
Web Appendix for
“Social Value of Public Information”

American Economic Review 92 (2002), 1521-1534.

Stephen Morris and Hyun Song Shin

This appendix examines a number of extensions and variations of the model.
We start with an example where the signals have two realizations.

1. Two State Example

The state θ takes value 0 with probability 1
2
and 1 with probability 1

2
. A binary

public signal is equal to the true state with probability q ∈ £1
2
, 1
¤
; it is incorrect

with probability 1−q. Each of two players observes a private signal that is correct
probability p ∈ £1

2
, 1
¤
, and incorrect with probability 1 − p. Player i will set his

action equal to
(1− r)Ei (θ) + rEi (aj) .

It is useful to summarize the possible outcomes:

State ω Public Signal y 1’s Signal x1 2’s Signal x2 Probability
0 0 0 0 1

2
qp2

0 0 0 1 1
2
qp (1− p)

0 0 1 0 1
2
qp (1− p)

0 0 1 1 1
2
q (1− p)2

0 1 0 0 1
2
(1− q) p2

0 1 0 1 1
2
(1− q) p (1− p)

0 1 1 0 1
2
(1− q) p (1− p)

0 1 1 1 1
2
(1− q) (1− p)2

1 0 0 0 1
2
(1− q) (1− p)2

1 0 0 1 1
2
(1− q) p (1− p)

1 0 1 0 1
2
(1− q) p (1− p)

1 0 1 1 1
2
(1− q) p2

1 1 0 0 1
2
q (1− p)2

1 1 0 1 1
2
qp (1− p)

1 1 1 0 1
2
qp (1− p)

1 1 1 1 1
2
qp2



Thus player 1’s conditional probability of state 1 (expectation of θ) is:

Public Signal y Private Signal x1 Prob θ = 1

0 0 (1−q)(1−p)
qp+(1−q)(1−p)

0 1 (1−q)p
q(1−p)+(1−q)p

1 0 q(1−p)
q(1−p)+(1−q)p

1 1 qp
qp+(1−q)(1−p)

Player 1’s conditional probability that player 2 has observed private signal 1 is:

Public Signal y Private Signal x1 Prob x2 = 1

0 0 p(1−p)
qp+(1−q)(1−p)

0 1 (1−q)p2+q(1−p)2
q(1−p)+(1−q)p

1 0 p(1−p)
q(1−p)+(1−q)p

1 1 qp2+(1−q)(1−p)2
qp+(1−q)(1−p)

Consider the strategy:

Public Signal y Private Signal x2 Action
0 0 1− a
0 1 1− a
1 0 a
1 1 a

When is there an equilibrium where both players follow this strategy? Suppose
player 1 observed public signal 1 and private signal 1. His expectation of θ would
be

qp

qp+ (1− q) (1− p)

His expectation of player 2’s action (if 2 was following the above strategy) would
be Ã

qp2 + (1− q) (1− p)2

qp+ (1− q) (1− p)

!
a+

Ã
1− qp2 + (1− q) (1− p)2

qp+ (1− q) (1− p)

!
a

For equilibrium, we must have

a =

⎧⎪⎪⎨⎪⎪⎩
(1− r) qp

qp+(1−q)(1−p)

+r

⎛⎝ ³
qp2+(1−q)(1−p)2
qp+(1−q)(1−p)

´
a

+
³
1− qp2+(1−q)(1−p)2

qp+(1−q)(1−p)
´
a

⎞⎠
⎫⎪⎪⎬⎪⎪⎭ (1.1)
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Similarly, suppose player 1 observed public signal 1 and private signal 0. His
expectation of θ would be

q (1− p)

q (1− p) + (1− q) p

His expectation of player 2’s action (if 2 was following the above strategy) would
be µ

p (1− p)

q (1− p) + (1− q) p

¶
a+

µ
1− p (1− p)

q (1− p) + (1− q) p

¶
a

For equilibrium, we must have

a =

⎧⎪⎪⎨⎪⎪⎩
(1− r) q(1−p)

q(1−p)+(1−q)p

+r

⎛⎝ ³
p(1−p)

q(1−p)+(1−q)p
´
a

+
³
1− p(1−p)

q(1−p)+(1−q)p
´
a

⎞⎠
⎫⎪⎪⎬⎪⎪⎭ (1.2)

Solving (1.1) and (1.2) for a and a,

a =
qp [(1− r) (q (1− p) + p (1− q)) + r (1− p)]

(1− r) (q (1− p) + p (1− q)) (qp+ (1− q) (1− p)) + r (1− p) p

a =
q (1− p) [(1− r) (qp+ (1− q) (1− p)) + rp]

(1− r) (q (1− p) + p (1− q)) (qp+ (1− q) (1− p)) + r (1− p) p

Observe that as r → 0,

a → qp

qp+ (1− q) (1− p)

a → q (1− p)

q (1− p) + p (1− q)

This is the socially optimal strategy. But as r → 1,

a → q

a → q

Thus only public information is used.
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What is welfare, i.e., the expected value of − (a1 − ω)2 under this strategy?

