
E¢ cient Pollution Regulation: Getting the Prices Right
Appendix A: The Air Pollution Emission Experiments and Policy Analysis Model (APEEP)



1 INTRODUCTION

Conceptually, two approaches to integrated assessment modeling exist. One method attempts to capture the

complexities of environmental processes by including exhaustive representations of these mechanisms in the

model. The principal advantage of the �process�modeling strategy is the inclusion of methods considered to

be the state-of-the-science in each discipline. However, the time and cost necessary to build and implement

such a model is often prohibitive. Another approach models the environment with a simpler representation

designed to mimic the essential elements of the process. The advantage of the reduced form model is that

it is fast and inexpensive to operate across various scenarios. The document describes a new integrated

assessment model, The Air Pollution Emissions Experiments and Policy (APEEP) model, that employs this

reduced form approach. It is designed for simulating the consequences of policy scenarios and emissions

experiments.

APEEP is designed to calculate the marginal damages corresponding to emissions of SO2; V OC; NOx;

PM2:5; PM10 and NH3 on a dollar-per-ton basis. Damages include adverse e¤ects on human health, reduced

yields of agricultural crops and timber, reductions in visibility, enhanced depreciation of man-made materials,

and damages due to lost recreation services. The model focuses on damages at the margin in order to weigh

marginal damages against the marginal costs of abatement.

APEEP is sensitive to the spatial variation in the damages imposed by emissions. Speci�cally, the model

determines the damages stemming from emissions at nearly 10,000 sources in the contiguous U.S. This �ne-

grained geographic approach is designed to detect possible heterogenous e¤ects of pollution emitted from

rural, suburban, and urban sites. APEEP�s structure allows the researcher to alter emissions in a particular

location by any amount. By holding all other aspects of the model �xed, one is able to determine the e¤ects

due to the prescribed change in emissions. This facilitates an assessment of both the spatial distribution

of damages (on the county level of detail) resulting from particular emissions and of the magnitude of such

damages. This feature has potentially broad application in the analysis of air pollution policy.

Marginal damages are calculated in the following way. The model �rst estimates baseline damages for each

pollutant (corresponding to observed 2002 emissions). Next, APEEP adds one ton to the baseline emissions

for a particular source county. The model then computes the di¤erence in damages between the two emissions

scenarios. Since all other components of the model are held �xed, the resulting di¤erence is the damage-

per-ton of a particular pollutant emanating from the selected source county. APEEP features pre-designed

algorithms which make such computations quite rapid. Further, APEEP contains a set of algorithms which

repeat this experiment (adding one ton to baseline emissions) for each of the approximately 10,000 sources

in the contiguous 48 states and for PM10, PM2:5, V OC; NOx, NH3 and SO2 .
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2 METHODS

2.1 EMISSIONS

The emissions module consists of annual emission vectors for PM10, PM2:5, V OC; NOx, NH3 and SO21

provided by the U.S. Environmental Protection Agency (USEPA). APEEP�s emission module relies on the

USEPA�s 2002 National Emissions Inventory (NEI). This is the USEPA�s most recent NEI. The USEPA

di¤erentiates between emissions from mobile, point and non-point sources. APEEP aggregates emissions

from ground-level area sources, including mobile and non-point sources, to the county level. This yields 3110

area sources. Additionally, low point sources (e¤ective height of less than 250 meters) and emissions from

mid-level point sources (e¤ective height between 250 and 500 meters) are also aggregated to the county-level.

The model encompasses aggregated emissions from low and medium point sources in each of the 3110 counties

in the lower 48 states. In contrast, high point sources (e¤ective height greater than 500 meters) are treated

at the plant level. This decomposition of sources corresponds to the Climatological Regional Dispersion

Model (CRDM) described below (Latimer 1996; USEPA, 2004). Additionally, USEPA distinguishes between

anthropogenic sources of V OC 0s (which fall into the source categories above) and biogenic sources of V OC:

The biogenic emission inventory is aggregated to the county level and is provided by the USEPA�s Biogenic

Emissions Inventory System (BEIS):

2.2 AIR QUALITY MODELING

The air quality modeling module makes use of a source-receptor matrix framework. That is, the marginal

contribution of emissions in a source county (s) to the ambient concentration in a receptor county (r) is

represented as the (s; r) element in a matrix2 . The model contains source-receptor matrices for the following

pollutants in both summer and winter: NOx ! NOx SO2 ! SO2 . The matrix governing the relationship

between NOx emissions, V OC emissions and O3 concentrations is calibrated to the summer season. The

matrices representing formation and transport of particulates (PM2:5 ! PM2:5 PM10 ! PM10 NOx ! PM

SO2 ! PM NH3 ! NH4 V OC ! PM) produce annual means.

1Emissions are represented in short tons = 2000 lbs.
2The emission data provided by USEPA represent annual emissions

�
tons
year

�
: Since the source-receptor matrices require

emissions in
� g
s

�
; the emissions data are converted to such units prior to their introduction to the model. In their raw form, the

resulting ambient concentration estimates are in
�

g
m3

�
: These estimates are converted to micro-grams per cubic meter

�
�g
m3

�
;

parts per billion by volume (ppbv), and parts per million by volume (ppmv):
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2.2.1 Particulate Matter

This portion of the air quality module uses source-receptor matrices produced by the Climatological Regional

Dispersion Model (CRDM) (Latimer, 1996; USEPA, 2004). There are four particulate matter (PM) source-

receptor matrices installed in APEEP; a primary PM matrix governing directly emitted PM10 and PM2:5

as well as emissions of primary volatile organic compounds (V OC) which contribute to secondary organic

aerosols, a matrix which governs the transformation of NOx emissions into nitrates, a matrix capturing the

relationship between ammonia emissions (NH3) and ammonium (NH4) concentrations, as well as a matrix

which captures the transformation of SO2 emissions into sulfates. These matrices accept annual emission

vectors as inputs, generating estimates of the annual mean concentrations for each receptor location. Each

of these matrices include a distinct set of transfer coe¢ cients for ground level area sources, and the three

point source heights explained above.

APEEP employs CRDM to compute the ammonium-sulfate-nitrate equilibrium which determines the

amount of ambient ammonium sulfate (NH4)2 SO4 and ammonium nitrate (NH4NO3) at each receptor

county. The equilibrium computations re�ect several fundamental aspects of this system. First, ambient

ammonium (NH4) reacts preferentially with sulfate (H2SO4): Second, ammonium nitrate is only able to form

if there is excess (NH4) after reacting with sulfate. Finally, particulate nitrate formation is a decreasing

function of temperature - so the ambient temperature at each receptor location is incorporated into the

equilibrium calculations. In order to translate V OC emissions into secondary organic particulates, APEEP

employs the fractional aerosol yield coe¢ cients estimated by Grosjean and Seinfeld (1989). These coe¢ cients

represent the yield of particulates corresponding to emissions of gaseous V OC 0s:

Updates to CRDM CRDM was developed in the middle 1990�s (Latimer, 1996). The inventory of point

sources included in the original model re�ects conditions at that time. As a result, using the 2002 NEI

with this model requires substantial modi�cations to encompass new point sources at all three stack heights.

The following strategy was employed in order to accommodate new point sources with an e¤ective height

of emissions less than 250 meters. Since the low point source matrix embodies source-receptor relationships

that are aggregated to the county level, the �rst step was to determine whether new sources came online in

counties not covered by the original CRDM low point source inventory (encompassing 1885 counties). The

construction of new sources in many counties outside the extent of CRDM (roughly 700 counties) motivated

the development of transfer coe¢ cients for all of the counties in the contiguous states. While accommodating

new sources in the 2002 NEI, this universal coverage will also make APEEP able to accommodate new sources

in future emission inventories. We used a simple statistical procedure to extrapolate from the low point source

transfer coe¢ cients in CRDM to the remaining 1225 counties. For each source county with both a set of
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low point transfer coe¢ cients and area source transfer coe¢ cients (s), we compute the ratio of the low-point

coe¢ cients (Lsr) to the area source coe¢ cients (Asr) at each of the 3110 county receptors (r). This is shown

in equation (1):

Rsr =

�
Lsr
Asr

�
(1)

Next, the ratio vector (Rsr) is ranked according to increasing distance from the source county (s): Then,

the ranked ratio vectors for each of the 1885 counties with low-point coe¢ cients (Rsr for s = 1; :::; 1885)

are assembled into a (1885; 3110) matrix (D). The �rst column of D contains the Rsr corresponding to the

nearest receptor to each source. We compute the mean of each column.

�Rr =
1

1885

1885X
s=1

(Rsr) (2)

Transposing this vector yields a (3110; 1) vector ( �R) containing the spatial averaged ratio of low-point

coe¢ cients to area source coe¢ cients ranked by distance to the source location. The �nal step is to multiply

( �R) by the area source coe¢ cients for each row that corresponds to counties without low-point source transfer

coe¢ cients. However, prior to multiplication by ( �R), the area source coe¢ cients are ranked according to

increasing distance. This ensures that the As1; corresponding to the nearest receptor to source (s); is adjusted

according to �R1; the ratio of low-point coe¢ cients to area source coe¢ cients at the minimum distance between

source and receptor. The above procedure is repeated for each of the 1225 counties without low-point source

transfer coe¢ cients in the original CRDM con�guration. We then repeat this process for the 2737 counties

without transfer coe¢ cients for medium-height point sources; those with an e¤ective height between 250 and

500 meters. There are 91 new tall point sources in the 2002 emission inventory that were not modeled in

the original version of CRDM. These are modeled at the plant level.

