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Appendix - Derivation of the Likelihood Function

First note that if driver ¢ stops after trip ¢, he did not stop after the first t — 1 trips. The
probability of observing driver i stop after the t** trip conditional on a particular value of
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In order to derive the unconditional shift probability, I use the distribution of T}; to “integrate
out” the random component in the reference level (y;; in equation (8) as follows. For a driver
who stops after the ! trip, there are t+1 possible intervals for the reference level of income
to fall relative to accumulated income after each trip during the shift. The reference level of

income may be
e less than Y1,
e in one of the ¢-1 intervals Y;x—1) < Tj; < Yijp, or
e above Yj;.

Suppose driver ¢ on shift j stops after trip ¢;;. Using the information on accumulated
income after each trip on a shift, the unconditional shift probability associated with driver

1 on shift j is
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The conditional shift probabilities in this expression follow from equation A.1:

e The probability of observing a driver stop after trip ¢;; conditional on the reference
income level being less than income after the first trip is
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e The probability of observing a driver stop after trip ¢;; conditional on the reference

income level being in the one of the ¢;; — 1 possible intervals Y;;,—1) to Y, is
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e The probability of observing a driver stop after trip ¢ conditional on the reference
income level being greater than income after trip t is
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It remains to write the probabilities of the reference income falling in each of the ¢t 4+ 1

intervals. These probabilities follow from the definition of 7T}; in equation (8):

e The probability that the reference income level is no greater than income after the first

trip is
(A.6) Pr(Ty < Yin) = ®[(Yi — 6:) /0],

e The probability that the reference income level lies in one of the ¢ — 1 possible intervals

Yij(k—1) to Y is

Pr(Yijw-1 < Tij <Yiyx) = Pr(Tiy; <Yip) — Pr(Ty < Yije-1)

(A7) = O[(Yijr = 0:)/0] = [(Yijr—1) — 0:)/0].



e The probability that the reference income level is greater than the income after trip ¢

(A.8) Pr(Ti; > Yij) = 1 = @[(Yi — 0:)/o].

The probabilities defined in equations A.3-A.8 specify the components of the uncondi-
tional probability @);;, defined in equation A.2, for driver ¢ observed to end shift j after trip
ti;. Assuming each shift for a driver is an independent observation, the likelihood function

appropriate to this model is defined as
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where n denotes the number of drivers in the sample and m; is the number of shifts for driver

¢ in the sample.



