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Abstract

In this paper, a general framework is proposed for the use of (quasi-) experi-
mental data when choosing policies such as tax rates or the level of inputs in a
production process. The data are used to update expectations about social welfare
as a function of policy, and the policy is chosen to maximize expected social wel-
fare. We characterize the properties of the implied decision function. For settings
where experimentation is feasible, we characterize experimental designs maximizing
expected social welfare, assuming policies are chosen based on the data. We dis-
cuss several economic settings which are covered by our framework, and apply our
methods to data from the RAND health insurance experiment. In this application,
we obtain much smaller estimates of the optimal copay (18% vs. 50%) than those
obtained using a conventional sufficient-statistic approach.

Our approach combines optimal policy theory, statistical decision theory, and
nonparametric Bayesian methods. It explicitly takes into account economic theory,
does not rely on restrictions of functional form or heterogeneity, and provides a
transparent mapping from observations to policy choices. This mapping is optimal
in finite samples.

1 Introduction

One of the main objectives of empirical research in economics is to inform policy choices.
Examples include the choice of inputs into some production process (broadly defined),
such as education or health, as well as the choice of policy parameters such as tax rates,
co-payments in health insurance, replacement rates in social insurance, etc.

In this paper, a general framework is proposed for the use of (quasi-) experimental
data when choosing such policies. Our framework assumes that the policy-maker wishes
to maximize expected social welfare. The data are used to update expectations about
social welfare under alternative choices of policy parameters. Our framework leads to
a fairly simple and tractable mapping from observed data to optimal policy choices. In
settings where experimentation is an option, it allows to calculate experimental designs
which maximize ex-ante expected welfare, assuming the policy is chosen based on the
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experimental data. Our framework allows, finally, to assess the value of additional exper-
imentation for increasing social welfare.

Our approach has several features often considered desirable. It explicitly incorporates
the insights of economic theory, in particular optimal policy theory. It is nonparamet-
ric, and does not rely on any restrictions of functional form or the dimensionality of
unobserved heterogeneity. It provides a transparent and easily visualized mapping from
observed data to policy choices. It explicitly takes into account the uncertainty stemming
from extrapolation outside the support of available data. The proposed procedures are,
finally, optimal from the perspective of finite-sample statistical decision theory.

Our framework makes the following assumptions. (i) There is random variation of
the policy choice variables in the available data.1 (ii) The policy objective function can
be written as a transformation of the relevant technological or behavioral relationships
by some affine operator.2 (iii) The prior distribution of these relationships is given by
a Gaussian process. Under these assumptions, we provide explicit expressions, as well
as characterizations, of optimal policy choices and of optimal experimental designs. We
show how to calculate posterior expected social welfare, as a function of policy choices,
and how to calculate the maximizer of posterior expected social welfare. We discuss the
statistical properties of this maximizer, in particular its asymptotic normality, and the
determinants of its asymptotic variance. We show, further, how ex-ante expected social
welfare depends on experimental design, and how to choose an experimental design which
maximizes ex-ante expected welfare, assuming the policy is chosen optimally given the
experimental data.

Our framework aims to incorporate the advantages of various approaches to empir-
ical work in economics. First, like “structural” approaches, it explicitly incorporates
economic theory in order to evaluate policy counterfactuals. Second, like “causal” (or
“reduced form”) approaches, it does not rely on functional form restrictions or restric-
tions of heterogeneity for identification. Third, like “sufficient statistic” approaches, it
is guided in its choice of objects of interest and of statistical loss by explicit models of
optimal policy choice. Our framework has some limitations, as well. First, we essentially
assume away the problem of external validity. Second, our experimental design is opti-
mal for a particular, well defined policy problem – some experiments might end up being
analyzed in a different way then originally intended. Third, policy choice is not the only
purpose of economic research. The testing of theories, in particular, is beyond the scope
of the framework discussed here. Finally, policy choice involves a number of normative
decisions such as the welfare weights assigned to various groups or the willingness to pay
for some outcome. These decisions should be a matter of public debate, and are beyond
the scope of “expert knowledge.”

This paper draws on a number of independent literatures including (i) optimal policy
theory, (ii) statistical decision theory, (iii) machine learning and nonparametric Bayesian
estimation, (iv) the methodological debates about the advantages of alternative ap-
proaches to empirical research in microeconomics, and (v) the empirical literature in
applied microeconomics itself. We conclude this introduction by listing some references

1We later generalize to observational data where either conditional exogeneity given covariates holds,
or there is a valid instrumental variable.

2This is not very restrictive and covers all standard models of optimal policy choice. The affine
dependence allows for operations such as integration and differentiation, in particular.
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for each of these literatures. Models of optimal policy in public finance have a long tradi-
tion going back at least to the discussion in Samuelson (1947) of social welfare functions,
with classic contributions including Mirrlees (1971) and Baily (1978). The empirical im-
plementation of such models using “sufficient statistics” is discussed in Chetty (2009)
and Saez (2001). Textbook introductions to statistical decision theory are available, for
instance, in Casella and Berger (2001) and Robert (2007). Gaussian process priors and
nonparametric Bayesian function estimation are discussed extensively in Williams and
Rasmussen (2006). A general and thorough treatment of nonparametric Bayesian statis-
tics can be found in (Ghoshal and van der Vaart, 2013, forthcoming). The controversies
surrounding “reduced form” and “structural” methods are well summarized in Deaton
(2009), Imbens (2010), Angrist and Pischke (2010), and Nevo and Whinston (2010). The
literature discussing the estimation of (educational) production functions using (quasi-)
experimental data includes contributions such as Fryer (2011), Angrist and Lavy (1999),
Krueger (1999), and Rivkin et al. (2005). A decision problem related to the problem
discussed here is the problem of optimal assignment of a discrete treatment based on co-
variates and given experimental data. This problem has been studied by Manski (2004),
Dehejia (2005), Bhattacharya and Dupas (2008), Hirano and Porter (2009), Chamberlain
(2011) and Stoye (2011) among others.

The rest of this paper is structured as follows. Section 2 introduces the general
setup studied in this paper. Section 3 discusses several optimal policy problems that
fit into our framework, including optimal taxation and optimal insurance, the choice of
inputs to a production process, and the allocation of treatments in the presence of peer
effects. Section 4 discusses the optimal policy choice given experimental data, and the
optimal experimental design. Our main theoretical results are discussed in sections 5
and 6. Section 5 develops the frequentist asymptotic theory of our estimators. Section
6 characterizes the optimal experimental design. Section 7 discusses extensions of our
framework to settings with observational data where either (i) conditional exogeneity of
treatment given available covariates is satisfied, or (ii) the data contain an exogenous
instrumental variable. Section 8 applies our methods to data from the RAND health
insurance experiment, using these data to estimate an optimal coinsurance rate, and
compares the results to those obtained using the “sufficient statistic” approach. Section
9 concludes.

2 Setup

The setup we consider can be summarized as follows: We assume that the econometrician’s
role is to advise a policy maker, who wishes to maximize social welfare u(t) through
choice of t. The objective function u is unknown, but given by a known mapping from an
average structural function m, where m corresponds to a structural function g. We can
learn about m using experimental data (Xi, Yi), where E[Yi|Xi = x] = m(x). Expected
utility maximization by the policy maker requires a prior distribution for m; we assume
that this prior distribution lies in the general (nonparametric) class of Gaussian process
priors.

We next state our assumptions more formally, before discussing each of them in turn.
Assumption 2 will be clarified by a series of examples in section 3.
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Assumption 1 (Objective)

1. Social welfare for policy choice t ∈ Rdt is given by u(t).

2. u is an unknown function.

3. The policy-maker aims to maximize expected social welfare.

Assumption 2 (Average structural function and objective function)

1. Social welfare u is equal to L ·m+ u0, where

(a) m is an element of3 C 1(X ),

(b) L is a linear operator from C 1(X ) to C 1(T ),

(c) X ⊂ Rdx , T ⊂ Rdt ,
(d) and L and u0 are known.

2. m(x) = E[g(x, ε)], where

(a) g(x, ε) is a structural function,

(b) and ε ∼ Pε in the target population.

Assumption 3 (Experimental data)

1. The data (Xi, Yi)
n
i=1 are i.i.d.

2. Yi = g(Xi, εi).

3. Xi ⊥ εi.

4. εi ∼ Pε, the distribution of ε in the target population.