2.2.2 NOx

In addition to modeling the contribution of NOx emissions to PM levels, APEEP uses a Gaussian dispersion

model to characterize the relationship between primary NOx emissions and concentrations of NO2, and an

empirical model that computes concentrations of tropospheric O3:

Ambient concentrations of NO2 at a receptor county (r) are estimated using the following formula3

(Turner, 1994).
3All computations that rely on meteorological data employ observations from the National Oceanic and Atmospheric Ad-

ministration�s (NOAA) Integrated Surface Hourly data sets for (1995-1999).
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Cr =
SX
s=1

"�
Es�sdfwfdfc
��sd�yd�zd

�
e

�
�H2

sd
2�2z

�#
(3)

Cr is the sum of the contribution from emissions in each of the (S) sources to ambient concentrations in

receptor county (r): Es represents the NOx emissions from source (s); �sd denotes the probability that the

wind, in the source county, blows from the direction required to send the emissions to receptor (r): Hsd is the

e¤ective height of emissions in source county (s), conditional on the wind blowing from direction (d): The

e¤ective height of emissions is computed using formulae and parameters estimated by Briggs (1969, 1971,

1975) which are summarized by Seinfeld and Pandis (1998) and Turner (1994). The remaining parameters

(�; �sd; �yd; �zd) are, respectively: the constant pi, the wind speed in source county (s) conditional on the

wind blowing from direction (d); the horizontal dispersion parameter, and the vertical dispersion parameter,

both conditional on the wind direction (d); (Pasquill, 1961). The Gaussian model also includes terms for wet

and dry deposition (fw; fd) and for the loss of NOx due to its transformation into PM and into tropospheric

O3 (fc).There are two NOx ! NO2 source-receptor matrices, one estimated using summer meteorological

conditions and one estimated using winter meteorological conditions. The resulting matrices accept seasonal

emission vectors as inputs.

2.2.3 Tropospheric Ozone (O3)

O3 is not directly emitted into the troposphere. Instead a series of chemical reactions contribute to its

formation. Two directly emitted precursors to tropospheric O3 are the oxides of Nitrogen (NOx) and V OC

(Seinfeld, Pandis, 1998). Ambient concentrations of tropospheric O3 are predicted using an empirical model

estimated using V OC, NOx and O3 observations from the USEPA�s AIRS network. The model captures

many of the factors contributing to ambient concentrations of O3; these include forests and agricultural land

uses which produce biogenic hydrocarbons, as well as the ambient air temperature and several geographic

variables: The model is speci�ed as follows.

log (O3) = �0+�1 (Hour)+�2(Hour)
2
+�3(NOx) + �4(V OC) + �5(CO) + �6V eg + �7T + �8G (4)

where: O3 = Ambient Ozone (ppbv)
�i = (for i = 1,...8) statistically estimated (OLS) parameter
Hour = Hour in the day
NOx = County Ambient NOx (ppbv)
V OC = County Ambient VOC level (ppbv).
CO = County Ambient CO level (ppbv).
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V eg = Index of (%) land area in each county covered by four forest regimes and agricultural land uses
T = County Ambient air temperature (F)
G = Index of geography variables (latitude, longitude, altitude, metropolitan binary variable, California

binary variable)

An o­ ine regression model employs ordinary least squares to produce the parameter estimates (�). Using

these �xed parameter estimates, this empirical model is used to generate a surface of predicted ambient O3

concentrations; the summer average value for each county. The inclusion of both the linear and quadratic

forms of the NOx; CO; and V OC variables allow for the nonlinearity known to exist in O3 production

chemistry, (Seinfeld, Pandis, 1998). Speci�cally, the quadratic forms capture titration in areas where the

background concentration of NOx is su¢ ciently high. This is critical in certain urban areas, where O3 read-

ings tend to be lower than the surrounding suburbs and rural areas. APEEP initially produces baseline NO2

and V OC concentrations and uses those estimates in the above model to derive baseline O3 concentrations.

Following a NOx emissions experiment, new ambient NO2 levels are inserted into the O3 model resulting in

new O3 concentrations. The same experimental structure is used for V OC emission experiments.

2.2.4 SO2

In addition to modeling the contribution of SO2 emissions to PM levels in the PM module, APEEP uses a

Gaussian dispersion model to characterize the relationship between primary SO2 emissions and concentra-

tions of SO2:

Ambient concentrations of SO2 at a receptor county (r) are estimated using the following formula (Turner,

1994).

Cr =

SX
s=1

"�
Es�sdfwfdfc
��sd�yd�zd

�
e

�
�H2

sd
2�2z

�#
(5)

The primary di¤erence between the Gaussian model used for SO2 dispersion and that employed for

NOx, are the wet and dry deposition terms and the chemical transformation rate for SO2 ! PM . Much

like the approach to modeling NOx, the above model is used to compute separate source-receptor matrices

for summer and winter meteorological conditions. The resulting matrices accept seasonal SO2 emission

vectors as inputs.

2.2.5 Within County Dispersion

For emissions contributing to PM, APEEP relies on the within-county modeling (contributions of emissions

from a source county to ambient concentrations in the same county) embodied in the CRDM matrices
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(USEPA, 2004). Source-receptor relationships for within-county dispersion of NOx ! NO2 and SO2 ! SO2

are estimated in the following manner. The model begins by computing the land area of each county.

The counties are assigned to one of nine treatment groups based on the land area (see table 1). Within

the treatment groups, each county is subdivided into smaller, equally-sized gridcells. Using the Gaussian

models shown above, the source-receptor relationships are estimated between each of the gridcells within a

county. The emissions in the county are distributed evenly among the gridcells. After estimating the transfer

coe¢ cients between each combination of gridcells, the mean coe¢ cient among these "own-county" gridcells

is calculated. This mean coe¢ cient is then used to model the relationship between emissions in a county

and the resulting ambient concentration in that same county.

When modeling "own-county" dispersion, the model employs Briggs (1973) urban dispersion parameters

if the source county lies in a Standard Metropolitan Statistical Area. These parameters are only used for

within-county dispersion since Briggs (1973) suggests they are only valid up to a distance of 10,000 meters -

roughly 6 miles. If the county is not part of an SMSA, the standard Pasquill-Gi¤ord dispersion parameters

are employed.

2.2.6 Removal of Pollutants in the Atmosphere

Wet and dry deposition processes are modelled using constant deposition velocities for NOx and SO2. The

rates are displayed in Table 2. For dry deposition, the model uses the distance between a source and a

receptor, divided by wind speed and the mixing height (M). For wet deposition, the model uses the

distance between a source and a receptor, divided by wind speed. These computations are shown below in

equations (6); (7); and (8). The output is interpreted as the fraction of material removed by each process.

Thus, the model computes one minus the fraction removed, or, the fraction remaining after transport to the

receptor. This permits fd and fw to enter multiplicatively into the Gaussian models.

Atmospheric transformation (fc) of SO2 and NOx into particulates is modeled using rate constants �pc

derived from the CRDM (USEPA, 2004). It is important to note that each of these parameter values are

those used by the developers of the CRDM source-receptor matrices which, in this model, govern the air

quality modeling of PM. By employing these same values, APEEP accounts for the loss of primary emitted

NOx and SO2 at the same rate as the particulates module. This maintains a critical degree of internal

consistency. The loss of NOx to the formation of O3 is tabulated in a proportional fashion.

fd = 1�
��
�pd(cm)

s

�
�
�
distance(km)

1

�
�
�
1(hr)

�(km)

�
�
�
3600s

hr

�
�
�

1

M(m)

�
�
�

m

100(cm)

��
(6)
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fw = 1�
��
�pd
in

�
�
�
Rain(in)

yr

�
�
�
distance(km)

1

�
�
�
1(hr)

�(km)

�
�
�

yr

8760(hr)

��
(7)

fc = 1�
��
�pc(%)

hr

�
�
�
distance(km)

1

�
�
�
1(hr)

�(km)

��
(8)

2.3 EXPOSURES

Because the consequences of policy are related to the number of sensitive receptors involved, APEEP cal-

culates population-weighted exposures (PE). APEEP captures changes in population-weighted exposures

corresponding to changes in emissions by calculating the di¤erence between exposures in the baseline emis-

sion scenario, and after each emission experiment.

PEr = [Popr]� [Cpr] (9)

where: Popr = population in receptor county (r)
Cpr = ambient concentration of pollutant (p) in receptor county (r)
PEr = Population-weighted exposures in receptor county (r)

It is important to note that the term population above refers to the inventory of sensitive receptors

in a certain receptor location. These inventories are not restricted to counting people. Rather the model

includes inventories of each receptor type: crops, forests, people, materials, visibility resources and ecological

resources related to recreation uses.

Exposures are modeled in six distinct areas: human health, agriculture, forests, man-made materials,

visibility and recreation. The correct measurement of pollution exposures depends on the measure used

in the dose-response studies. Most studies rely on the concentration of outdoor air pollution as a proxy

measurement for exposures4 . Hence, APEEP computes exposures using estimates of outdoor air pollution

at each receptor county generated by the air quality model. The following discussion addresses how APEEP

organizes a variety of data into populations of sensitive receptors and how the model computes exposures of

crops, trees, people, recreation services, materials and visibility resources.

2.3.1 HUMAN HEALTH

APEEP calculates population-weighted exposures to each pollution species separately for each of the 19 age

groups reported by the U.S. Census Bureau. This permits an analysis of the air pollution exposures for people
4 Including most epidemiological studies and crop experiments.
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of di¤erent ages. Such detailed exposure analysis is particularly useful since the epidemiological literature

indicates that certain portions of the population show di¤ering levels of susceptibility to pollution. This

data is necessary to determine the magnitude of the populations at risk in each county. Local populations

at risk are calculated by aggregating among age groups in each county. Thus, if an epidemiological study

focuses on persons greater than 65 years of age, the population at risk is calculated by adding the number of

persons in each age category greater than 65 years in each receptor county. Exposures are then calculated

by multiplying this population at risk by the predicted ambient concentration.

