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Appendix B: Strategic Communication

We divide the proofs for Section V into three appendices. Appendix B1 characterizes communica-

tion equilibria and provides the proof of Lemma 1 while Appendix B2 derives expressions for the

quality of horizontal and vertical communication and provides the proof of Lemma 2. Appendix

B3 uses the previous results to study the relative performance of Centralization, Divisional Cen-

tralization, and Decentralization when the own-division bias is vanishingly small and presents the

proof of Proposition 3.

Appendix B1 - Communication Equilibria

A communication equilibrium under each organizational structure is characterized by (i.) com-

munication rules for the division managers, (ii.) decision rules for the decision makers and (iii.)

belief functions for the message receivers. The communication rule for Manager j = 1, 2 specifies

the probability of sending message mj ∈Mj conditional on observing state θj and we denote it by

µj (mj | θj), where the message space isMj = [−s, s] . Under Centralization, the decision rules map
messages m = (m1,m2) into decisions q1 ∈ R+ and q2 ∈ R+, and we denote them by qC1 (m) and

qC2 (m). Under Decentralization, the decision rule for Manager 1 maps the state θ1 and messages

m = (m1,m2) into decision q1 ∈ R+ while the decision rule for Manager 2 maps the state θ2 and
messages m = (m1,m2) into decision q1 ∈ R+, and we denote them by qD1 (m, θ1) and qD2 (m, θ2).

Under Divisional Centralization, the decision rules map the state θ1 and message m = m2 into
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decisions q1 ∈ R+ and q2 ∈ R+, and we denote them by qDC1 (m, θ1) and qDC2 (m, θ1). Finally, the

belief functions are denoted by gj (θj | mj) for j = 1, 2 and characterize the receiver’s posterior

probability of state θj conditional on receiving message mj .

We focus on Perfect Bayesian Equilibria of the communication subgame which require that

communication rules are optimal for the division managers given decision rules. Formally, when-

ever µj(mj | θj) > 0 then mj ∈ arg maxm∈Mj E
[
λπlj + (1− λ)πlk | θj

]
for l ∈ {C,D,DC},

where πlj and πlk are, respectively, the profits of Divisions j and k, j 6= k, given that deci-

sions are made according to ql1 (·) and ql2 (·). Perfect Bayesian Equilibria also require that the
decision rules are optimal for the decision makers given the belief functions. Thus, under Cen-

tralization qC1 (·) and qC2 (·) solve max(q1,q2) E [π1 + π2 | m] , under Decentralization qDj (·) solves
maxqj E [λπj + (1− λ)πk | m, θj ], and under Divisional Centralization qDC1 (·) and qDC2 (·) solve
max(q1,q2) E [λπ1 + (1− λ)π2 | m, θ1] . Finally, Perfect Bayesian Equilibria require that the belief
functions are derived from the communication rules using Bayes’rule whenever possible, that is,

gj (θj | m) = µj(mj | θj)/
∫
P µj(mj | θj)dθj , where P =

{
θj : µj(mj | θj) > 0

}
, j = 1, 2.

PROPOSITION B1. For λ ∈ (1/2, 1] and t 6= 0 there exists an integer N̄(λ, t), such that for all

N ≤ N̄(λ, t) there exists at least one equilibrium (µ1(·) µ2(·) , q1(·), q2(·), g1(·), g2(·)), where

a. µj(mj | θj) is uniform, supported on [aj,i−1, aj,i] if θj ∈ (aj,i−1, aj,i),

b. gj(θj | mj) is uniform supported on [aj,i−1, aj,i] if mj ∈ (aj,i−1, aj,i),

c. aj,i+1 − aj,i = aj,i − aj,i−1 + 4bs (aj,i) for i = 1, ..., Nj − 1

with bs = bC under Centralization as given by (17),

bs = bD under Decentralization as given by (18),

bs = bDC under Divisional Centralization as given by (19).

d. qj(m) = qCj , j = 1, 2, under Centralization, where qCj are given by (23) and (24), and

qj(m, θ1) = qDCj , j = 1, 2,under Divisional Centralization, with qDj as in (25) and (26), and

qj(m, θj) = qDj , j = 1, 2, under Decentralization, where qDj are given by (27) and (28).
Proof: We first show that communication equilibria are interval equilibria. For the case of Cen-

tralization let µ2(·) be any communication rule for Manager 2. The expected utility of Manager 1
if the headquarter manager holds a posterior expectation ν1 over θ1 is given by

Eθ2 [U1 | θ1, ν1] = Eθ2
[
λπ1

(
q̂C1 , q̂

C
2 , θ1

)
+ (1− λ)π2

(
q̂C1 , q̂

C
2

)]
, (22)
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with

q̂C1 ≡ b

2 (1− t2)(µ− c+ ν1 − tE [µ− c+ θ2 |µ2(·) ]), and (23)

q̂C2 ≡ b

2 (1− t2)(E [µ− c+ θ2 |µ2(·) ]− t (µ− c+ ν1)). (24)

