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A1 The Role of Age and Years of Prior Work:

A Simple Two-by-Two Example

Consider an economy with 4 types of workers each earning wsj,t in period t, where s ∈ {h, c}, h

for high-school, c for college, and j ∈ {y, o}, y for young and o for old. Earnings of each group

can be decomposed into a linear combination of payments for the two inputs – labor, L, and

experience, E:

wcj,t = ct
[
acjRL,t + bcjRE,t

]
,

whj,t = ahjRL,t + bhjRE,t,

where asj denotes the time invariant quantity of input L supplied by schooling group s of age

j, bsj denotes the corresponding supply of input E, ct is a time varying aggregate shock to the

productivity of college-educated workers, RL,t and RE,t denote the time varying economy wide

prices of inputs Lt and Et. Let Πt = RE,t/RL,t denote the relative price of the two inputs.

As in Katz and Murphy (1992), assume that all young workers exclusively supply one unit

of Lt only (acy = ahy = 1, bcy = bhy = 0). Old workers can potentially supply a combination of

both inputs Lt and Et, with the weights {aco, aho , bho} to be determined after normalizing bco = 1.

Decomposing log wages, we have

lnwcy,t = ln ct + lnRL,t,

lnwco,t = ln ct + lnRL,t + ln [aco + Πt] ,

lnwhy,t = lnRL,t,

lnwho,t = lnRL,t + ln
[
aho + Πtb

h
o

]
.

The first and third equations imply that lnRL,t, ln ct can be readily identified by the variation in

lnwhy,t and lnwcy,t − lnwhy,t. The remaining parameters to be identified are aco, a
h
o , b

h
o , and Πt. It

is the identification strategy for these parameters where our approach differs from that of Katz

and Murphy.

A1.1 Katz and Murphy’s Identification Strategy

Katz and Murphy assume that old workers completely stop supplying the input that young

workers supply and simply set aco = aho = 0. This resolves the identification problem as the age
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premium for college and high school educated workers is respectively given by

wco,t
wcy,t

= Πt and
who,t
why,t

= Πtb
h
o .

One consequence of this identifying assumption, evident from the equation above, is that the

elasticity of the age premium with respect to Πt is forced to be the same across college and high

school educated workers (while these age premiums move differently in the data). As the ratio of

age premiums between college and high school workers is equal to the ratio of college premiums

between old an young workers, this identifying assumption also restricts the potential role of

changes in Πt in explaining the differential movement of college premiums across age groups

that motivated the analysis in Card and Lemieux (2001).

A1.2 Our Identification Strategy

Our identification strategy is based on the idea that the relevant parameters can be identified if

old workers of the same age differ in the number of years they have actually worked (and con-

sequently accumulated different amounts of the experience input). To use an extreme example,

note that we can identify aco and Πt if we observe some old college workers who never worked

and thus accumulated no experience input. They earn w̃co,t = ctRL,ta
c
o in contrast to old college

workers whose years of prior work endowed them with one unit of experience input and who earn

wco,t = ct [RL,ta
c
o +RE,t]. Similarly, we can identify aho and bho

aho
if we observe some old high school

workers who accumulated no experience input and earn w̃ho,t = RL,ta
h
o and compare them with

old high school workers whose years of prior work endowed them with bho units of experience

input so that they earn who,t = RL,ta
h
o + RE,tb

h
o . Using the PSID data we are able to effectively

do this from the imperfect correlation between age and the number of years that individuals

actually worked by that age. While the two-age example here is extreme, we show in Appendix

A3 that a small amount of variation in the number of years worked is sufficient to fully identify

the model in the main text non-parametrically.

Because we do not impose the assumption that old workers exclusively supply the experience

input, the age premiums across schooling groups are given by

wco,t
wcy,t

= aco + Πt and
who,t
why,t

= aho + Πtb
h
o ,

which implies the elasticity of the age premium with respect to Πt differs across schooling groups

depending on 1
aco

≶ bho
aho

. Our estimates of these parameters in the main text allow us to account
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for the different movements of the age premiums across schooling groups and college premiums

across age groups.

A2 PSID Data

Sample. We use the Panel Study of Income Dynamics (PSID) data from the U.S. for the

1968-2007 period. The PSID consists of two main subsamples: the SEO (Survey of Economic

Opportunity) sample and the SRC (Survey Research Center) sample. We use both samples

and restrict ourselves to the core members with positive sampling weights (not the newly added

family members through marriage) to maintain the consistent representativeness of the sample

over time.1 The sample is restricted to individuals between 18 and 65 years of age.

Years of Prior Work. The procedure we use to construct measures of actual years worked

since age 18 is as follows. Questions regarding the number of years worked (“How many years

have you worked for money since you were 18?” and “How many of these years did you work

full time for most or all of the year?”) were asked of every household’s head and wife in 1974,

1975, 1976 and 1985.2 These questions are also asked for every person in the year when that

person first becomes a household head or wife.3 Since there are some inconsistencies between

the answers, we first adjust the 1974 report to be consistent with 1975 and 1976 values when

possible. Next, we use 1974 as the base year; i.e., we assume that whatever is recorded in 1974

for the existing heads is true. For the entrants into the sample we assume that the number of

years of prior work they report in their first year in the sample is true. If the report implies

that an individual started working before the age of 18, we redefine it to be the number of years

since age 18 for that individual. If the reported number of years worked in 1974 is smaller than

that implied by the reports of hours between the individual entry into the sample (or 1968) and

