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Abstract

This online Appendix includes various proofs and extensions that were left out of our man-

uscript “Optimal Design of Trade Agreements in the Presence of Renegotiation”due to space

constraints.

Online Appendix A

Here we prove the following proposition, which formalizes an argument we made informally in the
Conclusion:

Proposition A1. Consider menu contracts of the type {(P, bD), (FT, bFT )}: (i) If the support
of γ is suffi ciently small, a property rule is optimal; (ii) If the support of γ is suffi ciently large
(on both sides of γ∗), it is optimal to use a carrot (bFT < 0) together with a liability rule, and in
particular the optimal bD satisfies 0 < bD < γ∗ < b̄prohib.

Proof: In this extended setting, a contract is summarized by the pair (bD, bFT ). For each
contract and state of the world, (bD, bFT ; γ), there will be one of four possible equilibrium outcomes:
(i) the importer chooses P without renegotiating; (ii) the importer’s threat point is P but the
governments renegotiate to policy FT ; (iii) the importer chooses FT without renegotiating; (iv)
the importer’s threat point is FT but the governments renegotiate to policy P . The first step of
the analysis is to characterize the mapping from (bD, bFT ; γ) to these four possible outcomes. One
way to proceed is to build on the graphical apparatus of Figure 1: we continue working within the
(bD, γ) space and think of bFT as a parameter that shifts the key curves in this space.

As we will show later, it can never be optimal to set bFT > 0 or bD < 0. Since proving this
claim involves a tedious and taxonomic argument, we postpone this argument to a later part of
this proof, and here we focus on the intuitive case where bFT ≤ 0 and bD ≥ 0.

Let us start by characterizing the locus of points where the importer is indifferent between the
two threat points (P and FT ), for a given bFT . Clearly, the importer is indifferent between the
two threat points when γ = S(bD) − S(bFT ). This threat-point-indifference curve is depicted in
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Figure A1. Note that introducing bFT < 0 in the contract shifts the threat-point-indifference curve
upwards relative to Figure 1.

Next we ask: given bFT , what are the regions of the (bD, γ) space in which governments rene-
gotiate the contract? Let us first derive the region in which the threat point is P but governments
renegotiate toward FT (which we continue to label FTR). It is immediate to verify that the threat
point is P iff γ > S(bD) − S(bFT ), and that in this case governments will renegotiate to FT iff
γ < S(bD) − S(bD − γ∗) = R(bD). Notice that this latter condition is exactly the same as in the
case of bD-only contracts. Intuitively, conditional on the threat point being P the level of bFT does
not affect the outcome. The R(bD) curve is depicted in Figure A1, and is the same as the R(bD)

curve in Figure 1. Thus, the region FTR is the region above the γ = S(bD) − S(bFT ) curve and
below the R(bD) curve. Note for future reference that these curves intersect for bD = γ∗ + bFT ,
and note also that if bFT is suffi ciently large and negative the FTR region will be empty. In Figure
A1 we depict the case in which the FTR region overlaps with the positive quadrant, which (as we
show below) must be the case at an optimal contract.

We next characterize the region where the threat point is FT but governments renegotiate
toward P (which we continue to label PR). Clearly the threat point is FT iff γ < S(bD)− S(bFT ),
and it is easy to show that in this case governments will renegotiate toward P iff γ < S(bFT +

γ∗) − S(bFT ). It can be easily verified that γ = S(bFT + γ∗) − S(bFT ) is just the horizontal line
that goes through the point of intersection between the γ = S(bD)− S(bFT ) curve and the R(bD)

curve. The PR region is therefore the region that lies above this horizontal line and below the
γ = S(bD)− S(bFT ) curve, as depicted in Figure A1.

Having characterized the mapping from (bD, bFT ; γ) to the four possible outcomes, we can now
turn to the characterization of the optimal contract.

We start by extending the result of Proposition 1, which is an intermediate step toward proving
Proposition A1. We argue that it can never be strictly optimal to set bD > γ∗ + bFT , and the
optimal contract never induces renegotiation toward P , while it does induce renegotiation toward
FT for an intermediate range of γ.

We will suppose by contradiction that it is strictly optimal to set bD > γ∗ + bFT and will show
that the initial contract can be (weakly) improved upon. We can write the expected joint surplus
as

EΩ(bD, bFT )|bD≥γ∗+bFT = V (FT ) +

∞∫
S(bD)−S(bFT )

[γ − γ∗ − c(bD)]dH(γ) (1)

+

S(bD)−S(bFT )∫
S(bFT+γ∗)−S(bFT )

[γ − γ∗ − c(be(bFT ; γ))]dH(γ)−
S(bFT+γ∗)−S(bFT )∫

0

c(bFT )dH(γ)

where (with a slight abuse of notation) be(bFT ; γ) denotes the equilibrium transfer in region PR;
note that be depends only on bFT and not on bD. To understand this expression, refer to Figure A1
and notice that if bD > γ∗+ bFT there are three relevant intervals of γ: for γ > S(bD)−S(bFT ), we
are in region P and the joint surplus is V (FT ) + γ − γ∗ − c(bD); for S(bFT + γ∗)− S(bFT ) < γ <

S(bD)− S(bFT ), we are in region PR and the joint surplus is V (FT ) + γ − γ∗ − c(be(bFT ; γ)); and
for γ < S(bFT + γ∗)− S(bFT ) we are in region FT and hence the joint surplus is V (FT )− c(bFT ).
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We can now write down the partial derivatives of EΩ:

∂EΩ

∂bD

∣∣∣∣
bD≥γ∗+bFT

= −c′(bD)[1−H(S(bD)−S(bFT ))]+(1+c′(bD))[c(bD)−c(be(·))]h(S(bD)−S(bFT ))

and

∂EΩ

∂bFT

∣∣∣∣
bD≥γ∗+bFT

= −(1 + c′(bFT ))[c(bD)− c(be(·))]h(S(bD)− S(bFT )) (2)

−
S(bD)−S(bFT )∫

S(bFT+γ∗)−S(bFT )

dc(be(bFT ; γ))

dbFT
dH(γ)− c′(bFT )H(S(bFT + γ∗)− S(bFT ))

where we have used the fact that Ω is continuous at the border between the FT region and the PR
region (i.e. at γ = S(bFT + γ∗)− S(bFT )).

We also note for future reference that, in analogy with the result of Lemma 2, one can show that
be(bFT ; γ) is increasing in bFT ; intuitively, a higher bFT worsens the threat point for the importer
and hence the importer gets a worse deal in the renegotiation. Finally, recall that in the PR region
γ∗ + bFT < be < S−1(γ + S(bFT )).