It can be shown that ∂2

∂θ1∂ν1
Eθ2 [U1 | θ1, ν1] > 0 and ∂2

∂2θ1
Eθ2 [U1 | θ1, ν1] < 0. This implies that for

any two different posterior expectations of the headquarter manager, say ν1 < ν1, there is at most

one type of Manager 1 that is indifferent between both. Now suppose that contrary to the assertion

of interval equilibria there are two states θ11 < θ21 such that Eθ2
[
U1 | θ11, ν1

]
≥ Eθ2

[
U1 | θ11, ν1

]
and

Eθ2
[
U1 | θ21, ν1

]
> Eθ2

[
U1 | θ21, ν1

]
. But then Eθ2

[
U1 | θ21, ν1

]
−Eθ2

[
U1 | θ21, ν1

]
< Eθ2

[
U1 | θ11, ν1

]
−

Eθ2
[
U1 | θ11, ν1

]
which violates ∂2

∂θ1∂ν1
Eθ2 [U1 | θ1, ν1] > 0 . The same argument can be applied to

Manager 2 for any reporting strategy µ1(·) of Manager 1. Therefore all equilibria of the communi-
cation game under Centralization must be interval equilibria.

Now consider the case of Divisional Centralization. The expected utility of Manager 2 if Manager

1 holds a posterior expectation ν2 over θ2 is given by

Eθ1 [U2 | θ2, ν2] = Eθ1
[
(1− λ)π1

(
q̂DC1 , q̂DC2

)
+ λπ2

(
q̂DC1 , q̂DC2 , θ2

)]
,

with

q̂DC1 ≡ b

2(1− λτ2

1−λ)
(µ− c+ θ1 − τ (µ− c+ ν2)) , and (25)

q̂DC2 ≡ b

2(1− λτ2

1−λ)

(
(µ− c+ ν2)−

λ

1− λτ (µ− c+ θ1)

)
. (26)

Again, it can be shown that ∂2

∂θ1∂ν1
Eθ2 [U2 | θ2, ν2] > 0 and ∂2

∂2θ1
Eθ1 [U2 | θ2, ν2] < 0. By the

same argument used previously for Centralization, we can then conclude that all equilibria in this

case are, again, interval equilibria.

For the case of Decentralization let µ1(·) and µ2(·) be communication rules of Manager 1 and
Manager 2, respectively. Sequential rationality implies that, in equilibrium, decision rules must

conform to

q̂D1 =
b

2
(µ− c+ θ1)− τ (E [q2 |ν1,m2 ]) , and (27)

q̂D2 =
b

2
(µ− c+ θ2)− τ (E [q1 |ν1,m2 ]) , (28)

where ν1 denotes Manager 2’s posterior expectation over θ1. It can readily be seen that

∂2

∂θ1∂ν1
Eθ2 [U1 | θ1, ν1] > 0
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and the proof follows as in the preceding paragraph.

We now characterize all equilibria of the communication game. For Manager j = 1, 2, let aj be

a partition of [−s, s], any message mj ∈ (aj,i−1, aj,i) be denoted by mj,i, and mj,i be the receiver’s

posterior belief of the expected value of θj after receiving message mj,i.

a. Centralization: The expected utility of Manager 1 in state a1,i is given by

Eθ2 [U1 | a1,i,m1,i] =
b

4 (1− t2) [(µ− c)2 (1− λ)− λ (m1,i)
2 +

m1,i (µ− c) (2λ (µ− c+ a1,i) + (2λ− 1) t)− 2tλ (µ− c) (µ− c+ a1,i)].

In state a1,i Manager 1 must be indifferent between sending a message that induces a posterior

m1,i and a posterior m1,i+1 implying that Eθ2 [U1 | a1,i,m1,i] − Eθ2 [U1 | a1,i,m1,i+1] = 0. Given

decision rules (23) and (24) , and letting m1,i = (a1,i−1 + a1,i) /2 we have that Eθ2 [U1 | a1,i,m1,i]−
Eθ2 [U1 | a1,i,m1,i+1] = 0 if and only if a1,i = (a1,i−1 + a1,i+1) /

(
2 + 4bC

)
where bC is given by (17).

That is, communication equilibria under Centralization are equivalent to the constant-bias leading

example in Crawford and Sobel (1982).

From (17), we have that sign(bC) = sign(t− τ) = sign(t).

b. Divisional Centralization: Let k = λ/(1−λ). The expected utility of Manager 2 in state a2,i

is given by

Eθ1 [U2 | a2,i,m2,i] =
b(1− λ)

4 (1− kτ2)2
[
(
2k (k − 1) τ2 + 1− k3τ2

)
Eθ1

[
(µ− c+ θ1)

2
]

...+ (m2,i)
2 (2kτ2 − k − τ2)+ 2km2,i (µ− c+ θ2)

(
1− kτ2

)
+

...+ 2k (k − 1) τ
(
1− τ2

)
(µ− c)m2,i − 2k2τ (µ− c) (µ− c+ θ2)

(
1− kτ2

)
.