2.3.2 AGRICULTURE

Exposures are calculated by multiplying reported county crop yields times the seasonal mean O3 concentra-

tion. APEEP includes county-level yield inventories of alfalfa, lettuce, tobacco, corn, cotton, peanuts, dry

edible beans, grain sorghum, soybeans, spring wheat and winter wheat5 . This approach stems from the use

of empirical dose-response functions which use seasonal mean O3 concentrations (Lesser et al., 1990).

2.3.3 FORESTS

The forest module measures exposures to O3 concentrations separately for coniferous and broadleaf species

groups, (Hoggsett, et al., 1997; Pye 1988; Reich 1987). The model contains an inventory of the total growth

of each species group in each county. The data necessary for this approach is provided by the U.S. Forest

Service�s Forest Inventory and Analysis Databases6 . These datasets provide mortality (M), removals (R),

and net growth (NG), from which the growth (G) by species group, by county, is derived7 .

Gfr = NGfr +Rfr +Mfr (10)

where : f = forest species group (Hardwood, Softwood)
r = receptor county

Exposures are computed by multiplying the (Gfr) times the seasonal mean O3 level.

2.3.4 MAN-MADE MATERIALS

Calculating exposures of man-made materials to air pollution requires the development of an inventory that

characterizes the quantity of such materials in each county in the lower 48 states (Freeman, 1982). APEEP

5County-level crop inventories are available from the USDA Agriculture Census: http://www.nass.usda.gov:81/ipedb/
6http://www.ncrs2.fs.fed.us/4801/FIADB/�m_tab/wc_�m_tab.asp
7All measurements in cubic board feet
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calculates exposures of carbonate stone, galvanized steel, carbon steel, and painted wood surfaces to county

seasonal average concentrations of SO2.

Using empirical results from the U.S. Department of Energy�s Residential Energy Consumption Survey

and the Annual Housing Survey conducted by the U.S. Census Bureau, the model computes the exposed

surface area of each building material in each receptor county. This depends on estimates of the number

of buildings (including single-family homes, multi-family homes, and business establishments), the average

structure size for each building type, and the probability of each material being used in each region of the

country8 .

The calculations take the following form.

SArm =
3X
t=1

(Nrt)(Srt)(Pmr) (11)

where : SArm = Exposed surface area of building material (m) in receptor county (r)
Nrt = Number of Structures type (t) in county (r)
Srt = area of exterior wall space per structure, county (r)
Pmr = Probability material (m) used on exterior wall space in county (r)

For infrastructural materials (galvanized and painted carbon steel), the inventory relies on methods

developed in the National Acid Precipitation Assessment Program, (SOST III, NAPAP 1990). In particular,

researchers in NAPAP calculated surface area estimates for galvanized and carbon steel (focusing on bridges,

transmission towers, railroads, and guardrail) for the state of New York. The ratios of exposed surface area

to land area are then extrapolated to other geographic areas. Exposures are computed as the product of the

estimated seasonal mean SO2 concentrations and the estimated surface area of each material in each county.

2.3.5 VISIBILITY

APEEP measures visibility using visual range (miles). The empirical studies that examine the economic

signi�cance of visibility calculate the willingness-to-pay for small changes in visibility at the household level

(Chestnut, Rowe, 1990, Chestnut, Dennis, 1997). Thus, the relevant population for quantifying exposures

8The DOE (1983) study provides structure size in terms of �oor space ( ft2). Thus, with a simplifying assumption regarding
the shape of the structure (we assume that each residential structure is cubic with two stories of living space) the conversion
from �oor space to wall space is straightforward. That is, the total area of living space is equivalent to twice the area of one
story. Thus, given our cubic shape assumption, the area of the four walls is equivalent to four times the area of one story, or
two times the total living area.
Characterisitcs of commercial structures are provided by the U.S. DOE Energy Information Administra-

tion�s Commercial Buildings Energy Consumption Survey. Detailed data is found at the following site:
ftp://ftp.eia.doe.gov/pub/consumption/commercial/cb954.pdf
Characterisitcs of residential structures are provided by the U.S. Census Bureau�s American Housing Survey. Detailed data

is found at the following site:
http://www.census.gov/hhes/www/housing/ahs/ahs.html
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is the number of households on the county-level. Exposures are estimated by multiplying the number of

households times the baseline visual range times the estimated seasonal mean PM10 concentration.

2.3.6 RECREATION

APEEP focuses on the incremental e¤ects of pollution on recreation usage in forest ecosystems (NAPAP,

SOST III, 1990). APEEP calculates exposures in the following way; acres of forested land in each county

are multiplied by the number of recreation visitor days times the estimated ambient concentrations of O3;

NOx and SO2.

2.4 DOSE-RESPONSE

APEEP employs dose-response functions (also frequently called concentration-response functions and exposure-

response functions) to translate ambient concentrations and exposures into various physical e¤ects; hospital

admissions, premature deaths, decreased agricultural and forestry yields, enhanced depreciation of man-

made materials, declining recreation use, and reduced visibility9 . APEEP relies on peer reviewed studies to

provide statistically estimated dose-response functions for the following �elds: human health, agriculture,

and man-made materials. Since peer-reviewed dose-response functions pertaining to timber, visibility and

ecosystem e¤ects are not available, APEEP employs empirical models estimated from experimental data

reported in peer-reviewed studies.

2.4.1 HUMAN HEALTH

To model dose-response relationships between human health and exposures to air pollution the model relies

on peer-reviewed studies in the epidemiological literature. APEEP is equipped to use results from Pope et al.

(2002) to model the impact of long-term exposures to PM2:5 on county-level non-accidental mortality rates10 .

The model uses results from Klemm and Mason (2004) to determine the e¤ect of short-term exposures to

PM2:5 on mortality rates. Findings from Bell et al. (2004) translate acute exposures to O3 into changes in

mortality rates. The impact of each air pollutant on the incidence rates of a variety of illnesses (morbidity

states) are modeled using studies cited in table 3.

The statistical models used to estimate dose-response functions are typically log-linear models.

log

�
Y

Pop

�
= �+ 
X + �C + " (12)

9See tables 3 through 6 for the list of dose-response functions used in this analysis.
10APEEP is also equipped to use the dose-response functions from Krewski et al. (2000) and the recent update to Dockery

et al. (1993) in Laden et al., (2006).
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where: �; �; 
 = statistically estimated parameters
C = ambient concentration of pollutant
X = factors associated with incidence of health state: age, income, personal habits (smoking, etc.)
" = stochastic term�
Y
Pop

�
= ratio of persons with health state (Y ) to total population

In order to convert the logarithmic form of the dependent variable to a linear form we must exponentiate

both sides of equation (12). This yields (13).

�
Y

Pop

�
= exp(�+
X+�C) (13)

We de�ne the baseline incidence rate (IR) as a function of (X):

IR = exp�+
X (14)

Substituting (14) and multiplying through by population, the number of health events is:

Y =
h
IR� exp(�C)

i
� Pop (15)

Finally, the change in the number of health events attributable to a change in concentration is computed

using (16).

�Y = IR�
h�
exp(�Cp)

�
�
�
exp(�Cb)

�i
� Pop (16)

where: Cp = ambient concentration (emission perturbation)
Cb = ambient concentration (baseline emissions)
�Y = estimated change in health event (cases, deaths, admissions)

2.4.2 AGRICULTURE

Dose-response functions for agricultural crops from the National Crop Loss Assessment Network (Lesser et

al.,1990) are employed in APEEP. The dose-response functions are of the following form (table 4):

CY � =
�
1� e�(

O3
� )


�
� CY b (17)
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where: CY � = crop yield after emissions perturbation
CY b = baseline (observed) crop yield, 1996
O3 = 7 or 12-hour daily mean O3 concentrations (ppmv)

 = statistically estimated dimensionless shape parameter
� = statistically estimated parameter

The model then calculates the relative yield loss.

RY L = 1�
�
CY �

CY b

�
(18)

The RYL expresses the change in yield as a proportion of the baseline yield. To derive the yield loss in

absolute terms, the model multiplies the estimated RYL times the baseline yield.

�CY = RY L� CY b (19)

2.4.3 MAN-MADE MATERIALS

Dose-response functions for man-made materials damages are obtained from the NAPAP studies (Atteras,

Haagenruud, 1982; Baedecker, 1990; Haynie, Spence, Lipfert, 1989) and from more recent experiments

conducted by The International Cooperative Programme on E¤ects on Materials (ICP), (table 6).

The materials corrosion dose-response functions assume three slightly di¤erent forms. The functions

representing the e¤ect of ambient SO2 on galvanized steel assume the following form.

�M = (�0SO2 + �1)�M (20)

where: �M = Mass loss of material
�0; �1 = statistically estimated parameter
SO2 = ambient concentration of pollutant
M = existing material mass

The functions representing the e¤ect of ambient SO2 on painted surfaces include terms for the surface
wetness, and annual rainfall.

�M = �0R+ �1SO2 � Freq (21)

where: �M = Mass loss of material
�0; �1 = statistically estimated parameters
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SO2 = ambient concentration of pollutant
Freq = fraction of time surface is wet
R = annual rainfall (cm)

The functions representing the e¤ect of ambient SO2 on carbonate stone surfaces take the following form.

�S = (�0SO
�
2 ) exp


T +(�1R)H
+ (22)

where: �S = surface recession of painted surface (�m)
�0; �1; �; 
; = statistically estimated parameters
SO2 = ambient concentration of pollutant
T = ambient temperature (Co)
R = annual rainfall (mm)
H+ = Hydrogen+ concentration of precipitation (mgL )

2.4.4 FORESTS

APEEP uses linear dose-response functions relating incremental changes in O3 concentrations to changes in

tree growth. The functions are estimated from experimental results in Reich, (1987) and Pye, (1988). The

following example illustrates the method used.

Reich (1987) reveals a correspondence between broadleaf tree growth and O3 dose; a 20 ppm-hour dose

produces a 13% reduction in yield. Thus, to extrapolate, the necessary mathematical operation is to nor-

malize the dosage to 1 ppm-hour and calculate the proportional yield reduction associated with this dose.

