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A Appendix

This Appendix provides the proofs for all propositions stated in "A Biological Model of Unions."
Additional transitional dynamics can be found in the working paper version of the paper (Kremer
and Olken 2001, NBER Working Paper #8257).

Proof of Proposition 1. The steady state pattern of unionization must satisfy two criteria.
First, the number of unionized �rms, denoted U , must remain constant. Second, the distribution
of organizing di¢ culties, c, of union and non-union �rms must also remain constant, given the
(di¤ering) death rates of unionized and non-unionized �rms and the distribution of c among newly-
created �rms.

Suppose that at a given moment all �rms with organizing di¢ culty below some cuto¤ point
p are unionized and all �rms with di¢ culty above p are non-unionized. This will be the case in
steady state. There will be two types of non-unionized �rms, �rms that have just been created
with di¢ culty distributed according to the initial distribution and pre-existing �rms with di¢ culties
greater than p. Unions will optimally spend their organizing budget �rst to organize newly emerged
�rms with organizing di¢ culty below p. Once the union has organized those �rms, it will spend
what remains of its budget on the remaining previously existing �rms with marginal di¢ culty of
organizing p.

Normalize the number of �rms, F , to 1, so that U becomes the fraction of �rms that are
unionized. During an instant of time of length dt, [� (�+B)U + � (0) (1� U)] dt �rms will have
just exited due to a negative productivity shock. As those �rms die, new �rms will be born with
di¢ culties of being unionized distributed according to the initial distribution. For a union to
organize all newborn �rms with di¢ culty level below p, the union will have to spend

[� (�+B)U + � (0) (1� U)] dt
Z p

0
c dH (c) ; (A.1)

which, since H (c) is Uniform[0,1], is just [� (�+B)U + � (0) (1� U)] dtp
2

2 . In order for p; the
threshold below which all �rms are organized, to remain constant, the union�s e¤ective organizing
budget must exactly correspond to the total cost of organizing all newly created �rms with cost
less than or equal to p, i.e.:

A(�;B)BU = [� (�+B)U + � (0) (1� U)] p
2

2
: (A.2)

This condition, that p must not change, is one of the two conditions that must be satis�ed in
the steady state. If the union had a surplus, i.e. if A(�;B)BU > [� (�+B)U + � (0) (1� U)] p

2

2 ,
then it would spend that surplus organizing non-union �rms in the �thick�segment with di¢ culty
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greater than p, and p would increase. Conversely, if the union�s budget was not su¢ cient to organize
all of the newly born �rms with di¢ culty below p, then p would decrease.

The second condition for the steady state is that the number of unionized �rms, U , must not
change, which implies that the number of newly born �rms the union organizes must exactly equal
the number of �rms it loses to attrition. This yields the condition

[� (�+B)U + � (0) (1� U)] p = � (�+B)U: (A.3)
Equations (4) and (3) in the text can be obtained by combining equation (A.2) and equa-

tion (A.3). The derivation for the condition that guarantees an interior solution, 2A (�;B)B <
� (�+B), can be seen by setting the algebraic expressions for U� and p� equal to 1, the maximum
value they can take, given that the maximum proportion of �rms that can be unionized is 1 and
that the di¢ culties of unionization are distributed on the interval [0; 1].

Proof of Proposition 2. The comparative statics with respect to A (�;B), and a level shift
in � are immediate from equation (4). To see the e¤ect of a proportional shift, suppose that the
ratio �(�+B)

�(0) is �xed at � (�+B). Then equation 4 can be rewritten as

U� =
2A (�+B)B

� (�+B)2 � (0)� 2A (�+B)B [� (�+B)� 1]
: (A.4)

Taking the derivative with respect to � (0) yields
dU�

d� (0)
= � U�� (�+B)2

� (�+B)2 � (0)� 2A (�+B)B [� (�+B)� 1]
: (A.5)

Condition (5) guarantees that 2A (�+B)B � � (�+B) � (0), which in turn guarantees that dU�

d�(0)
will be less than zero.