In state a2,i Manager 1 must be indifferent between sending a message that induces a posterior

m2,i and a posterior m2,i+1 implying that Eθ1 [U2 | a2,i,m2,i] − Eθ1 [U2 | a2,i,m2,i+1] = 0. Given

decision rules (25) and (26) , and lettingm2,i = (a2,i−1 + a2,i) /2 we have that Eθ1 [U2 | a2,i,m2,i]−θ1
[U2 | a2,i,m2,i+1] = 0 if and only if a1,i = (a1,i−1 + a1,i+1) /

(
2 + 4bDC

)
where bDC is given by (19).

We now show that sign(bDC) = sign(t). Rewrite bDC as bDC(θ2) = bDC1 θ2 + bDC2 , where

bDC1 =
(2λ− 1)2 t2

(1− λ)
(
−4λ3 + 3t2λ− t2

) ,
bDC2 =

(2λ− 1)
(
−2t+ 4tλ− 4λ2 + t2

)
2 (1− λ)

(
−4λ3 + 3t2λ− t2

) t(µ− c).

For all λ ∈ [1/2, 1] and t ∈ [−1, 1] , we have that
(
−4λ3 + 3t2λ− t2

)
< 0 and

(
−2t+ 4tλ− 4λ2 + t2

)
<

0. This implies that bDC1 < 0, and sign(bDC2 ) = sign(t). That is, the communication bias increases
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(in absolute value) with the state if and only if t < 0. Therefore, to show that sign(bDC) = sign(t)

we need only show that

bDC1 s+ bDC2 > 0 if t > 0, (29)

−bDC1 s+ bDC2 < 0 if t < 0. (30)

The inequality (29) is equivalent to

(µ− c)
s

>
2t (2λ− 1)(

2t− 4tλ+ 4λ2 − t2
) > 0.

The maximum of the intermediate term above for given t > 0 satisfies

max
λ>1/2

2t (2λ− 1)(
2t− 4tλ+ 4λ2 − t2

) =
t

(1− t) +
√

1− t2
<

1 + t

1− t <
(µ− c)
s

,

where the last inequality follows from parameter restrictions that ensures positive quantities. This

proves that (29) is satisfied. Finally, the inequality (30) is equivalent to

(µ− c)
s

>
−2t (2λ− 1)(

2t− 4tλ+ 4λ2 − t2
) > 0.

By a similar reasoning as before we have that for given t < 0 satisfies

max
λ>1/2

−2t (2λ− 1)(
2t− 4tλ+ 4λ2 − t2

) =
−t

(1− t) +
√

1− t2
< 1.

For t < 0 positive quantities is ensured as long as µ− c > s. This proves that (30) is satisfied.

c. Decentralization: If Manager 1 observes state θ1 and sends message m1,i that induces a

posterior belief m1,i in Manager 2 his expected utility is given by

Eθ2 [U1 | θ1,m1,i] = −Eθ2
[
λπ1

(
q̂D1 , q̂

D
2 , θ1

)
+ (1− λ)π1

(
q̂D1 , q̂

D
2

)
| θ1,m1,i

]
, (31)

where qD1 and q
D
2 are given by (27) and (28). In state θ1 = a1,i this can be written as Eθ2 [U1 | a1,i,m1,i]

being equal to

b

4 (1− t2)((1− λ)
(
1− τ2

)2
Eθ2

[
(µ− c+ θ2)

2
]

+ τ2
(
λ− τ2 + λτ2

)
Eθ2

[
m2
2|µ2(·)

]
...+

(
λ+ λτ2 − 1

)
τ2 (m1,i)

2 + λ
(
1− τ2

)2
(µ− c+ a1,i)

2

...+ 2λτ2
(
1− τ2

)
m1,i (µ− c+ a1,i)− 2 (2λ− 1) τ3m1,iEθ2 [m2|µ2(·)]

...− 2λτ
(
1− τ2

)
Eθ2 [(µ− c+ θ2)] (µ− c+ a1,i)).

In state a1,i Manager 1 must be indifferent between sending a message that induces a posterior

m1,i and a posterior m1,i+1 implying that Eθ2 [U1 | a1,i,m1,i] − Eθ2 [U1 | a1,i,m1,i+1] = 0. If (1 −
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λ)/λ < τ2 the above condition has no solution: essentially Manager 1 would like to induce the

highest possible belief in Manager 2. If, however, (1− λ)/λ > τ2 then, given sequentially rational

decision making (27) and (28) and lettingm1,i = (a1,i−1 + a1,i) /2, we have that Eθ2 [U1 | a1,i,m1,i]−
Eθ2 [U1 | a1,i,m1,i+1] = 0 if and only if a1,i = (a1,i−1 + a1,i+1) /

(
2 + 4bD (a1,i)

)
, where bD (θ1) is

given by (18).