There are two cases to consider, depending on whether bD > 0 or bD = 0.
Suppose first that bD > 0 at the initial contract. In this case we can improve over the initial

contract by lowering bD tomax{0, γ∗+bFT }. From expression 1 it is clear that this will increase EΩ,
because it induces no change in the policy and (i) for states γ that lie above S(bD)−S(bFT ) before
and after the change, the transfer bD is reduced, and (ii) for states γ that lie below S(bD)−S(bFT )

before the change but above S(bD) − S(bFT ) after the change, the transfer goes from be to bD,
which is an improvement since be > γ∗ + bFT .

Next suppose bD = 0 at the initial contract. In this case the initial contract can be dominated
by increasing bFT slightly toward zero. To see this, notice that (i) since we have supposed that
bD ≥ γ∗+bFT , we have bFT < 0 and hence c′(bFT ) < 0; and (ii) given bD = 0, in region PR we have
γ < −S(bFT ), and hence be < S−1(γ + S(bFT )) < 0, and recalling that be is increasing in bFT , this

in turn implies dc(be(bFT ;γ))
dbFT

< 0. These two observations together imply that ∂EΩ
∂bFT

∣∣
bD≥γ∗+bFT > 0

when evaluated at bD = 0.
To summarize, we have just shown that the result of Proposition 1 extends to this more general

class of contracts, in the sense that we can focus without loss of generality on contracts with
bD < γ∗ + bFT , and the optimal contract never induces renegotiation toward P , while it does
induce renegotiation toward FT for an intermediate range of γ.

We can now turn to proving the claims made in Proposition A1. It is convenient to start with
the case of large uncertainty (Proposition A1(ii)).

Large uncertainty.
For our purposes it suffi ces to focus on the case of full support, i.e. γ ∈ (0,∞). Recall that we

are focusing on the case where bD ≥ 0 and bFT ≤ 0 (we show later that it can never be optimal to
set bD < 0 or bFT > 0).

Let b̃D denote the optimal value of bD conditional on bFT = 0. Given our results above and our
focus on bD ≥ 0, it follows that 0 ≤ b̃D ≤ γ∗. We now argue that, starting from (bFT = 0, bD = b̃D),
we can raise expected joint surplus by making bFT slightly negative. Decreasing bFT slightly has
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no impact on the policy allocation, but it has two effects on the expected equilibrium transfer.
First, for γ < S(bD) there is now a small transfer bFT , which introduces a cost, but this is a second
order cost since c′(0) = 0. Second, for γ just above γ = S(bD) the threat point switches from P to
FT, so for these states, before the change governments renegotiate toward FT and the equilibrium
transfer is nonnegligible, and after the change the importer chooses FT without renegotiating and
the transfer is negligible (because bFT is close to zero); this is a first-order beneficial effect. Note
that, within the renegotiation region FTR, decreasing bFT has no impact on the threat point, hence
it does not affect the equilibrium transfer.

To see this more formally, let us write down the expected joint surplus as a function of bD and
bFT . As we argued above we can focus on the case bD ≤ γ∗+ bFT . We can then write the expected
joint surplus as

EΩ(bD, bFT )|bD≤γ∗+bFT = V (FT ) +

∞∫
R(bD)

[γ − γ∗ − c(bD)]dH(γ) (3)

−
R(bD)∫

S(bD)−S(bFT )

c(be(bD; γ))dH(γ)−
S(bD)−S(bFT )∫

0

c(bFT )dH(γ)

Differentiating this expression with respect to bFT and evaluating at (bFT = 0, bD = b̃D) we
obtain

∂EΩ

∂bFT

∣∣∣∣
(bFT=0,bD=b̃D)

= −h(S(b̃D))c(be(b̃D;S(b̃D))) < 0

where we have used the facts that S(bFT ) = bFT + c(bFT ) and c(0) = c′(0) = 0; it can easily be
shown that be(b̃D;S(b̃D)) 6= 0; and recall that we are assuming a large enough support of γ, hence
h(S(b̃D)) > 0. We can conclude that, when the support of γ is large enough, bFT = 0 cannot be
optimal, and coupled with the fact that the optimal bFT cannot be positive (as we next argue),
this implies that the optimal bFT is strictly negative.

We now rule out the possibility that bD = 0 at an optimal contract. Given our results above,
the only case we need to rule out is bD = 0 ≤ γ∗ + bFT . Letting b̃FT denote the optimal value of
bFT conditional on bD = 0, we can write

∂EΩ

∂bD

∣∣∣∣
(bD=0,bFT=b̃FT )

= −
R(0)∫

−S(b̃FT )

dc(be(bD; γ))

dbD
dH(γ) + h(−S(b̃FT ))[c(be(0;−S(b̃FT ))− c(b̃FT )]

In this case it is immediate to establish that in the FTR region be ≤ S−1(−γ) < 0. It follows that
at the lower border of the FTR region, where γ = −S(b̃FT ), it must be be ≤ b̃FT ≤ 0. This implies
c(be(0;−S(b̃FT )) ≥ c(b̃FT ), so the second term of the expression above is nonnegative. Also recall

that ∂be(bD;γ)
∂bD

> 0, hence dc(be(bD;γ))
dbD

< 0. We can conclude that ∂EΩ
∂bD

∣∣
(bD=0,bFT=b̃FT )

> 0, and hence

bD = 0 cannot be optimal. This, together with the fact that the optimal bD cannot be negative (as
we argue below), implies that the optimal bD is strictly positive.

We now return to our earlier claim that it cannot be optimal to set bD < 0 or bFT > 0 (recall
that we just ruled out the possibilities bD = 0 and bFT = 0, so we can focus on strict inequalities).
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To establish this claim, we need to rule out several possibilities:
(a) bD < 0 and bFT < 0. We need to distinguish two subcases:

(ai) bD ≥ γ∗ + bFT . In this case it is easy to show that the equilibrium transfer be in the
renegotiation region (PR) is negative. Our strategy to improve on the initial contract depends on
whether bD is higher or lower than be at the initial contract. If bD < be, we can improve on the
initial contract by increasing bD slightly; to see this, refer to expression 1 and note that in this case
c(bD) > c(be) and c′(bD) < 0, therefore ∂EΩ

∂bD

∣∣
bD≥γ∗+bFT > 0. If bD > be, then we can improve on

the initial contract by increasing bFT slightly, because ∂EΩ
∂bFT

∣∣
bD≥γ∗+bFT > 0; to see this, note that

in this case c(bD) − c(be) < 0, c′(bFT ) < 0 and dc(be(bFT ;γ))
dbFT

< 0 (and recall the assumption that
1 + c′(·) > 0 for any transfer level).