Assumption 4 (Prior)
The policy-maker has a prior which satisfies the following conditions.

1. m ∼ GP (µ(.), C(., .)), where

(a) GP (µ(.), C(., .)) is the law of a Gaussian process

(b) such that E[m(x)] = µ(x), and

(c) Cov(m(x),m(x′)) = C(x, x′).

2. The function m is independent of the probability distribution PX .

3C k(X ) denotes the space of k times continuously differentiable functions on X , equipped with the

norm ‖m‖ =
∑k
j=1 supx∈X |m(j)(x)|.
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Remarks

• Assumption 1

We have assumed that u is an unknown function. An alternative notation for the
same assumption would take u as a known function of an unknown set of parameters
θ and the policy choice t.

Assumption 1 states that the policy maker wishes to maximize expected social
welfare, which puts us in the Bayesian paradigm.4 Expectations are posterior ex-
pectations given the observed data. We equate the objective of statistical analysis
and the policy-maker’s objective.

• Assumption 2

The definition of m as m(x) = E[g(x, ε)] equates it to the average structural func-
tion (cf. Blundell and Powell, 2003) corresponding to a structural function g and a
distribution of unobserved heterogeneity ε. Note that we do not restrict the support
or dimensionality of ε in any way, nor do we restrict the functional form of g.

The objective function u is given by an affine transformation of m, that is u − u0

is given by the image of the average structural function m under some general
linear operator L. This assumption covers many cases of interest; the next section
will discuss several examples. In these examples m corresponds for instance to
demand functions, to the relationship between the tax base and tax parameters, or
to production functions describing average output as a function of inputs.

The functions u considered involve a population average. The function u might
for instance be equal to a weighted average of private utility, or to an average
potential outcome. Expected social welfare thus averages both over the distribution
of heterogeneity in the population of interest, and over posterior uncertainty.

• Assumption 3

This assumption immediately implies, that the average structural function m is
identified from the observed data via m(x) = E[Yi|Xi = x].

This assumption imposes several important restrictions. First, outcomes Yi are
given by the structural function g evaluated at Xi. This is known as the “stable unit
treatment values” assumption (SUTVA, cf. Angrist et al. 1996). Note, however,
that this assumption does not exclude consideration of equilibrium effects if we
define the unit of observation appropriately.5 Second, Xi is assumed to be (as if)
randomly assigned. This guarantees the internal validity of a regression of Y on
X. Third, we assume that the distribution of unobserved heterogeneity affecting
outcomes is the same in the experimental population as in the target population.
This guarantees the external validity of estimates based on the available data.

When we consider experimental design, we will impose a minor variation of this
assumption. We will consider the empirical distribution of the Xi to be chosen by

4In section 5 we will, however, analyze from a frequentist perspective the decision functions suggested
by the Bayesian paradigm.

5Section 3.3 discusses a setting where we are explicitly interested in (equilibrium) peer effects, taking
as our unit of observation the classroom.
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the experimenter, while still maintaining that the distribution of εi is the same for
all i and equal to the population distribution.

In section 7 we discuss how to relax assumption 3 to a quasi-experimental setting
with instruments Z and controls W . We will assume that P (εi|Zi,Wi) = P (ε|W )
where P (ε|W ) is the conditional distribution of heterogeneity in the target pop-
ulation of the policy. This assumption relaxes the exogeneity of treatment Xi to
exogeneity and exclusion of an instrument Zi. It relaxes the external validity as-
sumption to an assumption of external validity given controls.

• Assumption 4

This assumption restricts the form of prior beliefs admitted for the policy-maker.
It describes a general class of non-parametric priors for the function m. Gaussian
process priors have become increasingly popular in the machine learning literature,
as they lead to tractable Bayesian estimators without imposing parametric restric-
tions.6 Note that this assumption does not restrict the first two moments of the
prior, and therefore does not restrict the class of estimators based on posterior best
linear predictors. In section 4 we discuss the implications of Gaussian process pri-
ors for posterior expectations. Appendix B provides some review of commonly used
covariance kernels C(., .), and of the properties of m implied by these kernels.

2.1 Prior moments

In section 4 below, we derive posterior expectations for m and u given the data and given
the Gaussian process prior of assumption 4. We then use the posterior expectation of u
to characterize the optimal choice of t, which maximizes the posterior expectation of u.

In order to derive these posterior expectations and the optimal t, we need the prior
covariance between observed outcomes and the value of the objective function at a given
point, as well as the prior covariance between observed outcomes and the objective func-
tion’s derivative. These covariances are given by the following definition. These covari-
ances depend on the prior for m, as well as on the operator L mapping m into u. Lemma
1 characterizes these covariances. In section 3 we discuss a number of specific optimal
policy problems, the corresponding operators L, and the corresponding covariances.

Definition 1 (Prior moments)
Define the function ν : T → R as the prior expectation

ν(t) := E[u(t)]. (1)

Define the function D : T ×X → R as the prior covariance

D(t, x) := Cov(u(t),m(x)). (2)

Define the function K : T ×T → R as the prior covariance

K(t, t′) := Cov(u(t), u(t′)). (3)

6For an introduction to Gaussian process priors, see Williams and Rasmussen (2006); a thorough
general treatment of nonparametric Bayesian statistics can be found in the forthcoming Ghoshal and
van der Vaart (2013).
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Define the function B : T ×X → R as the prior covariance7

B(t, x) := Cov

(
∂

∂t
u(t),m(x)

)
. (4)

The following lemma characterizes these covariances under some high-level regularity
conditions on the operator L and the covariance kernel C. In the applications considered
in section 3 we directly check the implications of this lemma rather than the high level
regularity conditions. In the statement of this lemma we write Lx′C(x′, x) to emphasize
that this expression applies the linear operator L to C(x′, x) as a function of x′ for fixed
x.

Lemma 1 (Characterizing prior moments)
Under the regularity conditions stated below, the moments given by definition 1 are equal

to

ν(t) = (L · µ)(t) + u0(t), (5)

D(t, x) = Lx′C(x′, x), (6)

K(t, t′) = LxD(t, x) = LxLx′C(x′, x), and (7)

B(t, x) =
∂

∂t
D(t, x) =

∂

∂t
Lx′C(x′, x). (8)

Sufficient conditions for these equalities are (i) m is a Gaussian random element with
support in a separable Banach space with norm ‖.‖ and finite expectation E[‖m‖2], and
(ii) the following mappings are continuous linear functionals with respect to the norm ‖.‖:
(a) m→ (L ·m)(t), (b) m→ ∂

∂t (L ·m)(t), and (c) the evaluation map m→ m(x).

The proof of Lemma 1 and all further proofs are relegated to appendix A. The equalities
of lemma 1 hold under more general conditions than those stated. In our applications, the
linear operator L involves only integrals and pointwise linear transformations. For such
operators, the exchangeability of linear operator and expectation follows immediately
from the exchangeability of the order of integration (Fubini’s theorem).

3 Optimal policy problems

The previous section has introduced the general optimal policy problem studied in this
paper, where the policy objective is given by u = L ·m+ u0 for some average structural
function m(x) = E[g(x, ε)] and some linear operator L. In this section we discuss a
number of examples; optimal taxation and optimal insurance (section 3.1), optimal choice
of inputs to a production function (section 3.2), and treatment assignment with peer
effects (section 3.3). Examples such as these have been discussed extensively in the fields
of public finance, development economics, and the economics of education. For each
of these examples we are going to describe the operator L and the corresponding prior
moments ν, D, B, and K.

7It is easy to show that u is (mean square) differentiable if the covariance kernel K(x, x′) is differen-
tiable, see appendix B.
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3.1 Optimal insurance and optimal taxation

Many problems of optimal policy in public finance share a similar structure. A typical
example of such a public finance problem is optimal (unemployment) insurance, as first
discussed by Baily (1978). Chetty (2006), building on insights of Feldstein (1999), has
argued that a very general class of models lead to the same formulas characterizing optimal
benefits. In terms of our setup, this general class of models can be summarized as follows.