We now show that bD (θ1) is always positive and increasing. The condition (1 − λ)/λ > τ2

implies that the numerator of (18) is positive and thus bD (θ1) is increasing. Moreover, if t <

0, (1 − τ) (µ− c) > (µ− c) > s where the last inequality follows from considering parameter

values that induce positive quantities. Therefore bD (−s) > 0. If t > 0 then the parameter

restriction (µ− c) /s > (1 + t) / (1− t) that guarantees positive quantities, and the fact that for
t > 0 (1 + t) / (1− t) > 1/ (1− t) ≥ 1/ (1− τ) , together imply that bD (−s) > 0. This establishes

that bD (θ1) > 0 for all θ1 ∈ [−s, s] .
In summary, given the independence of Manager 1 and 2’s private information, the multi-

sender communication equilibrium decouples into two communication equilibria each of which is

equivalent to a sender-receiver game in which the state-dependent bias of the sender satisfies (18).

In particular, since the communication bias bD (θ1) is strictly positive, communication necessarily

involves a finite number of intervals as shown in Crawford and Sobel (1982).

Proof of Lemma 1: Proposition B1 derives the expressions and properties for the communication

bias under both Centralization, Divisional Centralization and Decentralization. �

Appendix B2 - Residual Variance of Communication

In this appendix we first derive closed form expressions for the residual variance under Centraliza-

tion, Divisional Centralization, and Decentralization. We then prove that these residual variances

possess some smoothness properties that enables us to characterize their behavior for λ close to

1/2. We conclude by comparing the informativeness of vertical and horizontal communication.

Vertical Communication

Under Centralization the communication bias is constant, as in the leading example in Crawford and

Sobel (1982). Thus, for a given equilibrium with n intervals the residual variance of communication

V C
n satisfies

V C
n =

s2

3
(

1

n2
) +

1

3

(
bC
)2 (

n2 − 1
)
. (32)
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The maximum number of intervals N(bC) satisfies 2N(bC)(N(bC) − 1)|bC | ≤ 2s and is thus given

by

N(bC) = int

(
1

2

(
1 +

√
1 +

4s

|bC |

))
,

where int(z) is the largest integer that does not exceed z. Therefore if
∣∣bC∣∣ < s

2 the residual variance

the communication under Centralization is

V C = V C
N(bC) =

s2

3
(

1

N(bC)2
) +

1

3

(
bC
)2 (

N(bC)2 − 1
)
,

and V C = s2

3 if
∣∣bC∣∣ > s

2 .

Horizontal Communication

Under both Divisional Centralization and Decentralization the communication bias takes the form

bs (θi) = bs1θi + bs2,

for s ∈ {DC,D} with

bD1 = (2λ− 1) /
(
1− λ− λτ2

)
, bD2 = (1− τ) (µ− c) ,

bDC1 = (2λ− 1)2 t2/ (1− λ)
(
3t2λ− 4λ3 − t2

)
, bDC2 =

(
1− λ1−τ2t−τ

)
(µ− c).

From Proposition B1, bD1 , b
D
2 > 0 while bDC1 < 0 and sign(bDC2 ) = sign(t). We now derive the

residual variance for arbitrary b1, b2 > 0, to obtain (38) below. We will then consider the rate of

change of both residual variances as the conflict vanishes.

Consider communication by Manager 1 and let a1 = {a1,i}i=ni=0 be a partition of [−s, s] into n
intervals. If a1 characterizes a communication equilibrium by Manager 1 to Manager 2 then it must

satisfy the arbitrage condition

a1,i+1 − a1,i = a1,i − a1,i−1 + 4(b1a1,i + b2), (33)

with boundary conditions a1,0 = −s and a1,n = s. Solving this second order linear difference

equation we obtain

a1,i = Axi +B
1

xi
− b2
b1
, (34)

where x = 1 + 2b1+ 2
√
b1 (b1 + 1) > 1 is the solution of the characteristic equation associated with

(33) that exceeds 1 . Defining r and D as r = xn and D = −b2/sb1, the coeffi cients A and B are

A =

(
− 1

1− r −
D

1 + r

)
s, and

B =

(
1

1− r −
D

1 + r

)
sr,
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and the size of each interval is given by

a1,i − a1,i−1 =
(x− 1)

xi
(
Ax2i−1 −B

)
. (35)

Maximum Number of Intervals. Let N (b1, b2) be the maximum number of intervals in

a communication equilibrium. The solution to the second order difference equation characterizes

a communication equilibrium as long as the solution (34) is monotonic, i.e. a1,i − a1,i−1 > 0 is

positive. Since b1 > 0 and b2 > 0, we have A > 0. Therefore it suffi ces that Ax > B to guarantee

that Ax2i−1 > B for all i, 1 ≤ i ≤ N (b1, b2). From the definition of A and B we thus require

−r (D − 1) (x+ 1) + r2 (D + 1) + x (D + 1) > 0.

The solution to this quadratic inequality is

r = xn ≤ (D − 1)

2 (D + 1)
(x+ 1) +

1

2

√
(D − 1)2

(D + 1)2
(x+ 1)2 − 4x. (36)

It follows that N (b1, b2) is given by

N (b1, b2) = int

(
ln

(
(D − 1)

2 (D + 1)
(x+ 1) +

1

2

√
(D − 1)2

(D + 1)2
(x+ 1)2 − 4x

)
/ lnx

)
.