(aii) bD < γ∗+bFT . Also in this case the equilibrium transfer be in the renegotiation region
(FTR) is negative. Our strategy to improve on the initial contract depends on whether bFT is higher
or lower than be in absolute level. If |be| > |bFT |, we can improve on the initial contract by increasing
bD slightly toward zero. This has three first-order beneficial effects: (i) it reduces the transfer (in
absolute value) for states γ > R(bD), where the importer chooses P without renegotiating; (ii) it
improves the threat point for the importer in the FTR region and hence it makes be less negative;
(iii) for states just above γ = S(bD) − S(bFT ), before the change governments renegotiate toward
FT and after the change the importer chooses FT without renegotiating, thus the equilibrium
transfer switches from be to bFT ; since we are focusing on the case |be| > |bFT |, also this effect is
beneficial.

If |be| < |bFT |, on the other hand, we can improve on the initial contract by increasing bFT
slightly toward zero. This has two beneficial first-order effects: (i) it reduces the transfer (in absolute
value) for states γ < S(bD) − S(bFT ), where the importer chooses FT without renegotiating, and
(ii) for states just above γ = S(bD) − S(bFT ), the equilibrium transfer switches from bFT to be;
since we are focusing on the case |be| < |bFT |, this effect is beneficial.

(b) bD < 0 and bFT > 0.
It can be easily shown that we can lower bFT to zero, and in fact we can make it slightly

negative, without affecting the policy allocation or the equilibrium transfer for any γ. This takes
us back to the previous case where bD < 0 and bFT < 0, which we already ruled out.

(c) bD > 0 and bFT > 0. Here our strategy to improve on the initial contract depends on
whether bD is higher or lower than γ∗. If bD < γ∗, we can improve on the initial contract by
increasing bFT to zero. And if bD < γ∗, the initial contract can be improved upon by increasing
both bD and bFT toward zero in such a way that S(bD) − S(bFT ) is kept constant. We leave the
proof of these claims to the reader.

Finally, the claim that an optimal contract entails bD < γ∗ follows from the fact that an optimal
contract entails bD < γ∗ + bFT and bFT < 0.

Small uncertainty.
We can now turn to the case of small uncertainty (Proposition A1(i)).
The first observation is that a noncontingent allocation (where the same policy is chosen for all

γ in the support) can be implemented at zero cost (i.e. with no transfers occurring in equilibrium)
with a property rule. Thus, conditional on a noncontingent allocation being optimal, a property rule
is optimal. We next show that if the support of γ is suffi ciently small, a noncontingent allocation
is indeed optimal.

Let the support of γ be given by (γ∗ − ε, γ∗ + ε); note that we are considering a symmetric
support, but the argument is easily extended to the case of an asymmetric support. Consider a
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contingent allocation with threshold γ̂ε∈ (γ∗−ε, γ∗+ε) (we use the subscript ε because we need to
allow this allocation to vary as we drive ε to zero). We have shown above that at an optimum it must
be the case that for γ = γ̂ε the importer is indifferent between choosing P without renegotiating
and renegotiating toward FT. In other words, it must be γ̂ε = R(bD) = S(bD) − S(bD − γ∗).

This implies that for states γ just above γ̂ε the importer will pay a transfer b
D that is close to

R−1(γ̂ε); clearly, this transfer does not become small as ε gores to zero. For states γ just below
γ̂ε the governments will renegotiate and the equilibrium transfer may be lower, but this transfer is
unrelated to ε and hence does not become small as the support shrinks.

Now consider replacing this contingent allocation with a noncontingent allocation where policy
FT is chosen in all states (and no transfers are incurred). As ε→ 0 this noncontingent allocation
must dominate, because it implies a non-negligible savings in transfer costs for each state γ, while
the associated loss in terms of policy effi ciency is at most of magnitude ε for each state γ. Note
that this argument holds even if the threshold γ̂ε approaches one of the bounds of the support as
ε → 0. We have thus shown that if the support is suffi ciently small, a noncontingent allocation
must be optimal, and therefore a property rule is optimal. QED

Online Appendix B
In this Appendix we show that our key results survive in a setting with three discrete policy levels.
In particular, we now allow that the Home government chooses a trade policy from the three
options T ∈ {FT, P1, P2}: “Free Trade,” or two possible levels of “Protection,” with P2 > P1.
For notational simplicity, we define P0 ≡ FT . We think of each increment Pi − Pi−1 as having the
same magnitude for i = {1, 2}, and we let γi denote the incremental value to Home of switching
from Pi−1 to Pi, or

γi ≡ v(Pi)− v(Pi−1) for i = {1, 2}.

Similarly, γ∗i denotes the incremental cost to Foreign of a switch from Pi−1 to Pi for i = {1, 2}, or

γ∗i ≡ v∗(Pi)− v∗(Pi−1) for i = {1, 2}.

As in our basic model of section 2, we abstract from the possibility of introducing a “carrot”
in the contract, that is, we set the transfer associated with P0 equal to zero, bD0 ≡ 0, but like our
analysis in section 2 the analysis here could be extended to allow bD0 6= 0. In this setting, the ex-
ante contract now takes the form {bD1 , bD2 } where bDi ≥ 0 for i = {1, 2} represents the contractually
specified damages to be paid by Home for the increment in protection Pi−Pi−1; that is, under the
contract {bD1 , bD2 }, if Home selects Pı̃ for ı̃ = {1, 2} then its damage payments under the contract
are given by

∑ı̃
i=1 b

D
i .

To maintain tractability, we impose the following assumptions:

c(b) ≡ c · |b| (Assumption B1)

γ2 = αγ1, with 0 < α ≤ σc

1 + σ(1− c) (Assumption B2)

γ∗1 = γ∗2 ≡ γ∗ > 0 (Assumption B3)

According to Assumptions B1-B3, transfer costs increase linearly in the magnitude of the ex-post
transfer, Home payoffs are increasing and suffi ciently concave in the level of Home protection,
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and Foreign payoffs decline linearly in the level of Home protection. As will become clear below,
with suffi cient concavity we can avoid consideration of various “global” issues that would further
complicate our analysis —such as the possibility of “large”renegotiations from P2 to P0 that might
otherwise occur under the contracts we consider —and we can rely instead on a “local”analysis.

