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AppendixA: Neither Player’s Distributional Preferences
Are Monotonic

In this appendix, I discuss how the conclusions of the analysis are affected if both FM’s and
SM’s distributional preferences are joint-monotonic but not necessarily monotonic.

Theorem 1 in the main text shows that if one player’s distributional preferences are joint-
monotonic and the other player’s are monotonic, then the set of UPE material payoff pairs is a
subset of the set of MPE material payoff pairs. Theorem A1 generalizes to the case where both
players’distributional preferences are joint-monotonic. In that case, there are UPE material payoff
pairs that are not MPE. To state the result, let the interpersonal indifference curve of FM that
goes through SM’s favorite transaction

(
π1, π2

)
be denoted IC1, and let the indifference curve of

SM that goes through FM’s favorite transaction (π1, π2) be denoted IC2.

Theorem A1. Suppose U1 and U2 are joint-monotonic and quasi-concave. FM’s and SM’s
favorite transactions, (a1, a2) and

(
a1, a2

)
, exist and are unique. The set of UPE material payoff

pairs is a connected set that includes (π1, π2) and
(
π1, π2

)
and lies within the region enclosed by

IC1, IC2, and the MPE frontier.

Figure A1 illustrates the relationship between the set of MPE material payoff pairs and the set of
UPE material payoffpairs in the case where neither player has monotonic distributional preferences.
The set of UPE material payoff pairs lies within the region enclosed by IC1, IC2, and the MPE
frontier because both players prefer any material payoff within that region to any feasible material
payoff pair outside that region. A material payoff pair that is UPE either occurs at a tangency
point between the players’indifference curves– at a point where both indifference curves are upward
sloping (as shown in the figure)– or it occurs on the MPE frontier if the “relevant tangency” lies
outside the set of feasible material-payoff pairs.

Theorem A1 specializes to Theorem 1 when at least one player has monotonic distributional
preferences. In that case, graphically, there cannot be a tangency between the players’indifference
curves because the indifference curves of the player with monotonic distributional preferences are
everywhere downward sloping.

Dufwenberg, Heidhues, Kirchsteiger, Riedel, & Sobel (2011) independently prove a different
result that is also more general than Theorem 1. They assume that the agents’ distributional
preferences satisfy a condition they call “social monotonicity,”which can be defined as follows:

Definition A1. U1 and U2 are social-monotonic if for any (π1, π2) and any ε > 0, there
is some (π̂1, π̂2) such that 0 < π̂1 − π1 < ε, 0 < π̂2 − π2 < ε, U1 (π̂1, π̂2) > U1 (π1, π2), and
U2 (π̂1, π̂2) > U2 (π1, π2).

The definition differs from joint monotonicity because it requires that for any material payoff pair,
there is an arbitrarily close alternative material payoff pair giving more to both players that both
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agents strictly prefer. If the players’ preferences satisfy social monotonicity, then both players’
preferences are joint-monotonic, but both players’preferences can be joint-monotonic without sat-
isfying social monotonicity. (In comparing social monotonicity with joint monotonicity, Dufwenberg
et al mis-state the definition of joint monotonicity to be essentially the same as my statement of
social monotonicity.)

Under the same conditions as Theorem 1, except that the players’distributional preferences
are assumed to be socially monotonic, Dufwenberg et al prove that the set of UPE material payoff
pairs is a subset of the set of MPE material payoff pairs. Their result is more general than Theo-
rem 1 because if one player’s distributional preferences are joint-monotonic and the other player’s
distributional preferences are monotonic, then the players’preferences satisfy social monotonicity.

We now turn from discussing which material payoff pairs are effi cient to discussing whether the
equilibrium is effi cient. Theorem 2 in the main text gives necessary conditions for the equilibrium
to be MPE. That theorem applies directly when both players’preferences are joint-monotonic. As
discussed above, however, when both players’preferences are joint-monotonic, there may be UPE
transactions that are not MPE. Theorem A2 presents necessary conditions for the equilibrium to
be UPE. If the equilibrium is MPE, then it is also UPE, but there are also other cases where the
equilibrium is UPE but not MPE.

Theorem A2. Suppose U1 and U2 are joint-monotonic and quasi-concave, and both are either
twice-continuously differentiable or fairness-kinked. If the equilibrium (a1, a2 (a1)) is UPE and not
MPE, then (a1, a2 (a1)) is a fairness-rule optimum for SM. If, in addition, (a1, a2 (a1)) is a strict
fairness-rule optimum for SM and any fairness rule is continuously differentiable, then at least one
of the following must be true:

1. SM’s indifference curve for disadvantageously unfair transactions is tangent to SM’s fairness
rule at π (a1, a2 (a1)).

2. U1 is fairness-kinked, π (a1, a2 (a1)) is on FM’s fairness rule, and the respective fairness rules
f1 and f2 have different slopes at π (a1, a2 (a1)).

Figure A2a illustrates the Case 2 listed in the theorem, which can be interpreted as a setting where
the two agents have different, self-serving ideas about what is fair. However, Figure A2b shows
that even if the equilibrium occurs on both players’fairness rules, the equilibrium is not necessarily
UPE. A corollary of Theorem A2 is that if both players’ interpersonal indifference curves are
smooth– thereby ruling out fairness-kinkedness– then the equilibrium is UPE if and only if it is
MPE.

Theorems 3 and 4 provide suffi cient conditions for the equilibrium to be MPE and UPE, but
they assume that FM’s preferences are purely self-regarding or monotonic. If FM’s preferences are
required only to be joint-monotonic, then the conclusions of the theorems may not hold. Even
though SM’s behavior aligns the material incentives of the two players, if FM’s preferences are
non-monotonic, then she may prefer not to maximize the players’material payoffs. For the case of
preferences that satisfy the conditions of Theorem 3– except that FM’s distributional preferences
are merely joint-monotonic– Figure A3 illustrates an equilibrium that is neither MPE nor UPE.
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Appendix B: Proofs

Before proving the results in the text, we establish a technical lemma.

Technical Lemma. Suppose 1 and 2 are joint-monotonic and quasi-concave. Then:

1. The set of individually-rational transactions

 ≡ {(1 2) | 1(π(1 2)) ≥ 0 2(π(1 2)) ≥ 0}

is non-empty and compact, as is the set of payoff pairs  ≡ {π(1 2) | (1 2) ∈ }.

2. Along any graph of the form ( (2)  2), where  is a continuous, decreasing, weakly concave

function,  has a unique maximum ∗2 and strictly decreases as 2 moves away from this

maximum, for  = 1 2. Moreover, the MPE frontier and each budget curve  (1) is such a

graph.