The relation is characterized as follows:

�Y = �H (O3 ppm-hr) : (23)

where: �Y = change in yield bft3

�H = proportional relation between O3 dose and growth of hardwood species

Using Reich�s correspondence:

�0:13(bft3) = �H
�
20 ppm�hour

�
(24)

solving for �:

�0:13
20

= �H = �0:0065
�

bft3

ppm� hour

�
(25)
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For hardwood species, the dose-response function takes the following form:

�Y = (�HO3p � �HO3b)�G (26)

where: �Y = change in timber growth
�
bft3

�
�H = estimated parameter

�
bft3

ppm�hour

�
G = observed, annual timber growth

�
bft3

�
O3b = baseline O3 (ppm� hour)
O3p = perturbation O3 (ppm� hour)

For coniferous species, the dose-response function takes the following form:

�Y = (�CO3p � �CO3b)�G (27)

where: �C = proportional relation between O3 dose and growth of coniferous species

2.4.5 VISIBILITY

APEEP uses an empirical model which describes the visual range in each county as a function of climatic

and geographical factors and ambient concentrations of PM10. An o¤-line regression model estimates the

empirical relationship between visual range (observations from NOAA�s Integrated Surface Hourly Data) and

PM10 (USEPA�s AIRS network) while controlling for temperature, precipitation, latitude, longitude, and

altitude. While this is an innovative approach to translating changes in ambient concentrations of pollution

into changes in visibility, the components of the regression model are based on the fundamental principles of

atmospheric science pertaining to visibility (Seinfeld, Pandis, 1998) and the parameter estimates characterize

empirical relationships existing in the data. In order to calculate local visual range, the following steps are

necessary:

1) Due to the log-linear functional form of the regression model, the baseline visual range is equivalent

to:

V R1 = exp
(�+
C+�G+�P+") (28)

where: �; �; 
; � = statistically estimated parameters
C = county climate data (temp, precipitation)
G = county geographical data (latitude, longitude, altitude)
P = county baseline PM10 concentration
" = stochastic term

V R1 = baseline visual range (miles)
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2) Design and implement an experimental emissions scheme.
3) Estimate new ambient concentrations of PM10, P�.
Repeat Step 1) to generate V R2

V R2 = exp
(�+
C+�G+�P 0+") (29)

The regression model serves as a dose-response function for visibility; relating an incremental change in
PM10 levels to changes in visibility.

2.4.6 RECREATION

The dose-response component of the recreation module employs an empirically estimated regression function

to translate changes in ambient concentrations of two air pollutants into changes in forest mortality.

M = �0 + �1SO2 + �2O3 + �3NOx + �4G (30)

where: M = Forest Mortality (ft3)
� = statistically estimated parameters
G = geographic variables: county population, latitude, longitude, altitude, land area
SO2,O3; NOx = ambient concentration (ppbv)

In the second stage regression model, recreation use is described as a function of (among other factors)
forest mortality.

RVD = �0 + �1M + �2C + �3V (31)

where: RVD = recreation visitor days11

M = Forest Mortality (ft3)
� = statistically estimated parameters
C = climate variables: annual average temperature (F), precipitation (in)
V = growing stock (bft)

Using this two-stage approach, emissions perturbations a¤ect ambient pollution levels, impacting forest

mortality, which then a¤ects recreation usage. Hence, the regression models characterize the dose-response

relationships for recreation e¤ects; relating an incremental change in pollution levels to changes in recreation

usage.

11RVD�s are the total visits to national parks, state parks, national forests, state forests, and Bureau of Land
Management land holdings.
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2.5 VALUATION

In the dose-response module, APEEP measures the physical consequences of air pollution in terms of di¤erent

units; visual range reported in miles, timber growth in cubic board feet, crop yields in bushels, recreation in

visits, and human health in cases or hospital admissions. Without the application of some common metric

to these disparate e¤ects, comparing the e¤ects of emissions would not be possible in a rigorous fashion. To

resolve this issue, economists propose using market prices for commodities traded in organized markets and

shadow-prices for goods and services not traded in markets (Freeman, 2003; Mendelsohn, 1980). Analytically,

valuation establishes a means by which the researcher may directly compare the consequences of emissions.

This step also permits a rigorous comparison of the consequences of emissions with the costs of abatement.

All dollar values reported in APEEP re�ect constant, year-2000 U.S. dollars.

Applying valuation techniques also necessitates a consideration of the time horizon over which commodi-

ties a¤ected by pollution are consumed. For market goods that are consumed in the current year (crops),

the valuation exercise is reduced to applying market prices to the change in yield due to altered ambient con-

centrations which stem from emission perturbations. For timber resources, the model computes the present

value of changes to the inventory of timber due to emission experiments, since standing timber is harvested

in multiple time-periods. For materials, the model values the present value of the cost of maintenance. For

example, if, due to pollution, exterior paint must be replaced every four years instead of �ve, the model

calculates the increase in the present value of those costs. Valuation is considerably more complicated for

damages corresponding to the goods and services not traded in market settings: visibility, human health,

and ecosystem services.

In the non-market valuation literature, economists frequently distinguish between revealed preference

and stated preference methods (Cropper and Oates, 1992; Freeman, 2003). Revealed preference methods use

market behavior to model the trade-o¤ made between environmental quality and money. Stated preference

methods feature the construction of hypothetical markets to ascertain how people would behave if a market

for environmental quality did exist. Both methods strive towards the same conceptual quantity; the trade-

o¤, at the margin, between a nonmarket good or service (health or environmental quality) and money

(Cropper and Oates, 1992). APEEP employs the results from numerous, peer-reviewed studies that apply

these methods to value the physical e¤ects of air pollution.

2.5.1 HUMAN HEALTH

Human health e¤ects associated with ambient pollution levels are commonly divided into two categories:

premature mortalities and increased incidence rates of morbidity or illness. Prior e¤orts to quantify the
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damages associated with air pollution indicate that incremental changes in non-accidental mortality rates

account for the majority of total damages (USEPA, 1999). This warrants a careful review of how mortality

risk is valued in the literature and in this model. This model uses empirical evidence about how society

values mortality risks. Speci�cally, a large literature exists (see Viscusi, 2002 or USEPA, 1999 for summaries)

that explores how people value the risk of death; this literature has gathered evidence from observations of

people�s behavior in market settings and from survey results where people are asked to exchange money for

small changes in mortality risks. APEEP employs this evidence in an approach to valuing mortality risk

referred to as the value of a statistical life or (VSL). USEPA (1999) and others have employed this general

strategy.

Although it may seem ethically objectionable to consider a trade-o¤between health and money, abundant

empirical evidence suggests that people commonly make such trade-o¤s. This is readily seen in purchases of

products which reduce the risk of death and injury: bicycle helmets, bottled water when municipal sources

are less clean, smoke detectors, child seats in automobiles. These transactions reveal what consumers are

willing to pay for such products and the reductions in health and safety risks stemming from their use.

Another common example of individuals valuing safety are the higher wages a¢ xed to dangerous occupations.

Several peer-reviewed studies have estimated the wage premium associated with elevated fatality risks in the

workplace (Viscusi, 2002). Typically, the magnitude of the extra risk in such jobs is quite small; an additional�
1

10;000

�
chance of death. Using this wage premium is appropriate because the implications of air pollution

policy typically involve changes in mortality rates of an approximately equal magnitude. The literature

that focuses on estimating this wage premium reports wide variation in the magnitude of this premium. In

particular, the premium appears to be quite sensitive to how workplace risk is measured and speci�cation

of the hedonic wage model (Mrozek, Taylor, 2002; Black et al., 2003). APEEP�s baseline valuation settings

employs the central estimate from the recent meta-analysis of over 40 hedonic wage studies conducted by

Mrozek and Taylor (2006). This study reports a wage-risk premium (R) of roughly $200 per
�

1
10;000

�
risk of

death in the current period. In contrast, USEPA currently uses a wage-risk premium of approximately $620

per
�

1
10;000

�
:

APEEP employs the value of a case of chronic bronchitis reported by the USEPA (1999). This estimate

is derived from the work of Viscusi (1991) and Krupnick and Cropper (1992). APEEP employs the USEPA�s

(1999) value for each case of chronic asthma. Aside from chronic bronchitis and chronic asthma, APEEP

relies on cost of illness estimates to value the other morbidity states encompassed by the model. Cost of

illness12 (de�ned as medical expenses plus lost wages) estimates for particular health states are reported in

12Source: U.S. Dept. Health and Human Services, Healthcare Cost and Utilization Project, Nationwide Inpatient Sample.
http://hcup.ahrq.gov/HCUPnet.asp}
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table 7.

2.5.2 AGRICULTURE

Calculating the damages to agricultural crops requires multiplying the 2002 market prices for each cultivar

by the estimated yield loss due to exposures to pollution. Crop price data is obtained from the USDA. Crop

prices are the marketing year average prices reported by the USDA National Agricultural Statistics Service.

The prices are reported in table 10.

2.5.3 FORESTS

Computing the damages to timber resources requires multiplying the 2002 market prices for particular

regional hardwoods and softwoods by the estimated yield loss due to exposures to pollution. However, in

contrast to agricultural damages which are realized in the current year�s harvest, damages to timber resources

a¤ect harvests in the current year as well as harvests occurring in the future. APEEP accommodates this

multi-year perspective by calculating the present value of timber harvests due to the yield loss attributable

to exposures to O3. Price data is obtained from State Forest Management Agencies. The prices re�ect the

value of standing timber in 2002 (not delivered logs). These market prices are reported in table 11. The

timing of future timber harvests is determined by maximizing the net present value of timber stock using

the Faustmann formula as depicted in Sohngen (1995). In the formula shown below, (t) corresponds to the

period in which the present value of timber stocks are maximized. This optimal harvest date varies according

to major species groups and region (Sohngen, 1995).