As before we refer to the outcome that maximizes joint surplus as the “first best” outcome.
Under Assumptions B1-B3, the first best policy is P0 if γ1 < γ∗, P1 if γ2 < γ∗ < γ1, and P2 if
γ2 > γ∗ ( and the first best level of the transfer is always b = 0). And again we assume that γ∗

is known ex-ante, and that the γi are uncertain ex-ante and observed ex-post by the governments
but not by the court/DSB. We have in mind that the γi are drawn from a joint distribution that
satisfies Assumption B2 for any draw. We refer to a realization of (γ1, γ2) as a “state.”

We establish below that the analogs to Propositions 1 and 2 from the main body of the paper
extend to this setting. To accomplish this we first introduce the analogs of Figure 1 from the main
body of the paper.

In particular, with γ1 on the vertical axis and b
D
1 on the horizontal axis, Figure B1 depicts

the “local” trade-offs involved in choosing between P1 and P0. Similarly, with γ2 on the vertical
axis and bD2 on the horizontal axis, Figure B2 depicts the local trade-offs involved in choosing
between P2 and P1. For the consideration between P1 and P0, Home’s “local” threat point is P1

for γ1 > S(bD1 ) ≡ (1 + c)bD1 , and it is P0 for γ1 < S(bD1 ). This is depicted in Figure B1. For the
consideration between P2 and P1, Home’s local threat point is P2 for γ2 > S(bD1 + bD2 )− S(bD1 ) =

S(bD2 ) ≡ (1 + c)bD2 , and it is P1 for γ2 < S(bD2 ), where we have used Assumption B1 to characterize
this local threat point as a function only of bD2 . This is depicted in Figure B2.

Focusing first on Figure B1, which depicts the local trade-offs involved in choosing between P1

and P0, there are two possibilities for “local” renegotiation: it may be that the threat point is
P0 and renegotiation changes the policy to P1, or vice-versa. Local renegotiation from P0 to P1

would occur if (i) the local threat point is P0, so γ1 < S(bD1 ), and (ii) there exists a transfer be

such that both governments are made better off by the policy change, which requires γ1 > S(be)

(for the importer) and be > γ∗ (for the exporter); this in turn implies the condition γ1 > S(γ∗).
Putting things together, local renegotiation from P0 to P1 would occur if S(γ∗) < γ1 < S(bD1 ); we
label this region by RNP0→P1 . Applying a similar logic, local renegotiation from P1 to P0 would
occur if (i) the local threat point is P1, so γ1 > S(bD1 ), and (ii) there exists a (possibly negative)
transfer be such that both governments are made better off by the policy change, which requires
S(bD1 )− S(be) > γ1 (for the importer) and γ

∗ > bD1 − be (for the exporter); this (it can be shown)
implies the condition γ1 < (1 − c)γ∗ + 2cbD1 ≡ R1(bD1 ). Thus local renegotiation from P1 to P0

would occur if S(bD1 ) < γ1 < R1(bD1 ); we label this region by RNP1→P0 . Notice that Figure B1 is
just a linear version of Figure 1 from the main body of the paper.

We focus next on Figure B2, which depicts the local trade-offs involved in choosing between P2

and P1. Applying a similar logic as above, it is direct to verify that local renegotiation from P1 to
P2 would occur if S(γ∗) < γ2 < S(bD2 ), a region that we label by RNP1→P2 , while local renegotiation
from P2 to P1 would occur if S(bD1 ) < γ2 < min[(1− c)γ∗ + 2c(bD1 + bD2 ), S(γ∗)] ≡ R2(bD1 + bD2 ), a
region that we label by RNP2→P1 . Note that Figure B2 differs from Figure B1 in one important
respect: the R curve now takes on the value of S(γ∗) for bD2 in a left interval of γ∗, and when
bD1 ≥ γ∗ it becomes horizontal at S(γ∗).

Figures B1 and B2 can be used for “local analysis”of the choice between the local alternatives
P1 and P0 and the local alternatives P2 and P1, but as we next establish our assumptions imply
that certain global conclusions can also be drawn from local analysis:
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Lemma B1: Under Assumptions B1-B3: (i) If renegotiation from P0 to P1 cannot achieve a
Pareto improvement, neither can renegotiation from P0 to P2; (ii) If renegotiation from P2 to P1

cannot achieve a Pareto improvement, neither can renegotiation from P2 to P0.

Proof : (i) As implied by our discussion above, when P0 is the threat point renegotiation to
P1 cannot achieve a Pareto improvement if γ1 < (1 + c)γ∗. Since γ2 < γ1 this implies γ1 +

γ2 < 2(1 + c)γ∗. This in turn implies (it is easy to show) that when P0 is the threat point,
renegotiation to P2 cannot achieve a Pareto improvement either. (ii) As implied by our discussion
above, when P2 is the threat point renegotiation to P1 cannot achieve a Pareto improvement if
γ2 > min[(1−c)γ∗+2c(bD1 +bD2 ), (1+c)γ∗]. Since γ2 < γ1 this implies in turn that γ1+γ2 > min[2(1−
c)γ∗+4c(bD1 +bD2 ), 2(1+c)γ∗] ≥ min[2(1−c)γ∗+2c(bD1 +bD2 ), 2(1+c)γ∗] = 2(1−c)γ∗+2c(bD1 +bD2 ),
where the last equality follows (it is easy to show) from the fact that P2 is the threat point. With
γ1 +γ2 > 2(1− c)γ∗+ 2c(bD1 + bD2 ), and with a similar argument to that used above, it then follows
that when P2 is the threat point renegotiation to P0 cannot achieve a Pareto improvement either.
QED

According to Lemma B1, if local renegotiation cannot achieve a Pareto improvement, then global
renegotiation cannot achieve a Pareto improvement either.

Lemma B2: Under Assumptions B1-B3, renegotiation from P2 to P0 cannot occur for any
state if bD1 > γ∗.

Proof : We start by noting that, if renegotiation from P2 to P0 is to occur, the renegotiated transfer
must be negative (because otherwise Home would be better off choosing the contractual P0 option
with no transfer); we let b̂e0 < 0 denote the transfer associated with renegotiation from P2 to P0.
Also, for the exporter to be better off under the renegotiated outcome, it must be b̂e0 > bD − 2γ∗,
where bD ≡ bD1 + bD2 . Therefore a necessary condition for there to be renegotiation from P2 to P0

is bD < 2γ∗. And since we are considering a contract where bD1 > γ∗, clearly bD > γ∗. Thus if
renegotiation from P2 to P0 is to occur when bD1 > γ∗, we must have γ∗ < bD < 2γ∗.