Residual Variance We next compute the residual variance of communication for a com-

munication equilibrium with n intervals, n ≥ 2. The variance of the message m1 to Manager 2

is

ED
[
m2
1

]
=

n∑
i=1

∫ a1,i

a1,i−1

(
a1,i + a1,i−1

2

)2 1

2s
dθ1 =

1

8s

n∑
i=1

(a1,i − a1,i−1) (a1,i + a1,i−1)
2

=
1

8s

n∑
i=1

[(
a31,i − a31,i−1

)
+ a1,ia1,i−1 (a1,i − a1,i−1)

]
=

s2

4
+

1

8s

n∑
i=1

a1,ia1,i−1 (a1,i − a1,i−1) .

And the residual variance on an n−partition equilibrium is

V D
n = ED

[
(m1 − θ1)2

]
=
s2

12
− 1

8s

n∑
i=1

a1,ia1,i−1 (a1,i − a1,i−1) .

We next compute a1,ia1,i−1 (a1,i − a1,i−1) . From (34) and the size of each interval (35) we have

a1,ia1,i−1 (a1,i − a1,i−1) = (x− 1) [
A3

x2
x3i − xB3

x3i
+
A2 (x+ 1)Ds

x2
x2i − B2 (x+ 1)Ds

x2i

+A
(Ds)2 x+AB +ABx2 −ABx

x2
xi −B (Ds)2 x+AB +ABx2 −ABx

xix
].
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From the sum of a geometric series
n∑
i=1

xki = xk 1−r
k

1−xk we can simplify the summation of the previous

terms to obtain

N∑
i=1

aiai−1 (ai − ai−1) =
(
r3 − 1

)(
A3 − B3

r3

)(
x

x2 + x+ 1

)
+
(
r2 − 1

)(
A2 − B2

r2

)
(Ds)

+ (r − 1)

(
A− B

r

)(
(Ds)2 +AB

(
x2 − x+ 1

x

))
. (37)

To further simplify this expression we first note that

x

x2 + x+ 1
=

1

3 + 4b1

and
x2 − x+ 1

x
= 1 + 4b1,

which follows from x being a solution to the characteristic equation of (33). Moreover, from the

definitions of A,B and D we have

(r − 1)

(
A−

(
B

r

))
= 2s,

(
r2 − 1

)(
A2 −

(
B

r

)2)
= −4Ds2, and

(
r3 − 1

)(
A3 −

(
B

r

)3)
= 2s

(
r2 + r + 1

)
(r2 − 1)2

((
r2 + 1

) (
3D2 + 1

)
− 2r

(
3D2 − 1

))
s2,

which, substituted into (37) yields

N∑
i=1

aiai−1 (ai − ai−1) =

(
r2 + r + 1

) ((
r2 + 1

) (
3D2 + 1

)
− 2r

(
3D2 − 1

))
(r2 − 1)2

(
2

4b1 + 3

)
s3

−2D2s3 − 2r (1 + 4b1)

((
1

1− r

)2
−
(

D

1 + r

)2)
s3.

Substituting this expression into V s
n and after some simplifications we have

V s
n =

s2

12
−

 1− 4D2b1
4 (4b1 + 3)

+ 4
b1 (b1 + 1)

(4b1 + 3)

r
(
D2 − (1+r1−r )2

)
(r + 1)2

 s2, (38)

where r = xn. Therefore the residual variance of communication is given by V s = V s
N(bs1,bs2)

,

s ∈ {DC,C} . �
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Absolute Continuity of Residual Variances

The residual variance V s, s = {C,D,DC} , is continuous in the own-division bias λ, although non-
differentiable whenever the number of intervals in the most informative communication equilibrium

changes value. As the number of intervals tends to infinity as managers become more aligned

with each other, the residual variance has an infinite number of points of discontinuity in every

neighborhood of λ = 1/2. Nevertheless, the next lemma shows that V s retains certain smoothness

properties that allows us to characterize its behavior in a neighborhood of λ = 1/2 through the

function ∂V s/∂λ.

LEMMA B1. The residual variance of communication V s, s = {C,D,DC} is an absolutely contin-
uous function of λ ∈ [1/2, 1] with a well-defined limit ∂V s/∂λ as λ tends to 1/2. In particular,

lim
λ→1/2

∂V C

∂λ
=

4

3
s (µ− c) |t|,

lim
λ→1/2

∂V DC

∂λ
=

8

3
s (µ− c) |t|, and

lim
λ→1/2

∂V D

∂λ
=

2

9
s2
(

3
(µ− c) (1− t)

s
− 1

)
4

1− t2 .

Proof: The function V s, s = {C,D,DC} , is continuous and increasing in λ and its derivative is
defined except for a countable number of points. To establish absolute continuity of V s we need to

further show that (i.) its derivative is integrable, and (ii.) V s maps sets of measure zero into sets of

measure zero (Luzin N property; see Rudin 1986). Since the set of points of non-differentiability of

V s is countable it follows readily that V s satisfies the Luzin N property (see Leoni 2009). We will

now show that ∂V s/∂λ is bounded in [1/2, 1], whenever defined, and this will establish integrability.