Proof of Proposition 3. Suppose the incumbent union follows the policy (�1; B1) and the
entrant follows the policy (�2; B2), with p�2 =

2A(�2;B2)B2
�(�2+B2)

> 2A(�1;B1)B1
�(�1+B1)

= p�1. Denote the sizes of
the two unions by U1 and U2 respectively. It su¢ ces to show that U1 ! 0 as t!1.

To see this, we �rst need to introduce the dynamics of the system with a single union. At
any instant, assuming that there is no discontinuous increase in the number of �rms, there are
two di¤erent sets of �rms that the union may chose to organize: the �thick�set of �rms that are
non-unionized and the �thin�set of �rms that were created that instant to replace �rms that exited
due to a negative shock. The measure of non-unionized �rms in the thick set is 1 � U and the
measure of �rms in the thin segment is

[� (�+B)U + � (0) (1� U)] dt (A.6)
Facing this pro�le of non-unionized �rms, the union will organize the easiest �rms it can. These

will be all of the �rms in the thin segment with cost less than p and then as many �rms in the
thick segment as it can with whatever remains of its organizing budget at that moment. Note
that p represents the lower bound of the �thick�set of non-unionized �rms �it will be possible in
certain transitions that there are unionized �rms whose di¢ culties are greater than p. Since the
distribution of �rms in the thin segment is uniform, the cost of organizing all �rms in the thin
segment with cost less than p will be

[� (�+B)U + � (0) (1� U)] dtp
2

2
(A.7)

so that the �ow e¤ective organizing budget surplus or de�cit becomes

A (�;B)BU � [� (�+B)U + � (0) (1� U)] p
2

2
(A.8)

If the e¤ective organizing budget has a surplus, then the growth of the union will be the number
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of �rms in the thin segment with di¢ culty levels less than or equal to p plus however many older
�rms the union can a¤ord to organize at marginal cost p with whatever remains of its budget,
minus the number of its member �rms it lost due to negative shocks:

_U = [� (�+B)U + � (0) (1� U)] p+
A (�;B)BU � [� (�+B)U + � (0) (1� U)] p

2

2

p
� � (�+B)U

(A.9)

=
A (�;B)BU + [�(�+B)U + �(0)(1� U)] p

2

2

p
� �(�+B)U (A.10)

On the other hand, if the union�s e¤ective organizing budget is not su¢ cient to organize all �rms
in the thin segment with costs less than or equal to p, the union will organize as many of those
�rms as it can. This will be all newly created �rms with di¢ culty levels less than or equal to some
cuto¤ level l such that the total budget exactly equals the cost of organizing the �rms, i.e.

[A (�;B)BU ] = [� (�+B)U + � (0) (1� U)] l
2

2
(A.11)

However, since the newly created �rms of di¢ culty levels between l and p will not be unionized,
they will become part of the thick segment, and p will immediately decrease to be equal to l. This
implies that when the union organizing budget is insu¢ cient,

p = l =

s
2A (�;B)BU

[� (�+B)U + � (0) (1� U)] (A.12)

The change in the number of unionized �rms in this case will therefore be the fraction p of thin
�rms unionized, multiplied by the total number of thin �rms, less the number of unionized �rms
that exit:

_U = [� (�+B)U + � (0) (1� U)] p� � (�+B)U (A.13)

In the case of two coexisting unions, as in the case of a single union, there are two di¤erent
equations for the change in the number of unionized �rms according to whether there is a budget
surplus or a budget de�cit.1 First, note that the number of �rms that die in an instant of time dt
becomes

� (�1 +B1)U1 + �(�2 +B2)U2 + � (0) (1� U1 � U2): (A.14)

As discussed in the text, when there are multiple unions, they do not compete over the same �rms
in the �thin�segment, but rather divide them according to their e¤ective organizing expenditures.