1974, we replace the 1974 report with that implied by the accumulated reports of hours. We

1We use only the nonimmigrant sample. In 1990 the PSID added a new sample of 2000 Latino households,

consisting of families originally from Mexico, Puerto Rico, and Cuba. Because this sample missed immigrants

from other countries, Asians in particular, and because of a lack of funding, this Latino sample was dropped

after 1995. Another sample of 441 immigrant families was added in 1997. Because of the inconsistencies in these

samples, we restrict ourselves to the core SEO and SRC samples throughout the 1968-2007 period.
2By default, the head of household is the (male) husband if he is present or a female if she is single. In very

few cases the head is a female, even when the male husband is present (but is, say, severely disabled).
3The PSID mistakenly did not ask some people in 1985 and fixed this mistake by asking them in 1987.
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repeat this procedure for 1985 and for the reports of the new heads and wives. Finally, using

the values in 1974, 1985, and the reports of the new heads and wives, we increment the years

of work variables forward and backward as follows: increment the full-time measure by one if

individual works at least 1500 hours in a given year.4 If we observe an individual in the sample

since age 18, we ignore his or her reports and instead directly use his or her reports of hours in

each year using the cutoff above.5

Other Variables. Our hourly wage measure is equal to the total earnings last year divided by

total hours worked last year. To get the real wage, we adjust the nominal wage using last year’s

CPI (equal to 100 in 1984).6 We define the economically active population as the group of people

who worked at least 700 hours last year.7 Education is measured by years of final educational

attainment.8 Other control variables that we will use are gender (male dummy), race (black

dummy), and region (Northeast, North Central and West dummies). The broad region variable

is created using the state variable in the PSID.9 South is the base category region.

4We experimented with using cutoff values other than 1500 hours of work or using directly the sum of ac-

cumulated hours of work to create other measures of prior work and found that our chosen measure shows the

smoothest pattern of movements. The substantive results are not sensitive to this choice.
5The PSID switched from annual to bi-annual interviewing after 1997. Some data for the non-interview years

is available but appears very noisy with large numbers of missing observations. This led us to use only the data

from years when interviews took place. The only exception is hours worked in years between interviews which are

needed to construct the measures of prior work. We imputed those hours as the maximum between the reported

hours (if available) and the average hours in the two adjacent survey years.
6There is an alternative hourly wage measure in the PSID which reports the current hourly wage at the time

of the interview. Unfortunately, this measure is only available for the household heads throughout the period.

For wives it is available only in 1976 and after 1979 and it is not available at all for the other family members.
7As in the case of earnings, there is also an employment status variable at the time of the interview. We do

not use this variable because (1) the reference period (current year) is different from that of the earnings measure

(last year), and (2) this variable is available for the heads for all years but not for the wives before 1979 except

in 1976 and is not available for the dependents.
8Education is reported in the PSID in 1968, 1975, and 1985 for existing heads of households, and every year

for the people becoming household heads or wives. It is kept constant between the years in which it is updated.

As a result, there would be a bias toward a lower educational level. For example, if education is 10 years in

1975 and 16 in 1985, it would be reported 10 between 1975 and 1985. If the individual, however, had 16 years

of education already in 1980, then for five years he would be counted as less educated than he actually is. To

minimize this bias, the education variable used in the estimation is fixed to be equal to its mode value among all

the reports available. To make the education variable comparable across time we top code it at 16 years.
9We found that the broad region variable provided by the PSID appears to be error-ridden. For example, for

some but not all Texas residents region is defined as West. Thus, we reconstructed the broad region variable

directly from the state of residence.
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A3 Variation in Years Worked Needed for Identification

As is well known, the variation in the number of years worked by a certain age is relatively

small, especially for male workers. This might appear to pose a challenge for our identification

strategy. We now show that the model is nonparametrically identified if we only have one year

of difference in the number of years worked at each age, e.g., it is enough that some workers

enter the labor market at age 18 while some others at age 19 so that at age 20, they have worked

2 and 1 years, respectively, and at age 21, they have worked 3 and 2 years, respectively, etc.

Following this, we show that there is much more variation available in our data.

A3.1 Non-parametric Identification

We now establish non-parametric identification of the relative price of experience Πt and of the

λL(j), λE(j) and g (e) schedules if within each age group j some individuals worked for j years

and some others for j − 1 years, i.e. e ∈ {j, j − 1} for j ≥ 1.

Specify the log wage of a worker with age j and years worked e as

lnw (j, e) = lnRL,t + ln(λL(j) + ΠtλE(j)g (e)).

We have the restriction that λL(0) = 1 and g (0) = 0, so that

lnw (0, 0) = lnRL,t,

lnw (1, 0) = lnRL,t + lnλL(1),

which are used to identify lnRL,t for all t and lnλL(1). Now consider

lnw (j, e = j) = lnRL,t + ln(λL(j) + ΠtλE(j)g (e = j))

lnw (j, e = j − 1) = lnRL,t + ln(λL(j) + ΠtλE(j)g (e = j − 1))

for all j ≥ 1 and for every t. Since lnRL,t is known, these equations imply that we can determine

the following after exponentiating

λL(j) + ΠtλE(j)g (e = j) , (A1)

λL(j) + ΠtλE(j)g (e = j − 1) ,

for all j ≥ 1 and for every t. Since lnλL(1) is also known, we can further determine

ΠtλE(1)g (1)
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for every t, from which we can determine Πt+1

Πt
for every t.