W (p, q, r) =

½ −1
2

£
qp (1− a)2 + q (1− p) (1− a)2 + (1− q) p (a)2 + (1− q) (1− p) (a)2

¤
−1
2

£
qp (a− 1)2 + q (1− p) (a− 1)2 + (1− q) p (−a)2 + (1− q) (1− p) (−a)2¤

¾
= − £qp (1− a)2 + q (1− p) (1− a)2 + (1− q) p (a)2 + (1− q) (1− p) (a)2

¤

= −

⎡⎢⎢⎢⎢⎢⎢⎢⎣

qp
³
1− qp[(1−r)(q(1−p)+p(1−q))+r(1−p)]

(1−r)(q(1−p)+p(1−q))(qp+(1−q)(1−p))+r(1−p)p
´2

+q (1− p)
³
1− q(1−p)[(1−r)(qp+(1−q)(1−p))+rp]

(1−r)(q(1−p)+p(1−q))(qp+(1−q)(1−p))+r(1−p)p
´2

+(1− q) p
³

q(1−p)[(1−r)(qp+(1−q)(1−p))+rp]
(1−r)(q(1−p)+p(1−q))(qp+(1−q)(1−p))+r(1−p)p

´2
+(1− q) (1− p)

³
qp[(1−r)(q(1−p)+p(1−q))+r(1−p)]

(1−r)(q(1−p)+p(1−q))(qp+(1−q)(1−p))+r(1−p)p
´2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Lemma 1.1. Public information is damaging (i.e., dW (p,q,r)

dq
< 0) if and only if

1

2
< r < 1

and
1

2
+
1

2

s
1

r (3− 2r) < p < 1

and
1

2
< q <

1

2
(1 + f (p, r))

where

f (p, r) =

p
(2r − 1) (1− r) (−4rp (1− p) (3− 2r) + (2r − 1) (1− r))

(2r − 1) (1− r) (2p− 1) .

If r ≤ 1
2
or p ≤ 1

2
+ 1

2

q
1

r(3−2r) , then
dW (p,q,r)

dq
≥ 0 for all q.

Notice that the minimum value of
q

1
r(3−2r) is

q
8
9
= 2

3

√
2 (this is realized when

r = 3
4
). Thus if dW (p,q,r)

dq
< 0, we must have p equal to at least 1

2
+ 1

3

√
2 ≈ 0.971.

Sketch of Proof. The equation

dW

dq
= 0
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has three roots, q = 1
2
, q = 1

2
(1− f (p, r)) and q = 1

2
(1 + f (p, r)). If f (p, r) ∈

(0, 1), then welfare is decreasing in q over the interval
¡
1
2
, 1
2
(1 + f (p, r))

¢
and in-

creasing over the interval
¡
1
2
(1 + f (p, r)) , 1

¢
. If f (p, r) is imaginary, then welfare

must be everywhere increasing. Observe that f (p, r) is a real number if

−4rp (1− p) (3− 2r) + (2r − 1) (1− r) ≥ 0

or p (1− p) ≤ (2r − 1) (1− r)

4r (3− 2r)
For 1

2
≤ p ≤ 1, this latter inequality will hold only if

p ≥ 1
2
+
1

2

s
1

r (3− 2r) .

Finally, observe that the following are equivalent if f (p, r) is real:

f (p, r) < 1

−4rp (1− p) (3− 2r) + (2r − 1) (1− r) < (2r − 1) (1− r) (2p− 1)2
4rp (1− p) (3− 2r) > (2r − 1) (1− r) 4p(1− p)

r (3− 2r) > (2r − 1) (1− r)

0 > −1

2. Alternative Welfare Definitions

Let us now revert to the framework in the main body of the paper with normally
distributed θ and a continuum of players. We will examine more general payoff
functions for the players and the welfare functions that they give rise to. Suppose
that player i seeks to maximize the general payoff:

ui (a, θ) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−r1
R 1
0
(aj − ai)

2 dj

−r2 (ai − θ)2

−r3
³
ai −

R
j∈[0,1] ajdj

´2
+r4

R 1
0

R 1
0
(aj − ak)

2 djdk

−r5
³R

j∈[0,1] ajdj − θ
´2

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
. (2.1)

The specification of payoffs allows differing weights to the losses arising from the
distances between ai, θ, and the average actions. From the first order condition,
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the optimal action for i is given by

br Z
j∈[0,1]

Ei (aj) + (1− br)Ei (θ) .

where br = r1 + r3
r1 + r2 + r3

.

