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Abstract

In some areas, agriculture that depends on irrigation from groundwater dominates both

peak period energy use and consumption of water. Energy is a key input for pumping

water from aquifers. This linkage means that public policies and contract terms designed for

either factor may affect the use of the other factor. Even though the link between energy

and water in groundwater-fed irrigation has been recognized, no rigorous economic study

of interactions between these factor markets has appeared in the economics literature. We

look in particular at the effects on groundwater use of energy supply interruptions. We

analyze the intra-seasonal irrigation decisions of individual agricultural producers facing

stochastic energy supply interruption and rainfall using stochastic dynamic programming.

We find that agricultural producers should increase the amount of water applied per irrigation

opportunity to hedge against the risk of future energy outages. Further, numerical analysis

calibrated to intensive irrigation in Nebraska, USA, where groundwater use is regulated,

shows that random energy supply interruption could increase the total amount of water

consumption despite reduced opportunities for irrigation. This finding indicates that energy

supply interruptions could have adverse effects on groundwater use, potentially complicating

the management of water resources. We also find that changes in the distribution of rainfall,

as may accompany climate change, exacerbate the effects of energy supply interruptions on

total groundwater consumption.

JEL codes: Q51, Q15
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1 Introduction

This study examines relationships between climate, water use, and energy use at the groundwater-

fed irrigated agriculture. Irrigation is used worldwide to buffer agricultural production

against climate variability and accounts for more than half of all freshwater consumption

worldwide (Naylor, 1996; Shah et al., 2003). Groundwater is a major source of water for

irrigation; this practice has contributed substantially to aquifer depletion worldwide (Malik,

2002; Siebert et al., 2010; Scanlon et al., 2012; Wada et al., 2012). Pumping water out of

aquifers uses energy. Energy use for groundwater-fed irrigation varies over space and time

because crop water demands and weather vary over space and time. Thus, there is a strong

climate-energy-water nexus (Scott, 2011, 2013). These linkages mean that public policies

and contract terms designed for either factor - energy or water - may affect the use of the

other factor. Energy supply capacity and water resources are both constrained in many areas

so understanding the interactions between these markets is important.

The need to manage peak energy loads has led many power suppliers to introduce offer

interruptible energy supply contracts. Conversely, in the developing world, energy supply is

often unreliable due to problems with infrastructure or management (Malik, 2002). In both

cases, energy supplies are stochastic. This stochasticity may influence the water use choices

of irrigators with implications for water resource management. These relationships may also

be affected by changes in rainfall and temperature patterns.

There are three main research questions considered in this paper. First, how would

profit-maximizing farmers adjust their irrigation strategy under energy supply interruption

as opposed to the case of no control? Second, does energy supply interruption increase or

decrease total groundwater consumption? Finally, how does climate variation affect ground-

water consumption under energy supply interruption?

We develop and solve a stochastic dynamic programming problem in which producers

decide when and how heavily to irrigate throughout a crop growth season. The model uses a

probabilistic interruptible energy supply and stochastic rainfall. Analytical optimality con-
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ditions show that increasing the likelihood of energy supply interruption has an ambiguous

impact on the total amount of irrigation. However, numerical examples calibrated to condi-

tions in the High Plains, USA, suggest that total firm-level water demand is likely to increase

as a consequence of energy supply interruption

This paper is laid out as follows. Section 2 discusses the phenomenon of energy supply

interruption. Section 3 reviews pertinent literature. Sections 4-6 present a formal decision

model, analytical results, and numerical examples, respectively. Section 7 discusses policy

implications and extensions.

2 Energy Supply Interruption

Many agricultural producers rely on public power provision for groundwater extraction from

aquifers. However, in some regions, that public energy supply is interruptible. Therefore,

producers may not be able to irrigate when they desire if energy supply is interrupted,

intentionally or not.

In developing countries, energy supply interruption occurs often because of the inability

to supply energy reliably due to multiple factors including poor facility maintenance (Dethier

et al., 2011; Steinbuks and Foster, 2010). In India, one of the largest groundwater users in

the world, groundwater-fed irrigation can use so much energy that supply cannot keep up

with demand, causing frequent energy outages (Malik, 2002). In Punjab, India, in fact, 85%

of farmers are unsatisfied with the reliability of energy supply (Perveen et al., 2012).

In developed countries, energy supply reliability is not generally a concern. However,

public energy suppliers have introduced a number of demand-side management (DSM) mea-

sures to manage energy peak loads (Eto, 1996). Direct irrigation load control, which involves

cuts in energy supply, is one form of DSM. Therefore, producers may be faced with energy

supply interruptions meant to curtail peak energy loads. In the U.S., such programs are im-

plemented in regions with heavy groundwater-fed irrigation such as Nebraska, Kansas, and
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Idaho. Direct irrigation load control programs usually offer farmers a choice of contracts

with varying levels of restrictions on the ability to irrigate, accompanied by some form of

financial incentive to compensate for the increased risk in irrigation scheduling (Table 1).

Energy suppliers set financial incentives generously to encourage producers to choose a con-

tract with energy supply interruption that gives suppliers more control over the peak energy

load. Consequently, in developed countries, many producers opt into energy supply inter-

ruption, even though the total hours with no energy supply can be significant (Table 2).

In developed as well as developing countries, then, agricultural producers need to take into

account the possibility of energy supply interruption when forming their irrigation strategies.

3 Literature Review

There are three main strands of literature relevant to this study. We first review the litera-

ture on energy supply reliability in developing countries and then energy DSM for developed

countries. Finally, we look at the literature on the intraseasonal irrigation scheduling prob-

lem, which also forms the framework for our model.

3.1 Energy Supply Reliability

In many developing countries, energy supply interruption is common; the economics litera-

ture therefore includes numerous studies on the negative economic impact of energy outages

(e.g. Steinbuks and Foster, 2010; Adenikinju, 2003; Gulyani, 1999). However, analysis of

their impact on groundwater use is scant. Malik (2002) reports that agricultural producers

in India, to cope with energy supply interruption, install their own electricity generators

to stabilize their energy supply. Those who cannot afford such an investment extract more

water when energy supply is available than they would if the energy supply were reliable

(Malik, 2002). Shah et al. (2008) report that the combination of energy supply hour ra-

tioning and more reliable supply as part of the Jyotigram scheme led to a reduction in water
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consumption in Gujarat, India. However, all the existing studies provide only anecdotal

evidence of the linkage between energy supply reliability and groundwater use. No rigorous

economic analysis has been conducted to date.

3.2 Energy Demand-Side Management

One common DSM is time-of-use (TOU) rates, which differentiate marginal energy prices

depending on time of the day. The numerous empirical studies on the impacts of energy

DSM programs are primarily focused on the impact of TOU rates on residential energy

consumption behavior (e.g.Aigner and Leamer, 1984; Caves et al., 1984; Howrey and Varian,

1984; Park and Acton, 1984; Hausman and Trimble, 1984). In economics, to the author’s

knowledge, Train and Toyama (1989) is the only study that looks at the impact of an energy

DSM program in the agricultural sector. This study found empirically that energy TOU

rates shift consumers’ electricity use from on-peak hours to off-peak hours, contributing to

a reduction in the peak load. Moreover, they find that total electricity use increased as the

decrease in the price during the off-peak period was more than enough to make up for the

increased price during the on-peak periods. However, they did not make the connection

that the increased energy use implies greater water use. Outside of economics, Scott (2013)

provides some evidence of increases in water consumption after the introduction of energy

TOU rates in Mexico, though the study lacks rigorous statistical examination. In fact, there

have been no rigorous economic studies, theoretical or empirical, on the implications of

energy supply interruption on groundwater-fed irrigation.

3.3 Optimal Intra-Seasonal Irrigation Scheduling

The dynamic optimization problem considered in this study falls into the class of intra-

seasonal water allocation (irrigation scheduling) problems. The two main strands of literature

on these problems differ in their objectives. One strand pays almost no attention to economic

factors such as the price of a crop or water, but only to physical aspects that maximize the
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crop production level (e.g. Hajilal et al., 1998). The other incorporates economic factors,

focusing on profit rather than yields (e.g. Gowing and Ejieji, 2001; Paul et al., 2000; Dudley

et al., 1971; Rhenals and Bras, 1981; Yaron and Dinar, 1989; McGuckin et al., 1987). Most

economic studies of irrigation scheduling use a numerical stochastic dynamic programming

approach since it naturally fits into a sequential irrigation decision problem with uncertainty

in climatic conditions.

While a large number of studies have been published on the subject, none of them

has considered the optimal irrigation strategy under electricity (water) supply interruption.

Moreover, the primary objective of this study is fundamentally different from that of previous

studies in that our ultimate goal is to determine the impact of energy supply interruption

on the amount of irrigation, while the previous studies focused almost exclusively on profit

maximizing in the irrigation strategy itself. The only exception, to the best of our knowledge,

is Shani et al. (2004), where water use under profit maximization and yield maximization

is contrasted. Moreover, as Shani et al. (2004) point out, most of the previous studies

are somewhat ad hoc in that their objective is to find the optimal irrigation strategy for

a particular case. Shani et al. (2004) use optimal control theory to find a generalizable

solution to the optimal irrigation scheduling problem. They find that a turnpike strategy is

optimal, in which a fixed level of soil moisture is reached as soon as possible and maintained

throughout the season. They do not, however, consider cases where climate variables are

random or energy supply interruption.