Using (A1) and the time differences of these values, we can find

(Πt+1 − Πt)λE(j)g (e = j) ,

(Πt+1 − Πt)λE(j + 1)g (e = j) ,

(Πt+1 − Πt)λE(j + 1)g (e = j + 1) .

Using ratios of these, we can determine λE(j+1)
λE(j)

, g(e=j+1)
g(e=j)

beginning from λE(2)
λE(1)

, g(2)
g(1)

.

Next, to determine λL(j) we can use

λL(j) + ΠtλE(j)g (e = j)

ΠtλE(1)g (1)
=

λL(j)

ΠtλE(1)g (1)
+
λE(j)g (e = j)

λE(1)g (1)
,

where the second term on the right hand side is known given the calculated λE(j+1)
λE(j)

, and g(e=j+1)
g(e=j)

,

and ΠtλE(1)g (1) is also known, allowing us to identify λL(j).

Finally, although from Πt=0λE(1)g (1) we cannot separately identify Πt=0 and λE(1) and

g (1), we could normalize two of these, λE(1) and g (1), without loss of generality to identify

Πt=0.10 As discussed in Appendix A7, the level of Πt=0 does not affect our substantive results

and it only scales the level of the estimated share parameter ln δ in the aggregate technology

(not the estimate of the complementarity parameter). In the specification used in the main text

this normalization is not needed because λE(0) = 1, g (0) = 0 and the restricted functional forms

of λE(j) and g (e).

Note that given the nonparametric identification achieved, the parametric identification in

the main text is guaranteed as a special case.

A3.2 Variation in Years Worked Available in the Data

Figure A-1 uses boxplots to summarize the amount of variation in actual experience by age

available in our data. Each plot shows the percentile statistics of the distribution such as

median, 25th percentile, 75th percentile in a box and the upper and lower adjacent values in

marking boundary values.11 The figure illustrates that the range of variation of the number of

years worked for every age group far exceeds the amount of variation needed for identification.

10This is the same normalization we used when setting bco = 1 in Appendix A1.
11The “upper and lower adjacent values” are the extreme values of ±1.5 times of the inter-quartile range, which

are suggested by Tukey (1977) to capture the “effective range” of the distribution.
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Figure A-1: Within-Age Variation in Years of Prior Work by Gender and Education.

Even among male workers, the effective range of within-age variation in the number of years

worked is wider than 10 years for most age groups.

An alternative way to describe the amount of variation available for identification in the

literature would be to to report the correlations between age and years of prior work. In our

data these are 0.95 for college males, 0.95 for high-school males, 0.73 for college females, and 0.66

for high-school females. The interpretation of such correlations is, however, not straightforward

in the context of establishing identification. This is because the overall correlation is dominated

by the overall co-movement in age and years of prior work and does not immediately reveal the

extent of years of prior work variation conditional on age, which determines the identification.

The following simple example illustrates this.

Suppose that for each age the distribution of the number of years worked is constant around

that age (the sample size N also ensures that this is the case). Let xi denote age and yi the

years of prior work, then

yi = xi + ei
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where ei = e is from a given distribution independent of the level of xi such that∑
i

[ei (xi − x̄)] = 0.

Without loss of generality, re-normalize the measure of years worked such that the average

number of years worked and age are equal, x̄ = ȳ.

The aggregate correlation between age and years of prior work is given by

r =

∑
i [(xi − x̄) (yi − ȳ)]√∑
i (xi − x̄)2∑

i (yi − ȳ)2

=

∑
i [(xi − x̄) (xi − x̄+ ei)]√∑
i (xi − x̄)2∑

i (xi − x̄+ ei)
2

=

∑
i (xi − x̄)2√∑

i (xi − x̄)2 [∑
i (xi − x̄)2 +

∑
i (ei)

2]
=

√ ∑
i (xi − x̄)2∑

i (xi − x̄)2 +
∑

i (ei)
2 .

Thus, the correlation is falling in the ratio∑
i (ei)

2∑
i (xi − x̄)2 =

Nσ2
e∑N

i (xi − x̄)2
.

Since the numerator is constant, this ratio is essentially falling in the range of ages in the sample,

whereas the variation of age and years of prior work that is relevant for the identification is given

by σ2
e .

To provide a quantitative example, if we partition our sample into 10 equally spaced birth

cohort bins, the average correlation within a bin is 0.9 for college males, 0.9 for high-school males,

0.58 for college females, and 0.57 for high-school females. To avoid arbitrariness of choosing such

a partition, we think Figure A-1 is more informative in summarizing the ample variation available

for identification in our data.
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A4 Descriptive Analysis, Additional Results

A4.1 Descriptive Analysis, Benchmark Coefficient Estimates

Table A-1: Descriptive Analysis, Estimates of Time-Invariant Parameters.