We can solve for the equilibrium in the same way as before, yielding equilibrium
actions:

ai =
αy + β (1− r̂)xi
α+ β (1− r̂)

In deriving an expression for welfare, note that

ai − aj =
1

β (1− br) + α
β (1− br) (εi − εj)

ai −
Z

j∈[0,1]

ajdj =
1

β (1− br) + α
β (1− br) εi

ai − θ =
1

β (1− br) + α
[β (1− br) εi + αη]Z

i∈[0,1]

aidi− θ =
1

β (1− br) + α
αη

Normalized welfare is then

W ≡ 1

1− br
1Z
0

ui (a, θ) di

= − 1
1−r
h

1
β(1−r)+α

i2 £
β (1− br)2 (2 (r1 − r4) + r2 + r3) + α (r2 + r5)

¤
Then, the derivative dW

dα
is given by

1
1−r
h

1
β(1−r)+α

i3½ −β (1− br) (r2 + r5 − 2 (1− br) (2 (r1 − r4) + r2 + r3))
+α (r2 + r5)

¾
Thus public information is always valuable if β = 0. Public information can
sometimes be damaging (when β > 0 and α is low) when

r2 + r5 ≥ 2r2 (2 (r1 − r4) + r2 + r3)

r1 + r2 + r3
.

6



Our leading model in section 2 is the special case of this when r1 = r4 = r,
r2 = 1− r and r3 = r5 = 0. In this case, this condition reduces to r ≥ 1

2
.

We note a variation on this example. Let each player i have the following
payoff function:

ui (a, θ) ≡ (1− ε)V (θ, ā)− ε (1− r) (ai − θ)2 − εr

Z 1

0

(aj − ai)
2 dj (2.2)

for some small ε > 0. Equilibrium is unaltered by this change in payoffs, since
the first term is an externality that no individual player can influence. However,
for small ε, social welfare will be approximately equal to V (θ, ā). For some
choice of V (·), public information may be damaging even in the absence of private
information. For example, suppose that

V (θ, a) =

½
1, if a ≥ a∗

0, if a ≤ a∗

¾
Suppose that the only information is the public signal y = θ + η, where η is
normally distributed with mean zero and precision α. Each player will set his
action equal to y. So conditional on state θ, expected welfare (for small ε) is

1− Φ
¡√

α (a∗ − θ)
¢
.

This is decreasing in α if a∗ > θ. In other words, if players would do something
socially inefficient if there were perfect information, then reducing the accuracy of
public information should be expected to improve social welfare in some states.1

3. Correlated Private Signals

Consider a two player version of the model where the players can observe many
signals, where the signals are multivariate normal with a general correlation struc-
ture. To fix ideas, suppose there are two players i = 1, 2. There is a public signal
y = θ + η, where η is normally distributed with mean 0 and precision α. In ad-
dition, each player i observes two private signals xi1 = θ + εi1 and xi2 = θ + εi2.
While εi1 and εi2 are assumed to be independent, we assume that (ε1j, ε2j) are
jointly normally distributed with zero means and covariance matrixÃ

1
βj

ρj
βj

ρj
βj

1
βj

!
.

1This effect occurs in the analysis of transparency in currency markets in Metz (2000) and
in the public good game of Teoh (1997).
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Thus each signal j has precision βj, and the correlation coefficient between the
two players’ jth signals is ρj ∈ [0, 1).
In this setting, we can show that while the socially optimal action for player i

(minimizing − (ai − θ)2) is

ai =
αy + β1xi1 + β2xi2

α+ β1 + β2
,

the equilibrium action for player i is

ai =
αy + β1

³
1−r
1−rρ1

´
xi1 + β2

³
1−r
1−rρ2

´
xi2

α+
³

1−r
1−rρ1

´
β1 +

³
1−r
1−rρ2

´
β2

.