APEEP computes the present value of timber harvests, under baseline O3 conditions, using the following

formula.

WrHb = � �
�
PQtrbe

��t � C
1� e��t

�
(32)

where: WrHb = present value of hardwood timber (H) in receptor county (r); baseline O3

PH = 2002 price for hardwood timber
�

$
MBF

�
Qtrb = volume of hardwood timber (MBF ) in receptor county (r); baseline O3
� = market interest rate (4%)

C = replanting costs
�

$
MBF

�
t = time of harvest

In order to assess the impact of the NOx and VOC emission experiments, it is necessary to determine

the change in the present value of current and future timber harvests in each a¤ected receptor county (r).
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Accordingly, APEEP computes the present value of timber harvests, under perturbation O3 conditions.

O3 a¤ects tree growth which adjusts the optimal time of future harvests (t�): Since O3 reduces growth, if

additional NOx emissions create O3; then growth is retarded and the (t�) will be larger, implying harvests

on a longer rotation schedule.

WrHp = � �
�
PQtrpe

��t� � C
1� e��t�

�
(33)

where: WrHp = present value of hardwood timber in receptor county (r); perturbation O3
Qtrp = volume of hardwood timber (MBF ) in receptor county (r); perturbation O3
t� = time of harvest

APEEP then determines the change in the present value of timber harvests in each receptor county (r).

The e¤ect of an emission experiment at source (s) is the sum of the change in all a¤ected receptor counties13 .

�WHs =
RX
r=1

(WrHb �WrHp) (34)

2.5.4 MAN-MADE MATERIALS

The damages to man-made materials encompass a consideration of the e¤ects of pollution on the materials

in the current (model) year, and the implications of such damage for the timing of regularly scheduled

maintenance and repair activities occurring in the future. For painted surfaces, the dose-response functions

generate an estimate of the decay rate (surface recession expressed as a proportion of the decay rate in

unpolluted air) under baseline pollution conditions and following each emission perturbation. For limestone

surfaces, the dose-response functions generates an estimate of the surface recession
�
�m
year

�
under baseline

pollution conditions and following each emission perturbation. The model calculates the present value of

materials maintenance costs (consisting of maintenance repairs occurring on a 5 year schedule14) using the

following formula.

Mrb = � �
�
RCre

��t

1� e��t

�
(35)

where: Mrb = annual maintenance costs in county (r); baseline SO2
� = market interest rate (4%)

13APEEP also computes the damages to softwood resources, which follows the same methodology as the computation for
hardwood damages.
14Here we assume that exterior painting occurs on regular �ve-year intervals as does pointing, pressure-washing and other

super�cial upkeep to limestone surfacesand galvanized steel. Carbon steel is assumed to be painted on 5-year intervals as well.
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RCrb = Replacement costs in receptor county (r); baseline SO2
t = time of repairs (5; 10; 15; :::; T )

In order to assess the impact of emission experiments, it is necessary to determine the change in the

frequency of the maintenance activities. This is accomplished by calculating the ratio of the materials

inventory under perturbation conditions (Ip) to the materials inventory under baseline conditions (Ib). This

ratio is then multiplied by the 5-year maintenance schedule as shown in the following formula.

t� = 5�
�
Ip
Ib

�
(36)

where: t� = time of repairs (5� "; 10� "; 15� "; :::; T � ")
" = t� t�

This computation yields the timing of the amended maintenance schedule due to the experimental increase

in pollution (t�). Stated alternatively, if maintenance occurs after a certain, �xed degree of damage to the

materials, then as pollution increases, the maintenance will occur sooner.

Mrp = � �
�
RCrpe

��t�

1� e��t�
�

(37)

where: Mrp = annual maintenance costs in county (r); perturbation SO2
� = market interest rate (4%)
RCrp = Replacement costs in receptor county (r); perturbation SO2
t� = time of repairs (5� "; 10� "; 15� "; :::; T � ")

The change in the present value of the maintenance schedules extending into the future constitutes the

damages computed by APEEP. Further, the e¤ect of an emission experiment from source (s); is the sum of

the change in all a¤ected receptor counties.

�Ms =
RX
r=1

Mrp �Mrb (38)

2.5.5 VISIBILITY

Several analyses derive estimates of the value a¢ xed to improvements in visibility using contingent valuation

methods (Chestnut, Rowe, 1989; Loehman, Boldt 1990; McClelland et al., 1990). We rely on Chestnut and

Rowe�s (1989) estimates of household willingness to pay (HHWTP) for incremental changes in visibility

associated with recreation experiences.
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HHWTP = � �
�
ln

�
V R1

V R2

��
(39)

where: HHWTP = household willingness to pay
� = statistically estimated parameter
V R2 = visual range (miles) after emissions perturbation
V R1 = visual range (miles) under baseline conditions

The values reported in tables 8 and 9 are the � parameters. The model employs regional estimates

of HHWTP for improvements in residential visibility established in Chestnut and Dennis, (1997) and in

McClelland et al., (1990).

2.5.6 RECREATION

APEEP relies on peer-reviewed studies which derive values for recreation experiences using the travel cost

and contingent valuation methods. In particular, the model employs valuation estimates for recreation usages

in forest ecosystems. The United Nations Food and Agriculture Organization report summarizing such values

(Kengen, 1997) is used to estimate the average value of a recreation-visitor-day in forest environments. The

estimates in the report are associated with a variety of recreation uses: hiking, camping, hunting. The mean

value of a recreation day used in APEEP is $62.80.

3 AIR QUALITY MODELING EXPERIMENTS

We evaluate the performance of the air quality model in APEEP using observations from USEPA�s AIRS

monitor network. These experiments rely on the performance criteria commonly used to evaluate air quality

models in the literature (Tong, Mauzerall, 2006; Russell, Dennis, 2000; USEPA, 2005). Since APEEP

produces county-average ambient concentrations, we �rst compute the county averages from the monitor

readings for each pollutant for the year 2002. For O3 the data consist of hourly measurements which are

spatially-averaged to the county level.

�Och =
1

Dc

1

Mc

McX
m=1

DcX
d=1

Omdh (40)

where �Och = arithmetic mean O3 in county (c);hour (h).
Mc = number of O3 monitors in county (c):
Omdh = O3 level at monitor (m); day (d), hour (h)
Dc = number of days with O3 observations in county (c).
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For PM2:5; the data consist of annual county averages.

�Ppc =
1

Hc

1

Dc

1

Mc

McX
m=1

DcX
d=1

HcX
h=1

Pmdh (41)

where �Pc = arithmetic mean PM2:5 in county (c).
Mc = number of PM2:5 monitors in county (c):
Pmh = PM2:5 level at monitor (m); day (d), hour (h)
Dc = number of days with PM2:5 observations in county (c).
Hc = number of hourly observations in county (c).

In order to be consistent with prior model evaluation procedures we employ four error statistics used in

the literature (Tong, Mauzerall, 2006; USEPA, 2005): the mean error, the mean bias, the normalized mean

error and the normalized mean error. Each of the following four statistics are computed separately for each

pollutant.

MEp =
1

Cp

CpX
c=1

jApc � �Cpcj (42)

where �Cpc = arithmetic mean in county (c) for pollutant (p):
Cp = number of counties with monitors measuring pollutant (p)
Apc = APEEP model predicted pollution level pollutant (p);at county (c):

MBp =
1

Cp

CpX
c=1

(Apc � �Cpc) (43)

NMEp =
1

Cp

CpX
c=1

�
jApc � �Cpcj

�Cpc

�
(44)

NMBp =
1

Cp

CpX
c=1

�
(Apc � �Cpc)

�Cpc

�
(45)

Finally, for each pollutant we compute Pearson�s Correlation Coe¢ cient (�). This procedure is helpful

in determining if the spatial pattern of the predicted surfaces matches the distribution observed by the

monitors.

� =
E(Apc � �Ap)(Cpc � �Cp)

�A�C
(46)
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where �Cp = observed arithmetic mean for pollutant (p):
�Ap = model predicted arithmetic mean for pollutant (p)
�A = variance of model prediction:
�C = variance of monitor observations:
E = expectation operator

Next, we repeat these experiments using nation-wide, county-level ambient pollution predictions gener-

ated by the CMAQ model as the standard to which APEEP�s predictions are compared. Except for O3;

CMAQ�s predictions have been averaged to re�ect seasonal county arithmetic means. For O3; CMAQ�s

predictions are averaged across the days in the simulation but not across hours. Thus, for each county we

have 24 hourly readings. This matches the hourly output from APEEP.

3.1 RESULTS

Tables 12 and 13 report the results of the performance evaluation of the air quality models in APEEP. When

compared to hourly measurements drawn from the USEPA�s AIRS monitoring network for O3; APEEP

generates a surface with a mean error (ME) of 7.2 ppbv and a mean bias (MB) of 0.57 ppbv. The mean

normalized error (MNE) is 29% and the mean normalized bias (MNB) is 12%. The performance of APEEP

compares favorably with that of CMAQ. Speci�cally, previous authors (Tong, Mauzerall, 2006) �nd that,

when applied to monthly averaged O3 readings for the summer of 1996, CMAQ�s predicted O3 surface

generates a ME of 9.6 ppbv, a MB of 6.3 ppbv, a MNE of 30%, and a MNB of 23%. Russell and Dennis

(2000) suggest that a NME of between 30 to 35% and that a MNB of �5 to 15% indicates acceptable

model performance.

Moving to PM2:5; table 12 reveals that APEEP generates a ME of 4.4
�
ug
m3

�
, a MB of -2.6

�
ug
m3

�
;with

a MNE of 35% and a MNB of -20%. In a recent evaluation of CMAQ�s PM2:5 predictions, USEPA (2005)

found that, when compared to 2001 annual means observed drawn from the STN monitor network, CMAQ

produced a ME 5.5
�
ug
m3

�
, a MB -2.1

�
ug
m3

�
, with a MNE of 43%, and a MNB of -16%.