Parameter Estimate Standard error t-statistic

λL,1 (HS,M) .0245 .00323 7.56

λL,2 (HS,M) -.000492 .0000803 -6.13

λL,0 (C,M) -.306 .0350 -8.74

λL,1 (C,M) .0671 .00363 18.47

λL,2 (C,M) -.00116 .0000846 -13.66

λE/L,1 (HS,M) -.0792 .00829 -9.55

λE/L,2 (HS,M) .00107 .000181 5.90

λE/L,0 (C,M) .332 .121 2.74

λE/L,1 (C,M) -0.148 .0132 -11.21

λE/L,2 (C,M) .00214 .000268 8.00

λL,1 (HS,F ) .00109 .00203 .54

λL,2 (HS,F ) .0000709 .0000463 1.53

λL,0 (C,F ) -.0569 .0282 -2.02

λL,1 (C,F ) .0345 .00265 12.98

λL,2 (C,F ) -.000571 .0000612 -9.33

λE/L,1 (HS,F ) -.0434 .00661 -6.57

λE/L,2 (HS,F ) .0000404 .000137 .30

λE/L,0 (C,F ) -.499 .127 -3.93

λE/L,1 (C,F ) -.054 .0129 -4.23

λE/L,2 (C,F ) .000142 .0000286 .50

θ1 -.0234 .00476 -4.92

θ2 .000979 .000184 5.32

θ3 -.0000141 .00000238 -5.93

northeast .19 .004 43.64

north central .046 .004 11.46

west .098 .0045 21.90

R2 0.924

RMSE 0.616

Note - The entries represent the results of the reduced-form estimation of time-invariant

parameters of the benchmark specification in Section II of the main text. For sample

restrictions and variable construction procedures, see Appendix A2.
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Table A-2: Descriptive Analysis, Estimates of Time-Varying Parameters.

Year Price of Exp. Schooling Male Black Intercept

1968 .091(.015) .072(.005) .24(.031) -.16(.048) .46(.09)

1969 .078(.013) .066(.005) .25(.028) -.16(.044) .61(.08)

1970 .089(.013) .063(.005) .24(.027) -.14(.042) .63(.08)

1971 .087(.013) .069(.005) .22(.027) -.10(.042) .58(.08)

1972 .106(.014) .074(.005) .20(.026) -.12(.041) .49(.08)

1973 .104(.013) .072(.004) .25(.026) -.086(.040) .52(.07)

1974 .101(.012) .064(.004) .23(.023) -.099(.036) .65(.07)

1975 .109(.012) .067(.004) .21(.023) -.087(.035) .59(.07)

1976 .126(.013) .069(.004) .16(.023) -.051(.035) .54(.07)

1977 .131(.014) .076(.004) .19(.023) -.037(.035) .42(.07)

1978 .152(.015) .075(.004) .19(.023) -.051(.035) .40(.07)

1979 .141(.014) .070(.004) .20(.022) -.087(.032) .49(.07)

1980 .137(.013) .066(.004) .20(.021) -.045(.031) .53(.07)

1981 .170(.016) .080(.004) .17(.022) -.092(.032) .26(.07)

1982 .155(.015) .071(.004) .17(.022) -.093(.032) .38(.07)

1983 .206(.019) .083(.004) .10(.021) -.075(.032) .12(.07)

1984 .183(.016) .081(.004) .11(.020) -.082(.030) .20(.07)

1985 .217(.018) .092(.004) .15(.020) -.078(.030) -.03(.07)

1986 .207(.018) .092(.004) .12(.020) -.12(.030) .02(.07)

1987 .224(.015) .099(.004) .10(.020) -.15(.029) -.07(.07)

1988 .251(.021) .108(.004) .05(.020) -.14(.029) -.22(.07)

1989 .242(.019) .111(.004) .07(.018) -.15(.026) -.26(.07)

1990 .231(.019) .114(.004) .04(.018) -.11(.026) -.29(.07)

1991 .217(.018) .123(.004) .04(.018) -.07(.027) -.41(.07)

1992 .252(.020) .122(.004) .03(.018) -.13(.026) -.47(.07)

1993 .220(.018) .111(.004) .04(.018) -.094(.026) -.24(.07)

1994 .201(.017) .119(.004) .09(.018) -.16(.026) -.36(.07)

1995 .229(.019) .110(.004) .08(.018) -.11(.026) -.27(.07)

1996 .238(.020) .106(.004) .08(.018) -.14(.026) -.23(.08)

1997 .214(.018) .115(.004) .03(.017) -.15(.025) -.31(.07)

1999 .217(.018) .113(.004) .07(.017) -.15(.025) -.26(.07)

2001 .174(.016) .117(.004) .07(.017) -.088(.024) -.19(.07)

2003 .165(.015) .106(.004) .02(.016) -.11(.024) -.05(.07)

2005 .185(.016) .120(.004) .04(.016) -.15(.024) -.26(.07)

2007 .143(.014) .118(.004) .07(.016) -.17(.023) -.12(.07)

Note - The entries represent the results of the reduced-form estimation of time-varying parameters of

the benchmark specification in Section II of the main text. Standard errors are in parenthesis. For

sample restrictions and variable construction procedures, see Appendix A2.
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Figure A-2: Age-Conditional Means and Standard Deviations of Years Worked, Experience

Input, and Wages by Gender and Education.
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Figure A-3: Estimated Age-Efficiency Schedules for Female Workers by Education.

A5 Time-Invariant Age Efficiency Schedules and Cohort

Effects

While our identification strategy follows Katz and Murphy (1992) and subsequent literature in

assuming that age efficiency schedules λL and λE are independent of time, this is potentially an

important restriction ruling out certain cohort effects. In this Appendix we empirically assess

this assumption through two experiments. First, we check for the presence of cohort effects not

accounted for by the model with time-invariant age efficiency schedules. Second, we estimate

the model separately on different cohorts and check whether the estimates differ significantly.

