Identity-Based Organizations

by Jean-Paul Carvalho

11 January 2016

Supplementary Appendix

Proof of Proposition 1. Firstly, $i \in I_{\theta}$ will join $k=0$ if and only if:

$$
\begin{equation*}
\pi_{\theta 0}-x_{i}^{2}-c>\pi_{\theta 0} \tag{1}
\end{equation*}
$$

which clearly does not hold for any θ and pair $x_{i} \geq 0$ and $c>0$. Therefore, $M_{0}=\emptyset$. This establishes part (ii).

Agent $i \in I_{\theta}$ will join $k=1$ if and only if:

$$
\begin{equation*}
\pi_{\theta 1} \bar{x}_{1}+\pi_{\theta 0}\left(1-\bar{x}_{1}\right)-x_{i}^{2}-c>\pi_{\theta 0} \tag{2}
\end{equation*}
$$

Clearly, this cannot hold for $\theta=0$, since $\pi_{00}>\pi_{01}$. Hence all $i \in I_{0}$ remain unaffiliated, establishing part (i).

To establish part (iv), suppose for the moment that $x_{i}=s_{1}$ in equilibrium. Substituting this into equation (1) of the main paper, inequality (2) above holds for $i \in I_{1}$ if and only if:

$$
\begin{equation*}
c<\left(\pi_{11}-\pi_{10}\right) s_{1}-s_{1}^{2}=\tau s_{1}-s_{1}^{2} \equiv \bar{c} \tag{3}
\end{equation*}
$$

Therefore, $\left|M_{1}\right|=\left|I_{1}\right| F(\bar{c})$. By the assumptions on $F,\left|M_{1}\right| \in(0,1)$ if and only if $0<$ $s_{1}<\tau$. Hence one can restrict attention to $s_{1} \in(0, \tau)$, because the organization's objective function X_{1} equals zero otherwise.

Thus, the organization's problem is:

$$
\begin{equation*}
\max _{s_{1}}\left|I_{1}\right| F\left(\bar{c}\left(s_{1}\right)\right) s_{1} \tag{4}
\end{equation*}
$$

subject to $0<s_{1}<\tau$. The first-order condition for an interior optimum is:

$$
\begin{equation*}
\frac{F\left(\bar{c}\left(s_{1}\right)\right)}{F^{\prime}\left(\bar{c}\left(s_{1}\right)\right)}=\left(2 s_{1}-\tau\right) s_{1} \tag{5}
\end{equation*}
$$

Consider the LHS of (5). Recall that F is twice differentiable and strictly log-concave, so the LHS is continuous and strictly increasing in \bar{c}. From (3), on $\left[0, \frac{1}{2} \tau\right), \bar{c}\left(s_{1}\right)$ is continuous and strictly increasing in s_{1}. On $\left(\frac{1}{2} \tau, \tau\right), \bar{c}\left(s_{1}\right)$ is continuous and strictly decreasing. Therefore, the LHS is continuous, strictly increasing in s_{1} on $\left[0, \frac{1}{2} \tau\right)$ and strictly decreasing in s_{2} on $\left(\frac{1}{2} \tau, \tau\right)$.

Figure 1: Equilibrium strictness s_{1}^{*} is strictly decreasing in tension τ.

In addition, since $F(0)=0$ and $F^{\prime}(0)>0$, the LHS equals zero for $s_{1} \in\{0, \tau\}$ and is positive for $s_{1} \in(0, \tau)$.

The RHS of (5) is nonpositive for $0 \leq s_{1} \leq \frac{1}{2} \tau$ and positive and strictly increasing in s_{1} for $s_{1}>\frac{1}{2} \tau$.

Therefore, the two curves intersect at some unique value $s_{1}^{*} \in\left(\frac{1}{2} \tau, \tau\right)$. The solution is depicted in figure 1(a). Clearly, the second-order condition for a maximum holds at s_{1}^{*}.

Finally, let us establish part (iii). Suppose that $x_{i}>s_{1}$ in equilibrium. Differentiating equation (1) of the main paper with respect to x_{i} yields the first-order condition

$$
\frac{\pi_{\theta 1}-\pi_{\theta 0}}{\left|M_{1}\right|}-2 x_{i}=0
$$

and the unconstrained optimizer

$$
\begin{equation*}
x_{i}=\frac{\tau}{2\left|M_{1}\right|}, \tag{6}
\end{equation*}
$$

for all $i \in M_{1}$. We have already established that the optimal symmetric participation profile from organization 1's perspective involves $x_{i}=s_{1}^{*}>\tau / 2$, which is greater than or equal to (6). Hence $x_{i}^{*}=s_{1}^{*}$ for all $i \in M_{1}$.

Proof of Proposition 2. An increase in τ causes the LHS of (5) to shift up and the RHS to shift down. This implies that s_{1}^{*} is strictly increasing in τ, as depicted in figure 1(b).

Finally, consider total participation, $X_{1}^{*}\left(s_{1}^{*}\right)$. By the envelope theorem:

$$
\begin{align*}
\frac{d X_{1}^{*}\left(s_{1}^{*}\right)}{d \tau} & =\frac{\partial X_{1}^{*}\left(s_{1}^{*}\right)}{\partial \tau} \\
& =F^{\prime}\left(\bar{c}\left(s_{1}^{*}\right)\right) \frac{\partial \bar{c}\left(s_{1}^{*}\right)}{\partial \tau} \tag{7}\\
& =F^{\prime}\left(\bar{c}\left(s_{1}^{*}\right)\right) s_{1}^{*}>0 .
\end{align*}
$$