Proof of part 1: The transaction (1 2) = (0 0) gives material payoffs π (0 0) = (0 0)

and utilities 1 (π (0 0)) = 2 (π (0 0)) = 0, so both sets are non-empty. By TA2,  necessarily

lies to the north and east (respectively) of two lines 1 = 
1
≤ 1 and 2 = 

2
≤ 2, i.e.,

 ⊆ {(1 2) | 1(1 2) ≥ 
1
 2(1 2) ≥ 

2
}. Hence  is closed and bounded and therefore

compact. It follows from A4 that  is also closed and bounded and therefore compact.

Proof of part 2: WLOG, consider 2. We first show that for any real number , the set

{2 | 2 ( (2)  2) ≥ } is an interval (possibly unbounded). Let 02  002 be two values in this

set. By construction, 2 ≥  at ( (02)  
0
2) and ( (

00
2)  

00
2). It follows that 2 ≥  at ( (02)  

00
2).

(To see this, let  = max{ ∈ [ (002)   (02)] | 2( 002) ≥ } (the maximum exists by continuity).

If ̄ =  (02) then we are done, so assume ̄   (02). By joint-monotonicity, we can choose ̂ ̂

with ̄  ̂   (02) and ̂  002 so that 2(̂ ̂)  2(̄ 
00
2) ≥ . The line segment connecting

( (02)  
0
2) and (̂ ̂) meets the line  = 002 at a point with some -coordinate strictly between ̄

and  (02). By quasi-concavity, the value of 2 at this point is ≥ . This contradicts the maximality

of ̄.) Now, for any 02  2  002, the point ( (2)  2) lies weakly inside the triangle defined by

these three points since  is weakly concave. Since 2 is quasi-concave, 2( (2)  2) ≥  also.

This shows that there cannot be three values 02  2  002 with 2( (
0
2)  

0
2)  2( (2)  2) 

2( (
00
2)  

00
2). It follows that on the graph ( (2)  2), 2 is either weakly monotonic everywhere,

or weakly increasing on (−∞ e2) and weakly decreasing on (e2∞) for some e2.
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We now show that 2 cannot be constant on any interval along the graph. Suppose 2 assumes

the constant value  on the interval [02 
00
2]. Quasi-concavity implies that 2 is ≥  at the point

(0 0) =

µ
(02)+(

00
2)

2

02+

00
2

2

¶
. For sufficiently small   0, the box [0 0 + ]× [0 0 + ] lies

entirely below and to the left of the curve  = {( (2)  2) | 02  2  002}. Joint-monotonicity
ensures that 2 assumes a value 0   at some point (0 0) inside this box. Now, let  =

{( ) |  ≥ 0  ≥ 0 2( ) ≥ 2(
0 0)}. We know that  does not intersect  because

2 ≥ 0 on , whereas 2 takes on the constant value  on , by assumption.  is closed and

convex, and must then be bounded (by the lines  = 0  = 0, as well as by the curve  since

(0 0) ∈ ), so it is compact. Hence we can choose a point ( ) ∈  with  +  maximal. But

by joint-monotonicity there exists 00  0 00  0 with 2(
00 00)  2(

0 0) ≥ 0, contradicting

maximality. It follows that 2 cannot be constant on [
0
2 

00
2] after all.

Next, we rule out that 2 is monotonic along the entire graph; in particular, we show that for

any ( (2)  2), there are 
0
2  2  002 such that 2( (

0
2)  

0
2)  2( (2)  2)  2( (

00
2)  

00
2).

Since the graph is weakly concave, the indifference curve going through ( (2)  2) is either tangent

to the budget curve or by TA2 intersects it at ( (2)  2) and at some other point ( (
000
2 )  

000
2 ).

In either cases, the claim follows immediately.

We complete the proof by showing that each budget curve has a graph of the form ( (2)  2),

where  is a continuous, decreasing, weakly concave function; we omit the proof of the same for

the MPE frontier, for which the argument is analogous (and is a standard result about the “utility

possibility frontier” when utility is purely self-regarding). Fix action 1. Let the budget curve

 (1) ≡ {π (1 2)}2∈R be parameterized by 1 (1 2) ≡  (2 (1 2)); clearly,  is not only

continuous but also continuously differentiable with 1
2

¯̄̄
(1)

= 
2
. Differentiating 1 (1 2) ≡

 (2 (1 2)) with respect to 2 yields
1
2

= 
2

2
2
, and therefore 1

2

¯̄̄
(1)

= 
2

=
12
22

 0.

Hence  is decreasing. By the chain rule, 
2

³

2

´
= 2

(2)
2
2
2
. Rearranging, 2

(2)
2 =


2



2


22

=


2


12
22


22

. A3 implies that 
2

³
12
22

´
≥ 0, and A1 implies that 2

2
 0, so 2

(2)
2 ≤ 0.

Hence  is weakly concave.

¤

Proposition 1 (Rotten kid theorem). In the equilibrium of the rotten kid game, the child

chooses the level of 1 that maximizes family income.

Proof: Follows directly from Theorem 3 below, and here we merely check that the assumptions
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can be verified or appropriately modified. A1-A4 from Section 3 clearly hold, with A2 following from

0 (0)  1. TA1 from Section 4 and joint-monotonicity of 2 are satisfied due to the assumption

that 2 (1 2) is monotonically increasing in both 1 and 2. TA2 from Section 4 is implied

by the assumption that there exist 1  0 and 2  0 such that lim2→∞
2(12)2
2(12)1

= 0 and

lim1→∞
2(12)2
2(12)1

=∞. We have directly assumed that 2 is quasi-concave and normal, and
1 is purely self-regarding. The material payoff functions being quasi-linear implies that they are

globally conditionally transferable. There is no assumption that 1
¡
1 2

¢ ≥ 0 because neither
player has an outside option.

¤

Proposition 2. In the gift-exchange game with a profit-maximizing firm, there exists   0

such that if    and  ≥ 1
2
, then the equilibrium transaction is Pareto efficient in terms of the

material payoffs.

Proof: Follows directly from Theorem 4 below, and here we merely check that the assumptions

can be verified or appropriately modified. A1-A4 from Section 3 clearly hold, with A2 following

from 0 (0)  1. TA1 from Section 4 clearly holds. TA2 from Section 4 and the quasi-concavity of 2

are not needed because the piecewise-linear functional form for 2, combined with the assumptions

regarding the material payoff functions, ensure that an optimal action for the worker exists in

response to any 1. The functional form for 2 satisfies joint-monotonicity and fairness-kinkedness,

and we have directly assumed that 1 is purely self-regarding. S2 from Section 8.2 clearly holds.