A5.1 Cohort Effects

To check for the presence of cohort effects that are not accounted for by our specification with

constant age efficiency schedules, we we obtain wage residuals from our model and ask whether

we can detect the presence of residual cohort effects in them. In particular, we regress the

residuals on the full set of cohort dummies. The estimates of coefficients on those dummies are

all statistically insignificant from zero. Moreover, they do not exhibit any particular trends as

is evident from Figure A-4 in which the coefficients of the cohort dummies are plotted for all

cohorts.

How does our model account for cohort effects? The time effect on wages is captured via the

changes in the year dummies of the wage regression (equation (16) in the main text). The pure

age effect is captured by the age efficiency schedule of labor λL (j). The cohort effect is captured
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Figure A-4: Residual Cohort Dummy Estimates.

by the interactive term between the relative price of experience ΠE,t (time effect) and the age

efficiency schedule of labor λE/L (j) (age effect).

Moreover, we also allow the time-varying coefficients for the characteristics of schooling, gen-

der and race. Through the changing age composition of these demographic subgroups, allowing

the time-varying coefficients on these characteristics also captures the cohort effect indirectly.

These are clearly one particular way of capturing cohort effects and the question is whether we

are missing other significant cohort effects than the ones captured. The results of the experiment

in this section suggest that we are not.

A5.2 Estimating the Model on Different Cohorts

We now allow the age efficiency schedules to differ across cohorts and check whether the estimates

differ significantly. In particular, we allow the age efficiency schedules for males to be cohort

specific as follows

λsL(j, Z) = exp(λsL,1j + λsL,2j
2 + IZ

(
Zs
L,1j + Zs

L,2j
2
)
),

λsE(j, Z) = exp(λsE,1j + λsE,2j
2 + IZ

(
Zs
E,1j + Zs

E,2j
2
)
),

where IZ is an indicator for cohort Z.

Defining cohorts too finely runs into the problem of cohorts not having observations along

the support of the age profile for the youngest and oldest cohorts, over and above sample size
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Figure A-5: Estimated λL(j), λE(j) for Cohorts of College-Educated Male Workers Born before

or after 1946.

issues. Thus, we consider two cohort groups, those born before and those born after 1946. We

choose the partition of cohorts at 1946 to generate the most overlap in terms of age between

the two cohorts for comparison. This turns out to also imply similar sample sizes for the two

groups.12

For the high school group, the four coefficients {Zs
L,1, Z

s
L,2, Z

s
E,1, Z

s
E,2} are all insignificant so

there are no statistically relevant differences in λsL and λsE across cohorts. For the college group

each of these four coefficients turned out to be statistically significant, and we investigated further

the implications.

Plotting λsL(j, Z) and λsE(j, Z) over the support of age j for the pre-1946, post-1946 cohorts,

in Figure A-5, we observe that the age efficiency schedules are quite similar in shape and position

between the two cohort groups.

Moreover, allowing for cohort-specific λsL(j, Z), λsE(j, Z) does not affect the ability of the

model to match the dynamics of the relative price of experience, the age premiums and college

premiums which are the focus of our analysis. The results are virtually indistinguishable from

the benchmark ones, leading us to prefer the more parsimonious benchmark specification.

We can statistically assess the similarity of predictions of the models with common or cohort-

12We also considered an alternative specification where we allowed the cohort to determine the level of efficiency

units such that

λsL(j, Z) = exp(λsL,1j + λsL,2j
2 + IZZ

s
L).

In this simpler specification, we could consider differences in coefficient Zs
L between finely defined cohorts since

we do not run into the issue of not having observations along the support mentioned above. The coefficients for

Zs
L for cohorts differentiated by calender birth year (relative to the base cohort) all turn out to be insignificant.
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specific age efficiency schedules by performing the nonparametric Kolmogorov-Smirnov test for

the distributional equality between the two predicted wage distributions. Specifically, let F 0
n (w)

and F 1
n (w) be the empirical distribution functions of the fitted log wage with sample size n

from the specification of common age efficiency schedules and from that of cohort-differentiated

age efficiency schedules, respectively. The Kolmogorov-Smirnov statistic for testing the equality

between the two distributions is

Kn = sup
w

∣∣F 0
n (w)− F 1

n (w)
∣∣ ,

where supw |·| indicates the supremum and the empirical distribution function is defined as

F j
n (w) =

1

n

n∑
i=1

I
(
W j ≤ w

)
.

The statistic
√
nKn converges to Kolmogorov distribution under the null of equality, which does

not depend on the form of the true distribution of the log wage.

The Kolmogorov-Smirnov test statistic for the whole sample is 0.0026 with p-value of 0.639,

hence we cannot reject the null hypothesis of equality between the two distributions for the

whole sample. We also check the equality of the log wage distributions for the two cohorts. The

test statistic for the cohort born before 1946 sample is 0.0048 with p-value of 0.439. The test

statistic for the cohort born after 1946 is 0.0049 with p-value of 0.189. Thus, the equality of

cohort-specific conditional distributions is not rejected either.
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A6 Assessing Alternative Specifications

In this section, we compare the ability of our specification of the wage equation to fit the data

relative to various alternative specifications. Two types of restrictions are of particular interest.

First, our benchmark specification incorporates three potential sources of curvature in the life-

cycle profiles (g(e), λL, and λE). We assess whether all three components are essential for fitting

the data or only a subset of them would be statistically sufficient. Second, our benchmark

specification filters out the time-varying college premium, gender premium, etc. when assessing

the relative price of experience, and incorporates these time varying premiums when calculating

the aggregate effective supplies of experience and labor. The traditional cell-based correction

for composition does not accommodate these features as we discuss in Footnote 2 in the main

text. Consequently, it is of some interest to assess the consequences of this restriction for fitting

the wage distribution. To do so we consider alternative specifications where the coefficients on

these characteristics are forced to be time-invariant.