4 The Model

4.1 Single Period Payoff

We model crop growth as a function of soil moisture level, following previous studies on

irrigation scheduling1. Payoff for each period is written as follows: Y (St) − Pw · xt. The

1While nutrients like phosphorous also determine crop growth, this study focuses on soil moisture level.
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first term, Y (St), represents incremental crop growth as a function of soil moisture level, St,

at time t. Crop growth is assumed to be increasing with soil moisture level at a decreasing

rate, Y ′(·) > 0 and Y ′′(·) < 0. The crop-water function will be kept unspecified throughout

the theoretical investigation2. As a consequence, the optimal solution concept will be quite

general. Pw is the unit pumping cost of water relative to the price of the crop (numeraire)

and Xt is the amount of irrigation3. Therefore, single period payoff is crop growth (equivalent

to revenue) less pumping cost.

It is well known that the water requirement of a crop differs depending on its growing

stage. In this study, however, we work with a fixed crop-water function over time because it

will not change the economic insights into adaptation to random power supply interruption.

4.2 State Equation

Soil moisture level decays over time due to transpiration, evaporation, and deep percolation.

Irrigation and rainfall supplement the soil moisture. This process is represented mathemat-

ically as St+1 = α(βSt + θ ·Xt +Rt). The proportion of the soil moisture that remains after

crop consumption (transpiration) is represented by β ∈ [0, 1], which varies by type of crop.

The proportion of soil moisture remaining after percolation and evaporation is represented

by α ∈ [0, 1]. The rate of percolation varies depending on the soil type. For example, perco-

lation is greater with sandy soil than with silty soil. Not all water applied reaches the soil,

however, due to evaporation and surface runoff. The proportion of the applied water that

goes into the soil, irrigation efficiency, is represented by θ ∈ [0, 1]. Irrigation efficiency varies

depending on irrigation technology: Irrigation efficiency for center pivot irrigation is about

90% as opposed to 60% for flood irrigation. In addition to irrigation, stochastic rainfall,

2An analytical solution for optimal irrigation is possible for a very limited class of crop-water functions
and under the assumption of non-random temperature and rainfall. While an analytical solution could
make comparative statics easier to derive, these assumptions severely limit the applicability of the derived
economic insights.

3Unit pumping cost can differ across farmers even with the same price for electricity because of differences
in pumping efficiency.
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represented by Rt, also adds to the soil moisture level. The distribution of rainfall is kept

unspecified throughout an irrigation season, and agricultural producers are allowed to act

on their subjective beliefs about rainfall events.

4.3 Agricultural Producer’s Problem

The agricultural producer’s problem is to maximize the expected value of profit given the

state equation and random energy supply interruption. This problem is written mathemat-

ically as follows:

max
xt

E

[
T∑
t=1

Y (St)− Pw · xt

]

s.t St+1 = α(βSt + θ · xt +Rt)

xt = 0 with probability ρ ∈ [0, 1] (1)

The final crop yield at the end of the production season is assumed to be the summation

of incremental crop growth in each period over the production season. The additivity of

crop yield is commonly used in the optimal irrigation scheduling literature (e.g. Bras and

Cordova, 1981; Cai et al., 2011)4.

The unique feature of the model is that the control variable is set at 0 for probability

ρ. The probability of energy supply interruption is assumed to be fixed over the irrigation

season even though it may be predicted by observing future and past climatic conditions.

Nonetheless, this assumption does not interfere with deriving economic insights, and detailed

updating of subjective belief should be left to a numerical analysis. The model does not have

a intra-seasonal discount factor because an irrigation season is short enough that any discount

should be negligible. Finite time is appropriate considering that the end period is clearly

4While some agronomy literature claims that additive models are unrealistic in that they do not allow for
the existence of the wilting point, it is only because the additive model is written in a very restricted way in
the literature. It is indeed possible to allow for the wilting point by letting Y (St) take negative values that
are large in magnitude at the lower range of soil moisture level.
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defined. In this study, no limit is placed on the well yield: we assume it to be high enough that

producers can apply as much water as they desire for a given time period. This assumption

certainly would not hold for some wells. Agricultural producers with low well yield may not

be able to irrigate as much as they desire, thus potentially limiting their capability to adapt

to random energy outages. For example, in northwest Texas, the well yield of some wells

were so low that in 2011 their owners could not meet crop water requirements even without

energy supply interruption, resulting in severe production loss. On the other hand, most of

the wells for irrigation in Nebraska still have quite a high yield (see Appendix for further

detail).

Along with these assumptions, there are several minor technical assumptions that are

used in our mathematical proofs. It is assumed that lim
S→0

Y ′(S) < C for some positive con-

stant C (assumption 1). This assumption simply states that the marginal production of

soil moisture is bounded and does not approach infinitity as the soil moisture level moves

infinitesimally close to 0. The optimization problem is not well defined without this assump-

tion, t. It is also assumed that St > αβSt + αE[Rt],
∀St ∈ R+ and ∀t (assumption 2). This

assumption states that given the current soil moisture St, the expected amount of rainfall

is small enough that the expected value of soil moisture in the next period is smaller than

St if no water is applied at the current period. This assumption does not limit the practical

relevance of our model because irrigation would hardly be necessary in the first place if the

assumption were not satisfied.

5 Solutions and Results

In this section, we establish the first order condition of the optimal irrigation schedule prob-

lem with random energy supply interruption, find the value functions, and then derive com-

parative statics.
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5.1 Bellman Equations

Let Vt(S, 0) and Vt(S, 1) denote the value function at t given soil moisture level S when energy

is and is not available, respectively. The Bellman equations of the dynamic optimization

problem for time t are then as follows:

Vt(S, 1) =Maxx∈R+ Y (S)− Pwx+ ρE
[
Vt+1

(
α(βS + θx+Rt), 0

)]
+ (1− ρ)E

[
Vt+1

(
α(βS + θx+Rt), 1

)]
(2)

Vt(S, 0) =Maxx∈{0} Y (S)− Pwx+ ρE
[
Vt+1

(
α(βS + θx+Rt), 0

)]
+ (1− ρ)E

[
Vt+1

(
α(βS + θx+Rt), 1

)]
=Y (S) + ρE

[
Vt+1

(
α(βS +Rt), 0

)]
+ E

[
(1− ρ)Vt+1

(
α(βS +Rt), 1

)]
(3)

where expectation is taken over Rt. When finding the optimal irrigation amount, producers

need to consider how irrigation influences the stream of future profits as well as the immediate

return. Here, the immediate return is incremental crop revenue, Y (S), less pumping cost,

Pwx. Future profits are uncertain because of the stochasticity of energy supply and rainfall.

Producers transition to the state with or without energy supply in the next period, with

probability ρ and 1 − ρ, respectively. The expected maximum profits from t + 1 onwards,

conditional on irrigation at t, are represented by ρE
[
Vt+1

(
α(βS + θx + Rt), 0

)]
and (1 −

ρ)E
[
Vt+1

(
α(βS + θx + Rt), 1

)]
, for the states with or without energy supply interruption,

respectively. Thus, the summation of the two terms represents the expected future profit.

When energy is not available in the current period, irrigation is necessarily zero, and thus the

Bellman equation reduces to equation 3 when energy is not available in the current period.

5.2 Optimal Irrigation Strategy

Using backward induction, value functions and optimal irrigation strategies can be found

sequentially from the end period to the first period (See Appendix for the proof). Along
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with solving the problem, the following proposition can be established that helps explain the

economic meaning of the first order condition.

Proposition 1 : Optimal irrigation strategy has the following form for all t:

x∗t =
σt
θ
− β

θ
St (4)

where σt is a constant that depends on all the parameters and the distributions of all the

rainfall events from time t on, but does not depend on St.

This proposition has several important implications. When the above irrigation strategy

is followed, the soil moisture level in the next period before deep percolation and evaporation

takes place is σt if there is no rain. Therefore, σt can be interpreted as the minimum amount

of soil moisture level guaranteed irrespective of the amount of rainfall in that period before

deep percolation and evaporation loss. That is, the profit maximizing agricultural producer

will irrigate just as much as necessary to fill the gap between the current and the target soil

moisture (σt) levels, independent of the current soil moisture level.

The expected value of the soil moisture level given the current soil moisture level St is

the following;

E[St+1] = E[α(βSt + θx∗t +Rt)] = E[α(σt +Rt)]

Since σt is independent of St, E[St+1] is also independent of St. This further means that if the

distribution of rainfall events is stationary, agricultural producers will try to keep the same

level of expected soil moisture whenever they can irrigate, except for the last few periods. In

the last few periods, the expected value of irrigation decreases because the soil moisture is

assumed to have no value after harvest. When the rainfall variable is not stationary, the soil

moisture target will vary over time. However, the expected soil moisture level will remain

independent of the current soil moisture level. This leads to the following corollaries:
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Corollary 1 : Irrigation and rainfall in the current periods have no impact on future soil

moisture levels for all periods after energy supply interruption ends, except the next period.

The key insight from proposition 1 is that whenever irrigation is possible, the soil moisture

level will be targeted at a fixed level that is independent of the starting soil moisture level.

Therefore, irrigation and rainfall in the current period will have an effect on future soil

moisture only as long as energy supply is continuously on. For example, any additional

irrigation at t will have no effect on the soil moisture level at t+ 2 if irrigation is allowed at

t + 1. This corollary is important in understanding the first order condition. An analogous

corollary holds for rainfall.