Let Y ∈ {0, 1} denote the state of an individual, where Y = 1 is the “bad” state
(unemployment, sickness / seeing a doctor, ...). Let t = x be the size of the transfer to
individuals in the bad state. Let Y x = g(x, ε) describe the (counterfactual) state of an
individual given transfer level x. g is a behavioral relationship, reflecting all behavioral
margins affecting the likelihood of being in state Y = 1. Let m(x) = E[g(x, ε)] be the
share of the population that is in the bad state, given x. Let λ be the marginal value
of income to individuals in the bad state, relative to the marginal value of government
funds. We assume λ to be known.8 9

With this notation, let us consider the effect of a marginal change dt of t on social
welfare. There are potentially four components to the effect of such a change (cf. Chetty,
2009). This change has (i) a mechanical effect on private welfare of magnitude λm dt
and (ii) a mechanical effect on government funds of −m dt. It has (iii) a behavioral effect
on government revenues of magnitude −tm′(t) dt. Private utility maximization and the
absence of externalities imply there is (iv) no behavioral effect on private welfare. This
follows from envelope condition arguments which hold both in the continuous Y and in
the discrete Y case.

Adding up these effects, we get the marginal effect of a change in t on social welfare,

u′(t) = (λ− 1) ·m(t)− t ·m′(t) = λm(t)− ∂

∂t
(t ·m(t)). (9)

The first order condition for optimal transfers is given by u′(t∗) = 0. Integrating and
normalizing u(0) = 0 yields social welfare,10

u(t) = λ

∫ t

0

m(x)dx− t ·m(t). (10)

We thus get u0 = 0 and

(Lm)(t) = λ

∫ t

0

m(x)dx− t ·m(t). (11)

Given the linear operator L, and given a Gaussian process prior for m as in assumption
4, we can characterize the prior moments ν, D, B, and K as in lemma 1; see box 1.

8In general, λ reflects social preferences for redistribution as well as private risk aversion. Emphasizing
the latter interpretation, the public finance literature has attempted to estimate λ. I am inclined to share
the perspective of Saez and Stantcheva (2012), who consider λ to ultimately reflect a political choice
rather than an empirical parameter.

9We assume here that λ is known and constant. This is not necessary – all our results immediately
generalize to non-constant and estimated λ. The resulting expressions are particularly simple if the
posterior for λ is uncorrelated with the posterior for m.

10Notice the relationship between expression (10) and the “Harberger triangle.” The latter corresponds
to the special case where λ = 1.
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For the optimal insurance model of section 3.1, the prior mean of u equals

ν(t) = (L · µ)(t) = λ

∫ t

0

µ(x)dx− t · µ(t). (12)

The prior covariances D, B and K are given by

D(t, x) = Cov(u(t),m(x))) = Lx′C(x′, x)

= λ · Cov

(∫ t

0

m(x′)dx′,m(x)

)
− t · Cov(m(t),m(x))

= λ ·
∫ t

0

C(x′, x)dx′ − t · C(t, x), (13)

B(t, x) = Cov

(
∂

∂t
u(t),m(x)

)
=

∂

∂t
D(t, x) =

∂

∂t
Lx′C(x′, x)

= (λ− 1) · Cov (m(t),m(x))− t · Cov

(
∂

∂t
m(t),m(x)

)
= (λ− 1) · C(t, x)− t · ∂

∂t
C(t, x), and (14)

K(t, t′) = Cov(u(t), u(t′)) = LxD(t, x) = LxLx′C(x′, x)

= λ2 ·
∫ t

0

∫ t′

0

C(x, x′)dx′dx+ t · t′ · C(t, t′)

− λ ·

(
t′ ·
∫ t

0

C(x, t′)dx+ t ·
∫ t′

0

C(x′, x)dx′

)
. (15)

Covariance Kernels 1: Optimal insurance
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This setup is formally equivalent to a number of other problems considered in the
literature. An example is the choice of the tax rate for the top tax bracket, as in Saez
(2001). The above model applies immediately to this problem, once we change the inter-
pretation of the parameters and some signs. To see this, let λ be the marginal value we
assign to additional income for rich people relative to additional government revenues, let
Y x = g(x, ε) be the taxable income declared by an individual if she faces a top tax rate
of x, and let m(x) be the size of the tax base in the top bracket. The only difference to
the insurance model is that Y is real-valued rather than binary, and that t is a tax rather
than a transfer.

One difference between our treatment and the public finance literature lies in the
absence of functional form restrictions. Chetty (2009) has surveyed the optimal policy
literature in public finance, and emphasized the point that the first order conditions for
optimal policy in general only involve some key behavioral elasticities at the optimal policy.
The corresponding empirical implementations of such models estimate these behavioral
elasticities at some policy level. Plugging these elasticities into the formulas for optimal
policy implicitly assumes a parametric log-linear model for extrapolation of behavior
outside the observed range. The non-parametric Bayesian approach which we propose
might also need to extrapolate outside the support of the data using prior information,
but it allows to quantify the uncertainty related to such an extrapolation. In contrast
to the structural literature, our setting neither imposes functional form assumptions, nor
does it restrict the dimensionality of unobserved heterogeneity ε.

A representation of the policy objective similar to the one above is more generally
possible in settings which satisfy the following assumptions: The policy-maker’s objective
is to maximize a weighted sum of private utilities. Policy choices (such as tax rates
or replacement rates) affect private choices. The government is subject to a budget
constraint, or equivalently has alternative expenditures and revenues which pin down the
marginal value of government revenues. If there are no externalities, these assumptions
imply that the behavioral effects of policy choices on private welfare are zero at the
margin, due to envelope conditions. This implies that welfare under a given policy choice
only depends on some key behavioral relationship, for instance the tax base as a function
of tax rates.

3.2 Optimal choice of inputs to a production process

Let us now consider settings where the policy-maker has to choose inputs x ∈ X ⊂ Rdx
into some production process. The outcome of interest (output) is given by Y = g(X, ε),
where g is the production function mapping observed inputs X and unobserved inputs ε
into output Y . The policy-maker’s objective is to maximize average (expected) output
E[Y ], net of the costs of inputs. The unit-price of input xj is given by pj . The policy-
maker’s willingness to pay for a unit-increase in Y is given by λ. Equating t = x, this
yields the objective function

u(t) = λ · E[Y t]− p′ · t. (16)

Letting m(t) = E[Y t], (Lm)(t) = λ ·m(t), and u0(t) = −p′ · t, we get

u(t) = (Lm)(t) + u0(t) = λ ·m(t)− p′ · t. (17)
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Given the linear operator L and the function u0, and given a Gaussian process prior
for m as in assumption 4, we can characterize the prior moments ν, D, B, and K as in
lemma 1; see box 2.

For the production function model of section 3.2, the prior mean of u equals

ν(t) = (L · µ)(t) + u0(t) = λ · µ(t)− p′ · t. (18)

The prior covariances D, B and K are given by

D(t, x) = Cov(u(t),m(x))) = Lx′C(x′, x) = λ · C(t, x), (19)

B(t, x) = Cov(u′(t),m(x)) =
∂

∂t
D(t, x) =

∂

∂t
Lx′C(x′, x) = λ · ∂

∂t
C(t, x), and (20)

K(t, t′) = Cov(u(t), u(t′)) = LxD(t, x) = LxLx′C(x′, x) = λ2 · C(t, t′). (21)

Covariance Kernels 2: Choice of inputs

An important example of the kind of problem considered in this section is discussed in
the literature on the economics of education. In this context, Y measures long-run student
outcomes of interest, or (as a second best) proxies for these long-run outcomes such as
test scores. The vector x is equal to educational inputs such as teachers per student
(class size), teacher salaries (affecting self-selection into teaching), school facilities, extra
tutoring, length of the school year, etc. λ is equal to the social willingness to pay for
improvements in student long-run outcomes. A recent example of experimental evidence
on the role of educational inputs is Fryer (2011), other references include Angrist and Lavy
(1999), Krueger (1999), and Rivkin et al. (2005). Many further examples for such choice-
of-inputs problems can be found in the experimental development economics literature,
which aims to assess the (cost) effectiveness of various policies in achieving observable
improvements; a survey can be found in Banerjee and Duflo (2008). Another problem
fitting into the framework discussed here is the profit maximization problem of the firm,
as treated in standard microeconomic theory (cf. Mas-Colell et al., 1995, chapter 5).

The policy problem discussed in this section assigns the same vector of inputs t to all
units of observation. Section ?? considers a more general form of this problem, where the
policy-maker has the option of conditioning the allocation of inputs t on some observed
covariates w.