S3 can be replaced in the proof of Theorem 4 by the assumption of the piecewise-linear functional

form for 2. S4 and S5 hold but can be dropped as sufficient conditions because FM is purely

self-regarding. S1 is satisfied as long as (1− )− 0 (b2)  0; or rearranging,   1
1+0(2) . In the

next paragraph, we will show that the assumption that
¡
1 2

¢
is a strict fairness-rule optimum is

satisfied as long as   1
2
and   1

2
. The conclusion then follows from setting  = min

n
1
2
 1
1+0(2)

o
and noting (as explained below) that here   1

2
can be weakened to  ≥ 1

2
.

We now show that
¡
1 2

¢
, defined implicitly as the solution to 1

¡
1 2

¢
= 2

¡
1 2

¢
and

0
¡
2
¢
= 1, satisfies 1

¡
π
¡
1 2

¢¢
= 1

¡
1 2

¢
 0 and is a fairness-rule optimum. (Given the

assumptions on the material payoff functions and the  (·) function, the solution to these equations
exists and is unique.) The conditions on  (·) ensure that the solutions to these equations indeed
satisfy 1

¡
1 2

¢
 0. Translated to this gift-exchange game, the two conditions for

¡
1 2

¢
to be a strict fairness-rule optimum (as defined in Section 5) are (1− ) − 0

¡
2
¢
  0 and
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(1− )− 0
¡
2
¢
  0. Substituting 0

¡
2
¢
= 1, these two conditions are satisfied as long as   1

2

and   1
2
, respectively. The latter condition can be weakened to  ≥ 1

2
because if  = 1

2
, 1

remains a local optimum for FM since (1− )− 0 (2)   0 continues to hold for all 2  2.

¤

Lemma 1. Suppose 2 is joint-monotonic and quasi-concave. For any 1, SM has a unique

optimal best response, 2 (1), that is a continuous function of 1. Moreover, if 2 is continuously

differentiable at some (b1 2 (b1)), then 2
1

 0 and 2
2

 0 at (b1 2 (b1)).
Proof: Technical Lemma immediately gives existence and uniqueness of an optimal action

2 (1). The Maximum Theorem (e.g., Sundaram 1996, p.235) can now be applied (where we can

ignore the compactness requirement on the budget curve since we have already proved existence of

an optimal action) to show that 2 (1) is an upper-hemicontinuous correspondence. Since 2 (1)

is single-valued, it is a continuous function.

Since 2 is continuously differentiable at π (b1 2 (b1)), SM’s unique optimum is characterized

by the first-order condition, 2
2

(π (b1 2)) = 0, which after rearranging is 2
2
− (b1 2) 21

= 0.

Joint-monotonicity rules out that both partial derivatives 2
1

and 2
2

are negative, and TA1 rules

out that they both equal 0. Therefore, the first-order condition implies that both are positive.

¤

Proposition 3.

1. Suppose 2 is joint-monotonic, quasi-concave, and fairness-kinked. Suppose that (b1 2 (b1))
is a strict fairness-rule optimum. Then (1 2 (1)) is a strict fairness-rule optimum for all

1 in a neighborhood of b1, and 2 (1) is increasing in 1 at b1. Furthermore, 2 is locally
normal in 1 and 2 at ( (b1 2 (b1)) ;  (b1 2 (b1))).

2. Suppose 
1

³
12
22

´
≤ 0 and 2 is joint-monotonic and quasi-concave. If 2 is weakly

locally normal at ( (b1 2 (b1)) ;  (b1 2 (b1))), then 2 (1) is increasing in 1 at b1. Hence
if 2 is weakly normal in 1, then 2 (1) is increasing in 1.

Proof of part 1: By definition of (b1 2 (b1)) being a strict fairness-rule optimum:
lim

→(12(1))∈

µ
2 (π)

2
−  (b1 2 (b1)) 2 (π)

1

¶
 0
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and

lim
→(12(1))∈

µ
2 (π)

2
−  (b1 2 (b1)) 2 (π)

1

¶
 0

Since these inequalities are strict and since 2 (1) is a continuous function of 1 (by Lemma 1),

it follows immediately that these inequalities hold for all 1 in a neighborhood of b1, and thus
(1 2 (1)) is a strict fairness-rule optimum for all 1 in a neighborhood of b1. Thus, for any 1 in
a neighborhood of b1, SM will choose action 2 (1) such that π (1 2 (1)) ∈ graph(). The fact
that the fairness rule is a strictly upward-sloping locus of material payoff pairs, together with A1,

implies that 2 (1) is increasing in 1 at b1. Because the above inequalities are strict, they also
imply that for any 1 in a neighborhood of b1,

lim
→(12(1))∈

µ
2 (π)

2
−  (b1 2 (b1)) 2 (π)

1

¶
 0

and

lim
→(12(1))∈

µ
2 (π)

2
−  (b1 2 (b1)) 2 (π)

1

¶
 0

(where note that we are now holding the price fixed at  (b1 2 (b1)) as 1 varies). It follows that
2 is locally normal in 1 and 2 at ( (b1 2 (b1)) ;  (b1 2 (b1))).

Proof of part 2: Consider a small increase in FM’s action b01  b1. Assume (for contradiction)
that SM weakly decreases his action, so that SM’s material payoff rises while FM’s falls. Call  the

allocation π (b1 2 (b1)) and  the allocation π (b01 2 (b01)). In the (2 1) plane,  is northwest

of . Now draw two downward-sloping lines with slopes − (b1 2 (b1)) and − (b01 2 (b01)) ≤
− (b1 2 (b1)) going through  and , respectively; this inequality is implied by 

2
≤ 0 (by Part

2 of the Technical Lemma) and − 
1

³
12
22

´
= 

1
≥ 0 (by hypothesis). If these two slopes are

equal, then weak local normality is contradicted. We can therefore assume that − (b01 2 (b01)) 
− (b1 2 (b1)), so that the slope of the line through  is steeper than the slope of the line through

.