Next we derive another necessary condition for there to be renegotiation from P2 to P0 in some
states.

Notice that for P2 to be the threat point it must be that γ1 >
(1+c)bD

1+α . Letting b̂e2→1 denote the
transfer associated with the Nash Bargaining solution when the threat point is P2 and renegotiation
is to P1, we have

b̂e2→1 = bD − σ(1 + c)γ∗ + (1− σ)αγ1

(1 + c)
.

Plugging b̂e2→1 into the Nash Bargaining objective (labeled NB) when the bargain leads to P1 and
simplifying then yields

NBP1 = σσ
(

1− σ
1 + c

)1−σ
[(1 + c)γ∗ − αγ1].

With a similar calculation we can derive that b̂e2→0, the transfer associated with renegotiation from
P2 to P0, is given by

b̂e2→0 =
−(1− c)σ(2γ∗ − bD) + (1− σ)[(1 + c)bD − (1 + α)γ1]

(1− c) .

Plugging b̂e2→0 into the Nash Bargaining objective when the bargain leads to P0 and simplifying
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then yields

NBP0 = σσ
(

1− σ
1− c

)1−σ
[(1− c)2γ∗ + 2cbD − (1 + α)γ1].

Now solving for γ1 that satisfies NBP0 > NBP1 yields

γ1 <
(1 + c)1−σ(1− c)2γ∗ − (1 + c)(1− c)1−σγ∗ + 2c(1 + c)1−σbD

(1 + c)1−σ(1 + α)− α(1− c)1−σ .

Putting together this condition and the condition that P2 is the threat point, i.e. γ1 >
(1+c)bD

1+α , we
conclude that a necessary condition for renegotiation from P2 to P0 to occur in any state is

(1 + c)1−σ(1− c)2γ∗ − (1− c)1−σ(1 + c)γ∗ + (1 + c)1−σ2cbD

(1 + c)1−σ(1 + α)− (1− c)1−σα
>

(1 + c)bD

1 + α
.

This can be re-arranged as

[(1 + α)(1− c)σ (1 + c)−σ − α]bD < (1 + α)[2(1− c)σ (1 + c)−σ − 1]γ∗.

We now show that under Assumption B2 the inequality just above is violated for all bD ∈ (γ∗, 2γ∗)

and hence renegotiation from P2 to P0 can never occur. This follows from three key observations:
(a) it can never be the case that the LHS is negative and the RHS is positive (this is easy to
verify); (b) if both sides of the inequality are negative, it is straightforward to confirm that the
condition is violated for bD = 2γ∗, and therefore it is violated for all bD ∈ (γ∗, 2γ∗); and (c) if
both sides of the inequality are positive, one can plug in bD = γ∗ and verify that the condition
is violated if α < (1 + c)σ (1− c)−σ − 1, which (it can be shown) is implied by our restriction
α ≤ σc

1+σ(1−c) in Assumption B2; thus under this parameter restriction the condition is violated for

all bD ∈ (γ∗, 2γ∗). QED

Finally we will make use of the following:

Lemma B3: Under Assumptions B1-B3, if the threat point is P0, then the policy outcome is as
follows: if γ1 < (1 + c)γ∗, the policy remains P0; if γ2 < (1 + c)γ∗ < γ1, the policy is renegotiated
to P1; if γ2 > (1 + c)γ∗, the policy is renegotiated to P2.

Proof : This is easily shown graphically by considering the Pareto frontier in (ω∗, ω) space for a
given state (γ1, γ2). With ω on the vertical axis and ω∗ on the horizontal axis, in what follows we
refer to “point Pi”as the point in (ω∗, ω) space that is associated with policy Pi and zero transfer.
The Pareto frontier is the outer envelope of three sub-frontiers, each associated with a protection
level Pi. If the threat point is P0, clearly any renegotiation will entail a positive transfer from Home
to Foreign. This implies that the relevant part of the Pareto sub-frontier associated with policy P1

is the straight line emanating from point P1 and going South-East with slope −(1+c), and similarly
for the Pareto sub-frontier associated with P2. From graphical inspection it is then clear that if
the threat point is P0 the relevant part of the Pareto frontier, i.e. the part that lies North-East
of P0, is given by the sub-frontier associated with policy P1 (resp. P2) if γ2 < (1 + c)γ∗ < γ1

(resp. γ2 > (1 + c)γ∗), while if γ1 < (1 + c)γ∗ point P0 is Pareto-undominated. The claim follows
immediately. QED
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We now establish that the analog of Proposition 1 in the main body of the paper holds in this
extended setting. We state:

Proposition B1. Under Assumptions B1-B3, setting bDi > γ∗ for any i ∈ {1, 2} is weakly
dominated. Furthermore, renegotiation can only reduce the level of protection.

Proof :
We prove the first part of the Proposition by considering three cases in turn: (i) the case

bD1 ≤ γ∗, bD2 > γ∗; (ii) the case bD1 > γ∗, bD2 > γ∗; and (iii) the case bD1 > γ∗, bD2 ≤ γ∗.
(i) Suppose bD1 ≤ γ∗, bD2 > γ∗. We show that we can (weakly) improve on this contract by

lowering bD2 to γ∗. There are a few possibilities to consider:
(ia) First focus on states for which P0 is neither the threat point nor the renegotiated

outcome, before or after the contract change. Then clearly the relevant choice is between P1 and
P2, and hence the only relevant figure is Figure B2, and we can apply the same argument as in the
main text to show that, for these states, lowering bD2 to γ∗ can only increase joint surplus.

(ib) Next focus on states for which P0 is the renegotiated outcome before or after the
contract change. First note that there cannot be renegotiation from P2 to P0 before or after the
contract change: this is because, by inspection of Figure B2, when bD2 ≥ γ∗ there can never be
renegotiation from P2 to P1, and therefore by Lemma B1 there cannot be renegotiation from P2

to P0. Next suppose there is renegotiation from P1 to P0 before the contract change. Clearly,
the reduction in bD2 can have an effect only if the threat point switches to P2. But this can never
happen: if there is renegotiation from P1 to P0 before the contract change, by inspection of Figure
B1 it must be γ1 < (1 + c)γ∗; and if the threat point is P2 after the change then γ2 > (1 + c)γ∗;
but this implies γ2 > γ1, which is impossible because α ≤ 1. Finally, suppose there is renegotiation
from P1 to P0 after the contract change. This implies γ1 > (1 + c)bD1 . Then the threat point must
have been P1 also before the contract change (it cannot have been P2 because the threat level of
protection can only move up with a reduction in bD2 ; and it cannot have been P0 because then
γ1 < (1 + c)bD1 , a contradiction with the condition just above). But if the threat point was P1

before the contract change, from inspection of Figure B1 there must have been renegotiation from
P1 to P0 also before the contract change, so the contract change is immaterial.