First, the case of Centralization. Differentiating (32) we obtain

|∂V
C
n

∂bC
| = 2

3
|bC |

(
n2 − 1

)
≤ 2

3
s
N(bC) + 1

N(bC)
,

where the last inequality follows from the definition of N(bC). Therefore we obtain the uniform

bound

sup
λ,n
|∂V

C
n

∂λ
| ≤ sup

λ

2

3
s
N(bC) + 1

N(bC)
sup
λ

∂bC

∂λ
=

2

3
s sup

λ

∂bC

∂λ
.

We now show that ∂V C/∂λ approaches a well-defined limit as λ −→ 1/2. From the previous bound

we have

lim
|bC |→0

∂V C

∂bC
= lim
|bC |→0

2

3
s
N(bC) + 1

N(bC)
=

2

3
s.

10



Given that bC = (2λ− 1) (µ− c) τ we readily have that

lim
λ→ 1

2

∂V C

∂λ λ= 1
2

=
2

3
s lim
λ→ 1

2

∂
∣∣bC∣∣
∂λ

=
4

3
s (µ− c) |t|. (39)

Now we turn to the case of Divisional Centralization and Decentralization. Totally differentiating

(38) for n = N (b1, b2) we have

∂V s

∂λ
=

[
∂V s

∂r

∂r

∂x

∂x

∂b1
+
∂V s

∂b1

]
∂b1
∂λ

+
∂V s

∂D

∂D

∂λ
, s = {D,DC}

where r = xN(b1,b2). Computing each element in the previous expression we have

∂V s

∂r

∂r

∂x

∂x

∂b1
= N (b1, b2) r

4

(
D2 − 1

) (
r2 − 2rD+1D−1 + 1

)(
r2 − 2rD−1D+1 + 1

)
(4b1 + 3)

s2

(√b1 (b1 + 1)

(r2 − 1)3

)
,

∂V s

∂b1
= s2

(3D2 + 1
)

(4b1 + 3)2
−

4
(
6b1 + 4b21 + 3

)
(4b1 + 3)2

r
(
D2 − (1+r1−r )2

)
(r + 1)2

 , and

∂V s

∂D
= 2s2Db1

(
(r − 1)2 − 4rb1

(4b1 + 3) (r + 1)2

)
. (40)

To guarantee that ∂V s/∂λ is bounded we now show that it approaches a finite limit as λ → 1/2.

From the definition of r = xN(b1,b2) in (36) we have

lim
λ→1/2

(D−1)
2(D+1) (x+ 1) + 1

2

√
(D−1)2

(D+1)2
(x+ 1)2 − 4x

r
= 1,

which implies

lim
λ→1/2

(
r2 − 2r

D − 1

D + 1
+ 1

)
= 0

and

lim
λ→1/2

r
(
D2 − (1+r1−r )2

)
(r + 1)2

=

r

(
D2 −

4Dr
D+1
−4r
D+1

)
4Dr
D+1

=
1

4
(D + 1)2 .

With these limits applied to (40) we have

lim
λ→ 1

2

∂V s

∂r

∂r

∂x

∂x

∂b1
= 0

lim
λ→ 1

2

∂V s

∂b1
= s2

(
3D2 + 1

9
− 1

3
(D + 1)2

)
=

2

9
s2 (−3D − 1)

lim
λ→ 1

2

∂V s

∂D
= 0.
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We now consider the cases of Decentralization and Divisional Centralization. For Decentralization,

we have that

lim
λ→ 1

2

∂b1
∂λ

=
4

1− t2 , and lim
λ→ 1

2

∂D

∂λ
= −2t(µ− c).

Therefore the limit of the total derivative as the own-division bias vanishes is

lim
λ→1/2

∂V D

∂λ
=

8

9

s2

1− t2

(
3(1− t)(µ− c)

s
− 1

)
, (41)

which is bounded for |t| < 1. This establishes that ∂V D/∂λ is bounded and thus integrable.

We now turn to the case of Divisional Centralization. While in this case we have that

lim
λ→ 1

2

∂b1
∂λ

= 0,

the derivative ∂D/∂λ becomes unbounded when λ→ 1
2 . As limλ→ 1

2

∂V s

∂D = 0, however, in this case

we obtain

lim
λ→1/2

∂V DC

∂D

∂D

∂λ
=

8

3
s (µ− c) |t|

and

lim
λ→1/2

∂V DC

∂λ
=

8

3
s (µ− c) |t| = 2 lim

λ→1/2

∂V C

∂λ
. �

COROLLARY B1. If limλ→1/2
∂V s

∂λ > limλ→1/2
∂V l

∂λ s, l ∈ {C,DC,D} then there exists an ε > 0

such that V s(λ) > V l(λ) for all λ ∈ (1/2, 1/2 + ε). Conversely, if limλ→1/2
∂V s

∂λ < limλ→1/2
∂V l

∂λ

then there exists an ε > 0 such that V s(λ) < V l(λ) for all λ ∈ (1/2, 1/2 + ε).