The two lines will intersect at some generic point, say . There are three cases. Case 1 is

that  is strictly southeast of both  and , and Case 2 is that  is strictly southeast of  and

northwest of . The proof in these two cases proceeds identically: The change from  to  can be

decomposed into a substitution effect and an income effect. The substitution effect causes a move

from  to a point 0 weakly northwest of . Because of weak normality in 1, the income effect

then makes us move from 0 to , where  needs to be weakly north of 0–and therefore weakly

north of . But  actually lies strictly south of , a contradiction.
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Case 3 is that  is strictly northwest of both  and . The change from  to  can again be

decomposed into a substitution effect and an income effect, where the substitution effect causes a

move from  to a point 0 weakly northwest of . Because of weak normality in 2, the income

effect then makes us move from 0 to , where  needs to be weakly west of 0–and therefore

weakly west of . But  actually lies strictly east of , a contradiction.

¤

Theorem 1. Suppose 1 is monotonic and quasi-concave, and suppose 2 is joint-monotonic and

quasi-concave. FM’s and SM’s favorite transactions, (1 2) and
¡
1 2

¢
, exist and are unique.

The set of UPE material payoff pairs coincides exactly with the set of material payoff pairs on the

MPE frontier between (1 2) and
¡
1 2

¢
.

Proof: We will prove that SM’s favorite transaction exists, and deduce the result for FM by

symmetry. If SM’s favorite transaction exists, then joint-monotonicity implies that it must lie on

the MPE frontier. Technical Lemma implies that there does in fact exist a maximizing material

payoff pair on the MPE frontier, and it is unique. Since this payoff pair is on the MPE frontier, there

is in turn exactly one transaction
¡
1 2

¢
that achieves these payoffs. To see that, we will work

in the (1 2) plane and study the material indifference curves for FM and SM. At a MPE action

pair, we must have a tangency between the material indifference curves: −11
12

= 2
1

¯̄̄
1=1

=

2
1

¯̄̄
2=2

= −21
22

. By A3, 22
(1)

2

¯̄̄
1=1

≥ 0 and 22
(1)

2

¯̄̄
2=2

≤ 0 with at least one of these
equalities strict. It follows that SM’s favorite transaction is unique.

FM’s favorite material payoff pair (1 2) is UPE because there is no alternative feasible mate-

rial payoff pair that FM prefers. Analogously, SM’s favorite material payoffs pair
¡
1 2

¢
is UPE

because there is no alternative feasible material payoff pair that SM prefers.

Note that no material payoff pair (01 
0
2) that is strictly within the materially-feasible set can

be UPE; by joint-monotonicity of 2, there is some feasible material payoff pair (
00
1 

00
2)À (01 

0
2)

that SM prefers, and FM also prefers (001 
00
2) by monotonicity.

Finally, any material payoff pair (01 
0
2) on the MPE frontier between (1 2) and

¡
1 2

¢
is

UPE. For contradiction, suppose (01 
0
2) is not UPE. Then there exists another material payoff pair

(001 
00
2) giving at least equally high utility to both players. We may assume (

00
1 

00
2) to be MPE; if

not, then by joint-monotonicity, there exists an MPE material payoff pair giving yet higher utility

to both players that we can use instead. Suppose (1 2) is northwest of
¡
1 2

¢
on the MPE
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frontier; the argument is analogous if the positioning is reversed. If (001 
00
2) is northwest of (

0
1 

0
2)

on the MPE frontier, then (001 
00
2)  (

0
1 

0
2) 
¡
1 2

¢
lie in that order along the MPE frontier, and

2 (
00
1 

00
2) ≥ 2 (

0
1 

0
2)  2

¡
1 2

¢
; but this contradicts the Technical Lemma. On the other

hand, if (001 
00
2) is southeast of (

0
1 

0
2) on the MPE frontier, then (1 2)  (

0
1 

0
2)  (

00
1 

00
2) lie

in that order along the MPE frontier, and 1 (1 2)  1 (
0
1 

0
2) ≤ 1 (

00
1 

00
2); but this also

contradicts the Technical Lemma.

¤

Lemma 2. Suppose 2 is joint-monotonic and quasi-concave. Then there exists a unique b1 such
that the resulting transaction (b1 2 (b1)) is MPE. This transaction is SM’s favorite transaction¡
1 2

¢
, and it is UPE.

Proof: We will prove that given any action b1, the transaction (b1 2 (b1)) resulting from the

unique best-response 2 (b1) is MPE if and only if (b1 2 (b1)) is SM’s favorite transaction. The “if”
direction follows immediately from the fact that SM’s favorite transaction is MPE (Theorem 1), so

we focus on the “only if” direction. Suppose (b1 2 (b1)) is MPE but is not SM’s favorite transaction¡
1 2

¢
. Every point on the MPE frontier π (1 2) touches exactly one budget curve,  (1); the

transaction (1 2) satisfies the MPE condition
11
12

=
21
22

, which implies 1
2

¯̄̄


=

11
21

=
12
22

= 1
2

¯̄̄
(1)

, and therefore the budget curve is tangent to the MPE frontier at

π (1 2). Hence SM’s indifference curve passing through π(b1 2 (b1)) is tangent to the MPE
frontier at π(b1 2 (b1)). So there is some π(01 02) on the MPE frontier between π(b1 2 (b1))
and π

¡
1 2

¢
, sufficiently close to π(b1 2 (b1)), such that 2(π(01 02))  2(π(b1 2 (b1))). But

this contradicts the fact that 2 is strictly decreasing as we move away from π
¡
1 2

¢
along the

MPE frontier (as stated in Technical Lemma).

Finally, Theorem 1 states that SM’s favorite transaction is UPE.

¤

Lemma 3. An equilibrium exists. Moreover, if 1
¡
1 2

¢ ≥ 0, then an equilibrium exists in

which the players exchange rather than taking their outside options.

Proof: From Lemma 2, if FM chooses action 1, SM will choose action 2. The facts that

2 (π (0 0)) = 0 and
¡
1 2

¢
is SM’s favorite transaction imply that 2

¡
π
¡
1 2

¢¢ ≥ 0. Since
some action other than 1 may give FM an even higher utility than 1

¡
π
¡
1 2

¢¢ ≥ 0, 0 is a

lower bound on FM’s equilibrium utility. From Technical Lemma, the set of individually-rational
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transactions  is compact. Since 1 (π (1 2 (1))) is continuous, there exists an optimal action

1 in  . The result follows.

¤

Proposition 4. Suppose 1 and 2 are joint-monotonic and quasi-concave. If the equilibrium

(1 2 (1)) is MPE, then (1 2 (1)) is SM’s favorite transaction, and 1 (π (1 2 (1))) ≥ 0.