For SO2, APEEP�s performance depends heavily on the season. For summer months, APEEP�s predicted

surface generates a ME of 1.5 (ppbv), and a MB of -0.25 (ppbv). The USEPA (2005) �nds that, when

compared to the CASTnet sites, CMAQ�s summer predictions produce a ME of 1.36 (ppbv), and a MB

of 0.82 (ppbv). The MNE corresponding to APEEP�s predictions is 78% while that produced by CMAQ

is 53%. Further, the MNB generated by APEEP is 34% and the MNB produced by CMAQ�s surface is

32%. In the winter months, table 12 indicates that APEEP predicts the county-average SO2 readings much

less successfully. While the ME (2.3) and the MB (0.02) statistics are comparable to CMAQ (ME = 2.7,

MB = 2.2), the MNE and MNB associated with APEEP (115% and 71%, respectively) are higher than

the MNE and the MNB produced by CMAQ; 44% and 37% respectively. For NOx in the summer season,
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APEEP generates a ME of 9.5 and a MB of -6.9 (ppbv). The MNE is 64% and the MNB is -22%. The

correlation coe¢ cient is 0.41. For the winter season, APEEP produces a ME of 16.6 and a MB of -3.7

(ppbv). The MNE is 79% and the MNB is 27%. The correlation coe¢ cient in 0.39.

As an additional evaluation of APEEP�s air quality model, we compute the four error statistics (ME;

MB; MNE; MNB) using the county-average predictions for 2002 produced by CMAQ as the standard

for comparison. Since we have CMAQ predictions for each of the 3110 counties in the contiguous United

States, this validation exercise provides a more spatially comprehensive set of experiments than comparing

the models to USEPA�s monitoring networks which are scattered across the country. The results of these

experiments are shown in table 13. For PM2:5; APEEP�s predicted levels are in good agreement with CMAQ�s

predictions. The ME is 1.8
�
ug
m3

�
and the MB is -0.5

�
ug
m3

�
. Further, the MNE is 26% and the NMB

is -2%. The correlation coe¢ cient is 0.77. For PM10; the ME is 4.2
�
ug
m3

�
and the MB is 3.8

�
ug
m3

�
while

the MNE is 50% and the NMB is 47%. The correlation coe¢ cient is 0.74. For NOx and SO2; the ME is

1.1 and 0.5 ppbv ; respectively, while the MB is 0.21 and 0.06 ppbv for NOx and SO2. The MNE is 42%

and 47% for NOx and SO2 while the MNB is 14% and 19% for NOx and SO2. Table 13 reveals that the

correlation coe¢ cients for NOx and SO2 are 0.86 and 0.78 indicating surfaces that are strongly correlated

with CMAQ�s surfaces.

For O3; we match each model�s hourly predictions at each hour of the day; 24 hourly pairs across 3110

counties yields nearly 75,000 matched pairs. Using this approach, the ME is 9.2 ppbv and the MB is -1.83

ppbv. The MNE is 20% and the MNB is -4%. The correlation coe¢ cient is 0.69. Next, we match hourly

pairs for the 8-hour range from 10:00 am to 6:00 pm; 8-hours times 3110 counties yields approximately 25,000

matched pairs. In this setting, APEEP�s performance improves markedly. Table 13 shows that theME is 6.6

ppbv and the MB is 5.8 ppbv. In addition, the MNE is 12% and the MNB is 11%. Finally, the correlation

coe¢ cient is 0.77. So, APEEP is better able to match CMAQ�s predictions during the daytime hours. These

experiments show that APEEP is competitive with CMAQ in predicting PM2:5 and O3: APEEP is less

successful matching observations of SO2 and NOx. These results indicate that, although APEEP uses a

reduced form approach to modeling a series of complex environmental processes, its performance is quite

satisfactory especially in terms of the two pollutants that cause the most harmful e¤ects on society: PM2:5

and O3
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Table 1: Within County Dispersion
County Area(mi2) # Counties Dimension Gridcell Size(mi2)
< 50 40 4�4 1
50 - 200 107 4�4 9
200 - 500 903 5�5 16
500 - 750 913 5�5 25
750 - 1,000 491 5�5 36
1,000 - 2,500 464 8�8 36
2,500 - 5,000 133 8�8 56
5,000 - 10,000 48 10�10 64
> 10,000 10 10�10 144

Table 2: Deposition and Chemical Transformation Parameters
Pollutant Process �

NOx Dry Dep:
�1(cm)

s

�
NOx Wet Dep:

�
0:01
cm

�
NOx NOx ! Nitrate

�2(%)
hr

�
SO2 Dry Dep:

�0:5(cm)
s

�
SO2 Wet Dep:

�
0:003
cm

�
SO2 SO2 ! Sulfate

�0:75(%)
hr

�

Table 3: Epidemiology Studies Employed in APEEP
Health Event Pollutant Study Author
Chronic Exposure Mortality PM2:5 Pope, et al. (2002)
Chronic Exposure Mortality PM2:5 Laden, et al. (2006)
Acute Exposure Mortality PM2:5 Klemm, Mason (2004)
Chronic Bronchitis PM10 Abbey, et al. (1993)
Chronic Asthma O3 McDonnell et al. (1999)
Acute Exposure Mortality O3 Bell, et al (2004)
Respiratory Admissions O3 Schwartz (1995)
ER-Visits Asthma O3 Steib, et al. (1996)
COPD Admissions NO2 Moolgavkar (2000)
IHD Admissions NO2 Burnett, et al. (1999)
Asthma Admissions SO2 Sheppard (1999)
Cardiac Admissions SO2 Burnett (1997)

Table 4: Agriculture Dose-Response Functions
Crop Pollutant 
 � Author
Corn O3 2.83 0.124 Lesser, et al. (1990)
Cotton O3 2.06 0.111 Lesser, et al. (1990)
Peanut O3 2.27 0.109 Lesser, et al. (1990)
Spring Wheat O3 2.56 0.136 Lesser, et al. (1990)
Grain Sorghum O3 2.07 0.314 Lesser, et al. (1990)
Alfalfa O3 1.78 0.179 Lesser, et al. (1990)
Kidney Bean O3 2.66 0.114 Lesser, et al. (1990)
Tobacco O3 1.66 0.145 Lesser, et al. (1990)
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Table 5: Timber Dose-Response Functions
Tree Species Author, Year Pollutant �
Hardwoods Pye, 1988; Reich, 1987 O3 0.0065
Softwoods Pye, 1988; Reich, 1987 O3 0.0015

Table 6: Man-Made Materials Dose-Response Functions
Material Author, Year Pollutant �0; �1
Galvanized Steel Atteras, Haagenruud, 1982 SO2 6:05; 0:22
Painted Surfaces ICP SO2 3:22� 10�5; 6:0� 10�3
Carbonate Stone ICP SO2 2:7; 1:9� 10�2

Table 7: Human Health Valuation
Health Event Unit $
Chronic Mortality Case 1,980,000
Acute Mortality Case 1,980,000
Chronic Bronchitis Case 320,000
Chronic Asthma Case 30,800
General Respiratory Hospital Admission 8,300
General Cardiac Hospital Admission 17,526
Asthma Hospital Admission 6,700
COPD Hospital Admission 11,276
Ischemic Heart Disease Hospital Admission 18,210
Asthma ER Visit 240

Table 8: Valuation Estimates for Welfare Endpoints
Welfare Endpoint $ Unit Source
Visibility Recreation Table 9 Household Chestnut and Rowe (1990)
Visibility Residential 174 Household McClelland et al., (1993)
Ecosystem Forest Recreation 62.80 RVD Kengen, (1997)

Table 9: Recreation Visibility Valuation
Use Region $ Unit Source
In-Region Southwest 170 Household Chestnut and Rowe (1990)
Out-of-Region Southwest 135 Household Chestnut and Rowe (1990)
In-Region Southeast 80 Household Chestnut and Rowe (1990)
Out-of-Region Southeast 50 Household Chestnut and Rowe (1990)

Table 10: 2002 Agriculture Prices
Crop $ Unit
Corn 2.25 Bushel
Cotton 0.61 Lbs.
Peanut 0.17 Lbs.
Grain Sorghum 4.13 Cwt.
Soybeans 5.19 Bushel
Spring Wheat 3.42 Bushel
Alfalfa 108.36 Ton
Tobacco 1.86 Lbs.
Dry Beans 6.82 Cwt.
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Table 11: Standing Timber Prices
Region Timber Type Unit $
Northeast Hardwood mbf 275
Northeast Softwood mbf 90
Southeast Hardwood mbf 270
Southeast Softwood mbf 312
West Softwood mbf 462
Midwest Hardwood mbf 275
Midwest Softwood mbf 90

Table 12: Air Quality Modeling Diagnostics: APEEP and USEPA AIRS Data
Species Season ME MB MNE(%) MNB(%) � n
O3 (ppbv) Summer 7.2 0.57 29 12 0.74 15645
PM2:5

�
ug
m3

�
Annual 4.4 -2.6 35 -20 0.33 181

SO2 (ppbv) Summer 1.5 -0.25 78 34 0.59 333
SO2 (ppbv) Winter 2.3 0.02 115 71 0.46 343
NOx (ppbv) Summer 9.5 -6.9 64 -22 0.41 166
NOx (ppbv) Winter 16.6 -3.7 79 27 0.39 170

Table 13: Air Quality Modeling Diagnostics: APEEP and CMAQ
Species Season ME MB MNE(%) MNB(%) � n
NOx (ppbv) Summer 1.1 0.21 42 14 0.86 3110
SO2 (ppbv) Summer 0.5 0.06 47 19 0.78 3110
O3 (24hr:) (ppbv) Summer 9.2 -1.83 20 -4 0.69 74,640
O3 (8hr:) (ppbv) Summer 6.6 5.8 12 11 0.77 24,880
PM2:5 Annual 1.8 -0.5 26 -2 0.77 3110
PM10 Annual 4.2 3.8 50 47 0.74 3110
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Figure 1: CMAQ Annual Mean PM2:5 Concentration
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Figure 2: APEEP Annual Mean PM2:5 Concentration
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Figure 3: CMAQ Summer 8-Hour Mean O3 Concentration
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Figure 4: APEEP Summer 8-Hour Mean O3 Concentration
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Figure 5: Change in PM2:5 Concentration Due to One Ton PM2:5 Emission in Cambridge, Mass.
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Figure 6: Change in PM2:5 Concentration Due to One Ton SO2 Emitted from Salem Harbor Power Plant.