5.3 First Order Condition

In order to understand the first order condition, it is instructive to first look at the case with

no energy supply interruption (ρ = 0). The first order condition at T−k (k = 1, 2, . . . , T−1)

is the following:

Pw =θαE
[
Y ′
(
α(βST−k + θx+RT−k)

)]
+
αβPw

θ
(5)

The left-hand side is the marginal cost of pumping. The marginal benefit of water represented

on the right-hand side consists of two parts. The first term represents the marginal expected

revenue due to crop growth in the next period from adding one more unit of water in the

current period. The second term represents the cost savings in the next period from adding

one more unit of water in the current period. The cost savings occur because an additional

unit of irrigation leads to a higher soil moisture level in the next period, which in turn reduces

the optimal amount of irrigation required in the next period. Agricultural producers need

to be concerned about the impact of irrigation on soil moisture only in the next period, but
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not in future periods, which is an immediate consequence of Corollary 1.

The essential structure of the first order condition remains the same for the case with

non-zero probability of energy supply interruption (ρ > 0). The first order condition at T−k

(k = 1, 2, . . . , T − 1) is (see Appendix for derivation):

Pw =θ
k∑
i=1

αiρi−1βi−1E
[
Y ′
(
αiβi−1(βST−k + θx) +

i∑
j=1

αjβj−1RT−k−j+i

)]
+ (1− ρ)αβ · Pw

[
k−1∑
j=1

(αβρ)j−1

]
(6)

The first term on the right-hand side of the first order condition is the summation of ex-

pected marginal crop growth (or, equivalently, revenue, because the crop is the numeraire).

Each term is conditioned on continued power outage, adjusted for the portion of irrigation

remaining in the soil moisture. For example, denoting the current period t, the second term

in the summation represents marginal crop growth at t+ 2 if energy is not available at t+ 1.

The third term is the expected marginal crop growth that may be realized at t+ 3 if energy

was not available in the previous two consecutive periods. Following from proposition 1 and

its corollary, agricultural producers need to consider the impact of irrigation only for the

periods that have experienced consecutive energy outages. For example, agricultural pro-

ducers do not have to account for how irrigation at time t would affect crop growth at t+ 2

if energy is available at t+ 1.

Analogously, each term in the second summation term represents the expected marginal

cost savings conditioned on sustained power outage, adjusted for the portion of irrigation

remaining in the soil moisture. Each term is multiplied by 1 − ρ because cost savings are

realized only when farmers can irrigate, which occurs with probability 1 − ρ. For example,

the second term in the summation is the expected cost savings that are realized two periods

later if farmers cannot irrigate in the next period, but can irrigate two periods later.

The first order condition encapsulates the economic intuition: agricultural producers

need to take into account now the impact of irrigation on the soil moisture levels in future
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periods. This compares to the case of no energy supply interruption when producers do not

need to account for the impact of current irrigation on future soil moisture because they can

irrigate in any period.

5.4 Comparative Statics

5.4.1 Energy supply interruption

Proposition 2 : Random energy supply interruption always leads to an increase in the

optimal amount of irrigation per irrigation opportunity (see Appendix for the proof):

∂X∗t
∂ρ

> 0

This finding is consistent with our expectation and quite intuitive: producers increase irriga-

tion to hedge against the risk of not being able to irrigate in future periods. An immediate

consequence of this proposition is that the optimal target soil moisture level goes up as the

probability of energy supply interruption increases.

From the groundwater conservation perspective, the total amount of irrigation is more

important than the amount of irrigation per irrigation opportunity, which does not nec-

essarily lead to an increase in the total amount of irrigation because farmers have fewer

opportunities to irrigate. The question is whether the increase in irrigation per irrigation

opportunity is large enough to make up for the loss of irrigation opportunities.

Unfortunately, the sign of the impact cannot be determined definitively, so the effect on

overall water use is an empirical question5. Nonetheless, it is possible to identify conditions

that are more likely to lead to an increase in the total amount of irrigation: 1) the crop-

growth function has a very steep slope (high marginal production of water) at the lower

range of soil moisture and 2) the slope of the crop-growth function flattens very fast after

5The mathematical expression for the derivative of total irrigation with respect to the probability of
energy supply interruption is convoluted and not presented here. Please see the Appendix for more.
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the steep slope. In other words, a large loss in crop growth will be incurred when even a small

amount of water is not supplied due to an energy outage. In order to avoid a potentially

large loss, producers need to irrigate more when they can. A steeply declining slope of the

crop-water function (rapidly declining marginal production of water) means that the optimal

soil moisture level would be very close to the high slope portion of the crop-water function

if it were not for energy supply interruption.

5.4.2 Rainfall

An important difference between the first order conditions with and without energy supply

interruption is the role of rainfall events. For the case with no energy supply interruption,

agricultural producers need to consider only the distribution of rainfall in the same period,

as can be seen in equation 5. This leads to the following lemmas:

Lemma 1 : When energy supply interruption is not present, a change in the distribution of

rainfall at t will influence decision making only in period t.

On the other hand, when the probability of energy supply interruption is nonzero, all rain-

fall events from the current period until the end period enter the decision making process

because farmers need to take into account the expected future soil moisture levels due to

potential energy outages. This leads to the following lemma:

Lemma 2 : A change in the distribution of rainfall in period s will influence decision making

in all periods up to and including period s if energy supply interruption is possible.

Lemmas 1 and 2 immediately lead to the following proposition:

Proposition 3 : Information about the distribution of future rainfall events is more valu-
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able when energy supply interruption is possible than otherwise.

These results hold for any kind of change in the distribution of rainfall in general. Now we

consider specifically the implications of two aspects of the distribution of rainfall: expected

rainfall (E[R]) and variance (assuming a mean-preserving spread).

First, it can be shown that the marginal impact of the expected rainfall at t on the

optimal amount of irrigation at t is negative and of the same magnitude with or without

energy supply interruption (see Appendix D):

∂xt∗

∂γt

∣∣∣
ρ=0

=
∂xt∗

∂γt

∣∣∣
ρ>0

= −1

θ
< 0 (7)

This implies that with or without energy supply interruption, the expected total groundwater

consumption will decrease (increase) when expected rainfall increases (decreases). Second,

an increase in the expected value of a rainfall event in a future period s(> t) will reduce the

optimal amount of irrigation when energy supply interruption is present, but has no effect

otherwise (See Appendix D):

∂xt∗

∂γs

∣∣∣
ρ=0

= 0 and
∂xt∗

∂γs

∣∣∣
ρ>0

< 0 (8)

The insensitivity of optimal irrigation to a reduction in the expected value of future rainfall

events is a direct consequence of Lemma 1. Combining the two findings results in the fol-

lowing proposition:

Proposition 4 : The optimal irrigation per irrigation opportunity is more elastic to the

expected value of future rainfall events with energy supply interruption than without it.

T∑
s=t

∂xt∗

∂γs

∣∣∣
ρ=0

>

T∑
s=t

∂xt∗

∂γs

∣∣∣
ρ>0

(9)
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For example, if the expected amount of rainfall at t and t+ 1 decreases, the increase in the

optimal amount of irrigation at t is greater when energy supply interruption is present.

This, however, does not mean the expected total groundwater consumption experiences a

larger increase in response to a decrease in the expected amount of rainfall events when there

is energy supply interruption than otherwise. In fact, this cannot be signed definitively and

remains an empirical question. This is analogous to the impact of energy supply interruption

on the total amount of groundwater consumption, discussed above. When the probability of

energy supply interruption is high, producers have fewer opportunities to irrigate.

Now we discuss how a change in uncertainty about future rainfall events influences the

optimal irrigation strategy. Quite intuitively, it can be shown that a mean-preserving spread

of the distribution of a rainfall event in future periods will lead to an increase in the amount

of optimal irrigation per irrigation opportunity with or without energy supply interruption

(see Appendix E). With a slight simplification of mathematical notation,

∂xt∗

∂V ar(Rt)

∣∣∣
ρ≥0

> 0 (10)

This is because a mean-preserving spread will increase the risk of crop yield reduction and

leads to an increase in total groundwater consumption, with or without energy supply inter-

ruption.

Another interesting question is whether the impact of a change in the variance of rainfall is

greater when energy supply is intermittent. First, with Lemmas 1 and 2, it is straightforward

to show that a mean-preserving spread of rainfall events in a future period s(> t) increases

the optimal amount of irrigation at t when energy supply interruption is present, but has no

effect otherwise. However, one cannot determine whether the impact of a mean-preserving

spread of rainfall in the current period t is greater with energy supply interruption than

otherwise (see Appendix E).

As with the expected value of rainfall, it is not possible to determine analytically whether
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an increase in uncertainty about rainfall events leads to greater total groundwater consump-

tion with energy supply interruption than otherwise. This is ultimately determined by the

nature of the crop-water function and is an empirical question.

6 Numerical Examples

The theoretical analysis suggests that the impact of energy supply interruption on total

irrigation, the variable of most interest, is ambiguous. We also found that it is impossible

to determine whether changes in the distribution of rainfall have a greater impacts on total

irrigation with interruptible energy supply than otherwise. We turn to see the signs of these

effects and their magnitude in a realistic parameter space. We first describe the calibration

method, discusses the numerical simulation results, and derive policy implications.

6.1 Calibration

The calibration requires, first, a physical model that relates soil moisture level to crop growth.