Proof: The fact that (1 2 (1)) is SM’s favorite transaction follows directly from Lemma

2. Suppose that 1 (π (1 2 (1)))  0. Then FM would choose her outside option rather than

taking action 1, so (1 2 (1)) is not an equilibrium. But this is a contradiction.

¤

Theorem 2. Suppose 1 and 2 are joint-monotonic and quasi-concave, and 2 is either twice-

continuously differentiable or fairness-kinked. If the equilibrium (1 2 (1)) is MPE, then at least

one of the following must be true:

1. (1 2 (1)) is FM’s favorite transaction.

2.
(12(1))

1
= 0.

3. 2 is fairness-kinked, and (1 2 (1)) is a fairness-rule optimum.

Proof: SM’s best-response function 2 (1) solves the problem of choosing SM’s most-preferred

material payoff pair along the budget curve  (1):

(∗1 (1 2 (1))  
∗
2 (1 2 (1))) = argmax


2 (π) subject to π ∈  (1)  (1)

As described in the text and illustrated in Figure 2, the solution to this problem, π, is the same as

the solution to the standard consumer optimization where the budget line is the linear approxima-

tion to the budget curve at the solution π∗ (1 2 (1)) to the problem (1):

(e1 ( )  e2 ( )) = argmax


2 (π) subject to 1 + 2 =  (2)

where  =  (1 2 (1)) = − 1
2

¯̄̄
(1)

and  = ∗1 (1 2 (1)) +  (1 2 (1))
∗
2 (1 2 (1)).

Since 2 is either twice-continuously differentiable or fairness-kinked,  (1 2 (1)),  (1 2 (1)),e1 ( ), and e2 ( ) are all continuously differentiable functions. Now, there are two possible
cases, depending on whether the change in FM’s action leads to a change in 
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Case 1:
(12(1))

1
6= 0. The Slutsky equation can be applied to find the effects on e1 and e2:



1
e1 ( ) =

e1 ( e1 + e2)


+
e1 ( )


(1 − ∗1)



1
e2 ( ) =

e2 ( e1 + e2)
| {z }

substitution effect

+
e2 ( )


(2 − ∗2)| {z }

income effect

where ∗1 and ∗2 are the solutions from (1), (1 2) is the material payoff pair where the original

budget line intersects with the new budget line (in standard consumer theory, this intersection point

would be interpreted as the endowment consumption bundle), and we omit writing the dependence

of  and  on (1 2 (1)) to avoid cluttering notation.

To calculate the income effect, we begin by finding (1 2). We suppress dependence on 2 (1)

by writing the equation for the budget line as 1 (1) =  (1) −  (1)2 (1). Since (1 2) is

the intersection of the old budget line and the new budget line, it satisfies 1 =  (1)−  (1)2

and 1 =  (1 +∆1) −  (1 +∆1)2. Solving these two equations simultaneously gives 2 =

(1+∆1)−(1)
(1+∆1)−(1) =

(1+∆1)−(1)
∆1

(1+∆1)−(1)
∆1

, so for small ∆1,

2 =
 (1) 1

 (1) 1
and 1 =  (1)−  (1)2

We now calculate (1 − ∗1) and (2 − ∗2). Using the definition of ,
(1)
1

=
(1)
1

∗2 (1) +

 (1)
∗2(1)
1

+
∗1(1)
1

. Substituting and simplifying gives

(2 − ∗2) =
 (1 2 (1))

∗2(12(1))
1

+
∗1(12(1))

1
(12(1))

1

=
 (1 2 (1))

∗2(12(1))
1

+
∗1(12(1))

1
(12(1))

1

= 0

The second equality can be intepreted as an envelope condition: the indirect effect through 2,

 (1 2 (1))
∗2(12(1))

2
+

∗1(12(1))
2

= 0, equals zero because, at a fixed  =  (1 2 (1)),

SM has maximized “income” by choosing the material payoff pair on the MPE frontier. The third

equality follows from  ≡ − 1
2

¯̄̄
(1)

= −1(12)2
2(12)2

and the MPE condition,
∗1(12)2
∗2(12)2

=

∗1(12)1
∗2(12)1

. Now, substituting 2 = ∗2 into the equation for 1 gives 1 =  (1)−  (1)
∗
2, but

since this expression equals ∗1, (1 − ∗1) = 0. Therefore, starting from an MPE transaction, the

income effect from a change in FM’s action equals zero.

To calculate the substitution effect, we define e () = e2 + e1 and use the implicit function
theorem on the first-order condition for problem (2),

2(−22)
2

− 
2(−22)

1
= 0:

9



e2 ( e1 + e2)


= −
22

12

³
()

− e2´− 2

1
−  22

(1)
2

³
()

− e2´

22
(2)

2 − 2 22
12

+ 2 22
(1)

2

= −
−
³
2
1

´3
22
(2)

2

³
2
1

´2
− 22

1

2
2

22
12

+
³
2
2

´2
22
(1)

2

=
1

− 22
(1)

2

¯̄̄
2(∗1

∗
2)



where the second equality follows from
()


= e2 and substituting SM’s first-order condition for
problem (2). A similar calculation yields

1( 1+2)


= 

22(1)
2|
2(∗1∗2)



An interior equilibrium transaction satisfies FM’s first-order condition, which can be written in

terms of the budget lines: 
1

1 (e1 ( )  e2 ( )) = 0. (A4 combined with joint-monotonicity
of 2 ensures that SM’s favorite transaction is indeed interior.) Using the income and substitution

effects derived above,



1
1 (e1 ( )  e2 ( )) =

1

1



1
e1 ( ) + 1

2



1
e2 ( )

=

µ
1

2
− 

1

1

¶
· 1

− 22
(1)

2

¯̄̄
2(∗1

∗
2)



Recall that 1
1

 0 and 1
2

 0 (from Lemma 1). Hence FM’s first-order condition is satisfied only

if (A) SM’s indifference curve is kinked at (∗1 
∗
2), i.e., 

22 (1)
2
¯̄̄
2(∗1

∗
2)
= −∞; or (B) FM’s

favorite transaction is (∗1 
∗
2), i.e.,

12
11

=  at (∗1 
∗
2), which is also SM’s favorite transaction.