(ic) What remains is to consider states for which P0 is the threat point before or after the
contract change. If P0 is not the threat point initially, clearly it cannot be the threat point after
the contract change, so we just need to consider states for which P0 is the threat point initially.
Notice first that since bD1 < γ∗ and by inspection of Figure B1 (and applying Lemma B1), in
this case there can never be renegotiation to a higher level of protection, so if the threat point is
P0 the policy outcome is also P0. Also note that the threat point cannot switch from P0 to P1,
because bD2 does not affect the importer’s choice between P0 and P1. In principle the contract
change could have an effect if it leads the threat point to switch from P0 to P2, but this can never
happen. To see this, note that for P0 to be the threat point before the contract change we must
have γ1 < (1 + c)bD1 < (1 + c)γ∗ and hence γ2 < (1 + c)γ∗, but this contradicts the possibility
that P2 is the threat point after the contract change, because it implies that Home prefers P1 to
P2 when bD2 = γ∗.

(ii) Suppose bD1 > γ∗, bD2 > γ∗. We show that we can increase joint surplus by setting bD1 =

bD2 = γ∗.
Note first that, since bD1 > γ∗ and bD2 > γ∗ in the initial contract, by inspection of Figures B1

and B2 there cannot be renegotiation downwards for any state. And since bD1 = bD2 = γ∗ in the
new contract, there is no renegotiation for any state under the new contract. Moreover, it is easy
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to show that the contract change cannot affect the policy outcome. It remains to ask: How does
the contract change affect the equilibrium transfer? For states in which there was no renegotiation
before the contract change, clearly the transfer can only get smaller. For states in which there was
renegotiation (upwards) before the contract change, clearly the renegotiated transfer had to be at
least equal to γ∗ if renegotiation was up to P1, and at least equal to 2γ∗ if renegotiation was up
to P2 (this follows immediately from the fact that bD1 > γ∗ and bD2 > γ∗ in the initial contract,
and renegotiation must make the exporter weakly better off than under the initial contract), and
therefore the transfer cannot become larger as a result of the contract change.

(iii) Suppose bD1 > γ∗, bD2 ≤ γ∗. We show that we can increase joint surplus by setting bD1 = γ∗.
We start with a few preliminary observations.

First recall from Lemma B2 that given bD1 > γ∗ renegotiation from P2 to P0 cannot occur for
any state. Also, from Figure B1 it is clear that renegotiation from P1 to P0 cannot occur either,
so the only possible type of renegotiation downwards is from P2 to P1. In this latter case, notice
that the renegotiated transfer must be nonnegative; this follows because at the threat point the
transfer is bD > γ∗ and renegotiation from P2 to P1 provides a gain of γ∗ to the exporter, so for the
renegotiation to make the exporter weakly better off, the transfer cannot be reduced by more than
γ∗ relative to bD. Next note that renegotiation upwards can only occur from P0 to P1 or P2, and
only under the initial contract: renegotiation from P1 to P2 is ruled out by inspection of Figure B2
given bD2 ≤ γ∗; and any type of renegotiation upwards is clearly ruled out under the new contract.
Finally, recall that if bD1 ≥ γ∗ the R2 curve in Figure B2 is horizontal.

To establish that joint surplus increases if we reduce bD1 to γ∗, we need to consider several
possibilities:

(iiia) First focus on states for which P2 is neither the threat point nor the renegotiated
outcome, before or after the contract change. Then clearly the relevant choice is between P0 and
P1 and hence the only relevant figure is Figure B1, and we can apply the same argument as in the
main text to show that, for these states, lowering bD1 to γ∗ can only increase joint surplus.

(iiib) Next focus on states for which P2 is the renegotiated outcome before or after the
contract change. Given our preliminary observations above, the only such case is the one in which
there is renegotiation from P0 to P2 under the initial contract. In this case, after the contract
change it must be that the threat point is P2 and there is no renegotiation. To see this, note first
that for there to be renegotiation from P0 to P2, by Lemma B3 it must be γ2 > (1 + c)γ∗, which
implies γ2 > (1 + c)bD2 (because bD2 < γ∗) and γ1 + γ2 > (1 + c)2γ∗ (because γ1 > γ2). And since
the new contract has bD < 2γ∗, then P2 must be the new threat point. But then the contract
change can only increase joint surplus, because the policy outcome is unaffected and the transfer
must be weakly lower, by a now-familiar argument.

(iiic) Next we focus on states for which P2 is the threat point before or after the contract
change (and P2 is not the renegotiated outcome before or after the contract change, since we already
considered these cases in (iiib)). Consider first the case where P2 is the threat point under the initial
contract. Since a reduction in bD1 makes P0 less attractive relative to higher levels of protection
and does not affect the tradeoff between P1 and P2, then P2 must remain the threat point after the
contract change. By inspection of Figure B2 and recalling that renegotiation downwards can only
be to P1, the policy outcome is then unaffected: either it is P2 before and after the contract change,
or there is renegotiation from P2 to P1 before and after the contract change. How is the transfer
affected by the contract change? If the policy outcome is P2, the transfer is reduced directly; and
if the policy is renegotiated to P1, it is easy to see (by inspection of the expression for b̂e2→1 in the
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proof of Lemma B2) that the renegotiated transfer is increasing in bD, and hence it decreases as a
result of the reduction in bD1 .

It remains to consider states for which the threat point switches from P0 to P2 as a result of the
contract change (recall from our discussion above that the threat point cannot switch from P1 to
P2). Here there are two possibilities to consider: (1) under the initial contract there is renegotiation
from P0 to P1; and (2) under the initial contract there is no renegotiation. (The case in which under
the initial contract there is renegotiation from P0 to P2 was already considered in (iiib)).