We employ the AquaCrop model calibrated for corn production in the High Plains, USA by

Foster (2013). AquaCrop is an intra-seasonal irrigation scheduling model developed by the

Food and Agriculture Organization (Steduto et al., 2009; Raes et al., 2009). Soil moisture

is the major determinant of crop growth, as in our study. Aquacrop has been widely used

by researchers and calibrated to many agricultural regions with a wide variety of climatic

conditions and crop types (e.g. Farahani et al., 2009; Araya et al., 2010; Stricevic et al., 2011;

Garćıa-Vila and Fereres, 2012). The crop-water function and state equation in this study

are then calibrated to the outcomes of the calibrated AquaCrop model so the resulting total

irrigation falls within historically observed levels in the region. The calibrated crop-water

function is shown in Figure 1.
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6.2 Results

The dynamic problem is solved numerically for the rainfall pattern of 2012, the driest year

in the region for the past 30 years. Analysis with the high rainfall pattern of 1992 follows

for comparison.

Figure 2 shows the contour map of profit per acre with respect to pumping cost and the

probability of energy supply interruption for the rainfall pattern of 2012. The profits are

calculated based on a corn price of $5 per bushel and production costs, excluding pumping,

of $3 per bushel. As can be seen in the figure, profitability is highly resilient to energy

supply interruption - the contours are nearly horizontal. This is primarily because the cost

of pumping is extremely low relative to the usually high corn price. Under these conditions, a

relatively small financial incentive can induce farmers to adopt interruptible energy contracts.

As an illustration, the profits associated with the energy contracts summarized in Table 1

are represented by red circles in the figure. Agricultural producers are likely to choose

interruptible contracts, given the steep differential in profits.

Figure 3 shows the contour map of total irrigation per acre with respect to the pumping

cost and the probability of energy supply interruption for 2012. It shows that energy supply

interruption could indeed increase the amount of irrigation, ceteris paribus. For example,

for a pumping cost of $2/acre-inch, the total amount of irrigation that maximizes profits is

greater by about 1.5 inches when the probability of energy outage is 0.35 than when power

is not interruptible. If the energy price is lowered as a compensation for energy supply

interruptibility as in load control programs, for example to $1.5/acre-inch, optimal total

irrigation would increase an additional 0.5 acre-inches.

The magnitude of the supply interruption effect for the 2012 drought is in the 5% to

10% range. Drought would also reduce surface runoff and percolation. Added groundwater

withdrawals would amplify the drought-induced water resource stresses.

Figure 4 shows the contour map of total irrigation per acre with respect to the pumping

cost and the probability of energy outages for the year of 1992. The total amount of irrigation
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is much less. Energy supply interruption still increases the total amount of irrigation, but to a

much smaller degree than in 2012. That is, if climate change reduces the amount of rainfall

in an irrigation season, groundwater irrigation may see a greater increase if agricultural

producers are faced with power supply interruption, or vice versa.

6.3 Policy Implications

Energy supply interruption is a common element of direct load control program for peak

energy load management. In agricultural areas dependent on irrigation from groundwater,

reducing irrigation is critical to shave peak loads. While this clearly means that instantaneous

water use would decrease, total water use in irrigation would not necessarily be reducedin-

crease application in off-peak periods could compensate partially or more than fully for water

not applied during power interruptions. Thus, it policies and contracts applied to energy

use may have consequences for water use.

In a realistic parameter space, energy supply interruption could lead to an increase in

total groundwater consumption as a risk management strategy, ceteris paribus. Reduced

unit prices of energy associated with interruptible supply contracts could further increase

the total amount of irrigation. Therefore, both supply interruption and price effects could

add pressure to extract groundwater. One could mitigate the price effect by financially

compensating agricultural producers with a lump sum instead of lowering the marginal

energy price. However, the supply interruption effect would persist.

For the cases analyzed here, profit is highly resilient to energy supply interruption. Agri-

cultural producers would choose interruptible contracts even if the price compensation for

energy were smaller than the levels actually observed. The energy price for interruptible

contracts could be increased without affecting agricultural producers’ choice of energy con-

tract, thereby reducing the price effect on water us without diminishing energy suppliers’

ability to control peak energy load.

When the supply interruption effect on groundwater consumption is positive, however,
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there is no incentive-compatible energy contract structure that would lead to lower water

consumption for interruptible contracts. The unit energy price for interruptible contracts

would need to be higher than that for non-interruptible contracts in order to induce lower

groundwater consumption. However, in this case, agricultural producers would not opt

into an interruptible contract since it would be financially disadvantageous. In order to

maintain the groundwater consumption level after introduction of a load control, the unit

energy price for interruptible contracts must be higher than the original unit energy price.

Moreover, the new unit price for non-interruptible contract must be set even higher than

that for interruptible contracts. This may be faced with strong oppositions from producers.

Although institutional contexts are very different in the developing world, energy supply

reliability is an important issue for agriculture in many countries. The results in this paper

about the interaction between energy supply interruption and groundwater consumption

can shed some lights on its implications in the developing world as well. Our results suggest

that improving energy supply reliability could lead to a reduction in total groundwater

consumption. In India, for example, agricultural producers tend to be vehemently opposed

to any form of increase in energy-related costs in most regions. Indeed, agricultural producers

are a powerful lobby and have stalled many legislative moves to increase the price of energy

(Malik, 2002; Shah et al., 2008). Therefore, even though energy pricing is widely discussed

in the academic literature as a means of enhancing groundwater conservation, the feasibility

of such a measure may be questionable in some regions. To make matters worse, there are so

many wells that metering can be prohibitively expensive, which could make it impossible to

charge agricultural producers on the basis of volume extracted. Given this background, it is

particularly important to note that stabilizing energy supply could decrease the amount of

groundwater use, even in the absence of the price effect. Farmers would certainly welcome

an improvement in energy reliability, and the inability to meter wells has no impact on the

positive effect of a stable energy supply.

In some regions, as in West Bengal, India (Mukherji et al., 2009), there is a volumetric
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charge for energy. In those regions, agricultural producers may accept an increase in the

unit energy price if the consistency of energy supply is improved. Indeed, a recent survey

conducted by the Columbia Water Center (CWC) confirmed that agricultural producers are

willing to accept such a trade-off (Perveen et al., 2012). This combination of an increased unit

energy price and improved energy supply reliability could provide a double dividend, with

both the price effect and energy supply effect moving in favor of groundwater conservation.

In some regions, ongoing climate change is expected to create a lower amount of precip-

itation. It has been analytically shown that this change will lead to greater groundwater

consumption. This means that energy suppliers may need to increase the frequency of en-

ergy supply interruption to gain greater control of energy peak loads, which in turn could

lead to greater total groundwater consumption. Ongoing climate change, in addition to its

direct impacts, may thus indirectly influence groundwater conservation via energy suppliers’

adaptation.

It has been shown that the impact of energy supply interruption differs depending on the

distribution of rainfall. Introducing energy supply interruption (improving energy supply

reliability) can be more harmful (beneficial) to groundwater conservation in regions where

rainfall is scant and variable. If climate change advances such that rainfall decreases and

becomes less evenly distributed over a production season, the amount of irrigation is likely to

increase, with or without energy supply interruption. However, the magnitude of the increase

can be even greater if agricultural producers are faced with energy supply interruption. That

is, energy supply interruption could exacerbate the impact of climate change on groundwater

resources.

7 Conclusions

The ever-increasing and inextricably linked demand for energy and water warrants informed

joint energy-water management. Energy supply interruption is common in some regions
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where the economy relies heavily on groundwater-fed irrigation. Nonetheless, the impact of

energy supply interruption on groundwater consumption has not been studied rigorously in

the economics literature. This study develops economic insights into agricultural producers’

adaptation to energy supply interruption and its potential consequences on groundwater

conservation. We modeled intraseasonal irrigation decisions by individual agricultural pro-

ducers with random energy supply interruption and stochastic rainfall and analyzed them

both analytically and numerically by means of a stochastic dynamic programming approach.

It has been shown that agricultural producers increase the amount of irrigation per irriga-

tion opportunity in response to interruptibility in energy supply. This makes good economic

sense because this strategy allows agricultural producers to hedge against the risk of not be-

ing able to irrigate in future periods. The impact of energy supply interruption on expected

total groundwater consumption, however, is ambiguous and thus an empirical question. Nu-

merical examples showed that energy supply interruption could lead to an increase in total

groundwater consumption in a realistic parameter space. This led to differing policy im-

plications for developed and developing countries, where energy supply interruptions occur

for different reasons. However, in both contexts it is clear that energy and groundwater

management should not be considered independently.

Rainfall is one of the most significant determinants of irrigation. A decrease in the ex-

pected value of and a mean-preserving spread of rainfall always leads to a higher optimal

irrigation amount, with or without energy supply interruption, leading to an increase in

total groundwater conservation. Energy supply interruption interacts with climate in an in-

teresting way to affect groundwater consumption behavior. When there is no energy supply

interruption, only the distribution of rainfall events in the current period influences produc-

ers’ irrigation decisions. On the other hand, the distribution of rainfall events in all the

future periods affects irrigation decisions in the current period with a declining degree of

influence. Therefore, information about the distribution of future rainfall events is more

valuable when there is energy supply interruption than otherwise. Moreover, numerical re-
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sults suggest that it is possible that the distribution of rainfall events has a greater impact

on total groundwater consumption with energy supply interruption changes than without.