Case 2:
(12(1))

1
= 0. Since there is no substitution effect, the new and old budget lines do

not intersect at an “endowment” (1 2). In this case, the Slutsky equation is:



1
e1 ( ) =

e1 ( )


 (1 2 (1))

1


1
e2 ( ) =

e2 ( )


 (1 2 (1))

1| {z }
income effect



Differentiating  (1 2 (1)) =  (1 2 (1))2 (1 2 (1)) + 1 (1 2 (1)) gives

 (1 2 (1))

1
=

µ
1

1
+ 

2

1

¶
+

µ
1

2
+ 

2

2

¶
2 (1)

1
+

 (1 2 (1))

1
2

=
1

1
+ 

2

1
= 0

In the first line, the third term is zero by hypothesis, and the second term is zero using the

envelope theorem as above. The third equality follows from an analogous envelope observation:
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for fixed  =  (1 2 (1)), FM’s action 1 maximizes income since (1 2 (1)) is MPE. Since the

income effect is zero, FM’s first-order condition is clearly satisfied: 
1

1 (e1 ( )  e2 ( )) =
1
1


1
e1 ( ) + 1

2

1
e2 ( ) = 0.

¤

Theorem 3. Suppose 2 is joint-monotonic, quasi-concave, and normal. Suppose the material

payoff functions are globally conditionally transferable. If 1 is monotonic or purely self-regarding,

and if 1
¡
π
¡
1 2

¢¢ ≥ 0, then the unique equilibrium transaction is the efficient transaction¡
1 2

¢
.

Proof: Since the material payoff functions are globally conditionally transferable, the budget

curves are all parallel lines with slope − ≡ − 1
2

¯̄̄
(1)

=
2(12)2
1(12)2

= − for some   0.

Because 2 is normal, SM’s best-response function 2 (1) ensures that 1 and 2 are both strictly

increasing in  (1). Since 1 is monotonic or purely self-regarding, FM maximizes her utility by

taking the action e1 that maximizes  (1). This is the action e1 = 1 that induces SM’s favorite

transaction because that is the unique action that induces an MPE transaction (by Lemma 2).

Since 1
¡
1 2

¢ ≥ 0, this action gives FM at least as high utility as her outside option and is

therefore the unique equilibrium.

¤

Theorem 4. Suppose 2 is joint-monotonic, quasi-concave, and fairness-kinked. Assume S1-S5.

If 1 is monotonic or purely self-regarding, if
¡
1 2

¢
is a strict fairness-rule optimum, and if

1
¡
π
¡
1 2

¢¢ ≥ 0, then the unique equilibrium transaction is the efficient transaction
¡
1 2

¢
.

Proof: We first show that (b1b2) exists and is the unique transaction satisfying 1(b1b2) =
1
¡
1 2

¢
, 2 (π(b1b2)) = 0, and b1  1. Given A1, A3, and A4, clearly there is a unique

material payoff pair on SM’s 2 = 0 indifference curve such that 1 = 1
¡
1 2

¢
, so (b1b2) exists.

Call that material payoff pair
¡
1 b2¢. Clearly b2  2 (since all feasible material payoff pairs

(1 2) 6=
¡
1 2

¢
with 1 = 1 have 2  2). In the remainder of this paragraph, we show that

(b1b2) is unique and satisfies (b1b2)¿ ¡
1 2

¢
. Define e2 (1) implicitly by 1(1e2 (1)) = 1,

which is a continuously differentiable, strictly increasing function (by A1):
2(1)
1

= −11
12

 0.

11



It is also weakly convex:

2e2 (1)
 (1)

2
=
−21(12(1))

(1)
2

1
2
− 21(12(1))

12

2(1)
1

1
2

+ 1
1

³
21(12(1))

12
+ 21

(2)
2

2(1)
1

´
³
1
2

´2
=
− 21

(1)
2
1
2

+ 1
1

21
(2)

2

2(1)
1³

1
2

´2 ≥ 0

where the second equality follows from substituting
2(1)
1

= −11
12

, and the inequality follows

from A1, 21
(1)

2 ≤ 0 (due to A3), and 2(1)
1

 0. Define ee2 (1 2) implicitly by 2(1ee2) = 2,

which is a continuously differentiable function, strictly increasing in 1, strictly decreasing in 2,

and (due to A3) weakly concave in 1. By A3, we also know that e2 (1) is strictly convex oree2 (1 2) is strictly concave in 1 (or both). From Theorem 1, we know there exists a unique 1

such that e2 (1) = ee2 ¡1 2¢, which is 1. In the (1 2) plane, draw the graph of e2 (1) as an
increasing, convex curve and the graph of ee2 ¡1 2¢ as an increasing, concave curve. These curves
are tangent at 1. Since b2  2 and ee2 (1 2) is decreasing in 2, draw the graph of ee2 (1 b2)
as an upward shift of the graph of ee2 ¡1 2¢. There are two intersections of the graphs of e2 (1)
and ee2 (1 b2), one with (1 2)À ¡

1 2
¢
and one with (1 2)¿

¡
1 2

¢
. The latter is (b1b2).

We next show that 1 is a local optimum for FM. By hypothesis,
¡
1 2

¢
is a strict fairness-

rule optimum. Therefore, Part 1 of Proposition 3 implies that (1 2 (1)) is a strict fairness-rule

optimum for all 1 in a neighborhood of 1. It follows that 1 is a local optimum for FM, regardless

of whether her distributional preferences are purely self-regarding or monotonic.

In the remainder of the proof, we show that 1 is a global optimum for FM. To avoid clut-

tering notation with limits, we define the function 
2 , which fully characterizes SM’s preferences

in the region of disadvantageous unfairness but is everywhere twice-continuously differentiable:


2 (π) ≡ 2 (π) for all π ∈  , and

³


2 ()

1



2 ()

2

´
= lim0→0∈

³
2(

0)
1


2(

0)
2

´
for all

π ∈ graph(). (We do not constrain 
2 in the region of advantageous unfairness because we will

not use it there.) Now, it will be helpful in what follows to prove a preparatory claim.

Preparatory claim: We claim that


2

2
− (1b2)

2

1
 0

at all individually-rational transactions (1 2) such that 1(1 2)  1
¡
1 2

¢
.

To prove it, suppose to the contrary there were some π(1 2) at which


2

2
−(1b2)

2

1
≤ 0;

we will first show that


2

1
≥ 0. There are two cases. When 

2

2
−(1b2)

2

1
= 0,


2

1
and


2

2

12



have the same sign since (1b2)  0, and so 
2

1
≥ 0 there (else joint-monotonicity is violated).