Forest Recreation Damages by County ($ x 1,000)

Change PM2.5 (ug/m^3) x 1,000
0 ­ 0.0001

0.0001 ­ 0.0010

0.0010 ­ 0.0015

0.0015 ­ 0.0020

0.0020 ­ 0.0025
0.0025 ­ 0.0030
0.0030 ­ 0.0036

34



References

[1] Abbey, D.E., F. Peterson, P.K. Mills, W.L. Beeson. 1993. �Long-term Ambient Concentrations of Total Sus-

pended Particulates, Ozone, and Sulfur Dioxide and Respiratory Symptoms in a Nonsmoking Population.

Archives of Environmental Health. 48:1., pp 33-46

[2] Abbey, D.E., B.E. Ostro, F.Peterson, R.J. Burchette, 1995. �Chronic Respiratory Symptoms Associated with

Estimated Long-Term Ambient Concentrations of Fine Particulates Less than 2.5 Microns in Aerodynamic

Diameter and other Air Pollutants�Journal Expo Analysis Environmental Epidemiology. 5:2., pp 137-159.

[3] Atteras, Haagenruud, 1982. �Atmospheric Corrosion Testing in Norway. Pp. 873-892 in: W.H. Ailor, ed., �At-

mospheric Corrosion�Wiley-Interscience, New York

[4] Baedecker, P.A., 1990. �Dose-Response Functions for the Chemical Erosion of Carbonate Stone.� in NAPAP

State of Science and Technology Report. Vol. III., National Acid Precipitation Assessment Program, 722 Jackson

Place NW, Washington D.C., 20503

[5] Bell, Michelle L., A. McDermott, S.L. Zeger, J.M. Samet, F. Domenici. 2004. �Ozone and Short-Term Mortality

in 95 US Urban Communities, 1987-2000.�Journal of the American Medical Association. 17, pp. 2372-2378.

[6] Briggs, G.A. 1969. "Plume Rise." USAEC Critical Review Series, TID-25075, National Technical Information

Service, Spring�eld, VA. 81 pp.

[7] Briggs, G.A. 1971. "Some recent analyses of plume rise observations." in Proceedings of the Second International

Clean Air Congress. Englund, Berry, eds. Academic Press, NY.

[8] Briggs, G.A. 1973. "Di¤usion Estimates for Small Emissions." Atmospheric Turbulence and Di¤usion Laboratory

Contribution File No. 79. Oak Ridge, TN.

[9] Briggs, G.A. 1975. "Plume Rise Predictions." in Lectures on Air Pollution and Environmental Impact Analysis."

Haugen, ed. American Meteorological Society, Boston, MA.

[10] Burnett, R.D., M. Smith-Doiron, D. Steib, S. Cakmak, J. Brook. 1999. "E¤ects of Particulate and Gaseous Air

Pollution on Cardiorespiratory Hospitalizations. " Archives of Environmental Health. 54, pp. 130-139.

[11] Byun, D.W., J.K.S. Ching. (eds.) 1999. "Science Algorithms of the EPA Models 3 Community Multiscale Air

Quality Modeling System." USEPA Report: EPA-600/R-99/030.

[12] Chestnut, L.G., R. Dennis. 1997. �The Economic Bene�ts of Improvements in Visibility: Acid Rain Provisions of

the 1990 Clean Air Act Amendments.�Journal of the Air and Waste Management Association. 47., pp. 395-402.

35



[13] Chestnut, L.G., R.D. Rowe. 1989 �Economic Valuation of Changes in Visibility: A State of the Science Assess-

ment for NAPAP�in NAPAP Methods for Valuing Acidic Deposition and Air Pollution E¤ects. NAPAP SOST

Report 27.

[14] Chestnut, L.G., R. Rowe. 1989. �Preservation Values for Visibility Protection at National Parks.� U.S. EPA,

O¢ ce of Air and Radiation, RPT. # EE-0405.

[15] Cropper, M.L., W.E. Oates. 1992 �Environmental Economics: A Survey�Journal of Economic Literature 30:6.

pp. 675-740.

[16] Dockery, D.W., C.A. Pope, X.P. Xu, J.D. Spengler, J.H.Ware, M.E. Fay, B.G. Ferris, F.E. Speizer. 1993. �An

Association Between Air Pollution and Mortality in Six U.S. Cities�N Engl J Med 329:24., pp. 1753-1759

[17] Freeman, A.M. III. 1982. �Air and Water Pollution Control.�John Wiley & Sons, NY, NY, USA.

[18] Freeman, A.M. III. 2003. "The Measurement of Environmental and Resource Values." RFF, Washington, D.C.

USA.

[19] Grosjean, D., J. Seinfeld. 1989. "Parameterization of the formation potential of secondary organic aerosols."

Atmospheric Environment. 23, pp. 1733-1747.

[20] Haynie, F.H., Spence J.W., Lipfert, F.W. 1989. �Development and Evaluation of an Atmospheric Damage

Function for Galvanized Steel�Internal Report, USEPA, Research Triangle, North Carolina

[21] Heagle, A.S. 1989 �Ozone and Crop Yield�Annual Review of Phytopathology 27., pp.397-423.

[22] (HEI) Health E¤ects Institute. 2003. �Special Report: Revised Analysis of Time Series Studies of Air Pollution

and Health.�Health E¤ects Institute, Boston, MA, USA.

[23] Hogsett, W.E., J.E. Weber, D. Tingey, A. Herstrom, E.H. Lee, J.A. Laurence. 1997. �Environmental Auditing:

An Approach for Characterizing Tropospheric Ozone Risk to Forests.� Environmental Management 21:1., pp.

105-120.

[24] Kengen, S. 1997. "Forest Valuation for Decision-Making: Lessons of Experience and Proposals for Improvement."

Food and Agriculture Organization of the United Nations. Rome, Italy.

[25] Kickert, R.N., S.V. Krupa, 1991. �Modeling Plant Response to Tropospheric Ozone: A Critical Review�Envi-

ronmental Pollution. 70., pp. 271-383.

[26] Klemm, R.J., R. Mason. 2003. "Replication of Reanalysis of Harvard Six-City Mortality Study." in "Revised

Analyses of Time-Series Studies of Air Pollution and Health." Health E¤ects Institute, Boston, MA, USA.

36



[27] Kleinman, L., Y.N. Lee, S.R. Springston, L. Nunnermacker, X. Zhou, R. Brown, K. Hallock, P. Klotz, D. Leahy,

J.H. Lee, L. Newman. 1994 �Ozone Formation at a Rural Site in the Southeastern United States.� Journal of

Geophysical Research 99:D2., pp. 3469-3482

[28] Krupnick, A.J., M.L. Cropper. 1992. �The E¤ect of Information on Health Risk Valuations.� Journal of Risk

and Uncertainty. 5:2., pp. 29-48.

[29] Krewski, D., R.T. Burnett, M.S. Goldberg, K. Hoover, J. Siemiatycki, M. Abrahamowicz, W.H. White. 2000.

"Reanalysis of the Harvard Six Cities Study and the American Cancer Society Study of Particulate Air Pollution

and Mortality. A Special Report of the Institute�s Particle Epidemiology Reanalysis Project." Final version,

Health E¤ects Institute, Boston, MA, USA.

[30] Kunzli, N., S. Medina, R. Kaiser, P. Quenel, F. Horak, Jr., M. Studnicka. 2001. "Assessment of Deaths At-

tributable to Air Pollution: Should We Use Risk Estimates based on Time Series or Cohort Studies?". American

Journal of Epidemiology. 153:11., pp. 1050-1055.

[31] Latimer, D.A., 1996. "Particulate Matter Source-Receptor Relationships Between all Point and Area Sources in

the United States and PSD Class I Area Receptors, prepared for USEPA, OAQPS.

[32] Lee, E.H., W.E. Hogsett. 1996 �Methodology for Calculating Inputs of Ozone Secondary Standard Bene�ts

Analysis: Part II.�Prepared for the US EPA, OAQPS

[33] Lefohn, A.S., J.A. Laurence, R.J. Kohut. 1987 �A Comparison of Indices that Describe the Relationship Between

Exposure to Ozone and Reduction in the Yield of Agricultural Crops� Atmospheric Environment. 22:6., pp.

1229-1240.

[34] Lesser, V.M., J.O. Rawlings, S.E. Spruill, M.C. Somerville. 1990 �Ozone E¤ects on Agricultural Crops: Statis-

tical Methodologies and Estimated Dose-Response Relationships�Crop Science. 30, pp. 148-155.

[35] Liu, S.C., M. Trainer, F.C. Fehsenfeld, D.D. Parrish, E.J. Williams, D.W. Fahey, G. Hubler, P.C. Murphy. 1987

�Ozone Production in the Rural Troposhpere and the Implications for Regional and Global Ozone Distributions�

Journal of Geophysical Research. 92:D4., pp. 4191-4207.

[36] Loehman, E., D. Boldt. 1990. �Valuing Gains and Losses in Visibility and Health with Contingent Valuation.�

U.S. EPA, O¢ ce of Air and Radiation.