There are multiple interesting extensions for future work. First, econometric analysis

using energy and water consumption data under energy supply interruption will prove useful

to gaining further insights into the sign and magnitude of the comparative statics results

derived analytically in this study. Econometric analysis on observed data has an advantage

over numerical analysis in that no a priori assumptions or parametrization of the model

is necessary. Second, aside from the irrigation load control program, another popular way

to manage peak energy load is time-of-use rates. Since under this program agricultural

producers can irrigate whenever they want but at a higher price during on-peak hours,

they are faced with quite a different incentive structure than under irrigation load control.

It would be interesting to examine the implications of time-of-use rates on groundwater

irrigation behavior and then compare them with those of irrigation load control. Finally, it

may be interesting to examine whether providing future weather information would reduce

groundwater consumption when energy supply interruption is possible.
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Table 1: Price structure of contracts in the Custer Public Power District

Power Control Type Unit Price in 2007 (per kwh) Unit Price in 2008 (per kwh)
No Control $0.0875 $0.1100
1 day Control $0.0490 $0.0565
2 day Control $0.0470 $0.0500
3 day Control $0.0450 $0.0470
Full Control $0.0430 $0.0460

Note: This table shows, as an example, the electricity price by energy contract type for
the Custer Public Power District (PPD) in Nebraska. The unit price of electricity for no
power control is about twice as high as that for interruptible contracts. Other public power
districts lower the unit cost of horsepower of a water pump, which is a sunk cost once a
irrigation season starts.

Table 2: Control Hours in the Custer Public Power District

Power Contract Type Interrupted Hours in 2002 (hours) Interrupted Hours in 2008 (hours)
No Interruption 0 0
1 day Interruption 55 20
2 day Interruption 110 40
3 day Interruption 170 60
Daily Interruption 320 100

Note: Irrigation load control takes place primarily in July and August when the demand
for electricity is the greatest. As an example, Table 2 shows the total hours of load control
implemented by the Custer PPD.
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Figure 1: Daily Crop-Water Function for Corn
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Figure 2: Contour Map of Expected Profit ($/acre) for 2012 (Dry Year)
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Figure 3: Contour Map of Expected Irrigation (inch) for 2012 (Dry Year)
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Figure 4: Contour Map of Expected Total Irrigation (inch) for 1992 (Wet Year))

11

11

11
.5

11.5

11.5

11.5

12

12

12

12

12.5
12.5

12.5

13

13

13.5

Probability of Power Control (%)

W
at

er
 P

ric
e 

($
/a

cr
e−

in
ch

)

0 5 10 15 20 25 30 35 40
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

27



Appendices

A Value Functions, First Order Conditions, and Proof

of Proposition 1

Derivation of the value functions, first order conditions, and proof of proposition 1 come

simultaneously. We do so by means of mathematical induction starting from k = 1 for x∗T−k

(k = 2, . . . , T − 1). At the last period (t = T ), the optimal irrigation amount x∗T = 0

because irrigation at time T does not contribute to crop growth at time T . Therefore,

x∗T = 0 irrespective of the power control status. Given x∗T , the value functions VT (ST , 0) and

VT (ST , 1) are written as follows,

VT (ST , 0) = VT (ST , 1) = Y (ST ) (11)

(i) k = 1

Now, given VT (ST , 0) and VT (ST , 1),

VT−1(ST−1, 0) =Y (ST−1) + ρET−1

[
VT

(
α(βST−1 +RT−1), 0

)]
+ (1− ρ)ET−1

[
VT

(
α(βST−1 +RT−1), 1

)]
=Y (ST−1) + ET−1

[
Y
(
α(βST−1 +RT−1)

)]
(12)

where the expectation is taken over RT−1. The optimal irrigation problem given ST−1 can

be formulated as follows,

Max{x} Y (ST−1)− Pw · x+ ρET−1

[
VT

(
α(βST−1 + θx+RT−1), 0

)]
+ (1− ρ)ET−1

[
VT

(
α(βST−1 + θx+RT−1), 1

)]
(13)
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First order condition of the problem is as follows,

Pw =
∂

∂x

{
ρET−1

[
VT

(
α(βST−1 + θx+RT−1), 0

)]}
+

∂

∂x

{
(1− ρ)ET−1

[
VT (α(βST−1 + θx+RT−1), 1

)]}
⇒ Pw =αθρET−1

[
Y ′
(
α(βST−1 + θx+RT−1)

)]
+ (1− ρ)αθET−1

[
Y ′
(
α(βST−1 + θx+RT−1)

)]
⇒ Pw =αθET−1

[
Y ′
(
α(βST−1 + θx+RT−1)

)]
(14)

By dropping the subscript for R for the sake of conciseness, the expectation part of the right

hand side of equation (14) can be written as a function of y = βST−1 + θx as follows,

G1(y) = E
[
Y ′
(
α(y +R)

)]
=

∫ ∞
0

Y ′
(
α(y +R)

)
· f(R) dR (15)

By Assumption 1,

G′1(y) =α

∫ ∞
0

Y ′′
(
α(y +R)

)
· f(R) dR < 0

Thus, G1(y) is invertible and one can solve equation (14) in terms of y,

y =G−11 (
Pw
θ

) (16)

⇒ x =
σ1
θ
− β

θ
ST−1 (17)

where σ1 depends on all the parameters and the distribution of RT−1, but is independent of

ST−1. Therefore, the optimal irrigation strategy is linear in ST−1.
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Now, given x∗T−1,

VT−1(ST−1, 1) =Y (ST−1)− Pwx∗T−1 + ρE
[
VT

(
α(βST−1 + θx∗T−1 +RT−1), 0

)]
+ (1− ρ)E

[
VT (α

(
βST−1 + θx∗T−1 +RT−1), 1

)]
VT−1(ST−1, 1) =Y (ST−1) +

βPw

θ
· ST−1 −

σ1Pw

θ
+ ρE

[
VT

(
α(σ1 +RT−1), 0

)]
+ (1− ρ)E

[
VT

(
α(σ1 +RT−1), 1

)]
=Y (ST−1) +

βPw

θ
· ST−1 +B1 (18)

where B1 = ρE
[
VT

(
α(σ1 +RT−1), 0

)]
+ (1− ρ)E

[
VT

(
α(σ1 +RT−1), 1

)]
− σ1Pw

θ
, which is

independent of ST−1.

(i) k = 2

Given VT−1(ST−1, 0) and VT−1(ST−1, 1), we can solve the case for T − 2. First,

VT−2(ST−2, 0) =Y (ST−2) + ρET−2

[
VT−1

(
α(βST−2 +RT−2), 0

)]
+ (1− ρ)ET−2

[
VT−1

(
α(βST−2 +RT−2), 1

)]
=Y (ST−2) + ρET−2

[
Y
(
α(βST−2 +RT−2)

)]
+ ρET−2ET−1

[
Y
(
α2β(βST−2 +RT−2) + αRT−1

)]
+ (1− ρ)ET−2

[
Y
(
α(βST−2 +RT−2)

)]
+

(1− ρ)βPw

θ

(
αβST−2 + αE[RT−2]

)
+ (1− ρ)B1

=Y (ST−2) + ET−2

[
Y
(
α(βST−2 +RT−2)

)]
+ ρET−2ET−1

[
Y (α2β(ST−2 +RT−2) + αRT−1)

]
+

(1− ρ)αβ2Pw

θ
ST−2 + A2 (19)

where A2 = (1− ρ)B1 +
(1− ρ)βPw

θ
· E[RT−2], which is independent of ST−2.
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The optimal irrigation problem given ST−2 can be formulated as follows,

Max{x} Y (ST−2)− Pw · x+ ρET−2

[
VT−1

(
α(βST−2 + θx+RT−2), 0

)]
+ (1− ρ)ET−2

[
VT−1

(
α(βST−2 + θx+RT−2), 1

)]
(20)

First order condition of the problem is as follows,

Pw =θρ · ∂
∂x

{
ET−2

[
VT−1

(
α(βST−2 + θx+RT−2), 0

)]}
+ (1− ρ)θ · ∂

∂x

{
ET−2

[
VT−1

(
α(βST−2 + θx+RT−2), 1

)]}
⇒ Pw =αθρET−2

[
Y ′
(
α(βST−2 + θx+RT−2)

)]
+ α2βθρET−2ET−1

[
Y ′
(
α2β(βST−2 + θx+RT−2) + αRT−1

)]
+ αθ(1− ρ)ET−2

[
Y ′
(
α(βST−2 + θx+RT−2)

)]
+ θ(1− ρ)

αβPw

θ

⇒ γ2 =αθET−2

[
Y ′
(
α(βST−2 + θx+RT−2)

)]
+ α2βθρET−2ET−1

[
Y ′
(
α2β(βST−2 + θx+RT−2) + αRT−1

)]
(21)

where γ2 = (1−αβ(1− ρ))Pw, a constant. Analogous with the previous argument made for

k = 1, the right hand side is monotonic decreasing with respect to βST−2 + θx. Therefore,

there exists a function G2(·) such that γ2 = G2(βST−2 + θx) and G′2(·) < 0. Thus,

G−12 (γ2) = βST−2 + θx

⇒ x =
σ2
θ
− β

θ
ST−2 (22)
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where σ2 = G−12 (γ2). Now, given x∗T−2

VT−2(ST−2, 1) =Y (ST−2) +
βPw

θ
· ST−2 −

σ2Pw

θ
+ ρET−2

[
VT−1

(
α(σ2 +RT−2), 0

)]
+(1− ρ)ET−2

[
VT−1

(
α(σ2 +RT−2), 1

)]
=Y (ST−2) +

βPw

θ
· ST−2 +B2 (23)

where B2 = ρET−2

[
VT−1

(
α(σ2 +RT−2), 0

)]
+(1−ρ)ET−2

[
VT−1

(
α(σ2 +RT−2), 1

)]
− σ2Pw

θ
,

which is independent of ST−2.