3.3 Peer effects

Two types of policies are discussed in the literature on social externalities or peer effects.
The first assigns treatment to individuals who are members of fixed (predetermined)
groups. The second assigns individuals with predetermined characteristics to groups.
The objective function of both policy choice problems can be recast in terms of a reduced
form relationship that fits into the framework of section 3.2. Here, as in other settings
with externalities or equilibrium effects, we need to define our units of treatment in such
a way that externalities only take place within these units. We next discuss a framework
which directly addresses the problem of assigning treatment to individuals in fixed groups.
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We then discuss how this framework can be re-interpreted to provide a solution to the
problem of assigning individuals to groups.

Suppose individuals i are members of groups c (“classes”) of size nc, where ci is such
that i ∈ ci. Let Yi denote individual outcomes and define Yc = 1

nc

∑
i∈c Yi as the average

outcome within group c. Assume that the policy-maker’s objective is to maximize the
average outcome E[Yi] net of the cost of treatments. Assume that the outcome Yi might
depend not only on individual i’s treatment Xi, but also on the treatments and outcomes
of other members of group ci,

Yi = h(Xi, {Xj , Yj}j∈ci,j 6=i, εi). (22)

The set of equations (22) for i ∈ c forms a system of simultaneous equations. Solving for
the equilibrium of this system we get a reduced form mapping from {Xi}i∈c and {εi}i∈c
to the vector of equilibrium outcomes {Yi}i∈c.11 From this, we can in particular deduce
the reduced form relationship

Yc = g({Xj}j∈c, εc), (23)

where the group-level heterogeneity εc is a composite of all the individual-level εi, εc =
{εi}i∈c.

We assume (following Graham et al. 2008) that the individuals in a group are observa-
tionally equivalent (“exchangeable”), and in particular that any group-internal network
structure is unknown to the researcher. Under this assumption, it is without loss of
generality to assume that c only depends on the distribution of (xj)j∈c, but is invari-
ant to permutations within the group.12 If Xi is binary we can in particular define
Xc = 1

nc

∑
i∈cXi and simplify the expression for c to

Yc = g(Xc, nc, εc). (24)

We assume that Xi is binary and that nc is constant (or does not enter g) for the rest of
this section. Notation gets more complicated without these restrictions; our arguments
do, however, generalize.

Equation (24) describes the reduced form relationship that matters for the types of
policy we consider. For our purposes it is not necessary to find a solution to the identifi-
cation problem posed by simultaneity (the “reflection problem”) which was discussed in
Manski (1993). We do not need to distinguish between “exogenous” and “endogenous”
peer effects.

Define the group-level average structural function m corresponding to the group-level
reduced form relationship g as

m(xc) := E[g(xc, εc)]. (25)

As we assumed that the policy-maker’s objective is to maximize average outcomes net of
the cost of treatments, we get the objective function

u(t) = λ ·m(t)− p · t. (26)

11If there are multiple equilibria, the reduced form mapping additionally depends on an equilibrium
selection mechanism, which we subsume into unobserved group heterogeneity εc.

12Note that this is a statement about the researcher’s ignorance rather than about the underlying
structure. For a more detailed discussion of this subtle point, see Graham et al. (2008).
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Here p is the price of assigning treatment 1 to one individual. As before, we equate
t = xc, and λ is the policy-maker’s willingness to pay for a unit-increase of individual
outcomes Y . This is exactly the framework of section 3.2, so all the previous results apply.

This framework allows us to directly evaluate policies that choose the share t of in-
dividuals treated within each group. A typical example are the deworming programs
studied in Miguel and Kremer (2003), where c indexes schools, i indexes students, xi = 1
if a student was treated, and xc is the share of students treated in a school. To the extent
that there are positive externalities of treatment, as found in Miguel and Kremer (2003),
the slope of m with respect to x is larger than individual treatment effects. To the extent
that there are decreasing returns on a group level, less than complete treatment might be
optimal.

The second of the two types of policies mentioned at the beginning of this section
are policies that affect group structure. Such policies fit into a slightly modified version
of our general setup.13 Under a “double randomization” condition as in Graham et al.
(2008), which guarantees that Xc ⊥ εc, we can describe the problem as follows. In this
case Xi is a predetermined individual characteristic, and m(xc) is the average (expected)
outcome for groups with composition xc. The policy-maker can choose a distribution of
group compositions xc which satisfies the constraints of the population distribution of
individual characteristics xi. She can choose any distribution of Xc which satisfies the
constraint E[Xc] = x. If the counterfactual policy also guarantees double randomization,
we can describe the policy problem as

max
P (Xc)

E[m(xc)] s.t. E[Xc] = x.

We are now maximizing over a distribution for Xc, rather than requiring that all units c
get the same treatment level. Denoting the Lagrange multiplier of the budget constraint
by p/λ, the problem again takes the form

max
P (Xc)

E[λ ·m(Xc)− p ·Xc].

In general, there might be two values of xc that maximize λ ·m(xc)−p ·xc if the function
m is not concave. To satisfy the budget constraint, the optimal policy might need to
assign weight to both points.

4 Posterior, optimal policy choice, and optimal exper-
imental design

In this section, we study the implications of the setup introduced in section 2 for optimal
policy and experimental design; throughout we maintain assumptions 1 through 4. Sec-
tion 4.1 characterizes the posterior mean of the regression function m, of the objective
function u = L ·m+u0, and of its derivative u′. The posterior is calculated conditional on
experimental data (Y,X) that consist of i.i.d. draws (Yi, Xi). Section 4.2 derives the opti-
mal policy choice t∗ conditional on the data X,Y . t∗ maximizes the posterior expectation

13For a detailed discussion of the issues involved, see Graham et al. (2008).
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of the objective function u (social welfare). Section 4.2 also discusses the optimal exper-
imental design X∗, which maximizes ex ante expected welfare, assuming that t is chosen
optimally ex post. Section 4.2, finally, provides expressions for the value of additional
experimental observations, assuming the data are used to choose policy optimally.

Throughout the rest of the paper, we use θ as a shorthand for the data generat-
ing process so that expectations conditional on θ are “frequentist” expectations (such
as m(x) = E[Yi|Xi = x, θ]), while unconditional expectations are “Bayesian” (such as
m̂(x) = E[m(x)|X,Y ]).

4.1 Posterior

In this subsection we derive and characterize the posterior mean of m(x), of u(t), and of
u′(t) given the matrix X and the vector of outcomes Y . Derivation and characterization
of the posterior expectation of m(x) is standard in the literature on Gaussian process
regression, while the posterior mean of u(t) and u′(t) are specific to the setup considered
in this paper.

In discussing the posterior expectation of m(x), sections 4.1.1 through 4.1.3 provide a
review of the literature on Gaussian process regression. This literature has early roots in
geostatistics (Matheron, 1973) and is closely related to spline regression (Wahba, 1990).
More recently, it has become central in the literature on machine learning; Williams and
Rasmussen (2006) provide a good introduction. A general and thorough treatment of
nonparametric Bayesian statistics can be found in (Ghoshal and van der Vaart, 2013,
forthcoming).

4.1.1 The posterior expectation m̂ of m

We start by deriving the posterior expectation of the regression functionm(x) = E[Yi|Xi =
x, θ]. First, we give a representation of m̂(x) := E[m(x)|X,Y ] as the posterior best linear
predictor of m(x) in Y given X. We then provide an equivalent representation of m̂(x) as
the solution to a penalized regression problem. The combination of these two represen-
tations then motivates an asymptotic approximation in terms of the so called equivalent
kernel.

Maintaining assumption 4, we use the following notation for the prior moments of m
given X,14

µi = E[m(Xi)|X] = µ(Xi),

Ci,j = Cov(m(Xi),m(Xj)|X) = C(Xi, Xj), and

Ci(x) = Cov(m(x),m(Xi)|X) = C(x,Xi). (27)

Let furthermore µ, C, and C(x) denote the vectors and matrix collecting these terms for
i, j = 1, . . . , n. In order to derive the posterior expectation of m(x), we need to impose
one more assumption.