[37] McClelland, G.H., W.D. Schulze, D. Waldman, D. Schenk, J.R. Irwin, T. Stewart, L. Deck, M.A. Thayer. 1993.

�Valuing Eastern Visibility: A Field Test of the Contingent Valuation Method.�In C.V. Mathaj, ed., �Visibility

37



of Fine Particles, Transactions of the Air and Waste Management Association.�Pittsburgh, Pennsylvania. pp.

647-658.

[38] McDonnell, D.E. Abbey, N. Nishino, M.D. Lebowitz. 1999. "Long-Term Ambient Ozone Concentration and the

Incidence of Asthma in Non-Smoking Adults: The Ahsmog Study." Environmental Research. 80, pp. 110-121.

[39] Mendelsohn, R.O. 1980. �An Economic Analysis of Air Pollution from Coal-Fired Power Plants.� Journal of

Environmental Economics and Management. 7., pp. 30-43.

[40] Moolgavkar, S.H. 2000. "Air Pollution and Hospital Admissions for Chronic Obstructive Pulmonary Disease in

Three Metropolitan Areas in the United States." Inhalation Toxicology. 12:4, pp. 75-90.

[41] Musselman, R.C., P.M. McCool, T. Younglove. 1988. �Selectinbg Ozone Exposure Statistics for Determining

Crop Yield Loss from Air Pollutants.�Environmental Pollution. 53., pp. 53-78.

[42] National Acid Precipitation Assessment Program (NAPAP). 1991. 1990 Integrated Assessment Report. National

Acid Precipitation Assessment Program, 722 Jackson Place NW, Washington D.C., 20503

[43] National Acid Precipitation Assessment Program (NAPAP). 1991. Acidic Deposition: State of Science and

Technology. Volume I. Patricia M. Irving, PhD, ed., National Acid Precipitation Assessment Program, 722

Jackson Place NW, Washington D.C., 20503

[44] National Acid Precipitation Assessment Program (NAPAP). 1991. Acidic Deposition: State of Science and

Technology. Volume II. Patricia M. Irving, PhD, ed., National Acid Precipitation Assessment Program, 722

Jackson Place NW, Washington D.C., 20503

[45] National Acid Precipitation Assessment Program (NAPAP). 1991. Acidic Deposition: State of Science and

Technology. Volume III. Patricia M. Irving, PhD, ed., National Acid Precipitation Assessment Program, 722

Jackson Place NW, Washington D.C., 20503

[46] National Acid Precipitation Assessment Program (NAPAP). 1991. Acidic Deposition: State of Science and

Technology. Volume IV. Patricia M. Irving, PhD, ed., National Acid Precipitation Assessment Program, 722

Jackson Place NW, Washington D.C., 20503

[47] National Acid Precipitation Assessment Program (NAPAP). 1998. NAPAP Biennial Report to Congress: An

Integrated Assessment. National Acid Precipitation Assessment Program, Silver Spring, MD.

[48] Pasquill, F., 1961. "The Estimation of the Dispersion of Windborne Material." Meteorology Mag. 90:1063., pp.

33-49.

38



[49] Pope, C. Arden, R.T. Burnett, M.J. Thun, E.E. Calle, D. Krewski, K. Ito, G.D. Thurston. 2002. "Lung Can-

cer, Cardiopulmonary Mortality, and Long-Term Exposure to Fine Particulate Air Pollution." Journal of the

American Medical Association, 287:9., pp. 1132-1141.

[50] Pye, J.M. 1988. �Impact of Ozone on the Growth and Yield of Trees: a Review.� Journal of Environmental

Quality. 17:3., pp. 347-360.

[51] Rawlings, J.O., W.W. Cure. 1985. �The Weibull Function as a Dose-Response Model to Describe Ozone E¤ects

on Crop Yields.�Crop Science 25., pp. 807-814.

[52] Reich, P.B., 1987. �Quantifying Plant Response to Ozone: a Unifying Theory.�Tree Physiology. 3., pp. 63-91.

[53] Russell, A., R. Dennis, 2000. NARSTO critical review of photochemical models and modeling. Atmospheric

Environment. 34, 2284-2324.

[54] Ryan, J.W. 1981. �An Estimate of the NonHealth Bene�ts of Meeting the Secondary National Ambient Air

Quality Standards. A Report to the National Commission on Air Quality.

[55] Schwartz, J. 1993. �Particulate Air Pollution and Chronic Respiratory Disease. Environmental Res. 62., pp.

7-13.

[56] Schwartz, J. 1994a. �Air Pollution and Hospital Admissions for the Elderly in Birmingham, Alabama�Am Jour.

Epidemiology 139:6., pp. 589-598

[57] Schwartz, J. 1994c. �Air Pollution and Hospital Admissions for the Elderly in Detroit, Michigan� Am Jour

Respiratory and Critical Care Med 150:3, pp. 648-655

[58] Schwartz, J. 1994b. �PM10 Ozone, and Hospital Admissions for the Elderly in Minneapolis, Minnesota�Archives

of Environmental Health 49:5., pp. 366-374

[59] Schwartz, J., R. Morris, 1995. �Air Pollution and Hospital Emergency Room Visits for Asthma in Seattle�.

American Review of Respiratory Disease 142:1., pp. 23-35

[60] Seinfeld, J.H., S.N. Pandis. 1998 �Atmospheric Chemistry and Physics� 1998. John Wiley & Sons, Inc., NY,

NY, USA.

[61] Sheppard, L., D. Levy, G. Norris, T.V. Larson, J.Q. Koenig, 1999. �E¤ects of Ambient Air Pollution on

Nonelderly Asthma Hospital Admissions in Seattle, Washington, 1987-1994�. Epidemiology. 10:1., pp. 23-30

[62] Sohngen, B.L. 1995. "Integrating Ecology and Economics:The Economic Impacts of Climate Change on Timber

Markets in the United States." Unpublished Doctoral Dissertation. Yale School of Forestry and Environmental

Studies, New Haven, CT.

39



[63] Steib, D.M., R.T. Burnett, R.C. Beveridge, J.R. Brook. 1996. "Association Between Ozone and Asthma Emer-

gency Department Visits in St. Jon, New Brunswick, Canada." Environmental Health Perspectives. 104:12, pp.

1354-1360

[64] Steib, D.M., S. Judek, R.T. Burnett. 2003 "Meta-Analysis of Time-Series Studies of Air Pollution and Mortality:

Update in Relation to the Use of Generalized Additive Models." J. Air & Waste Management Association. 53.,

pp. 258-261

[65] Tong, D.Q., D.L. Mauzerall, 2006. Spatial variability of summertime tropospheric ozone over the continental

United States: Implications of an evaluation of the CMAQ model. Atmospheric Environment. 40, 3041-3056.

[66] Trainer, M., D.D. Parrish, M.P. Buhr, R.B. Norton, F.C. Fehsenfeld, K.G. Anlauf, J.W. Bottenheim, Y.Z.

Tang, H.A. Wiebe, J.M. Roberts, R.L. Tanner, L. Newman, V.C. Bowersox, J.F. Meagher, K.J. Olszyna, M.O.

Rodgers, T. Wang, H. Berresheim, K.L. Demerjian, U.K. Roychowdhury. 1993. �Correlation of Ozone with NOy

in Photochemically Aged Air�. Journal of Geophysical Research. 98:D2., pp. 2917-2925.

[67] Turner, D.B., 1994. "Workbook of Atmospheric Dispersion Estimates - An Introduction to Dispersion Modeling."

2nd Ed. Lewis Publishers, Ann Arbor, MI, USA.

[68] U.S. Environmental Protection Agency (USEPA), 1999. �The Bene�ts and Costs of the Clean Air Act 1990 to

2010�EPA Report to Congress. United States Environmental Protection Agency, O¢ ce of Air and Radiation,

O¢ ce of Policy. EPA-410-R-99-001.

[69] U.S. Environmental Protection Agency (USEPA), 2002. National Emissions Inventory (NEI), 2002, Washington,

DC: O¢ ce of Air Quality Planning and Standards, Emissions Inventory Group; Emissions, Monitoring, and

Analysis Division.

[70] U.S. Environmental Protection Agency (USEPA), 2004. "Regulatory Impact Analysis of the Final Industrial

Boilers and Process Heaters NESHAP: Final Report." EPA-452/R-04-002

[71] U.S. Environmental Protection Agency (USEPA), 2005. CMAQ Model Performance Evalu-

ation Report for 2001. O¢ ce of Air Quality Planning and Standards, Emissions Analy-

sis and Monitoring Division, Air Quality Modeling Group, Research Triangle Park, NC.

http://epa.gov/scram001/reports/cair_�nal_cmaq_model_performance_evaluation_2149.pdf

[72] U.S.DOE. 1980 Carbon Dioxide E¤ects Research and Assessment Program. 1980. Workshop on Environmental

and Societal Consequences of a Possible CO2-Induced Climate Change. Report of a workshop conducted by the

American Association for the Advancement of Science. Annapolis, Md.: U.S. Department of Energy.

40



[73] Viscusi, W.K., W.A. Magat, J. Huber. 1991. �Pricing Environmental Health Risks: Survey Assessments of

Risk-Risk and Risk-dollar Tradeo¤s.�Journal of Environmental Economics and Management. 201., pp. 32-57.

[74] Viscusi, W.K. 1993. " The Value of Risks to Life and Health." Journal of Economic Literature. 31:4., pp.

1912-1946.

[75] Viscusi, W. Kip, Joseph E. Aldy, 2002. "The Value of a Statistical Life: Market Estimates Throughout the

World." Harvard University, John M. Olin Center for Law, Economics, and Business. Discussion Paper No. 392.

[76] Weiss, K.B., S.D. Sullivan, C.S. Lyttle. 2000. �Trends in the Cost of Illness for Asthma in the United States,

1985-1994�Journal of Allergy and Clinical Immunology. 106:3., pp. 493-499.

41