(ii) k = n and k = n+ 1

Now suppose our claim hold when k = n (n ≥ 3) and we can write x∗T−n, VT−n(ST−n, 0), and

VT−n(ST−n, 1) as follows for some constants σn, An, and Bn,

X∗T−n =σn −
β

θ
ST−n (24)

VT−n(ST−n, 1) =Y (ST−n) +
βPw

θ
· ST−n +Bn (25)

VT−n(ST−n, 0) =Y (ST−n) + E
[
Y
(
α(βST−n +RT−n)

)]
+

ρE
[
Y
(
α2β(βST−n +RT−n) + αRT−n+1

)]
+ · · ·+

ρn−1E
[
Y
(
αnβn−1(βST−n +RT−n) + αn−1βn−2RT−n+1

+ · · ·+ α2βRT−2 + αRT−1

)]
+

+

[
n∑
j=2

(αβρ)j−2

]
· (1− ρ)

αβ2Pw

θ
· ST−n + An (26)
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Now, given VT−n(ST−n, 0) and VT−n(ST−n, 1), VT−n−1(ST−n−1, 0) is as follows,

VT−n−1(ST−n−1, 0) =Y (ST−n−1) + ρE
[
VT−n

(
α(βST−n−1 +RT−n−1), 0

)]
+ (1− ρ)E

[
VT−n

(
α(βST−n−1 +RT−n−1), 1

)]
=Y (ST−n−1) + ρE

[
Y
(
α(βST−n−1 +RT−n−1)

)]
+

ρE
[
Y
(
α2β(βST−n−1 +RT−n−1) + αRT−n)

)]
+ · · ·+

ρnE
[
Y
(
αn+1βn(βST−n−1 +RT−n−1) + αnβn−1RT−n

+ · · ·+ α2βRT−2 + αRT−1

)]
+[

n∑
j=2

(αβρ)j−2

]
· (1− ρ)

αβ2Pw

θ
· ρE[α(βST−n−1 +RT−n−1)]+

(1− ρ)E
[
Y
(
α(βST−n−1 +RT−n−1)

)]
+

(1− ρ)
βPw

θ
E[α(βST−n−1 +RT−n−1)] + ρAn + (1− ρ)Bn

=Y (ST−n−1) + ρE
[
Y
(
α(βST−n−1 +RT−n−1)

)]
+

ρ2E
[
Y
(
α2β(βST−n−1 +RT−n−1) + αRT−n)

)]
+ · · ·+

ρnE
[
Y
(
αn+1βn(βST−n−1 +RT−n−1) + αnβn−1RT−n

+ · · ·+ α2βRT−2 + αRT−1

)]
+[

n+1∑
j=2

(αβρ)j−2

]
· (1− ρ)

αβ2Pw

θ
· ST−n−1 + An+1 (27)

where An+1 =

[
n+1∑
j=2

(αβρ)j−2

]
· (1 − ρ)

αβ2Pw

θ
ρE[RT−n−1] + ρAn + (1 − ρ)Bn, which is

independent of ST−n−1. Therefore, our claim for the form of VT−n−1(ST−n−1, 0) holds for

n + 1. Now, given VT−n(ST−n, 0) and VT−n(ST−n, 1), the optimal irrigation problem given
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ST−n−1 can be formulated as follows,

Max{x} Y (ST−n−1)− Pw · x+ ρE
[
VT−n

(
α(βST−n−1 + θx+RT−n−1), 0

)]
+ (1− ρ)E

[
VT−n

(
α(βST−n−1 + θx+RT−n−1), 1

)]
(28)

The first order condition is as follows,

Pw =ρ · ∂
∂x

{
ET−n−1

[
VT−n

(
α(βST−n−1 + θx+RT−n−1), 0

)]}
+ (1− ρ) · ∂

∂x

{
ET−n−1

[
VT−n

(
α(βST−n−1 + θx+RT−n−1), 1

)]}
⇒ Pw =θαρE

[
Y ′
(
α(βST−n−1 + θx+RT−n−1)

)]
+

θα2βρE
[
Y ′
(
α2β · (βST−n−1 + θx+RT−n−1) + αRT−n

)]
+ · · ·+

θαn+1βnρnE
[
Y ′
(
αn+1βn(βST−n−1 + θx+RT−n−1) + αnβn−1RT−n

+ · · ·+ α2βRT−2 + αRT−1

)]
+

θρ

[
n∑
j=2

(αβρ)j−2

]
· (1− ρ)

αβ2Pw

θ
· α+

θα(1− ρ)E
[
Y ′
(
α(βST−n−1 +RT−n−1)

)]
+ θ(1− ρ)

αβPw

θ

⇒ Pw =θαE
[
Y ′
(
α(βST−n−1 + θx+RT−n−1)

)]
+

θα2βρE
[
Y ′
(
α2β · (βST−n−1 + θx+RT−n−1) + αRT−n

)]
+ · · ·+

θαn+1βnρnE
[
Y ′
(
αn+1βn(βST−n−1 + θx+RT−n−1) + αnβn−1RT−n

+ · · ·+ α2βRT−2 + αRT−1

)]
+

θ

[
n+1∑
j=2

(αβρ)j−2

]
· (1− ρ)

αβPw

θ

=θ
k∑
i=1

αiρi−1βi−1E
[
Y ′
(
αiβi−1(βST−k + θx) +

i∑
j=1

αjβj−1RT−k−j+i

)]
+ (1− ρ)αβ · Pw

[
k−1∑
j=1

(αβρ)j−1

]
(29)
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Note that each component of the right hand side is monotonic decreasing in βST−n−1 +

θx except the last term, which is a constant. Thus, there exists a function Gn+1(·) with

G′n+1(·) < 0 such that,

Pw

{
1−

[
n+1∑
j=2

(αβρ)j−2

]
· (1− ρ)αβ

}
= Gn+1(βST−n−1 + θx) (30)

Since Gn+1(·) is invertible,

βST−n−1 + θx =G−1n+1

(
Pw

{
1−

[
n+1∑
j=2

(αβρ)j−2

]
· (1− ρ)αβ

})

⇒ x =
σn+1

θ
− β

θ
ST−n−1 (31)

where σn+1 = G−1n+1

(
Pw

{
1−

[
n+1∑
j=2

(αβρ)j−2

]
· (1− ρ)αβ

})
. Therefore, the optimal irri-

gation is linear in ST−n−1 as claimed.

Finally, VT−n−1(ST−n−1, 0) can be written as follows,

VT−n−1(ST−n−1, 1) =Y (ST−n−1)−
σn+1Pw

θ
+
βPw

θ
· ST−n−1+

ρE
[
VT−n

(
α(σn+1 +RT−n−1), 0

)]
+

(1− ρ)E
[
VT−n

(
α(σn+1 +RT−n−1), 1

)]
=Y (ST−n−1) +

βPw

θ
· ST−n−1 +Bn+1 (32)

where Bn+1 = ρE
[
VT−n

(
α(σn+1 +RT−n−1), 0

)]
+ (1− ρ)E

[
VT−n

(
α(σn+1 +RT−n−1), 1

)]
−

σn+1Pw

θ
, which is independent of ST−n−1. Therefore, our claim for the form of VT−n−1(ST−n−1, 0)

holds too.
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B Proof of Proposition 2

Let ŜT−k+n denote the soil moisture level at time T − k + n when x∗T−k is applied at T − k

and power control is continuously on for all the periods until T − k+n6. Substituting in the

optimal amount of irrigation x∗, the first order condition at the equilibrium (for sufficiently

large k) writes as follows,

Pw(
1− αβ
1− αβρ

) =θE[αY ′(ŜT−k+1)] + θρE[α2βY ′(ŜT−k+2)] + · · ·+

θρk−1E[αkβk−1Y ′(ŜT )] (33)

Now, differentiating both sides with respect to ρ,

Pwαβ
1− αβ

(1− αβρ)2
=θ2

{
α2E[Y ′′(ŜT−k+1)] + ρ(α2β)2E[Y ′′(ŜT−k+2)]

+ · · ·+ ρk−1(αkβk−1)2E[Y ′′(ŜT )]

}
∂x∗

∂ρ

+ θ

{
α2βE[Y ′(ŜT−k+2)] + 2α3β2ρE[Y ′(ŜT−k+3)]

+ · · ·+ (k − 1)αkβk−1ρk−2E[Y ′(ŜT )]

}
(34)

Now, we denote the two components of the right hand side of equation (34) as follows,

A =θ2

{
α2E[Y ′′(ŜT−k+1)] + ρ(α2β)2E[Y ′′(ŜT−k+2)]

+ · · ·+ ρk−1(αkβk−1)2E[Y ′′(ŜT )]

}
∂x∗

∂ρ

6For example, ŜT−k+1 = α(σ +RT−k), ŜT−k+2 = α2β(σ +RT−k) + αRT−k+1, and ŜT−k+3 = α3β2(σ +
RT−k) + α2βRT−k+1 + αβRT−k+2
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B =θ

