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1 Property of the Optimal Sequential Scheme

Under the optimal scheme identified in Theorem 2, the response by each buyer
moves in the direction of the response dominant among their predecessors. In other
words, a buyer accepts with a higher probability than his predecessor when most
buyers before him have chosen to accept, and rejects with a higher probability when
most buyers before him have chosen to reject. Formally, the following proposition
states that when the state αt−1 > 0 as a result of many buyers having accepted,
the expected probability that the next buyer accepts is higher than the probability
that the current buyer accepts. Conversely, when the state αt−1 < 0 as a result of
many buyers having rejected, the expected probability that the next buyer rejects
is higher than the probability that the current buyer rejects.

Proposition S.1. Suppose that every si has the uniform distribution, that (5) and
(6) hold, and that s + c0 = 0. Then the following hold under the optimal sequential
scheme σ. For any δ > 0, there exists ε̄ > 0 such that if ε < ε̄, then αt−1 > δ

implies Eσ[zt+1(α̃t) | αt−1] > zt(αt−1), and αt−1 < −δ implies Eσ[zt+1(α̃t) | αt−1] <

zt(αt−1).

Proof of Proposition S.1 Since zt is an affine function by Theorem A.4, we have
(A.29) for any α, and hence the expected value of the probability zt+1 of acceptance
in period t + 1 conditional on the state αt−1 at the beginning of period t equals

Eσ[zt+1(α̃t) | αt−1] = zt+1(αt−1).

It hence follows from at = Δ and (A.33) that

Eσ[zt+1(α̃t) | αt−1] − zt(αt−1) =
1

2Δ
{at+1 − at + (bt+1 − bt) αt−1}

=
1

2Δ
(ct+1 − ct) αt−1 + o(ε).

Since ct+1 − ct > 0, we obtain the desired result.
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Buyer order Revenue
1 2 3 4 1.0168
2 1 3 4 1.0161
3 1 2 4 1.0124
4 1 2 3 1.0082

Table 1: Uniform Distribution

2 Optimal Sequential Schemes in Other Environments: Numerical

Examples

In this section, we report results of numerical computation which find that the
conclusion of Theorem 2 on the optimal ordering of buyers extends to more general
environments. Set the number of buyers I = 4 and their dependence weights ci = i/7
for i = 1, . . . , 4. Our strategy is to use Lemma A.2 to compare the revenue associated
with every contingent scheme. That is, we begin with the sequential pricing problems
for every pair of buyers and every initial state α0 ∈ CI−2 = C2, then proceed to the
problems with three buyers, and so on.25

In the first example, the private signal si has the uniform distribution over the
unit interval, but ci’s do not satisfy (4). We find that the optimal sequential scheme
(among all schemes and not just the one with fixed orders) trades with buyers
1, . . . , 4 in this order. Table 1 lists the seller’s revenue from the four alternative
buyer sequences in (A.18).

In the second example, we assume that a buyer’s private signal si has a truncated
exponential distribution over [0, M ] (M > 0). Specifically, we suppose that the
cumulative distribution F and the associated density f are respectively given by

F (si) =
1 − e−δsi

1 − e−δM
and f(si) =

δe−δsi

1 − e−δM
for si ∈ [0, M ].

For M = 2 and δ = 0.5, we again find that the optimal sequential scheme trades
in the increasing order of the dependence weights. Table 2 lists the seller’s revenue
from the four buyer sequences in (A.18).

Listed below is the matlab program to compute the seller’s revenue along the four
alternative sequences in (A.18) for the truncated exponential distribution reported

25Revenue is computed for each point on the grid of the size 1/200 × 1/200 over the (αt−1, zt)

space for each t = 1, . . . , 4. See below for a program source in Matlab for the representative cases.

2



Buyer order Revenue
1 2 3 4 1.5892
2 1 3 4 1.5873
3 1 2 4 1.5799
4 1 2 3 1.5633

Table 2: Truncated Exponential Distribution

in Table 2. The subroutine follows the main program.

%%%%%%%%%%%%%%%% Main program %%%%%%%%%%%%%%%%

close all; clear all; diary([mfilename ’.out’]);

disp(’optimal sales scheme model. F: truncated exponential distribution’);

%Solve the sequential pricing problems with J=I and alpha_0=0.

denom = 7;

%permutations of four buyers

B1=[1/denom 2/denom 3/denom 4/denom];

B2=[2/denom 1/denom 3/denom 4/denom];

B3=[3/denom 1/denom 2/denom 4/denom];

B4=[4/denom 1/denom 2/denom 3/denom];

% parameters

M = 2; %least upper bound of the distribution

delta = 0.5;

edm = exp(-delta*M);

mu = (delta^(-1) - (M+delta^(-1))*edm) / (1-edm);