Starting from case (1), by Lemma B3 it must be γ2 < (1 + c)γ∗ < γ1, and since P2 is the threat
point after the contract change, it must be γ2 > (1 + c)bD2 . But then by inspection of Figure B2
there must be renegotiation from P2 to P1 after the contract change, hence the policy outcome is
unaffected. How does the contract change affect the transfer? Note that the disagreement payoff
of Home increases weakly, because bD is reduced, and the disagreement payoff of Foreign decreases
by the amount 2γ∗ − bD, which is nonnegative because bD < 2γ∗ after the contract change. As a
consequence, the renegotiated transfer decreases weakly.

Moving to case (2), we first argue that after the contract change there must be renegotiation from
P2 to P1. To see this, note that for the policy outcome to be P0 under the initial contract, it must
be γ2 < γ1 < (1 + c)γ∗, otherwise by Lemma B3 there would be renegotiation upwards. But this,
together with the fact that the threat point is P2 after the contract change, by inspection of Figure
B2 implies that there must be renegotiation from P2 to P1 after the contract change (and recall that
renegotiation from P2 to P0 is ruled out by Lemma B2). In this case, the change in joint surplus
implied by the contract change is given by γ1 − γ∗ − cb̂e2→1, where b̂

e
2→1 = bD

′ − σ(1+c)γ∗+(1−σ)αγ1
(1+c)

is the transfer associated with renegotiation from P2 to P1 (derived in the proof of Lemma B2),
and bD

′
denotes the level of bD after the contract change. Noting that γ1 ∈ ( 1+c

1+αb
D′ , (1 + c)γ∗)

(the lower bound on γ1 follows because the threat point after the contract change is P2, and the
upper bound comes from the observation above) and that bD

′ ∈ (γ∗, 2γ∗), one can verify that
under our Assumption B2 it must be that γ1 − γ∗ − cb̂e2→1 ≥ 0 for all γ1 ∈ ( 1+c

1+αb
D′ , (1 + c)γ∗) and

bD
′ ∈ (γ∗, 2γ∗), thus ensuring that the contract change is weakly beneficial.
The second statement of Proposition B1 is straightforward to show. First, if bD1 ≤ γ∗ and

bD2 ≤ γ∗ then it is clear from Figures B1 and B2 that renegotiation can only be liberalizing. And
if it is weakly optimal to set bDi > γ∗ for some i, then by a similar argument to that in the main
text (see especially note 28), it must be that there is zero probability that the state (γ1, γ2) is such
that the protection level is renegotiated upwards. QED

We note that, as in the case of binary policy, also in this extended setting renegotiation can
occur in equilibrium only for intermediate states of the world, provided the damage payments bDi
are positive. More specifically, if bD1 > 0 and bD2 > 0 then it is clear from Figures B1 and B2 that
renegotiation can occur in equilibrium only for intermediate values of γ1 and γ2.

We next establish that the analog of Proposition 2 in the main body of the paper holds in
this extended setting. To this end, we first formalize what we mean in this extended setting by a
“property rule”and a “liability rule.”In line with the main body of the paper, we define a property
rule as a contract that specifies the allowable levels of protection without providing a buy-out
option; that is, each level of protection (P0, P1 or P2) is either allowed (with no compensation
owed) or not allowed at all. Within this contract class, there is no loss of generality in focusing
on the following three contracts: (a) a contract specifying that only P0 is allowed (a strict FT
obligation); (b) a contract specifying that only P0 and P1 are allowed (i.e. protection is “capped,”
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or “bound,”at P1); and (c) the fully discretionary contract specifying that any level of protection
(P0, P1 or P2) is allowed, which is equivalent to having no contract at all (the “empty”contract).1

In analogy with the case of binary trade policy considered in the main text, each of the above
property-rule contracts is outcome-equivalent to a contract that provides a buy-out option but
where this option is prohibitively costly. In particular, contract (a) above corresponds to setting
bD1 ≥

γ̄1
1+c (so that P0 is always preferred to P1 and a payment of bD1 ) and b

D
1 + bD2 ≥

(1+α)γ̄1
1+c (so

that P0 is always preferred to P2 and a payment of bD1 + bD2 ); contract (b) above corresponds to
setting bD1 = 0 (so that P1 is allowed with no compensation owed) and bD2 ≥

(1+α)γ̄1
1+c (so that P2

and a payment of bD2 is never preferred); and contract (c) corresponds to setting bD1 = bD2 = 0.
By contrast, a liability rule is a contract that includes a non-prohibitive buy-out option, so

that for some state (γ1, γ2) Home would “buy” protection (P1 or P2) in exchange for a positive
contractually-specified transfer. It is easy to verify that this corresponds to setting either 0 < bD1 <
γ̄1

1+c , or b
D
2 < (1+α)γ̄1

1+c − bD1 .
To establish the analog of Proposition 2 in our extended setting, we now also assume that

the empty contract bD1 = bD2 = 0 (which is equivalent to the absence of an ex-ante contract)
is suboptimal.2 We need this restriction only for establishing the large-uncertainty result stated
below, where it serves to offset an artifact of our linear cost assumption (Assumption B1) which
does not arise with the convex costs that we assume in the body of the paper, namely that a small
transfer causes a first-order deadweight loss. We conjecture that with convex costs in our extended
setting the empty contract would always be suboptimal in the presence of large uncertainty, just
as in the case of binary policy.

We may now state the analog of Proposition 2 in the main body of the paper:

Proposition B2. Under Assumptions B1-B3: (i) If the support of each γi is suffi ciently small, a
property rule is optimal; (ii) If the support of each γi is suffi ciently large, a liability rule is optimal.

Proof :
(i) Consider first the case of small uncertainty. We wish to establish that the optimal contract is

a property rule. The argument proceeds along similar lines to that in the main body of the paper,
but there are now six cases to consider:

(ia) Each support lies below γ∗, that is, γ∗ ≥ γ̄1 ≥ γ̄2, so that the first-best policy is P0

in every state of the world. It is intuitively clear and direct from Figures B1 and B2 that in this
case the optimal contract is the strict-FT contract (that is, bD1 ≥

γ̄1
1+c , b

D
2 ≥

(1+α)γ̄1
1+c − bD1 ). The

key feature to notice from Figures B1 and B2 is that this contract will not be renegotiated when
γ∗ ≥ γ̄1 ≥ γ̄2 —this follows because from Figures B1 and B2 it is clear that local renegotiation
cannot achieve a Pareto improvement in this case, and from Lemma B1 global renegotiation cannot
therefore achieve a Pareto improvement either —and the first best is therefore achieved.