We measure the distance between our benchmark specification and each alternative one by the

difference in estimated log likelihoods between them. Vuong (1989) shows that under regularity

conditions, the likelihood ratio test statistic converges to a central chi-square distribution.13

Specifically, suppose there are two competing models to explain the variable Y conditional on Z

that are represented by the conditional distribution functions Fθ ≡
{
FY |Z (·|·; θ) ; θ ∈ Θ ⊂ Rp

}
and Gγ ≡

{
GY |Z (·|·; γ) ; γ ∈ Γ ⊂ Rq

}
, respectively, and their density functions are denoted by

f (y|z; θ) and g (y|z; γ). In our case, y = lnw and z = (1, s, x, j, e, χ). Let θ̂n and γ̂n be the

corresponding maximum likelihood estimators for the sample (yι, zι)
n
ι=1 of size n, i.e., θ̂n =

arg maxθ∈Θ

n∑
ι=1

log f (yι|zι; θ) and γ̂n = arg maxγ∈Γ

n∑
ι=1

log g (yι|zι; γ). Then, under the regularity

conditions, 2LRn

(
θ̂n, γ̂n

)
D−→ χ2

p−q, where

2LRn

(
θ̂n, γ̂n

)
= 2

n∑
ι=1

log

f
(
yι|zι; θ̂n

)
g (yι|zι; γ̂n)

 , (A2)

and p− q is the difference in the total number of parameters between the two models.

The alternative specifications that we consider in this section are nested by the benchmark

specification. Hence the alternative hypothesis to the null hypothesis of the equivalence of the

13See assumptions A1-A5 and information matrix equivalence condition in equation (3.8) for regularity condi-

tions and Theorem 3.3 and Corollary 3.4 for the characterization of the asymptotic distribution of the likelihood

ratio test statistic in Vuong (1989).

17



Table A-3: Likelihood Ratio Test Statistics.

Specification # Description LR χ2
p−q (0.01)

Spec 1 g(e) = e; λL = λE = 1; αt = α 6943.8 181.8

Spec 2 g(e) = e; λL = λE = 1; benchmark αt 5661.5 41.6

Spec 3 benchmark g(e); λL = λE = 1; αt = α 3634.5 178.4

Spec 4 g(e) = e; benchmark λL and λE; αt = α 1110.8 159.0

Spec 5 benchmark g(e); λL = λE = 1; benchmark αt 2371.0 37.6

Spec 6 benchmark g(e); benchmark λL and λE; αt = α 1033.4 155.5

Spec 7 benchmark g(e); λL = 1; benchmark λE; benchmark αt 863.9 23.2

Spec 8 benchmark g(e); benchmark λL; λE = 1; benchmark αt 765.0 23.2

Spec 9 benchmark g(e); symmetric λL = λE; benchmark αt 758.9 23.2

Spec 10 g(e) = e; benchmark λL and λE; benchmark αt 32.4 11.3

compared models is that the benchmark model is strictly superior to the other candidate model

in fitting the wage distribution. Thus, the statistic in (A2) allows us to perform a statistical

significance test for the superiority of our benchmark specification over the alternatives.

Table A-3 provides the likelihood ratio test statistic (denoted by LR) comparing our bench-

mark specification with various alternatives, along with the corresponding critical values of the

chi-square distributions for the 1% significance level (denoted by χ2
p−q (0.01)).

The likelihood ratio test statistics are far larger than the 1% significance critical values for

all of the alternative specifications. In fact, the test statistics also exceed the 0.1% significance

critical values. Our benchmark specification fits the wage distribution strictly better than the

other candidate specifications at any conventional significance level. Thus, the full incorporation

of age efficiency schedules for both experience and labor, the curvature of experience input, and

allowing for the time-varying coefficients for control variables provides critical improvements in

fitting the wage distribution.

Furthermore, the likelihood ratio test statistic can be considered as the distance of each

alternative specification from the benchmark. By comparing the magnitudes of the likelihood

ratio statistics across specifications, we can infer the relative importance of each ingredient of the

model specification. For example, the likelihood ratio falls from 6943.8 (Spec 1) to 5661.5 (Spec

2) by allowing for time-varying coefficients on the control variables, but falls to 3634.5 (Spec
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3) after relaxing the linearity of g(e) function. Thus, allowing for curvature in the experience

accumulation technology seems more important than allowing for the time-varying coefficients

for the control variables. The most substantial improvements come from introducing the age

efficiency schedules. The likelihood ratio falls from 6943.8 (Spec 1) to 1110.8 (Spec 4), after

incorporating the age efficiency schedules into the model. With curvature in the experience

accumulation technology and time-varying coefficients on the control variables, the likelihood

ratio increases to 2371.0 (Spec 5) from 1110.8 (Spec 4) when the efficiency of labor and experience

is not allowed to depend on age.

Further evidence of the importance of the full consideration of the age efficiency schedules

comes from the comparison of likelihood ratios among specifications 7, 8, 9, and 10. After

allowing for the age efficiency schedules and time-varying coefficients for the control variables,

the likelihood ratio falls to 32.4 (Spec 10), even when restricting the experience accumulation

technology to be linear. However, even with full curvature of experience accumulation technology

and time-varying coefficients on the control variables, an incomplete inclusion of the age efficiency

schedules makes the model fit much worse: the likelihood ratio becomes 863.9 (Spec 7 for λL = 1),

765.0 (Spec 8 for λE = 1), and 758.9 (Spec 9 for λL = λE).