Proof: As V l, l = {C,DC,D} are absolutely continuous the fundamental theorem of calculus holds
(Rudin 1987) and we have that[

V s(λ)− V l(λ)
]
−
[
V s(1/2)− V l(1/2)

]
=

∫ λ

1/2

∂

∂λ

(
V s − V l

)
dλ.

As all structures achieve full revelation of information for λ = 1/2, if

lim
λ→1/2

∂
(
V s − V l

)
/∂λ > 0

it follows that there exists an ε > 0 such that

V s(λ) > V l(λ), λ ∈ (1/2, 1/2 + ε).

The last claim of the corollary follows from an equivalent argument. �
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Informativeness of Vertical and Horizontal Communication

Proof of Lemma 2: Proposition B1 derives the expressions for bC , bDC , and bD. Consider first

Part (i.) of the Lemma. We will show that, for any θi ∈ [−s, s], λ ∈ (1/2, 1] and t < 0 we have∣∣bC∣∣ < ∣∣bD∣∣. That is, the point-wise communication bias under Decentralization is always larger
than under Centralization when t < 0. Then, it follows from Chen and Gordon (2013) that a

smaller point-wise bias leads to more informative communication.

Given that, when t < 0, bC is constant and negative and bD is positive and increasing, it follows

that

∆ = min bD − |bC | = 2λ− 1

1− λ− λτ2
((

1− λτ − λτ3
)

(µ− c)− s
)
.

Since
(
1− λτ − λτ3

)
> 0 for −1 ≤ t ≤ 0, 1/2 ≤ λ ≤ 1 then ∆ ≥ 0 if and only if

µ− c
s
≥ 1

1− λτ − λτ3 .

Since positive quantities requires (µ− c) /s > 1 when t < 0 and

sup
−1<t≤0
1/2≤λ≤1

1

1− λτ − λτ3 = 1,

then we readily have that ∆ > 0.

We now turn to Part (ii.) of the Lemma. Part (ii.a) follows from Lemma B1 which states that

lim
λ→1/2

∂V DC

∂λ
= 2 lim

λ→1/2

∂V C

∂λ
,

and corollary B1.

To prove Part (ii.b), first note that, on average, the absolute value of the communication bias

is larger under Decentralization than under Centralization when t > 0. As shown in Proposition

B1, a necessary condition for informative horizontal communication is that λ
1−λτ

2 < 1. Therefore,

whenever bD is well defined we have

1− τ
(1− λ) (1− λ

1−λτ
2)
>

1− τ
(1− λ) (1− τ2) >

2

1 + τ
> 1 > |τ |,

implying

E
[
bD
]

= (2λ− 1) (µ− c) 1− τ
(1− λ) (1− λ

1−λτ
2)
> |bC |.

However, unlike the case where t < 0, we could have cases where the point-wise communication

bias under Decentralization is smaller than under Centralization. To see this, note that when t > 0,

we have

∆ = min bD (θi)− |bC | =
2λ− 1

1− λ− λτ2
((
−2τ + λτ + λτ3 + 1

)
(µ− c)− s

)
13



Since
(
−2τ + λτ + λτ3 + 1

)
> 0 for 0 ≤ t ≤ 1, 1/2 ≤ λ ≤ 1 then ∆ ≥ 0 if, and only if,

(µ− c)/s ≥ 1/
(
−2τ + λτ + λτ3 + 1

)
.

We first note that

max
1/2≤λ≤1

1

(−2τ + λτ + λτ3 + 1)
=

2

(t+ 2) (1− t)2
.

Since the restriction to positive quantities requires (µ− c)/s > (1 + t)/(1− t), and (1 + t)/(1− t) >
2/ (t+ 2) (1− t)2 for t <

√
2− 1 it then follows that

∆ ≥ 0 if 0 ≤ t ≤
√

2− 1.

If, however, t >
√

2− 1, then for λ close to 1/2 we can have

(µ− c)/s < 1/
(
−2τ + λτ + λτ3 + 1

)
,

implying that bD (−s) < |bC |. Since bD (θj) is increasing in θj the existence of a state θ̄j where

bD(θj) < bC for θj < θ̄j follows. We next show that this reversal may translate into horizontal

communication being more informative than vertical communication for small own-division bias.

Applying Corollary B1 we conclude that horizontal communication is more informative than vertical

in a neighborhood of λ = 1/2 if, and only if,

1 + t

1− t <
µ− c
s

<
2

−9t+ 3t3 + 6
,

where the first inequality follows from the parameter restriction that ensures positive quantities in

equilibrium and the second from comparing the limits (39) and (41). For t < 0.876 49, we have
1+t
1−t >

2
−9t+3t3+6 implying that vertical communication is more informative than horizontal for λ

close to 1/2. Define

t∗ = max

{
0.876 49,min

{
t :

µ− c
s

<
2

−9t+ 3t3 + 6

}}
.