{
α2βE[Y ′(ŜT−k+2)] + 2α3β2ρE[Y ′(ŜT−k+3)]

+ · · ·+ (k − 1)αkβk−1ρk−2E[Y ′(ŜT )]

}

Then, equation (34) writes as follows,

Pwαβ
1− αβ

(1− αβρ)
· αβ

1− αβρ
= A+B

Pwαβ
1− αβ

(1− αβρ)
· αβ = (1− αβρ)A+ (1− αβρ)B (35)

By substituting equation (33) into the left hand side of the above equation, it writes as

follows,

(αβρ− 1)A =− θ

{
α2βE[Y ′(ŜT−k+1)] + α3β2ρE[Y ′(ŜT−k+2)]

+ · · ·+ αkβk−1ρk−2E[Y ′(ŜT−k+k)]

}
+ (1− αβρ)B

=− θ

{
α2βE[Y ′(ŜT−k+1)] + α3β2ρE[Y ′(ŜT−k+2)]

+ · · ·+ αkβk−1ρk−2E[Y ′(ŜT−k+k)]

}

+ θ

{
α2βE[Y ′(ŜT−k+2)] + 2α3β2ρE[Y ′(ŜT−k+3)]

+ · · ·+ (k − 1)αkβk−1ρk−2E[Y ′(ŜT )]

}

− αβρθ

{
α2βE[Y ′(ŜT−k+2)] + 2α3β2ρE[Y ′(ŜT−k+3)]

+ · · ·+ (k − 1)αkβk−1ρk−2E[Y ′(ŜT )]

}
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(αβρ− 1)A =− θ

{
α2βE[Y ′(ŜT−k+1)] + 2α3β2ρE[Y ′(ŜT−k+2)]

+ · · ·+ (k − 1)αkβk−1ρk−2E[Y ′(ŜT−1)] + kαk+1βkρk−1E[Y ′(ŜT )]

}

+ θ

{
α2βE[Y ′(ŜT−k+2)] + 2α3β2ρE[Y ′(ŜT−k+3)]

+ · · ·+ (k − 1)αkβk−1ρk−2E[Y ′(ŜT )]

}

=θ

{
α2β

(
E[Y ′(ŜT−k+2)]− E[Y ′(ŜT−k+1)]

)
+ 2α3β2ρ

(
E[Y ′(ŜT−k+3)]− E[Y ′(ŜT−k+2)]

)
+ · · ·+ (k − 1)αkβk−1ρk−2

(
E[Y ′(ŜT )]− E[Y ′(ŜT−1)]

)}

− kαk+1βkρk−1E[Y ′(ŜT )] (36)

Note that for ET−k+m+1[Y
′(ŜT−k+m)] in the above expression, expectation is taken over

RT−k, RT−k+1, . . . , RT−k+m. Therefore, by the law of iterated expectation, for any m (=

1, 2, . . . , k),

E[Y ′(ŜT−k+m+1)]− E[Y ′(ŜT−k+m)]

=ET−k · · ·ET−k+m

[
ET−k+m+1

[
Y ′(ŜT−k+m+1)− Y ′(ŜT−k+m)

∣∣∣RT−k, . . . , RT−k+m

]]

=ET−k · · ·ET−k+m

[
ET−k+m+1

[
Y ′(ŜT−k+m+1)

∣∣∣RT−k, . . . , RT−k+m

]
− Y ′(ŜT−k+m)

]

Now, by assumption 1, E[ŜT−k+m+1|RT−k, . . . , RT−k+m] = αβŜT−k+m + αE[RT−k+m] <

ŜT−k+m and thus, Y ′(E[ŜT−k+m+1|RT−k, . . . , RT−k+m]) > Y ′(ŜT−k+m). By Jensen’s inequal-

ity, ET−k+m+1[Y
′(ŜT−k+m+1)|RT−k, . . . , RT−k+m] > Y ′(E[ŜT−k+m+1|RT−k, . . . , RT−k+m]). There-

fore, ET−k+m+1[Y
′(ŜT−k+m+1)|RT−k, . . . , RT−k+m] > Y ′(ŜT−k+m). Therefore, every single

component of the first term of the right hand side of the above equation is positive. Finally,
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by assumption 2, as k goes sufficiently large, the last term goes infinitesimally close to 0.

Now, αβρ − 1 in the left hand side of equation 36 is always negative. Furthermore, the

coefficient on ∂x∗/∂ρ in A is always negative. Therefore, ∂x∗/∂ρ > 0.

C Expected Total Irrigation

The ex ante expected value of irrigation per irrigation opportunity at t conditional on no

energy supply interruption is as follows:

E[x∗t ] =
σt
θ
− β

θ
E[St] (37)

Thus, the expected value of irrigation, which will be denoted as E[IRt] is,

E[IRt] = (1− ρ)E[x∗t ] = (1− ρ)(
σt
θ
− β

θ
E[St]) (38)

Differentiating both sides with respect to ρ,

∂E[IRt]

∂ρ
=

1

θ

{
(1− ρ)(

∂σt
∂ρ
− β · ∂E[St]

∂ρ
)− (σt − βE[St])

}

We know that
∂σt
∂ρ

> 0 (see Appendix B) and also that σt > 0. Now, E[St], the ex ante (before

irrigation season starts) expected soil moisture level at t is mathematically represented as

follows:

E[St] = (1− ρ)α
t−1∑
i=1

ρi−1
{

(αβ)i−1σt−i +
i∑

j=1

(αβ)j−1E[Rt−j]
}

+ ρt−1
{

(αβ)t−1S1 + α

t−1∑
j=1

(αβ)j−1E[Rt−j]
}
> 0 (39)
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where S1 is the starting soil moisture level. Differentiating with respect to ρ,

∂E[St]

∂ρ
=− α

t−1∑
i=1

ρi−1
{

(αβ)i−1σt−i +
i∑

j=1

(αβ)j−1E[Rt−j]
}

+ (1− ρ)α
[ t−1∑
i=1

(i− 1)ρi−2
{

(αβ)i−1σt−i +
i∑

j=1

(αβ)j−1E[Rt−j]
}]

+ (1− ρ)α
[ t−1∑
i=1

ρi−1(αβ)i−1
∂σt−i
∂ρ

]
+ (t− 1)ρt−2

{
(αβ)t−1S1 + α

t−1∑
j=1

(αβ)j−1E[Rt−j]
}

(40)

The sign of
∂E[St]

∂ρ
is ambiguous. The sign of

∂E[IRt]

∂ρ
is ambiguous as well.

D Comparative Statics on Expected Value of Rainfall

First, it is shown that a reduction in the expected value of rainfall in the future leads to

the higher optimal irrigation. In general, any random variable can be decomposed into a

fixed part and a random part. Now, define γt and εt such that Rt = γt + εt and γt = E[Rt]

(E[εt] = 0). Using this notation, the first order condition at T − k can be written as follows:

Pw =θ
k∑
i=1

αiρi−1βi−1E
[
Y ′
(
αiβi−1σT−k +

i∑
j=1

αjβj−1(γT−k−j+i + εT−k−j+i)
)]

+ (1− ρ)αβ · Pw

[
k−1∑
j=1

(αβρ)j−1

]
(41)

Differentiating both sides with respect to γT−m (1 ≤ m ≤ k),

0 =
k∑

i=k−m+1

αiρi−1βi−1E
[
Y ′′
(
αiβi−1σT−k +

i∑
j=1

αjβj−1(γT−k−j+i + εT−k−j+i)
)]

· (αiβi−1 · ∂σT−k
∂γT−m

+ αi−k+mβi−1−k+m) (42)
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Now, denoting αiρi−1βi−1E
[
Y ′′
(
αiβi−1σT−k +

i∑
j=1

αjβj−1(γT−k−j+i + εT−k−j+i)
)]

as ηi,

∂σT−k
∂γT−m

= −
∑k

i=k−m+1 ηiα
iβi−1∑k

i=k−m+1 ηiα
i−k+mβi−1−k+m

< 0 (43)

Therefore, reduction in the mean of rainfall in any of the current and future periods will

reduce the optimal amount of irrigation.

Now, it is shown that proposition 3 holds. When ρ = 0,
∂σT−k
∂γm

= 0 for m = 1, 2, . . . , k−1.

This immediately indicates that

∂σT−k
∂γT−m

∣∣∣
ρ=0

>
∂σT−k
∂γT−m

∣∣∣
ρ>0

(44)

However, when m = k,

∂σT−k
∂γT−m

∣∣∣
ρ>0

= −
∑k

i=1 ηiα
iβi−1∑k

i=1 ηiα
iβi−1

= −1 = −η1α
η1α

=
∂σT−k
∂γm

∣∣∣
ρ=0

(45)

This means that the change in the expected value of the rainfall that follows immediately

after the current irrigation period has the impact of the same magnitude on the optimal

irrigation.