Spec 6 shows the likelihood ratio is high (1033.4) when we do not allow for time varying

premiums to college, gender etc. αt = α. Comparing Spec 1 with Spec 2, Spec 3 with Spec 5 and

Spec 4 with Spec 10, we further confirm that setting these premiums as constant under other

specifications for efficiency schedules substantially raises the likelihood ratio.

This evidence implies that all three potential sources of curvature of life-cycle profiles as well

as the time variation in the coefficients on the control variables are essential for fitting the wage

data. We emphasize once again, however, that while this evidence guides us in specifying the

model of individual earnings, it is independent of the relationship between the aggregate relative

supply of experience and its relative price.

A7 Identification of the Aggregate Production Function

Parameters in the Structural Model

The log wage equation (20) in the main text includes all parameters of the model. In particular,

given the measurement of aggregate inputs Et and Lt, the variation of the relative price of

experience ΠEt in relation to the variation of the experience-labor ratio Et

Lt
is the source of
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identification of the technology parameters µ and δ. The time-series correlation between the

relative price ΠEt and the relative factor endowment Et

Lt
identifies µ (which is scale free). The

average magnitude of ΠEt relative to the magnitude of the Et

Lt
identifies the scale parameter δ.

Note that the magnitudes of ΠEt and Et

Lt
depend on the normalization of some parameter

of the age efficiency schedules, i.e., λE(0, HS, x) = λL(0, HS, x) = 1 for x ∈ {M,F}. Thus,

the identification of δ is subject to this normalization. More precisely, it is the normalization

of the relative efficiency of experience of the youngest workers that affects the identification

of δ. That is, re-normalizing λE(0, s, x) = λL(0, s, x) = l for any arbitrary constant l such

that λE/L(0, s, x) = 1 leaves the estimate of δ unchanged. However, if we normalize the age

efficiency schedules asymmetrically between experience and labor so that λL(0, s, x) = a and

λE(0, s, x) = b, hence λE/L(0, s, x) = c = b/a 6= 1, the coefficient function in front of experience

in the log wage becomes δ
(
cEt

Lt

)µ−1

cλE/L(j, s, x) = δ̃
(
Et

Lt

)µ−1

λE/L(j, s, x), where δ̃ = δcµ.

Thus, the estimated value of δ may change. The normalization of the age efficiency schedule of

labor affects the scale of the aggregate productivity term. Specifically, with λL (0, s, x) = a, the

aggregate productivity term turns to ln aAt. Note, however, that estimates of µ as well as the

age efficiency schedules, our key parameters, are not affected by this normalization.
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A8 Structural Estimation, Additional Results

A8.1 Structural Estimation, Benchmark Coefficient Estimates

Table A-4: Structural Estimation, Estimates of Time-Invariant Parameters.

Parameter Estimate Standard error t-statistic

λL,1 (HS,M) .0239 0.00335 7.13

λL,2 (HS,M) -.000502 0.0000846 -5.93

λL,0 (C,M) -.308 0.0353 -8.73

λL,1 (C,M) .0679 0.00366 18.52

λL,2 (C,M) -.00118 0.0000857 -13.82

λE/L,1 (HS,M) -.0773 0.00832 -9.29

λE/L,2 (HS,M) .00107 0.000183 5.88

λE/L,0 (C,M) .321 0.122 2.62

λE/L,1 (C,M) -0.148 0.0132 -11.19

λE/L,2 (C,M) 0.00219 0.000266 8.25

λL,1 (HS,F ) .000879 .00205 0.43

λL,2 (HS,F ) .0000755 .0000467 1.62

λL,0 (C,F ) -.0544 .0284 -1.92

λL,1 (C,F ) .0344 .00269 12.81

λL,2 (C,F ) -.000574 .0000622 -9.23

λE/L,1 (HS,F ) -.0426 .00661 -6.45

λE/L,2 (HS,F ) .0000302 .000137 .22

λE/L,0 (C,F ) -.510 .127 -3.99

λE/L,1 (C,F ) -.054 .0129 -4.17

λE/L,2 (C,F ) .000158 .0000287 .55

θ1 -0.0244 0.00462 -5.30

θ2 .00101 0.000179 5.66

θ3 -.0000145 0.00000231 -6.29

northeast 0.19 0.004 43.66

north central 0.046 0.004 11.49

west 0.098 0.0045 21.94

R2 0.924

RMSE 0.616

Note - The entries represent the results of the structural estimation of time-invariant pa-

rameters of the benchmark specification. For sample restrictions and variable construction

procedures, see Appendix A2. See Section III in the main text for details of the estimation

procedure.
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Table A-5: Structural Estimation, Estimates of Time-Varying Parameters.