14These prior moments do not depend on X by assumption 4.
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Assumption 5 (Subjective expectations based on best linear predictor) The sub-
jective posterior expectations of the policy-maker are formed as posterior best linear pre-
dictors in Y assuming homoskedasticity of ηi, so that in particular

m̂(x) = argmin
m̌(x)

E[(m(x)− m̌(x))2|X]

s.t. m̌(x) = w0(x) +
1

n

∑
i

w(x,Xi) · Yi for all x. (28)

Under this assumption,15 the posterior mean of m(x) is given by

m̂(x) = E[m(x)|X,Y ] = E[m(x)|X] + Cov(m(x), Y |X) ·Var(Y |X)−1 · (Y − E[Y |X])

= µ(x) + C(x) ·
[
C + σ2I

]−1 · (Y − µ). (29)

Instead of directly imposing assumption 5, we could also assume that conditional on θ
and X, the residuals ηi := Yi −m(Xi) are i.i.d. normally distributed with mean 0 and
variance σ2. This would yield a full specification of the prior.

4.1.2 Penalized regression representation of m̂

There are several alternative representations of the posterior expectation m̂(x) = E[Y |X =
x]. It can in particular be written as the solution to a penalized regression, or as a “max-
imum a posteriori”;16

m̂ = argmin
m̌(.)

[
1

σ2
·
∑
i

(Yi − m̌(Xi))
2 + ‖m̌− µ‖2C

]
, (30)

where ‖m − µ‖2C is a penalty term. The norm ‖m‖2C is the so called reproducing kernel
Hilbert space norm corresponding to the covariance kernel C. It is defined as the norm
corresponding to an inner product on the space of all linear combinations of functions of
the form C(x, .), and their limits, where 〈C(x1, .), C(x2, .)〉 = C(x1, x2). The represen-
tation (30) of m̂ shows the connection between Gaussian Process regression and spline
regression, where ‖m‖2C is a smoothness penalty. For an introduction to the theory of
reproducing kernel Hilbert spaces see Wahba (1990) and van der Vaart and van Zanten
(2008b).

4.1.3 Equivalent kernel

By equation (29), the posterior expectation can be written in the form m̂(x) = w0(x) +
1
n

∑
i w(x,Xi) · Yi for some weight function w. From this representation for m̂, it is

straightforward to see that the weight function w(., Xi) corresponds to the estimate of

15Note that almost all standard nonparametric regression methods (kernel, local polynomial, series,
spline) are linear in Y , so that our setting is not more restrictive than any of these.

16To gain an intuition for this representation, consider the case where Xi has finite support, µ = 0,
and the residuals ηi := Yi −m(Xi) are i.i.d. normally distributed. In this case the right hand side of
equation (30) corresponds to the joint log likelihood of m and Y . The squared norm ‖m‖2C is then equal
to mt ·Var(m)−1 ·m. Since m and Y are jointly normally distributed, the posterior mean is furthermore
equal to the posterior mode.
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m̂ we would obtain if we had Yi = n and Yj = 0 for j 6= i, and if we replace µ by 0.
Combining this insight with representation (30), we get

w(., Xi) = argmin
w̌(.)

∑
j 6=i

w̌(Xi)
2 + (n− w̌(Xi))

2 + σ2 · ‖w̌‖2C


= argmin

w̌(.)

[
1

2

∫
w̌(x)2dFn(x) +

σ2

2n
· ‖w̌‖2C − w̌(Xi)

]
(31)

where Fn is the empirical distribution function of X. This representation suggests to
approximate w with the solution to the minimization problem

w(., x′) = argmin
w̌(.)

[
1

2

∫
w̌(x)2dF (x) +

σ2

2n
· ‖w̌‖2C − w̌(x′)

]
. (32)

The solution to this latter minimization problem is called the equivalent kernel, (cf. Silver-
man, 1984; Sollich and Williams, 2005; Williams and Rasmussen, 2006, chapter 7). The
equivalent kernel does not depend on the data, except through the sample size n which
scales the penalty term ‖m‖2C . The validity of this approximation hinges on the uniform
closeness of

∫
m(x)2dFn(x) and

∫
m(x)2dF (x). We use implications of this approxima-

tion in section 5, where we derive the frequentist asymptotic behavior of our proposed
policy choice function.

4.1.4 The posterior expectation û of u

Our main object of interest is not m but u. The posterior expectation of m, however,
maps easily into the posterior expectation of u, given the linearity of u = L · m + u0.
Under assumption 5, the posterior expectation û(t) := E[u(t)|X,Y ] is again given by
the posterior best linear predictor of u in Y given X. Recall that we defined D(t, x) :=
Cov(u(t),m(x)), and that under the conditions of lemma 1 we had D(t, x) = Lx′C(x′, x).
We get

û(t) = E[u(t)|X,Y ] = E[u(t)|X] + Cov(u(t), Y |X) ·Var(Y |X)−1 · (Y − E[Y |X])

= ν(t) +D(t) ·
[
C + σ2I

]−1 · (Y − µ). (33)

The linearity of conditional expectations furthermore implies

û = L · m̂+ u0 = (L · w0 + u0) +
∑
i

(L · w(., Xi)) · Yi. (34)

In order to approximate this representation, we can substitute w for w. This yields an
equivalent kernel for the posterior mean of u, where the kernel is again independent of
the data.

4.1.5 The posterior variance of m, u and u′

Since our estimator m̂(x) is a posterior best linear predictor, we get that the residual
m(x) − m̂(x) is uncorrelated with m̂(x) under the prior. This implies that the residual
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variance is given by

Var(m(x)− m̂(x)) = Var(m(x))−Var(m̂(x)),

the difference between the prior variance of m(x), and the prior variance of the estimator
m̂(x). Under the assumption of joint normality this variance is equal to the posterior
variance of m(x). The same considerations hold for û and û′, and their respective best
linear predictors.

The prior variance of m(x) is given by Var(m(x)) = C(x, x) by assumption, and

similarly Var(u(t)) = K(t, t) (cf. Lemma 1) and Var(u′(t)) = ∂2

∂t∂t′K(t, t′). The prior
variance of their best linear predictors equals

Var(m̂(x)) = C(x) ·
[
C + σ2I

]−1 · C(x)′,

Var(û(t)) = D(t) ·
[
C + σ2I

]−1 ·D(t)′, and

Var(û′(t)) = B(t) ·
[
C + σ2I

]−1 ·B(t)′. (35)

4.2 Optimal policy and optimal experimental design

In section 4.1, we derived and discussed the posterior expectation û of the policy-maker’s
objective function u given experimental data X,Y . In this section we use this posterior
expectation to characterize the optimal policy choice t∗ given the data, and the optimal
experimental design X∗. Both are chosen to maximize the expected value of u. We
further discuss the return to increasing sample size n, and the value of conducting an
experiment, in terms of increasing expected social welfare.

4.2.1 Optimal policy

Our analysis is motivated by the problem of choosing t given experimental data X,Y .
Under assumptions 1, 2, and 3, the optimal t satisfies

t̂∗ = t̂∗(X,Y ) ∈ argmax
t

û(t), (36)

where as before û(t) = E[u(t)|X,Y ]. Under assumptions 4 and 5, the objective function
of this maximization problem is given by

û(t) = ν(t) +D(t) ·
[
C + σ2I

]−1 · (Y − µ),

as shown in section 4.1. Assuming differentiability of û, which immediately follows from
differentiability of the covariance kernel D, the first order condition for t̂∗ is ∂

∂t û(t̂∗) = 0.
By similar arguments as before we get

∂

∂t
û(t) = E[u′(t)|X,Y ] = E[u′(t)|X] + Cov(u′(t), Y |X) ·Var(Y |X)−1 · (Y − E[Y |X])

= ν′(t) +B(t) ·
[
C + σ2I

]−1 · (Y − µ). (37)

The problem of finding the optimal policy t̂∗ reduces, at least locally, to the problem
of finding a solution to the equation û′(t) = 0. This is reflected in the asymptotic
distribution of t̂∗ derived in section 5, which is driven by variation in û′(t∗). As far as
numerical implementation is concerned, any standard optimization algorithm, such as the
Newton-Raphson algorithm, can be used to find the maximum t̂∗ of û.
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4.2.2 Optimal experimental design

Consider next the choice of an optimal experimental design X∗. The optimal design
maximizes ex-ante expected welfare. Ex ante welfare, as a function of X, is defined
assuming that the policy t is chosen as t∗(X,Y ) once the experiment is completed, and
X and Y are known. Define

υ̂(X) := E[max
t
û(t)|X] = E[û(t̂∗)|X]. (38)

Then the optimal experimental design satisfies

X∗ ∈ argmax
X

υ̂(X). (39)

Under the same assumptions as before, we can plug in our expressions for û to get

υ̂(X) := E[max
t
ν(t) +D(t) ·

[
C + σ2I

]−1 · (Y − µ)],

where Var(Y ) = C + σ2I. The dependence on X of this expression is implicit, through
the dependence of D, C, and the distribution of Y on the design points Xi.