If t > t∗ then we have that both 1+t
1−t <

2
−9t+3t3+6and

µ−c
s < 2

−9t+3t3+6 , implying that there exists an

ε > 0 such that for λ ∈ (1/2, 1/2 + ε) horizontal communication is more informative than vertical.

�

Appendix B3 - Relative Performance

We now turn to comparing the relative performance of Centralization, Divisional Centralization,

and Decentralization for a vanishing small own-division bias. We start with a technical lemma that

14



translates the smoothness properties of V s, s = {C,DC,D} derived in Lemma B1 to the comparison
of profits under all organizational structures.

LEMMA B2. The difference in performance Πs −ΠD, s = {C,DC} , is an absolutely continuous
function of λ. The limit ∂

(
Πs −ΠD

)
/∂λ , s = {C,DC} , as λ tends to 1/2 exists and, if its

positive, there exists an ε > 0 such that Πs > ΠD for λ ∈ (1/2, 1/2 + ε), while, if it is negative,

then there exists an ε > 0 such that Πs < ΠD for λ ∈ (1/2, 1/2 + ε).

Proof: Lemma B1 establishes that the residual variances of communication V C , V DC , and V D

are absolutely continuous and the limit of ∂V s/∂λ s = {C,DC,D} exist as λ → 1/2. As ΠC ,

ΠDC and ΠD are differentiable functions of V s it follows that Πs −ΠD, s = {C,DC} is absolutely
continuous for λ ∈ [1/2, 1] with a well defined limit as λ→ 1/2. By application of the fundamental

theorem of calculus we have[
Πs(λ)−ΠD(λ)

]
−
[
Πs(1/2)−ΠD(1/2)

]
=

∫ λ

1/2
∂
(
Πs −ΠD

)
/∂λdλ.

Since both Centralization, Divisional Centralization and Decentralization achieve first best per-

formance for λ = 1/2, if limλ→1/2 ∂
(
Πs −ΠD

)
/∂λ > 0 it follows that there exists an ε > 0 such

that

Πs(λ) > ΠD(λ), λ ∈ (1/2, 1/2 + ε).

The case limλ→1/2 ∂
(
Πs −ΠD

)
/∂λ < 0 follows similarly from an equivalent argument. �

The previous analysis showed that vertical communication is more informative than horizontal

communication under Decentralization whenever t < 0. We now show that this communication

advantage may be suffi cient for the organization to move to a centralized structure even for a

vanishing small conflict.

Proof of Proposition 2: First, we show that

lim
λ→1/2

∂
[
ΠC −ΠDC

]
∂λ

= 0. (42)

That is, to a first order, there are no differences between Centralization and Divisional Centraliza-

tion for a vanishingly small conflict of interest. In particular, this implies that

sign

(
lim
λ→1/2

∂
[
ΠDC −ΠD

]
∂λ

)
= sign

(
lim
λ→1/2

∂
[
ΠC −ΠD

]
∂λ

)
and, by Lemma B2, it follows that whenever Decentralization dominates Centralization, it also

dominates Divisional Centralization, and, conversely, whenever Decentralization is dominated by

Centralization, it is also dominated by Divisional Centralization.
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To prove (42), we have that the difference ΠDC −ΠC in the performance of Centralization and

Divisional Centralization is given by (21) and the limit of the rate of change of this difference is

lim
λ→1/2

∂
[
ΠDC −ΠD

]
∂λ

=
b

2(1− t2)

(
1

2
lim
λ→1/2

∂V DC

∂λ
− lim
λ→1/2

∂V C

∂λ

)
.

Then (42) follows since Lemma B1 implies that limλ→1/2 ∂V
DC/∂λ = 2 limλ→1/2 ∂V

C/∂λ.

We now turn to the comparison between Centralization and Decentralization. The difference

ΠC −ΠD is given by (20) and the limit of the rate of change of this difference is

lim
λ→1/2

∂
[
ΠC −ΠD

]
∂λ

=
b

2(1− t2)

(
t2 lim
λ→1/2

∂V D
i

∂λ
− lim
λ→1/2

∂V C

∂λ

)
.

From Lemma B2, Centralization dominates Decentralization for λ close to 1/2 if limλ→1/2 ∂
(
ΠC −ΠD

)
/∂λ >

0, which translates to

t2 lim
λ→1/2

∂V D
i

∂λ
> lim

λ→1/2

∂V C
i

∂λ
.

Using the limits (39) and (41), the previous inequality translates into

8

9

s2t2

1− t2

(
3(1− t)(µ− c)

s
− 1

)
>

4

3
s (µ− c) |t|,

which can be written as
s

µ− c <
3(1− t) (2|t| − t− 1))

2|t| .

For t > 0 this condition is never satisfied. If t < 0 we can solve for t to obtain that Centralization

dominates Decentralization when t < t∗∗ with

t∗∗ =
1

9

((
3− s

µ− c

)
−
√

(
s

µ− c)2 − 6
s

µ− c + 36

)
. �
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