Year Schooling Male Black Intercept

1968 .071(.005) .25(.033) -.16(.048) .49(.066)

1969 .067(.004) .24(.031) -.16(.044) .58(.061)

1970 .062(.004) .24(.030) -.14(.042) .65(.060)

1971 .069(.004) .22(.029) -.10(.042) .52(.059)

1972 .072(.004) .21(.029) -.12(.041) .54(.059)

1973 .071(.004) .25(.028) -.087(.040) .54(.057)

1974 .065(.004) .23(.026) -.100(.036) .63(.054)

1975 .068(.004) .21(.026) -.086(.035) .56(.054)

1976 .069(.004) .16(.026) -.051(.035) .53(.055)

1977 .077(.004) .19(.026) -.037(.035) .41(.055)

1978 .073(.004) .19(.026) -.052(.035) .44(.055)

1979 .071(.004) .20(.025) -.086(.032) .47(.053)

1980 .068(.004) .19(.024) -.044(.031) .47(.054)

1981 .079(.004) .17(.024) -.092(.032) .28(.054)

1982 .073(.004) .16(.024) -.093(.032) .34(.055)

1983 .079(.004) .12(.025) -.075(.032) .21(.057)

1984 .082(.004) .11(.024) -.082(.030) .19(.055)

1985 .090(.004) .16(.024) -.078(.030) .01(.055)

1986 .091(.004) .13(.024) -.12(.030) .03(.057)

1987 .097(.004) .11(.024) -.15(.029) -.03(.057)

1988 .105(.004) .06(.024) -.14(.029) -.14(.059)

1989 .110(.004) .07(.023) -.15(.026) -.23(.057)

1990 .114(.004) .05(.023) -.11(.026) -.29(.058)

1991 .126(.004) .04(.023) -.071(.027) -.47(.059)

1992 .120(.004) .04(.023) -.13(.026) -.41(.059)

1993 .113(.004) .04(.023) -.094(.026) -.30(.059)

1994 .125(.004) .08(.023) -.16(.026) -.49(.059)

1995 .109(.004) .08(.023) -.12(.026) -.24(.059)

1996 .102(.004) .09(.023) -.14(.026) -.15(.059)

1997 .116(.004) .03(.022) -.15(.025) -.34(.052)

1999 .110(.004) .08(.022) -.15(.025) -.19(.052)

2001 .119(.004) .07(.022) -.087(.024) -.24(.053)

2003 .109(.004) .02(.022) -.11(.024) -.10(.052)

2005 .118(.004) .05(.022) -.15(.024) -.20(.052)

2007 .120(.004) .06(.022) -.17(.023) -.18(.052)

Note - The entries represent the results of the structural estimation of time-varying parameters of

the benchmark specification. Standard errors are in parenthesis. For sample restrictions and variable

construction procedures, see Appendix A2. See Section III in the main text for details of the estimation

procedure.
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A9 The Effect of Cohort Size on Earnings

Given the aggregate technology (3) in the main text, note that from the Euler theorem

GEE = −Lt
Et
GEL,

GLL = −Et
Lt
GEL.

The aggregate stocks of labor and experience in period t can be constructed as the sum of

effective supplies across cohorts indexed by age j

Lt =
∑
j

λL(j)Nj,t,

Et =
∑
j

λE(j)gt(j)Nj,t,

where Nj,t denotes the cohort size and λL(j), λE(j), g(j) denote the efficiency schedules for

a representative worker in cohort j. We suppress notation for sex and schooling and omitted

productive characteristics zjt and hours hjt for clarity. The complementarity between two cohorts

j and k is given by the condition d2Yt
dNj,tdNk,t

> 0. This cross derivative is given by

d2Yt
dNj,tdNk,t

= At

 GEEλE(j)gt(j)λE(k)gt(k) +GELλE(j)gt(j)λL(k)

+GLEλL(j)λE(k)gt(k) +GLLλL(j)λL(k)


= AtGEL

Lt
Et

 −λE(j)gt(j)λE(k)gt(k) + λE(j)gt(j)λL(k)Et

Lt

+λL(j)λE(k)gt(k)Et

Lt
−
(
Et

Lt

)2

λL(j)λL(k)


= AtGEL

Lt
Et
λL(j)λL(k)

 −λE(j)gt(j)λE(k)gt(k)
λL(j)λL(k)

+ λE(j)gt(j)
λL(j)

Et

Lt

+λE(k)gt(k)
λL(k)

Et

Lt
−
(
Et

Lt

)2


= AtGEL

Lt
Et
λL(j)λL(k)

[
Et
Lt
− λE(j)gt(j)

λL(j)

] [
λE(k)gt(k)

λL(k)
− Et
Lt

]
,

using the implications of the Euler theorem above.

Since aggregate experience-labor complementarity implies GEL > 0, cohorts are complements

when the cohort specific experience-labor ratios λE(j)gt(j)
λL(j)

and λE(k)gt(k)
λL(k)

, are respectively lower and

higher than the aggregate experience-labor ratio Et

Lt
. This is because cohorts complement each

other through the effect on the aggregate experience-labor ratio. When both cohort specific

experience-labor ratios are either lower or higher than the aggregate ratio, they are substitutes

since d2Yt
dNj,tdNk,t

< 0.
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Complementarity or substitutability is stronger the larger is λE(j)gt(j)
λL(j)

− Et

Lt
, i.e. the more

distant the cohort specific experience-labor ratios are from the aggregate ratio. For a cohort

where the experience-labor ratio coincides with the aggregate ratio, i.e. λE(j)gt(j)
λL(j)

= Et

Lt
, the

marginal product is not affected by changes in the population of other cohorts (at the margin).

For the same reason, the effect of own cohort size d2Yt
d2Nj,t

on reducing the marginal product is

rising in the absolute distance of the cohort specific experience-labor ratio from the aggregate

ratio, i.e. λE(j)gt(j)
λL(j)

− Et

Lt
.
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