In section 6 below we discuss characterizations of the optimal design X∗. These
characterizations are based on a continuous approximation of our model, where we replace
the problem of choosing a discrete design distribution Fn(x) (i.e., choosing X) by the
problem of choosing a continuous design density f(x).

4.2.3 Optimal sample size

Consider, finally, the value of adding observations to our sample, and the value of the
whole experiment. Both are characterized by the following value function, based on the
value of the optimal experimental design for experiments of size n.17

υ̂(n) := max
X∈X n

υ̂(X) = max
X∈X n

E[max
t
û(t)|X] = E[û(t̂∗)|X = X∗]. (40)

The value of adding an observation to the sample is given by υ̂(n+ 1)− υ̂(n). The value
of the whole experiment is given by υ̂(n)− υ̂(0), where

υ̂(0) = max
t
E[u(t)]

is the prior expected maximum of u. The optimal sample size satisfies

n∗ = argmax
n

(
υ̂(n)−

n∑
i=1

c(i)

)
. (41)

Here c(i) is the cost of an additional unit of observation at sample size i, in an appropri-
ately chosen scale.

17Alternatively, if for some reason a non-optimal design is chosen, we could define a similar value
function without the maxX step.

18



5 Frequentist asymptotics

In this section, we characterize the frequentist asymptotic behavior of t̂∗ and u(t̂∗). Under
certain regularity conditions, t̂∗ is asymptotically normal with a rate of convergence slower
than

√
n. This limiting distribution and all other limits, expectations, and variances in

this section are conditional on θ, that is conditional on the population distribution of
(X,Y ).

Theorem 1 (Asymptotic normality of the optimal policy choice) Under assump-
tions 1 through 6,

V −1/2
n ·

(
t̂∗ − t∗ −Bn

)
→d N (0, I) , (42)

for

Vn = l2 ·
(
u′′(t∗)−1 · Vn,m′ · u′′(t∗)−1

)
,

Bn = −l · u′′(t∗)−1 ·Bn,m′ ,

where Vn → 0, Bn → 0, and l = −t̂∗ for the optimal insurance problem; l = λ for the
optimal choice of inputs problem. Vn,m′ and Bn,m′ , the asymptotic variance and bias of
m̂′(t∗), are defined in assumption 6.

The proof of this theorem can again be found in appendix A. Theorem 1 holds under
the following regularity conditions. These conditions restrict the function u to be smooth
and have a negative definite second derivative at the optimum. These conditions also place
high-level restrictions on the asymptotic behavior of the regression m̂. More primitive
conditions for the asymptotic behavior of m̂ estimated by Gaussian process regression are
discussed in section 5.1.

Assumption 6 (Regularity conditions)

1. u is twice continuously differentiable and u′′(t∗) is negative definite.

2. t has compact support, and t∗ is at an interior point of this support.

3. u corresponds to the objective of one of the policy problems considered in section 3.

4. m̂ converges to m in C 2.

5. (m̂(t∗)−m(t∗)) = op(m̂
′(t∗)−m′(t∗)) and

V
−1/2
n,m′ · (m̂

′(t∗)−m′(t∗)−Bn,m′)→d N(0, I)

for sequences Vn,m′ → 0 and Bn,m′ → 0.

Remarks:

• The framework analyzed in sections 1 to 4 is based on a decision theoretic, Bayesian
paradigm. The policy choice t̂∗ is by construction optimal in finite samples for the
objective of maximizing u under the given prior. This optimality is to be understood
in an average sense across possible functions m.

The arguments in this section are asymptotic (approximate) and frequentist, that is,
conditional on m. This analysis of conditional performance is a useful complement
to the analysis of average performance.
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• To gain intuition for theorem 1, note that we can think of t̂∗ = argmax t û(t) as an
M-estimator. Asymptotic normality of t̂∗ follows if we can show (i) consistency of û
as an element of C 2, and (ii) asymptotic normality of û′(t∗), (cf. van der Vaart, 2000,
chapter 5). Asymptotic normality of û′(t∗) follows from asymptotic normality of
m̂′ for the applications discussed in section 3. Similarly, C 2 consistency of û follows
from C 2 consistency of m̂. The asymptotic behavior of m̂ is discussed in subsection
5.1.

• This line of reasoning does not require that m̂ be estimated using Gaussian process
regression. Indeed the same results would follow for any of a number of nonpara-
metric regression methods that imply asymptotic normality of m̂′. This is true in
particular for kernel regression and for sieve- (series-) regression.

• Theorem 1 does not impose any assumptions of homoskedasticity or normality of
residuals. A prior belief of homoskedasticity was used in section 4.2 to derive the
posterior expectation of û, the optimal policy choice t̂∗, and the objective function
of experimental design υ̂. Homoskedasticity is not needed for the asymptotic theory
developed here.

• Theorem 1 shows asymptotic normality of t̂∗. This allows to construct asymptoti-
cally valid frequentist confidence sets for t∗, given an estimator of the variance of
t̂∗. Proposition 1 below provides such an estimator.

Theorem 1 characterizes the asymptotics of the maximizer t̂∗ of posterior expected
social welfare. Based on this characterization, we can derive the asymptotic behavior of
u(t̂∗), the maximum value of posterior expected social welfare.

Corollary 1 (Asymptotic distribution of regret) Under the assumptions of theo-
rem 1, if t ∈ R, and

• if V
−1/2
n ·Bn → 0, then

2

Vn · u′′(t∗)
·
(
u(t∗)− u(t̂∗)

)
→d χ2

1, (43)

where
2

Vn · u′′(t∗)
=

2 · u′′(t∗)
Vn,m′ · l2

.

• If V
−1/2
n ·Bn →∞, then

V
−1/2
n,u∗ ·

(
u(t̂∗)− u(t∗)−Bn,u∗

)
→ N(0, 1), (44)

where

Vn,u∗ = u′′(t∗)2 · Vn ·B2
n

= l4 · Vn,m′(t∗) ·Bn,m′(t∗)2

Bn,u∗ = u′′(t∗) ·B2
n/2

= l2 · u′′(t∗) ·Bn,m′(t∗)2/2.
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Proposition 1 (Estimating the variance of t̂∗) Under the assumptions of theorem
1, the variance of t̂∗ can be estimated by

V̂ = l̂2 ·
(
û′′(t̂∗)−1 · V̂m′ · û′′(t̂∗)−1

)
, (45)

where
V̂m′ =

∑
i

wt(t̂
∗, Xi)

2 · (Yi − m̂(Xi))
2, (46)

and wt is the derivative of the coefficients of the best linear predictor defined in assumption
5. This estimator satisfies V̂ /Vn →p 1 if the following additional conditions hold:

1. 1/M < E[ε2i |Xi = x] < M and E[ε4i |Xi = x] ≤M where εi = Yi −m(Xi), for all x
and some constant M <∞.

2. Wn :=
maxi w

2
t,i∑

i w
2
t,i

= op(n
−1/2).

3. ‖m̂ − m‖n = op
(
n−1 ·W−1

n

)
, where ‖.‖n is the L2 norm w.r.t. Pn(x), ‖g‖2n =∫

g2(x)dPn(x).

5.1 The asymptotic behavior of m̂′

The asymptotic results of theorem 1, corollary 1, and proposition 1 are based on the
assumption of C 2 consistency of m̂ and asymptotic normality of m̂′(t∗). These are stan-
dard properties of nonparametric regression estimates of m(x) = E[Y |X = x] when m
is estimated using estimation methods such as kernel regression or series regression; the
development of corresponding results for Gaussian process regression is an area of active
research. Here we provide a proof of asymptotic normality based on an approximation of
Gaussian process regression by a kernel regression estimator.

General discussions of the current state of research on the convergence properties
of Gaussian process regression can be found in van der Vaart and van Zanten (2008b),
van der Vaart and van Zanten (2008a), and (Ghoshal and van der Vaart, 2013, forth-
coming). Conditions for consistency of m̂ are discussed, in particular, in Ghoshal and
van der Vaart (2013). They require m to be in the appropriately defined closure of the
Reproducing Kernel Hilbert Space corresponding to the Gaussian process prior for m.