1Note that at any instant p is the same for both unions, since new �rms are allocated in proportion to the unions�
e¤ective organizing budgets, and either both unions have a budget surplus and can organize �rms in the thick segment
(of di¢ culty level p) or neither does. This can be seen by substituting the formulas for dividing newly created �rms
( A(�1;B1)B1U1
A(�1;B1)B1U1+A(�2;B2)B2U2

and A(�2;B2)B2U2
A(�1;B1)B1U1+A(�2;B2)B2U2

) into equation (A.8).
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Given this, in the case of a budget surplus, equation (A.10) for the spread of unions becomes:

_U1 =

A(�1; B1)B1U1 +
A(�1;B1)B1U1

A(�1;B1)B1U1+A(�2;B2)B2U2

�
� (�1 +B1)U1 + �(�2 +B2)U2

+� (0) (1� U1 � U2)

�
p2

2

p
� � (�1 +B1)U1

(A.15)

_U2 =

A(�2; B2)B2U2 +
A(�2;B2)B2U2

A(�1;B1)B1U1+A(�2;B2)B2U2

�
� (�1 +B1)U1 + �(�2 +B2)U2

+� (0) (1� U1 � U2)

�
p2

2

p
� � (�2 +B2)U2:

(A.16)
In the case of a budget de�cit with two unions, equation (A.13) for the spread of unions becomes

_U1 =
A(�1; B1)B1U1

A(�1; B1)B1U1 +A(�2; B2)B2U2

�
� (�1 +B1)U1 + �(�2 +B2)U2

+� (0) (1� U1 � U2)

�
p� � (�1 +B1)U1

(A.17)

_U2 =
A(�2; B2)B2U2

A(�1; B1)B1U1 +A(�2; B2)B2U2

�
� (�1 +B1)U1 + �(�2 +B2)U2

+� (0) (1� U1 � U2)

�
p� � (�1 +B2)U2:

(A.18)
In either case, examination of the formulae above shows that�
dU1
dt

+ �(�1 +B1)U1

�
1

A(�1; B1)B1U1
=

�
dU2
dt

+ �(�2 +B2)U2

�
1

A(�2; B2)B2U2
(A.19)

which implies that
1

A(�1; B1)B1

d (logU1)

dt
+
2

p�1
=

1

A(�2; B2)B2

d (logU2)

dt
+
2

p�2
: (A.20)

Hence

d log

 
U

1
A(�2;B2)B2
2

U

1
A(�1;B1)B1
1

!
dt

=
2

p�1
� 2

p�2
(A.21)

The right hand side of this equation is a constant which is strictly positive since p�2 > p�1 by

hypothesis. It follows that U
1

A(�2;B2)B2
2

U

1
A(�1;B1)B1
1

!1. However, since 0 � Ui � 1 and A(�i; Bi)Bi > 0, the

only way this can happen is if U1 ! 0. Hence the incumbent union is wiped out by the entrant
union. It follows that we must converge to the steady state containing only the (�2; B2) union.

Proof of Proposition 4. The fact that the (aS ; BS) union will be evolutionarily stable follows
directly from Proposition 3, since by de�nition (aS ; BS) maximizes p�. To see that (�S ; BS) 6=
(�W ; BW ), suppose not, i.e., that �S = �W and BS = BW . Consider e�, which is slightly less than
�W . Since (�W ; BW ) maximizes A (�W ; BW ), moving from �W to e� results in a �rst order decrease
in � (�+B) but only a second-order decrease in A (�;B). Therefore, 2A(e�;BW )BW�(e�+BW ) > 2A(�W ;BW )BW

�(�W+BW )
,

which is a contradiction of the assumption that �S = �W and BS = BW , since by de�nition
(aS ; BS) maximizes p� =

2A(�;B)B
�(�+B) . Therefore (�S ; BS) 6= (�W ; BW ).

Proof of Proposition 5. To prove the proposition, suppose not, i.e. that �S + BS �
�W + BW and BS � BW . Then in that case,

2A(�S ;BS)BS
�(�S+BS)

� 2A(�W ;BW )BW
�(�W+BW )

, since � (�S +BS) �
� (�W +BW ), BS � BW , and A (�S ; BS) � A (�W ; BW ) since (�W ; BW ) maximizes A (�W ; BW ).
Since Proposition 4 implies that (�S ; BS) 6= (�W ; BW ), at least one of these inequalities must be
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strict, in which case 2A(�S ;BS)BS
�(�S+BS)

< 2A(�W ;BW )BW
�(�W+BW )

. This violates the de�nition of (aS ; BS), which

is that it maximizes p� = 2A(�;B)B
�(�+B) .
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