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By Chris Bidner and Guillaume Roger and Jessica Moses∗

This online appendix accompanies our paper “Investing in Skill
and Searching for Coworkers: Endogenous Participation in a
Matching Market” published in the American Economic Journal:
Microeconomics. We provide details of the illustrations used in
paper as well as the details of an extension beyond the binary in-
vestment case.

Online Appendix A: Illustration Details

A1. Details of Illustration Depicted in Figure 1

When F is uniform, we have

G(θ | θ̂) =


1 for θ > 1
θ−θ̂
1−θ̂

for θ ∈ [θ̂, 1]

0 otherwise,

(A1)

so that Rk satisfies

Rk =
α

r
·
∫ Rk−1

max{Rk,θ̂}

[
θ′ −Rk
1− θ̂

]
· dθ′.(A2)

One can derive Rk as an explicit function of Rk−1 by considering two cases.

If Rk ≥ θ̂ then Rk satisfies

Rk =
α

r
·
∫ Rk−1

Rk

[θ′ −Rk] · dG(θ′ | θ̂),(A3)
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which, by using the uniform functional form, gives

2 · r
α
· (1− θ̂) ·Rk = (Rk−1 −Rk)2,(A4)

which, expressing Rk as an explicit function of Rk−1, is:

Rk =
r

α
· (1− θ̂) +Rk−1 −

√
r

α
· (1− θ̂) ·

( r
α
· (1− θ̂) + 2 ·Rk−1

)
.(A5)

Alternatively, if Rk < θ̂ then Rk satisfies

Rk =
α

r
·
∫ Rk−1

θ̂
[θ′ −Rk] · dG(θ′)(A6)

which is

2 · r
α
· (1− θ̂) ·Rk = R2

k−1 − θ̂2 − 2 ·Rk · (Rk−1 − θ̂),(A7)

so that

Rk =
1

2
·

R2
k−1 − θ̂2

r
α · (1− θ̂) +Rk−1 − θ̂

.(A8)

In calculating these boundaries, start with k = 1 since R1 is defined on the entire
type space [0, 1]. Then proceed to k = 2, noting that R2 is defined at the points

for which R1 > θ̂. Successive values of k can be used to compute Rk, noting that
Rk is defined at the points for which Rk−1 > θ̂. The value of K at θ̂ is that value

of k for which Rk ≤ θ̂. The class boundaries are then θk = Rk for k = 1, ...,K− 1
and θK = θ̂.

A2. Details of Illustration Depicted in Figure 5

Using the uniform distribution of type, we have that θ̃k satisfies

θ̃k =
α

r
·

[
θ̃k−1 − θ̃k

2

]
,(A9)

which is

θ̃k =
1

1 + 2 · rα
· θ̃k−1.(A10)
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Using the initial condition that θ̃0 = 1, we have an explicit expression for θ̃k:

θ̃k =

[
1

1 + 2 · rα

]k
.(A11)

Furthermore,

mk(θ̂) =
1

1 + r
α

· θ̂ + θk−1
2

.(A12)

Online Appendix B: More than two investment levels

This section shows that our key results do not hinge on the binary investment as-
sumption. Specifically, we show via a simple example how acceptance constrained
equilibria continue to exist when we allow a large, but discrete, investment space.
We also show how a richer investment space generates new features too; we leave
a more comprehensive treatment to future research.

Suppose that agents can invest in discrete units so that xi ∈ {0, 1, 2, ...} and
si = xi · θi. The cost of x units of investment is c(x), which is strictly increas-
ing. Consider an acceptance constrained equilibrium with one class in which all
investors invest x > 0. Given a cut-off type of θ̂∗, the asset value equation tells
us that for θ ∈ [θ̂∗, 1], U(θ | θ̂∗) satisfies:

rU(θ | θ̂∗) =
α

r
· [x · θ · x · E[θ′ | θ′ ∈ [θ̂∗, 1]− rU(θ | θ̂∗)].