(ib) Each support lies above γ∗, that is, γ1
≥ γ

2
≥ γ∗. In this case, the first best is always

P2, and an argument similar to the one just above establishes that the optimal contract would be
the empty contract (bD1 = bD2 = 0); but recall that we are assuming that the empty contract is
suboptimal, so this case is assumed away.

1 It is easy to see that no property rule can strictly improve on the three property rules described above. This is an
immediate implication of the fact that Home will always choose the highest level of protection among those allowed
in the contract.

2A suffi cient condition for this to be the case is that Pr(γ2 > γ∗) is not too high, or that α is suffi ciently below
1 (with the upper bound on α possibly being below the bound specified in Assumption B2). In this case, it is
straighforward to show that the empty contract is strictly dominated by some non-empty contract (with bDi > 0 for
some i).
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(ic) The supports of γ1 and γ2 lie on the opposite sides of γ
∗, that is, γ

1
≥ γ∗ ≥ γ̄2 so

that the first-best policy is P1 in every state of the world. For this case it is intuitive and direct
from Figures B1 and B2 that capping protection at P1 (that is, bD1 = 0, bD2 ≥

(1+α)γ̄1
1+c ) is optimal,

ensuring that P1 is always the policy outcome and no transfers are induced in equilibrium, thereby
achieving the first best.

(id) A fourth case arises when γ∗ ≥ γ̄2 and γ̄1 > γ∗ > γ
1
. Here the support of γ2 lies

below γ∗, so that in no state of the world would P2 be the first-best policy, while the support of γ1

includes γ∗. If the support of γ1 is nevertheless suffi ciently small, we now argue that the optimal
contract must be either the strict-FT contract (bD1 ≥

γ̄1
1+c , b

D
2 ≥

(1+α)γ̄1
1+c − bD1 ) or the protection-cap

contract (bD1 = 0, bD2 ≥
(1+α)γ̄1

1+c ). To see this, note from Figure B1 that, if the support of γ1 around
γ∗ is suffi ciently small, bD1 ≥

γ̄1
1+c induces no renegotiation for any γ1; and similarly from Figure

B2 with γ∗ ≥ γ̄2, b
D
2 ≥

(1+α)γ̄1
1+c − bD1 induces no renegotiation for any γ2. Hence the strict-FT

contract induces zero transfers in equilibrium and results in the non-contingent policy outcome P0.
As Figures B1 and B2 make clear, a liability rule may achieve a more effi cient policy allocation,
since such a rule can induce P0 for low values of γ1 and P1 for suffi ciently high values of γ1 —either
by setting 0 < bD1 < γ̄1

1+c in order to achieve P1 directly for high-γ1 states (i.e., when γ1 > R1(bD1 )),

or by setting bD1 ≥
γ̄1

1+c and b
D
2 < (1+α)γ̄1

1+c − bD1 to achieve P1 indirectly in some high-γ1 states by
inducing renegotiation from P2 to P1 —but the associated benefit is small because the support of
γ1 around γ

∗ is small. And the cost of achieving this state-contingency is not small, because (it
can easily be shown) the equilibrium transfers associated with it do not become negligible as the
support shrinks. Thus a liability rule is dominated by the strict FT contract (and, by a similar
argument, also by the protection-cap contract).

(ie) A fifth case arises when γ1
≥ γ∗ and γ̄2 > γ∗ > γ

2
. Here the support of γ1 lies above

γ∗, so that in no state of the world would P0 be the first-best policy, while the support of γ2

includes γ∗. If the support of γ2 is nevertheless suffi ciently small, then proceeding as before (and
recalling the assumption that the empty contract is suboptimal) we now argue that the optimal
contract must be the protection-cap contract. To see this, note from Figure B2 that, if the support
of γ2 around γ

∗ is suffi ciently small, bD2 ≥
(1+α)γ̄1

1+c − bD1 will not induce renegotiation for any γ2;
and similarly from Figure B1 with γ∗ ≤ γ

1
, bD1 = 0 induces no renegotiation for any γ1. Hence

the protection-cap contract induces zero transfers in equilibrium and results in the non-contingent
policy outcome P1. As Figures B1 and B2 make clear, a liability rule may achieve a more effi cient
policy allocation by setting 0 < bD2 < (1+α)γ̄1

1+c − bD1 in order to induce P0 for low values of γ2 and
achieve P2 for high-γ2 states (i.e., when γ2 > R2(bD2 )), but the associated benefit is small because
the support of γ2 around γ

∗ is small. And the cost of achieving this state-contingency is not small,
because the equilibrium transfers associated with it (it can be shown) do not become negligible as
the support shrinks. Thus a liability rule is dominated by the protection-cap contract.

(if ) A final case in principle would arises if γ̄1 > γ∗ > γ
1
and γ̄2 > γ∗ > γ

2
, so that γ∗ is

included in the support of both γ1 and γ2. But note that, since α < 1 by assumption, holding α
fixed if the support of γ1 (and hence of γ2) is suffi ciently small this case cannot arise.

3

(ii) Consider next the case of large uncertainty. In particular, suppose γ̄i > S(γ∗) for i = 1, 2.
We wish to establish that in this case the optimal contract is a liability rule, that is (as we highlighted
above) either 0 < bD1 < γ̄1

1+c or b
D
2 < (1+α)γ̄1

1+c − bD1 . We prove this claim by ruling out the optimality

3Making the support of γ1 small enough that case (if ) cannot arise simplifies the proof, but this does not mean
that case (if ) can never arise when a property rule is optimal. It may well be that case (if ) arises and the support
of γ1 is suffi ciently small that a property rule is optimal.
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of each of the possible property rules for this case. Recalling the assumption that the empty contract
is suboptimal, we need to rule out the optimality of the strict-FT contract and of the protection-
cap contract. For this purpose it is suffi cient to show that, for either bD1 = 0 or bD1 ≥

γ̄1
1+c , setting

bD2 ≥
(1+α)γ̄1

1+c − bD1 cannot be optimal. But it is direct to see that this is implied by γ̄i > (1 + c)γ∗

(i = 1, 2), because in this case setting bD2 ≥
(1+α)γ̄1

1+c − bD1 with bD1 = 0 or bD1 ≥
γ̄1

1+c would require
that bD1 > γ∗ and/or bD2 > γ∗, which is ruled out by Proposition B1 (and with large support the
qualifier regarding weak domination described in note 28 of the body of the paper does not apply
here). Hence, it follows that for suffi ciently large uncertainty, the optimum is a liability rule. QED
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