We prove asymptotic normality of m̂′ for settings where m̂ can be approximated by
a kernel regression estimator using the so called equivalent kernel. Silverman (1984) and
Sollich and Williams (2005) have shown in the context of special cases (smoothing spline
regression kernel, squared exponential kernel), that such an approximation is asymptot-
ically valid. From this approximation by kernel regression we get asymptotic normality
of m̂ and of m̂′ using standard results on kernel regressions, with rates of convergence
which are slower than

√
n. For a review of the asymptotic behavior of kernel regressions

see for instance (Li and Racine, 2011, chapter 2).
How can the equivalent kernel be characterized? In section 4.1 we saw that the

weight function of Gaussian process regression can be approximated by weights which are
independent of the empirical distribution of X, Fn(x). We shall now apply two further
steps of approximation, (i) approximating the design density f(x) by a locally constant
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density f(x) = ρ/n, and (ii) approximating the shape of the kernel by its large n limit,
after suitable rescaling. These approximations yield

m̂(x) = m0(x) +
1

ρ

∑
i

1

h(ρ)dx
K

(
Xi − x
h(ρ)

)
· Yi + ∆m(x), (47)

where we define

Km
ρ = argmin

K(.)

[
1

2
·
∫
K(x)2dx+

σ2

2ρ
· ‖K‖2C −K(0)

]
, (48)

and
K(x) = lim

n→∞
h(ρ)dxKm

ρ (x · h(ρ)). (49)

In this equation h(ρ) is a suitably chosen bandwidth parameter that yields a non-degenerate
limit kernel K, and ρ = f(x) · n. Lemma 2 assumes that we can asymptotically neglect
the remainder ∆m of this approximation.

Lemma 2 (Asymptotics of m̂′)
Assume that the remainder term ∆m(x) in equation (47) converges to 0 in C 2, given
θ, with respect to the norm ‖∆‖ = supx |∆(x)| + supx |∆′(x)| + supx |∆′′(x)|.18 Denote
σ2(x) = Var(Yi|Xi = x, θ), assume σ2(x) is continuous in x, and denote j the smallest
integer such that ∫

K(x̃)x̃jdx̃ 6= 0.

Assume that m ∈ C j+1. Then

V
−1/2
n,m′ · (m̂

′(x)−m′(x)−Bn,m′)→d N(0, I)

given θ for

Vn,m′ =
σ2(x)

ρ · h(ρ)dx+2

∫
K ′(x̃) ·K ′(x̃)tdx̃

and

Bn,m′ =
m(j+1)(x) · h(ρ)j

(j + 1)!
·
∫
K(x̃)x̃jdx̃.

18Whether this is a valid assumption depends on the covariance kernel C, the rate of convergence
of Fn to F , and the smoothness of f . A necessary condition on the kernel C(x, x′) is that it depends
only on the difference x − x′. In pioneering work, Silverman (1984) has shown that this assumption
holds for the case of spline regression, where ‖K‖2C =

∫
K′′(x)2dx and dx = 1. In this case K(t) =

1
2

exp(−|t|/
√

2) sin(|t|/
√

2 + π/4) and h(ρ) = (σ2/ρ)1/4.
More recently Sollich and Williams (2005) have shown that a similar result holds for the squared

exponential kernel, C(x, x′) = 1√
2π

exp(−(x− x′)2/(2l2)). In this case the bandwidth is equal to h(ρ) =√
2π2l2/ log(ρ(2πl2)dx/2/σ2).
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6 Characterizing the optimal experimental design

In this section we characterize the optimal experimental design, that is the distribution
of design points Xi which maximizes expected social welfare υ̂, assuming that the policy
t will be chosen optimally given the experimental data. We employ an approximation to
the setup considered so far. This approximation assumes that we have to choose a design
density f(x) rather than a discrete set of design points xi. Using this approximation allows
for a more elegant and simple characterization of optimal designs. This approximation is
exactly the same which motivates the equivalent kernel introduced in section 4.1.3 above.

This section is structured as follows. We first introduce the continuous model and
provide a brief discussion. We then derive the posterior mean û of u, adapting the results
of section 4.1 to the continuous case. Using the resulting expressions for û, we get the prior
distribution of û; in particular the prior covariance kernel for û. The prior expectation of
social welfare is given by υ̂ = E[maxt û(t)]. This implies that the prior distribution of û
determines υ̂, which is the objective our experimental design aims to maximize. We can
characterize the effect of perturbations to the design density f on the prior covariance
kernel of û. This leads to our central result, giving the effect of perturbations to the
design density on υ̂. This result allows us to provide first order conditions for the optimal
experimental design. An asymptotic approximation to these first order conditions yields
easily implementable guidelines for design. The section concludes with a discussion of the
value – in social welfare terms – of increasing sample size.

6.1 A continuous model

We continue to assume that the policy-maker aims to maximize expected social welfare
(assumption 1), that the objective function u is given by u = Lm + u0 for some linear
operator L (assumption 2), and that the policy maker has a prior distribution for the
average structural function m of m ∼ GP (µ,C) (assumption 4). We also maintain the
assumption that posterior expectations are formed as best linear predictors in Y (assump-
tion 5). We drop assumption 3, which states that we observe n i.i.d. draws (Xi, Yi) such
that E[Yi|Xi] = m(Xi). We replace this assumption by assumption 7, which states that
we observe a (generalized) stochastic process Y (x), where Y is equal to m plus some ap-
propriately scaled white noise process. The scaling depends on the design density, where
a larger density translates into lower noise.

Assumption 7 (Continuous model) The policy-maker observes Y (.), where

Y (x) = m(x) +
σ√
nf(x)

dW (x). (50)

In this equation dW is a standard white noise process independent of m, and f is the
design density.

Remarks:

• Like continuous white noise, the process Y (.) in assumption 7 has to be understood
as a generalized stochastic process. That is, Y (x) is not a well defined random
variable, but

∫
Y (x)g(x)dx is for any g which is continuous and bounded. The
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properties of generalized stochastic processes are pinned down by the joint distri-
bution of such integrals; we will characterize this joint distribution shortly.

A concise discussion of white noise and generalized stochastic processes can be found
in Appendix I of Yaglom (1962). For a thorough treatment of stochastic processes
such as the one in equation (50), see Karatzas and Shreve (1991). In this paper
we take it as given that assumption 7 as well as the moments considered below are
meaningful, and ignore measure theoretic issues.

• In the next subsection we consider the posterior distribution of m and u given Y ,
and in particular the posterior expectation û = E[u|Y ]. Calculating this posterior
expectation is in fact a variant of the classic “Wiener filtering” problem, introduced
by Wiener (1949).

• Assumption 7 provides the natural continuous equivalent of the discrete setting
we considered so far. To illustrate this, suppose for a moment that m and f are
constant on the intervals (j, j + 1] for integers j. Then observing Y is equivalent to

observing Y j :=
∫ j+1

j
Y (x)dx for every j, where (conditional on m) Y j ∼ N(m(j+

1), σ2/(nf(j + 1))) and Y j ⊥ Y k for all j 6= k. But this is the same model as before,
where we observe nf(j+1) design points in the interval (j, j+1], and outcomes have
variance σ2. Put differently, we can equivalently think of a larger design density as
increasing the number of observations or as decreasing the variance of noise.

• Assumption 7 also rationalizes the equivalent kernel of equation (32) (see equation
(57) below), which we similarly motivated by an approximation of the discrete
design X by a continuous design density f(x).