This expression concretely captures the trade-off between the accuracy of a signal
and its ability to coordinate the players. The corresponding expression for welfare
is

−
α+

³
1−r
1−rρ1

´2
β1 +

³
1−r
1−rρ2

´2
β2³

α+
³

1−r
1−rρ1

´
β1 +

³
1−r
1−rρ2

´
β2

´2 .
Let us proceed to demonstrate this, and develop the general framework. A

state θ is drawn from a uniform distribution on the real line. There is a public
signal y = θ + η. Each agent i = 1, 2 observes n private signals; the kth signal of
agent i is xik = θ + εik. We write εi for the n-vector of agent i’s noise terms. We
assume that the (2n+ 1) vector

ξ =

⎛⎝ η
ε1
ε2

⎞⎠
is normally distributed with mean ⎛⎝ 0

0
0

⎞⎠
(we are writing 0 for a vector of 0s of arbitrary length) and covariance matrix

Σ =

⎛⎝ σ00 Σ01 Σ02

Σ10 Σ11 Σ12

Σ20 Σ21 Σ22

⎞⎠ .
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We are interested in

z =

⎛⎝ θ
x1
x2

⎞⎠− y1.

(we are writing 1 for a vector of 1s of arbitrary length). Setting

A =

⎛⎜⎜⎜⎜⎜⎜⎝
−1 0 0 0 · ·
−1 1 0 0 · ·
−1 0 1 0 · ·
−1 0 0 1 · ·
· · · · · ·
· · · · · ·

⎞⎟⎟⎟⎟⎟⎟⎠
we have

z = Aξ

so z is normally distributed with mean⎛⎝ 0
0
0

⎞⎠
and covariance matrix

bΣ = AΣA0

=

⎛⎜⎝ bΣ00
bΣ01

bΣ02bΣ10
bΣ11

bΣ12bΣ20
bΣ21

bΣ22

⎞⎟⎠ .
We will often be interested in the case where the public signal is conditionally

independent of the various private signals. In this case,

Σ =

⎛⎝ τ 2 0 0
0 Σ11 Σ12

0 Σ21 Σ22

⎞⎠
and

bΣ =
⎛⎝ 0 0 0
0 Σ11 Σ12

0 Σ21 Σ22

⎞⎠+ τ 2M
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whereM is a (2n+ 1)× (2n+ 1) matrix of 1’s.
By standard properties of the multivariate normal (e.g., Spanos (1986), ch 14,

p 317),

E1 (θ − y) = E1 (θ − y |x1 − y1) = bΣ01
bΣ−111 (x1 − y1)

E2 (θ − y) = E2 (θ − y |x2 − y1) = bΣ02
bΣ−122 (x1 − y1)

Thus player 1’s optimal action is

a1 = E1 (θ) (3.1)

= y +E1 (θ − y)

= y + bΣ01
bΣ−111 (x1 − y1)

Also

E1 (x2 − y1) = E1 (x2 − y1 |x1 − y1) = bΣ21
bΣ−111 (x1 − y1)

E2 (x1 − y1) = E2 (x1 − y1 |x2 − y1) = bΣ12
bΣ−122 (x2 − y1)

Now

E1E2 (x1 − y1) = E1
³bΣ12

bΣ−122 (x2 − y)
´

= bΣ12
bΣ−122 (E1 (x2 − y1))

= bΣ12
bΣ−122 bΣ21

bΣ−111 (x1 − y1)

and

E2E1E2 (x1 − y1) = E2 (E1E2 (x1 − y1))

= E2

³bΣ12
bΣ−122 bΣ21

bΣ−111 (x1 − y1)
´

= bΣ12
bΣ−122 bΣ21

bΣ−111 (E2 (x1 − y1))

= bΣ12
bΣ−122 bΣ21

bΣ−111 bΣ12
bΣ−122 (x2 − y)

Thus by induction

[E1E2]
n (x1 − y1) =

hbΣ12
bΣ−122 bΣ21

bΣ−111 in (x1 − y1)

and

[E1E2]
n (E1 (θ − y)) = [E1E2]

n
³bΣ01

bΣ−111 (x1 − y1)
´

= bΣ01
bΣ−111 hbΣ12

bΣ−122 bΣ21
bΣ−111 in (x1 − y1)
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Also

E2 [E1E2]
n (E1 (θ − y)) = bΣ02

bΣ−122 hbΣ12
bΣ−122 bΣ21

bΣ−111 in bΣ12
bΣ−122 (x2 − y1)

[E2E1]
n (E2 (θ − y)) = bΣ02

bΣ−122 hbΣ21
bΣ−111 bΣ12

bΣ−122 in (x2 − y1)

E1 [E2E1]
n (E2 (θ − y)) = bΣ01

bΣ−111 hbΣ21
bΣ−111 bΣ12

bΣ−122 in bΣ21
bΣ−111 (x1 − y1)

