.

Suppose δ < δq0t . We saw above that, with q̃ = 1, such a value of δ ensures that (SA.1) is

positive for (h, θD). With ∆f (h, θD, σ̃ = (1, 0, 1, q̃), γ) decreasing in q̃ it follows that there

cannot be a value of q̃ such that (SA.1) is equal to zero. Alternatively, suppose that δ = δq0t .

A value of q̃ = 1 will ensure that (SA.1) is equal to zero for (h, θD). Now increase δ slightly.

To keep (SA.1) equal to zero, we simply require a smaller value of q̃. Using (11) ∆t(h, θD, σ̃ =

(1, 0, 1, 0), γ) > 0 for all γ > θD. This ensures that q(d = f, δ, γ, z) is bounded away from

zero.From (SA.5), ∆f (h, θD, σ̃ = (1, 0, 1, q̃), γ) > ∆f (h, θD, σ̃ = (1, 0, 1, q̃), γ). This fact ensures

that q(d = f, δ, γ, z) > q(d = t, δ, γ, z). Step 2 : It follows from Step 1 and (SA.2) that (SA.1) is

positive for (l, θD). Step 3 : It follows from Step 2 and (SA.3) that (SA.1) is positive for (l, θS).
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Likewise, it follows from Step 1 and (SA.4) that (SA.1) is negative for (h, θS).

Proposition 1. The firm squawks on tough. The regulator’s equilibrium strategy in the

continuation subgame is characterised in Lemma 2.

Proof. Immediate from Lemmas 1-4.

The firm therefore squawks on tough for ‘extreme’ values of γ since this (still) ensures

that the regulator is generous with a weakly higher probability. Turning to comparative statics,

in keeping with the analysis above, assume γ(z) > 1− θD and γ(z) < θD.

Proposition 2 (Minimal Squawk Hypothesis). The probability of a tough decision con-
ditional on a high cost signal is Pr(a = t|s = h, δ, γ, z) = 1

2q(d = t, δ, γ, z). The probability of a

tough decision conditional on a low cost signal is Pr(a = t|s = l, δ, γ, z) = 1
2(1+p(d = t, δ, γ, z)).

(i) If γ ∈ (1− θS, 1− θD), then

∂ Pr(a = t|s = h, δ, γ, z)

∂δ
= 0 and

∂ Pr(a = t|s = l, δ, γ, z)

∂δ
≥ 0;

(ii) If γ ∈ (θD, θS), then

∂ Pr(a = t|s = h, δ, γ, z)

∂δ
≤ 0 and ∂ Pr(a = t|s = l, δ, γ, z)

∂δ
= 0.

Proof.
Part (i). The partial effect of δ when s = l follows from the proof of the Tough Hybrid

equilibrium, Part (i) (b), in Lemma 2.

Part (ii). The partial effect of δ when s = h follows from the proof of the Generous

Hybrid equilibrium, Part (ii) (b), in Lemma 2.

Proposition 3 (Capture Hypothesis). If γ < 1−θ, then the probability of a tough decision
conditional on either cost signal is Pr(a = t|s, λ, γ, z) = 0. If γ > θ, then the probability of

a tough decision conditional a low cost signal is Pr(a = t|s = l, λ, γ, z) = max{0, {min{1, 1 −
θγ

γ−(1−θ)B
∗(λ)}}, while the probability of a tough decision conditional a high cost signal is

Pr(a = t|s = h, λ, γ, z) = max{0, {min{1, 1− (1−θ)γ
γ−θ B∗(λ)}}, where

∂ Pr(a = t|s, λ, γ, z)
∂δ

≥ 0 for all λ and s ∈ {l, h}.

Proof. Proceeds in the same fashion as the Proof of Proposition 3 in the paper.
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