E Uncertainty in Rainfall

First we prove that mean preserving spread of rainfall will unambiguously lead to an increase

in the amount of optimal irrigation per irrigation opportunity. The first order condition at
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T − k is as follows,

Pw =θ
k∑
i=1

αiρi−1βi−1E
[
Y ′
(
αiβi−1σT−k +

i∑
j=1

αjβj−1(RT−k−j+i)
)]

+ (1− ρ)αβ · Pw

[
k−1∑
j=1

(αβρ)j−1

]
(46)

Now, consider two distribution functions of RT−m (1 ≤ m ≤ k), FT−m(R) and GT−m(R),

where GT−m(R) is a mean preserving spread of FT−m(R). It is a well known result that

FT−m(R) second-order stochastically dominates GT−m(R): that is,

∫ ∞
−∞

u(R)dFT−m(R) >∫ ∞
−∞

u(R)dGT−m(R) when u(R) is concave. Here, the function of interest, Y ′(·), is convex in

R and GT−m(R) second-order stochastically dominates FT−m(R), instead. Therefore, a mean

preserving spread of the distribution of RT−m results in a rightward shift of the right-hand

side of the first order condition. Moreover, the left-hand side of the first order condition

remains unchanged. As a consequence, it increases the optimal amount of irrigation per

irrigation opportunity. Therefore, irrespective of the existence of power control, an increase

in uncertainty about rainfall will increase the optimal amount of irrigation per irrigation

opportunity.

Now, Lemmas 1 and 2 immediately suggest that the impact of a mean preserving spread

of the distribution of RT−m on xT−k (m < k) is greater when energy supply interruption is

present. When m = k, it is much more complicated. We know that when there is no power

control (ρ = 0), the optimal target soil moisture level, σt, satisfies the following first order

condition:

Pw(1− αβ2) =θαE
[
Y ′
(
α(σT−k +RT−k)

)]
=θα

∫
R+

Y ′
(
ασT−k + αr

)
f(r)dr (47)

Consider a infinitesimally small perturbation εφ(r) to the distribution function of RT−k,
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F (r), so the resulting distribution function G(r) = F (r) + εφ(r) is a mean preserving spread

of F (r). Now the functional derivative of the integrand (denoted as J) in the above equation

is as follows:

δJ

δF
= αY ′′

(
ασT−k(F ) + αr

)
· f(r) · ∂σT−k(F )

∂F
− αY ′′

(
ασT−k(F ) + αr

)
(48)

Thus, the functional differential is,

δJ =

∫
R+

δJ

δF
φ(r)dr =α · ∂σT−k(F )

∂F

∫
R+

Y ′′
(
ασT−k(F ) + αr

)
· f(r) · φ(r)dr

− α
∫
R+

Y ′′
(
ασT−k(F ) + αr

)
φ(r)dr (49)

Since the functional differential of the left-hand side is 0, δJ must be 0 as well. Therefore,

∂σT−k(F )

∂F

∣∣∣
ρ=0

=

∫
R+
Y ′′
(
ασT−k(F ) + αr

)
φ(r)dr∫

R+
Y ′′
(
ασT−k(F ) + αr

)
· f(r) · φ(r)dr

>0 (by construction of φ(r)) (50)

Now consider the marginal impact of the same perturbation when there is energy supply

interruption. The i th term of the first summation of the first order condition is the following:

Ji = αiρi−1βi−1E
[
Y ′
(
αiβi−1σT−k +

i∑
j=1

αjβj−1(RT−k−j+i)
)]

(51)

where the expectation is taken over Rs for s = T − k, T − k + 1, . . . , T − k + i − 1. Now,

denoting the integrals of Y ′(·) over all Rs except s = T − k as E−[Y ′(·)], Ji can be written

as follows:

Ji = αiρi−1βi−1
∫
R+

E−

[
Y ′
(
αiβi−1σT−k + αiβi−1r +

i−1∑
j=1

αjβj−1(RT−k−j+i)
)]
f(r)dr (52)
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Analogously with J , the functional differential of Ji with respect to F (r) is the following:

δJi =α2iρi−1β2(i−1) · ∂σT−k(F )

∂F

∫
R+

E−

[
Y ′′
(
Si + αiβi−1r

)]
f(r)φ(r)dr

− α2iρi−1β2(i−1) ·
∫
R+

E−

[
Y ′′
(

(Si + αiβi−1r
)]
φ(r)dr (53)

where Si = αiβi−1σT−k(F ) +
i−1∑
j=1

αjβj−1(RT−k−j+i). Since the functional differential of the

left-hand side is 0, the functional differential of the right-hand side must be 0. This condition

leads to the following:

k∑
i=1

δJi =0

⇒ ∂σT−k(F )

∂F

∣∣∣
ρ>0

=

∑k
i=1 α

2iρi−1β2(i−1) ∫
R+
E−

[
Y ′′
(
Si + αiβi−1r

)]
φ(r)dr∑k

i=1 α
2iρi−1β2(i−1)

∫
R+
E−

[
Y ′′
(
Si + αiβi−1r

)]
f(r)φ(r)dr

(54)

The sign of
∂σT−k(F )

∂F

∣∣∣
ρ>0
− ∂σT−k(F )

∂F

∣∣∣
ρ=0

depends crucially on the curvature of the crop-

water function at which it is evaluated for each i the term, and cannot be signed defini-

tively.

44



References

Adenikinju, Adeola F, “Electric infrastructure failures in Nigeria: a survey-based analysis

of the costs and adjustment responses,” Energy Policy, 2003, 31 (14), 1519 – 1530.

Aigner, Dennis J. and Edward E. Leamer, “Estimation of time-of-use pricing response

in the absence of experimental data : An application of the methodology of data transfer-

ability,” Journal of Econometrics, 1984, 26 (1-2), 205–227.

Araya, A., Solomon Habtu, Kiros Meles Hadgu, Afewerk Kebede, and Taddese

Dejene, “Test of AquaCrop model in simulating biomass and yield of water deficient and

irrigated barley (Hordeum vulgare),” Agricultural Water Management, 2010, 97 (11), 1838

– 1846.

Bras, R. L. and J. R. Cordova, “An Intraseasonal Dynamic Optimization Model to

Allocate Irrigation Water between Crops,” Water Resources Research, 1981, 17 (4), 866–

874.

Cai, X., M. Hejazi, and D. Wang, “Value of Probabilistic Weather Forecasts: Assess-

ment by Real-Time Optimization of Irrigation Scheduling,” Journal of Water Resources

Planning and Management, 2011, 137 (5), 391–403.

Caves, Douglas W., Laurits R. Christensen, and Joseph A. Herriges, “Consistency

of residential customer response in time-of-use electricity pricing experiments,” Journal of

Econometrics, 1984, 26 (1-2), 179–203.

Dethier, Jean-Jacques, Maximilian Hirn, and Stphane Straub, “Explaining En-

terprise Performance in Developing Countries with Business Climate Survey Data,” The

World Bank Research Observer, 2011, 26 (2), 258–309.

Dudley, Norman J., David T. Howell, and Warren F. Musgrave, “Optimal Intrasea-

sonal Irrigation Water Allocation,” Water Resources Research, 1971, 7 (4), 770–788.

45



Eto, Joseph, “The Past, Present, and Future of U.S. Utility Demand-Side Management

Programs,” Technical Report, University of California Berkeley December 1996.

Farahani, Hamid J., Gabriella Izzi, and Theib Y. Oweis, “Parameterization and

Evaluation of the AquaCrop Model for Full and Deficit Irrigated Cotton,” Agronomy

Journal, 2009, 101 (3), 469 – 476.
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Portmann, “Groundwater use for irrigation a global inventory,” Hydrology and Earth

System Sciences Discussions, 2010, 7 (3), 3977–4021.

Steduto, Pasquale, Theodore C. Hsiao, Dirk Raes, and Elias Fereres, “AquaCop-

The FAO Crop Model to Simulate Yield Response to Water: I. Concepts and Underlying

Principles,” Agronomy Journal, 2009, 101 (3), 426 – 437.

Steinbuks, J. and V. Foster, “When do firms generate? Evidence on in-house electricity

supply in Africa,” Energy Economics, 2010, 32 (3), 505 – 514.

48



Stricevic, Ruzica, Marija Cosic, Nevenka Djurovic, Borivoj Pejic, and Livija

Maksimovic, “Assessment of the {FAO} AquaCrop model in the simulation of rainfed

and supplementally irrigated maize, sugar beet and sunflower,” Agricultural Water Man-

agement, 2011, 98 (10), 1615 – 1621.

Train, Kenneth E. and Nate Toyama, “Pareto Dominance Through Self-Selecting Tar-

iffs: The Case of TOU Electricity Rates for Agricultural Customers,” The Energy Journal,

1989, 0 (1), 91–109.

Wada, Yoshihide, L. P. H. van Beek, and Marc F. P. Bierkens, “Nonsustainable

groundwater sustaining irrigation: A global assessment,” Water Resources Research, 2012,

48 (6).

Yaron, Dan and Ariel Dinar, “Optimal Allocation of Farm Irrigation Water during Peak

Seasons,” American Journal of Agricultural Economics, 1989, 64 (4), 681–689.

49


	Introduction
	Energy Supply Interruption
	Literature Review
	Energy Supply Reliability
	Energy Demand-Side Management
	Optimal Intra-Seasonal Irrigation Scheduling

	The Model
	Single Period Payoff
	State Equation
	Agricultural Producer's Problem

	Solutions and Results
	Bellman Equations
	Optimal Irrigation Strategy
	First Order Condition
	Comparative Statics
	Energy supply interruption
	Rainfall


	Numerical Examples
	Calibration
	Results
	Policy Implications

	Conclusions
	Appendices
	Value Functions, First Order Conditions, and Proof of Proposition 1
	Proof of Proposition 2
	Expected Total Irrigation
	Comparative Statics on Expected Value of Rainfall
	Uncertainty in Rainfall