And when


2

2
− (1b2)

2

1
 0, we must again have


2

1
≥ 0 (else 

2

2
 0, violating joint-

monotonicity). Now that we have established that


2

1
≥ 0, we know that by choosing a value 

slightly larger than (1b2), we must have


2

2
− 


2

1
 0

at π(1 2). Since  is very close to (1b2), using S1, we also know that


2

2
− 


2

1
 0

at π
¡
1 2

¢
. Drawing budget lines  0 each with slope − passing through the two points π ¡1 2¢

and π(1 2), respectively, the above inequalities imply that SM’s most-preferred point on  is below

1
¡
1 2

¢
and his most-preferred point on 0 is above 1(1 2). By assumption, 1(1 2) 

1
¡
1 2

¢
. Since π

¡
1 2

¢
lies on the MPE frontier, which is downward sloping and concave,  is

to the right of 0. So S3 (the normality assumption) is violated; a contradiction. This proves the

Preparatory Claim.

We will prove that 1 is the global optimum for FM in two cases, but before proceeding, we

note three useful facts.

First, at any individually-rational transaction such that 1(1 2) = 1(b1b2) and 2(1 2) 
2(b1b2) we must have (1 2) À (b1b2). Suppose not. In that case, since A1 rules out

1 ≥ b1 and 2 ≤ b2 or vice-versa, it must be that (1 2) ¿ (b1b2). Assuming for now that

2
1

¯̄̄
1=1(12)  2

1

¯̄̄
2=2(12), then by A1 and weak concavity of 2 (from A3), 2(1 2) 

2(b1b2); a contradiction. We now show that 2
1

¯̄̄
1=1(12)  2

1

¯̄̄
2=2(12). Recall from the

argument in the first paragraph of this proof that (b1b2) is the unique intersection of the graphs ofe2 (1) and ee2 (1 b2) such that (b1b2)¿ ¡
1 2

¢
. Since the graphs of e2 (1) and ee2 ¡1 2¢ are

tangent at 1,
2(1)
1

=
2(12)

1
. Since e2 (1) is increasing and convex, 2(1)1


2(1)
1

. Due to

S2 (in particular, SM’s material payoff function being additively separable), ee2 (1 2) is additively
separable, and since it is also increasing and concave in 1,

2(12(12))
1

=
2(12)

1


2(12)
1

.

Combining these observations and noting that
2(1)
1

= 2
1

¯̄̄
1=1(12) and 2(12(12))

1
=

2
1

¯̄̄
2=2(12), the needed inequality follows.
Second, due to S2 (the material payoff functions being additively separable), the slope of any

budget curve, (1 2), does not depend on 1. Therefore,
(12)

1
= 0, and it thus follows from

the Technical Lemma that
(12)

2
≤ 0.
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Third, since π
¡
1 2

¢ ∈ graph(), and since SM’s fairness rule is strictly increasing, any (1 2)
with 1 ≥ 1

¡
1 2

¢
is in the region of disadvantageous unfairness, and thus we can use 

2 .

Case 1: FM is purely self-regarding. To prove that 1 is the unique global optimum for FM,

it is sufficient to show that there does not exist any individually-rational transaction (1 2 (1)) 6=¡
1 2

¢
that satisfies 1(1 2 (1)) ≥ 1

¡
1 2

¢
. Suppose to the contrary that there exists an

individually-rational transaction (01 2 (
0
1)) 6=

¡
1 2

¢
such that 1(

0
1 2 (

0
1)) ≥ 1

¡
1 2

¢
.

We first show that without loss of generality, we can assume that (01 2 (
0
1)) À

¡
1 2

¢
. By

A1, the only other possibility is (01 2 (
0
1)) ¿

¡
1 2

¢
. But in that case, there exists (001 

00
2) À¡

1 2
¢
such that π (001 

00
2) = π(01 2 (

0
1)) (this follows from an argument similar to that in

the first paragraph of this proof). Since 002  2 (
0
1) and

(12)
2

≤ 0, the change from the

budget line through (01 2 (
0
1)) to the budget line through (

00
1 

00
2) is a Slutsky-compensated

decrease in the price of FM’s material payoff, and thus SM chooses a higher material payoff for FM:

1(
00
1 2 (

00
1)) ≥ 1(

00
1 

00
2). Hence in the remainder of the proof, we can simply use (

00
1 2 (

00
1))

in place of (01 2 (
0
1)) and relabel it as (

0
1 2 (

0
1)).

Because π(01 2 (
0
1)) lies strictly in the interior of the region of disadvantageous unfairness

and 2 (
0
1) is a best response,


2

2
− (01 2 (

0
1))


2

1
= 0 at π(01 2 (

0
1)). We now show that

1(
0
1 2 (

0
1)) = 1

¡
1 2

¢
leads to a contradiction (and then turn in the next paragraph to the

case 1(
0
1 2 (

0
1))  1

¡
1 2

¢
). Clearly 2(

0
1 2 (

0
1))  2

¡
1 2

¢
. Now consider (0001  

000
2 ) À

(01 2 (
0
1)) such that 1 (

000
1  

000
2 ) = 1(

0
1 2 (

0
1)), 2(

0
1 2 (

0
1))  2 (

000
1  

000
2 )  2

¡
1 2

¢
(the

existence of such a transaction follows from an argument similar to that in the first paragraph of

this proof). We know that


2 (π(

0
1 2 (

0
1)))

2
− (01 2

¡
01
¢
)


2 (π(
0
1 2 (

0
1)))

1




2 (π (
000
1  

000
2 ))

2
− (01 2

¡
01
¢
)


2 (π (
000
1  

000
2 ))

1

≥ 
2 (π (

000
1  

000
2 ))

2
− (1b2)

2 (π (
000
1  

000
2 ))

1


where the first inequality follows from S3 (the normality of 2), and the second inequality follows

from 2 (
0
1)  b2, (12)

2
≤ 0, and (12)

1
= 0. Therefore,


2 (π (

000
1  

000
2 ))

2
− (1b2)

2 (π (
000
1  

000
2 ))

1
 0

but this is a contradiction because the Preparatory Claim implies that the left-hand side is ≥ 0.
We now show that 1(

0
1 2 (

0
1))  1

¡
1 2

¢
also leads to a contradiction. By A1, there is a

unique transaction 02 that satisfies 1(
0
1 

0
2) = 1

¡
1 2

¢
, where 02  2 (

0
1). Draw budget lines
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0 with respective slopes −(01 02) and −(01 2 (01)) passing through the two points π(01 02)
and π(01 2 (

0
1)). We know that at π(

0
1 

0
2),


2

2
−(01 02)


2

1
≥ 

2

2
−(1b2)

2

1
≥ 0, where

the first inequality follows from 02  b2, (12)
2

≤ 0, and (12)
1

= 0, and the second inequality

follows from the Preparatory Claim. Therefore, SM’s most-preferred point on line yields a mater-

ial payoff for FM that is weakly smaller than 1(
0
1 

0
2). By construction, SM’s most-preferred point

on line0 is π(01 2 (
0
1)). Now, draw a third line

00 with slope −(01 02) ≤ −(01 2 (01)) going
through π(01 2 (

0
1)). Since moving from 0 to 00 can be thought of as a Slutsky-compensated

price change, SM’s most-preferred point on line 00 must yield a material payoff for FM that is

at least as large as 1(
0
1 

0
2). But comparing FM’s material payoff when moving from 00 to 

reveals a violation of 2 being normal in 1 (the assumption S3); a contradiction.