Now player 1’s equilibrium action is:

a1 = (1− r)E1 (θ) + (1− r) rE1E2 (θ) + (1− r) r2E1E2E1 (θ) + ... (3.2)

= y +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1− r) bΣ01
bΣ−111 (x1 − y1)

+ (1− r) rbΣ01
bΣ−111 bΣ21

bΣ−111 (x1 − y1)

+ (1− r) r2bΣ01
bΣ−111 hbΣ12

bΣ−122 bΣ21
bΣ−111 i (x1 − y1)

+ (1− r) r3bΣ01
bΣ−111 hbΣ21

bΣ−111 bΣ12
bΣ−122 i bΣ21

bΣ−111 (x1 − y1)

+ (1− r) r4bΣ01
bΣ−111 hbΣ12

bΣ−122 bΣ21
bΣ−111 i2 (x1 − y1)

+....

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
= y + (1− r) bΣ01

bΣ−111 ∙I + r2 bΣ12
bΣ−122 bΣ21

bΣ−111 + r4
hbΣ12

bΣ−122 bΣ21
bΣ−111 i2 + ...

¸
×
³
I + rbΣ21

bΣ−111 ´ (x1 − y1)

= y + (1− r) bΣ01
bΣ−111 hI − r2 bΣ12

bΣ−122 bΣ21
bΣ−111 i−1 ³I + rbΣ21

bΣ−111 ´ (x1 − y1)

In the symmetric case, where

N = bΣ12
bΣ−122 = bΣ21

bΣ−111 ,
this formula becomes

a1 = y + (1− r) bΣ01
bΣ−111 [I − rN]−1 (x1 − y1) (3.3)

In the original two signal example referred to in the text,

Σ =

⎛⎜⎜⎜⎜⎝
1
α
0 0 0 0

0 σ21 0 ρ1σ
2
1 0

0 0 1
β2

0 ρ2
1
β2

0 ρ1σ
2
1 0 σ21 0

0 0 ρ2
1
β2

0 1
β2

⎞⎟⎟⎟⎟⎠
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and

bΣ =
⎛⎜⎜⎜⎜⎜⎝

1
α

1
α

1
α

1
α

1
α

1
α

1
α
+ 1

β1

1
α

1
α
+ ρ1

1
β1

1
α

1
α

1
α

1
α
+ 1

β2

1
α

1
α
+ ρ2

1
β2

1
α

1
α
+ ρ1

1
β1

1
α

1
α
+ 1

β1

1
α

1
α

1
α

1
α
+ ρ2

1
β2

1
α

1
α
+ 1

β2

⎞⎟⎟⎟⎟⎟⎠
Now bΣ01 =

¡
1
α

1
α

¢
bΣ11 =

Ã
1
α
+ 1

β1

1
α

1
α

1
α
+ 1

β2

!
and

Σ−111 =
1

α+ β1 + β2

µ
β1 (α+ β2) −β1β2
−β1β2 β2 (β1 + α)

¶
so bΣ01Σ

−1
11 =

1

α+ β1 + β2

¡
β1 β2

¢
.

Now by (3.1), player 1’s optimal action is

a∗1 = y + bΣ01Σ
−1
11

µ
x11 − y
x12 − y

¶
= y +

β1x11 − β1y + β2x12 − β2y

α+ β1 + β2

=
αy + β1x11 + β2x12

α+ β1 + β2

Also

Σ12 = Σ21 =

Ã
1
α
+ ρ1

1
β1

1
α

1
α

1
α
+ ρ2

1
β2

!
so

N = bΣ21
bΣ−111 = bΣ12

bΣ−122 = 1

α+ β1 + β2

µ
β1 + ρ1 (α+ β2) β2 (1− ρ1)

β1 (1− ρ2) β2 + ρ2 (α+ β1)

¶
I− rN =

1

α+ β1 + β2

µ
(1− r)β1 + (1− rρ1) (α+ β2) −rβ2 (1− ρ1)

−rβ1 (1− ρ2) (1− r)β2 + (1− rρ2) (α+ β1)

¶
12



Thus by (3.3), player 1’s equilibrium action is

a1 = y + (1− r) bΣ01
bΣ−111 [I − rN]−1

µ
x11 − y
x12 − y

¶

=
αy + β1

³
1−r
1−rρ1

´
x11 + β2

³
1−r
1−rρ2

´
x12

α+ β1

³
1−r
1−rρ1

´
+ β2

³
1−r
1−rρ2

´
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