A type θ′ will be accepted by a type θ ∈ [θ̂∗, 1] as long as x ·θ′ ·x ·θ/r ≥ U(θ | θ̂∗),
or

θ′ ≥ R(θ) ≡ rU(θ | θ̂∗)/(x2 · θ).
Using the asset value equation, this is:

R(θ) =
α

r
· [E[θ′ | θ′ ∈ [θ̂∗, 1]−R(θ)].

Thus, as before, R(θ) is a constant for those in the first class. Furthermore, since

θ̂∗ satisfies R(θ̂∗) = θ̂∗, it is straightforward to see that θ̂∗ = θ̂1 (where θ̂1 is that
used in the main analysis).

To produce closed-form expressions, suppose that the distribution of types is
uniform on [0, 1]. Assuming that a worker is accepted, their payoff when investing
x when others are investing x∗ is:

U(θ, x | θ̂1, x∗) =
1

r
· α

r + α
· x∗ · 1 + θ̂1

2
· x · θ = Z · x∗ · x · θ,
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where Z ≡ 1
r ·

α
r+α ·

1+θ̂1
2 . For this to constitute an equilibrium a series of conditions

must be met. First, all investors prefer investing x to not investing (i.e. x = 0).
It is sufficient to verify that

U(θ̂1, x | θ̂1, x) ≥ c(x),

which holds by making c(x) small enough. Second, all investors prefer investing
x to any other level xi. This implies two conditions: (i) that 0 < xi < x be
deterred, and (ii) that xi > x be also deterred. For (i) a sufficient condition is
that the highest type, when investing xi = x− 1, is not accepted in equilibrium.
That is, 1 · (x− 1) < x · θ̂1 (the left side is the skill of the highest type when they
cut their investment by one step and the right is the minimum skill required for
acceptance in equilibrium). This amounts to

θ̂1 > 1− (1/x),

which holds for x low enough (of course, this always holds when x = 1) and can
be made to hold for any x by setting α high enough. For (ii), it is sufficient to
check that the highest types do not want to raise their investment, which holds
when c(x+ 1) sufficiently high:

U(1, x+ 1 | θ̂1, x)− c(x+ 1) < U(1, x | θ̂1, x)− c(x)

Last, all non-investors are acting optimally. As before, the fact that they would
never be accepted ensures that non-investors do not want to invest x (or less). The
only remaining possibility is that some non-investors would profit by investing in
excess of x, say x+ 1 (which necessarily gives those close to the marginal investor
an acceptable skill level). To deter this one needs,

U(θ̂1, x+ 1 | θ̂1, x) < c(x+ 1),

which, again, is ensured by setting c(x+ 1) high enough.

From this we see how even the simplest of acceptance constrained equilibria
- one in which all investors invest the same amount and there is a single class -
continue to exist in this setting. Richer forms of acceptance constrained equilibria
are clearly possible, but here our intention is to highlight that it is the discreteness
of investment possibilities that is important. We utilize the binary investment
decision in our exposition for the simplicity it affords in illuminating the key
mechanisms at play. For instance, even analyzing the case with three investment
possibilities induces a new form of multiplicity whereby a one-class acceptance
constrained equilibrium in which all investors choose x = 1 coexists with one in
which they invest x = 2. To see this, note that the interesting constraints that
must be satisfied are, (1) when x = 1, a marginal non-investor does not want to
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invest xi = 2 to be accepted:

Z · 1 · 2 · θ̂1 − c(2) < 0,

and (2) when x = 2, a marginal investor wants to invest x = 2:

Z · 2 · 2 · θ̂1 − c(2) > 0.

Clearly, a cost function such that

c(2) ∈ (Z · 2 · θ̂1, Z · 4 · θ̂1)

will satisfy both of these. The other constraints can be satisfied by taking c(·) such

that c(1) low enough, c(3) large enough, and θ̂1 such that θ̂1 > 1 − (1/2) = 1/2
(this requires α > 2·r with a uniform distribution). The source of this multiplicity
is quite distinct from the sources we emphasize in the main model, and therefore
leave a comprehensive treatment for future research.