Case 2: FM’s distributional preferences are strictly monotonic, and S4 and S5

hold. We claim that there is no 01 6= 1 such that 1(
0
1 2 (

0
1)) ≥ 1

¡
1 2

¢
. We showed in

Case 1 that there is no 01 6= 1 such that 1(
0
1 2 (

0
1)) ≥ 1

¡
1 2

¢
. The result then follows from

the observation that, since 1 is monotonic, 1 (1 2)  1
¡
1 2

¢
(from S4), and 1 is weakly

quasi-concave (from S5), the region enclosed by the upper-contour set of FM’s 1 = 1
¡
π
¡
1 2

¢¢
indifference curve and MPE frontier contains only material payoff pairs satisfying 1(1 2) 

1
¡
1 2

¢
. This completes the proof.

¤

Theorem A1. Suppose 1 and 2 are joint-monotonic and quasi-concave. FM’s and SM’s

favorite transactions, (1 2) and
¡
1 2

¢
, exist and are unique. The set of UPE material payoff

pairs is a connected set that includes (1 2) and
¡
1 2

¢
and lies within the region enclosed by

1, 2, and the MPE frontier.

Proof: The proofs that (1 2) and
¡
1 2

¢
exist, are unique, and are UPE are the same as

in the proof of Theorem 1.

To see that the set of UPE material pairs is a connected set, consider the problem π
¡
2
¢ ∈

argmax{:∈ 2()=2}1 (π). The Maximum Theorem (e.g., Sundaram 1996, p.235) implies

that π
¡
2
¢
is an upper-hemicontinuous correspondence. It follows that

©
π
¡
2
¢ª

2∈[02(12)]
is a connected set. But

©
π
¡
2
¢ª

2∈[02(12)] is exactly the set of UPE material payoff pairs.

There does not exist a UPE material payoff pair (b1 b2) outside of the region enclosed by 1,
2, and the MPE frontier because by construction (b1 b2) is worse than (1 2) or ¡1 2¢ for
both FM and SM.
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¤

Theorem A2. Suppose 1 and 2 are joint-monotonic and quasi-concave, and both are either

twice-continuously differentiable or fairness-kinked. If the equilibrium (1 2 (1)) is UPE and not

MPE, then (1 2 (1)) is a fairness-rule optimum for SM. If, in addition, (1 2 (1)) is a strict

fairness-rule optimum for SM and any fairness rule is continuously differentiable, then at least one

of the following must be true: π (01 2 (
0
1))

1. SM’s indifference curve for disadvantageously unfair transactions is tangent to SM’s fairness

rule at π (1 2 (1)).

2. 1 is fairness-kinked, π (1 2 (1)) is on FM’s fairness rule, and the respective fairness rules

1 and 2 have different slopes at π (1 2 (1)).

Proof: We begin with the first claim: if the equilibrium (1 2 (1)) is UPE and not MPE, then

(1 2 (1)) is a fairness-rule optimum for SM. We will prove that if the equilibrium (1 2 (1))

is UPE and if 2 is continuously differentiable at π (1 2 (1)), then π (1 2 (1)) is also MPE.

Suppose not. Then π (1 2 (1)) is in the interior of the materially-feasible set. Lemma 1 implies

that SM’s distributional preferences are (locally) monotonic in a neighborhood of π (1 2 (1)).

Since FM’s distributional preferences are joint-monotonic, there is an alternative material payoff

pair giving higher material payoff to both players that both players prefer. This contradicts UPE.

From now on, we assume that the equilibrium (1 2 (1)) is UPE, is not MPE, and is a strict

fairness-rule optimum for SM, and we assume that any fairness rule is continuously differentiable.

We next show that if 1 is continuously differentiable at π (1 2 (1)), then SM’s indifference

curve for disadvantagously unfair transactions is tangent to SM’s fairness rule at π (1 2 (1)).

For contradiction, suppose that SM’s indifference curve for disadvantagously-unfair transactions

is not tangent to SM’s fairness rule at π (1 2 (1)):
1
2

¯̄̄

2 =


2 ((12(1)))

6=  0 (2). By a

similar argument to that in the previous paragraph, SM’s distributional preferences cannot be

locally monotonic; therefore, SM’s interpersonal indifference curve at π (1 2 (1)) is upward-

sloping. Since the indifference curve also lies in the region of disadvantageous unfairness, it must

be that 1
2

¯̄̄

2 =


2 ((12(1)))

  0 (2). Since π (1 2 (1)) is not MPE, we know that it is in the

interior of the materially-feasible set, and this, together with π (1 2 (1)) being UPE, implies that

1
2

¯̄̄
1=1((12(1)))

≥ 1
2

¯̄̄

2 =


2 ((12(1)))

. Since (1 2 (1)) is a strict fairness-rule optimum
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for SM, Part 1 of Proposition 3 implies that there exists a slight deviation for FM such that SM’s

optimal response would yield a material-payoff pair slightly southwest on SM’s fairness rule. But the

above inequalities imply that 1
2

¯̄̄
1=1((12(1)))

  0 (2) at π (1 2 (1)), meaning that FM

would prefer this alternative material-payoff pair, contradicting that (1 2 (1)) is an equilibrium.

Finally, we show that if 1 is fairness-kinked and π (1 2 (1)) is on FM’s fairness rule, then

FM’s and SM’s respective fairness rules 1 and 2 have different slopes at π (1 2 (1)). For contra-

diction, suppose instead that 1 and 2 have the same slope at π (1 2 (1)). Since (1 2 (1)) is

a strict fairness-rule optimum for SM, Part 1 of Proposition 3 implies that there exists a slight devi-

ation for FM such that SM’s optimal response would yield a material-payoff pair slightly northeast

along SM’s fairness rule. We know that FM would prefer a sufficiently small northeast movement

along SM’s fairness rule, contradicting that (1 2 (1)) is an equilibrium.

¤
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