% define grid for alpha

maxa = 3*(M-mu); % maximum value of alpha grid

mina = 3*(-mu); % minimum value of alpha grid

ia = 0.005; % size of alpha grid

na = round((maxa - mina)/ia+1); % number of alpha grid points

% determine grid point for alpha=0

for i=1:na

if i*ia + mina <= 0 & (i+1)*ia + mina >= 0;

a0=i+1;

end

end

% define vec_a as a column vector

for i=1:na

vec_a(i,1) = (i-1)*ia + mina;

end

%%%

B=B1;

A = aoyagi11func(B, maxa, mina, ia, na, M, delta, edm, mu);

A1=A;

disp(A1(1,a0));

%B=B2

B=B2;

A = aoyagi11func(B, maxa, mina, ia, na, M, delta, edm, mu);
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A2=A;

disp(A2(1,a0));

%B=B3

B=B3;

A = aoyagi11func(B, maxa, mina, ia, na, M, delta, edm, mu);

A3=A;

disp(A3(1,a0));

%B=B4

B=B4;

A = aoyagi11func(B, maxa, mina, ia, na, M, delta, edm, mu);

A4=A;

disp(A4(1,a0));

%evaluate at the initial state a=0

disp(’A1-A2’);

disp(A1(1,a0)-A2(1,a0));

disp(’A1-A3’);

disp(A1(1,a0)-A3(1,a0));

disp(’A1-A4’);

disp(A1(1,a0)-A4(1,a0));

diary off;

%%%%%%%%%%%%%%%% Subroutine %%%%%%%%%%%%%%%%

function A = aoyagi11func(B, maxa, mina, ia, na, M, delta, edm, mu)

nb = 4; %number of buyers

% define grid for z

maxz = 1; % maximum value of z grid

minz = 0; % minimum value of z grid

iz = 0.005; % size of z grid

nz = round((maxz - minz)/iz+1); % number of z grid points

% define z as a column vector

for i=1:nz

z(i,1) = (i-1)*iz + minz;

end

% set parameter values

c0 = 0;

ci = ones(nb,1);

for i = 1 : nb;

ci(i,1) = B(1,i);

end;

%initialize payoff vectors

pi = ones(nz,na); % values when (z,a)

pistar = ones(nb,na); % optimal value when state is a

pistara = ones(nz,1); % expected optimal value when accepted

pistarr = ones(nz,1); % expected optimal value when rejected

%t=4 start from the final period

t=4;

maxat = (t-1)*(M-mu); % maximum of alpha in t

minat = (t-1)*(-mu); % minimum of alpha in t

for i = 1:na

a = mina + (i-1)*ia; % compute alpha for the ith grid point

for j = 1:nz;
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theta = -1/delta * log(1-(1-edm)*(1-z(j,1))); % theta for each z

edth = exp(-delta*theta);

if a > maxat | a < minat % if the ith grid point exceeds the bounds

pi(:,i) = -100*nb; % substitute a small value

else

pi(j,i) = z(j,1)*theta + ci(t)*a*z(j,1) + c0*z(j,1);

end

end;

end

pistar(t,:) = max(pi);

%t=1,2,3

t=3;

while t>0

maxat = (t-1)*(M-mu);

minat = (t-1)*(-mu);

for i = 1:na

a = mina + (i-1)*ia;

k = ones(nz,1); % kappa(z) as a nz vector

l = ones(nz,1); % lambda(z) as a nz vector

for j = 1:nz;

theta = -1/delta * log(1-(1-edm)*(1-z(j,1))); % theta for each z

edth = exp(-delta*theta);

if z(j,1) == 0

k(j,1) = M-mu;

else

k(j,1) = ((theta + delta^(-1))*edth-(M+delta^(-1))*edm) / (edth-edm)...

- (delta^(-1)-(M+delta^(-1))*edm) / (1-edm);

end;

if z(j,1) == 1

l(j,1) = -mu;

else

l(j,1) = (delta^(-1)-(theta+delta^(-1))*edth) / (1-edth)...

- (delta^(-1)-(M+delta^(-1))*edm) / (1-edm);

end;

aa(j) = a+k(j,1); % future state for each z when accepted

ar(j) = a+l(j,1); % future stete for each z when refected

if aa(j) > t*(M-mu);

aa(j) = t*(M-mu);

end;

if ar(j) < t*(-mu);

ar(j) = t*(-mu);

end;

gaa = fix((aa(j) - mina)/ia) + 1; % grid point for aa(j)

gar = fix((ar(j) - mina)/ia) + 1; % grid point for ar(j)

pistara(j,1) = pistar(t+1,gaa); % future payoff pistar_a when accepted

pistarr(j,1) = pistar(t+1,gar); % future payoff pistar_r when rejected

if a > (maxat+ia) | a < (minat-ia)

pi(j,i) = -100*nb;

else

pi(j,i) = z(j,1)*theta + (ci(t)*a+c0)*z(j,1) + ...

z(j,1)*pistara(j,1) + (1-z(j,1))*pistarr(j,1);

end
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end

end

pistar(t,:) = max(pi); % choose the maximizing z for each a in period t

t=t-1;

end

A(1,:) = pistar(1,:);
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