In order to proceed, we need to introduce some additional notation. It is common
to identify matrices A with the linear mapping x → Ax. We can similarly identify
functions such as the covariance kernel C with integral operators g → Cg. For the kernel
C corresponding to the Gaussian process m, we write in linear operator notation

(Cg)(x) := Cov

(
m(x),

∫
m(x′)g(x′)dx′

)
=

∫
C(x, x′)g(x′)dx′ (51)

For the noise process σ√
nf(x)

dW (x) of assumption 7, we have

(Eg)(x) :=
σ2

nf(x)
· g(x) =

σ2

n
· F−1, (52)

where F is the operator
(Fg)(x) = f(x) · g(x). (53)

These equations can in fact be taken as providing a definition of the noise process
σ√
nf(x)

dW (x) of assumption 7. Heuristically, this definition of the covariance operator E

can be justified by the formal calculation

(Eg)(x) = Cov

(
σ√
nf(x)

dW (x),

∫
σ√
nf(x′)

dW (x′)g(x′)dx′

)
=

σ2

nf(x)
· g(x).
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6.2 Posterior means

Under assumption 5, m̂ = E[m|Y ] is given by the best linear predictor of m in Y ,19 so
that in particular

m̂ = µ+W (Y − µ) (54)

for a linear operator W . This is, in fact, the operator corresponding to the equiva-
lent kernel w of equation (32). Using the operator notation just introduced, we have
Cov(m̂, Y ) = W Var(Y ) = W (C + E), and Cov(m,Y ) = Var(m) = C. The usual condi-
tions for the best linear predictor of m(x) given Y imply that

Cov (m̂(x)−m(x), Y (.)) = 0 (55)

for all x. Imposing this condition for all x implies the operator equation

W (C + E)− C = 0, (56)

and thus
W = C(C + E)−1. (57)

Invertibility of (C+E) holds because of the positive semidefiniteness of C and the positive
definiteness of E. This equation gives an alternative representation for the equivalent
kernel w, as the solution to an integral equation. (Recall that in section 4.1, we derived
the equivalent kernel as the solution to a functional minimization problem.) Using the
linearity of expectations and the regularity conditions of lemma 1,

û = E[u|Y ] = E[Lm+ u0|Y ]

= Lm̂+ u0

= ν + LW (Y − µ)

= ν + LC(C + E)−1(Y − µ). (58)

Note that LC = D is the operator corresponding to the covariance kernel D given by
definition 1.

6.3 The prior distribution of the posterior mean û

The prior variance (covariance kernel) of Y is given by C + E. The prior variance V of
û is therefore given by

V := LW (C + E)(LW )t = LC(C + E)−1(LC)t. (59)

Note the analogy to the algebra of finite dimensional covariance matrices and best linear
predictors. We summarize what we have derived so far in the following lemma.

Lemma 3 (Prior distribution of û)
Suppose that assumptions 2, 4, 5 and 7 hold. Then the prior distribution of û is given by

û ∼ GP (ν, LC(C + E)−1(LC)t), (60)

where E = σ2

n · F
−1.

19This section replicates section 4.1.1 for the continuous case.
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Note that the experimental design density f and the sample size n only affect the
prior distribution of û through the operator E. Our objective is to find conditions for
the optimal f which maximizes υ(f) = E[max û]. The following reasoning leads to first
order conditions for the optimal f .

Consider local perturbations of the density f by δ times a density f̃ , or equivalently
of the operator F by δ times the operator F̃ . This results in the covariance kernel

V (δ) = LC(C + E(δ))−1(LC)t. (61)

for E(δ) = σ2

n · (F + δF̃ )−1. Taking derivatives at δ = 0 (denoted by subscripts), we get

Vδ = −LC(C + E)−1Eδ(C + E)−1(LC)t

= −WEδW
t
, (62)

where we denote W := LW = LC(C + E)−1 the equivalent kernel for û, and where

Eδ = −σ
2

n
· F−1F̃F−1. (63)

Expanding equation (62), we get

(Vδg)(x) = (−WEδW
t
g)(x) =

σ2

n

∫
w(x, x′)w(x′′, x′)

f̃(x′)

f(x′)2
g(x′′)dx′dx′′. (64)

Remarks:

• Equations (62) and (64) reflect an envelope condition for the optimal weights W
of the best linear predictor. Changing the data generating process could affect the
variance of û both directly and through its effect on W , but by optimality of W , in
terms of mean squared error, the latter effect drops out.

• Better estimates of u lead to better estimates of t∗ and thus to higher expected social
welfare. Better estimates û of u are those with lower expected residual variance, or
equivalently with larger prior variance. Equation (64) can thus be understood to
imply “decreasing returns” of an increase in the design density at a point, where
the “returns” are in terms of the variance of the predictor.

• We do not need to use the normality of the prior and the noise process implicit in
assumption 7 to derive equation (64), and we will not need it for the conclusions of
the following sections to hold. As in the discrete X case, normality is not essential
for our argument as long as we restrict attention to best linear predictors.

6.4 The optimal design

With these preliminaries, we can now derive a general characterization of the optimal
experimental design f∗. We consider the effect on expected social welfare υ̂(f∗ + δ · f̃)
of local perturbations δ · f̃ to the optimal design density f∗. It is sufficient to consider
perturbations that add a point mass at points x′ to the design density f ; knowing the
effect of such perturbations allows to pin down the effect of any perturbation. Theorem
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2 provides the central result of this section. This theorem characterizes the effect of such
local perturbations on expected welfare υ̂. Corollary 2 then uses the result of theorem
2 to characterize the optimal experimental design, which maximizes υ̂(f) subject to the
constraint

∫
f(x)dx = 0. Proposition 2 uses an asymptotic approximation to the condition

of corollary 2 that allows to easily calculate an approximately optimal design.

Theorem 2 (Perturbations to the design and expected social welfare)
Suppose that assumptions 2, 3, 4 and 7 hold. Let f̃ be a unit point mass at the point x′.

The marginal effect on expected social welfare ν of a perturbation of the design density f
by f̃ is then given by

∂

∂δ
υ̂(f + δf̃) =

1

2

σ2

nf2(x′)
E
[
tr
[
û′′(t̂∗)−1 ·

(
wt(t̂

∗, x′)wt(t̂
∗, x′)t

)]]
.

Remark: The proof of this theorem can be found in appendix A. The basic idea of
the proof is as follows. By equation (64), the first order effect on the prior distribution
of û of a perturbation of f which adds a unit point mass at x′ is the same as the effect of
adding the random function

v(x) =
σ√

nf(x′)
· w(x, x′) · ε

to û, where ε is standard normal. Based on this equivalent representation, we can then
use a Taylor expansion of û(t̂∗), where the perturbation enters both through its effect on
û and through its effect on t̂∗.

With this result at hand, it is now straightforward to prove the following corollary.

Corollary 2 (The optimal experimental design)
Suppose that assumptions 2, 3, 4 and 7 hold. Then the optimal experimental design

density f∗ = argmax f υ̂(f) is characterized by the set of first order conditions

1

f∗2(x)
E
[
tr
[
û′′(t̂∗)−1 ·

(
wt(t̂

∗, x)wt(t̂
∗, x)t

)]]
= κ, (65)

where equation (65) holds for all x. In this equation κ is a Lagrange multiplier on the
constraint

∫
f = 1, and wt is the derivative of the equivalent kernel w with respect to its

first component.

Remark: Corollary 2 provides an exact finite sample characterization of the optimal
design for the continuous-X setup. Any solution to these first order conditions has to
account for the fact that the joint distribution of û and t̂∗, as well as the equivalent
kernel w all depend on the choice of f∗. It is possible to estimate these magnitudes using
simulation methods, and solve the first order condition numerically. Alternatively, and
that is what we will do next, we can consider the large-n case. Asymptotically the first
order condition simplifies considerably. For large n, we can approximate w by the kernel
Kh(nf∗) discussed in section 5.1. We can furthermore approximate û′′ by u′′, and t̂∗ by
t∗. This is done in the following proposition.
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Proposition 2 (The asymptotically optimal experimental design)
Maintain the assumptions of theorem 2. Under the conditions stated below, the optimal

design f∗ satisfies the set of first order conditions

f∗2(t) · h(nf∗(t))dx+2 = l2 · f
t∗(t)

κ
tr
[
E[u′′(t)−1|t∗ = t] · Λ

]
(66)

for all t, up to a remainder which converges to 0 uniformly on the support of f t
∗
. In this

expression Λ =
∫
K ′(x)K ′(x)tdx, and l = −t for the optimal insurance problem; l = λ

for the optimal choice of inputs problem. Sufficient conditions for this to hold are

1. û′′(t) = u′′(t) + op(1) uniformly in t,

2. u′′ is positive definite and continuous,

3. f t̂
∗

= f t
∗

+ o(1) uniformly in t,

4. f t
∗

is positive and continuous on the compact support of t,

5. wt(x, t) = 1
hdx+1K

′ (x−t
h

)
+ o(1) uniformly in x and t, where h = h(nf∗(t)) = o(1),

6. u corresponds to the objective of one of the policy problems considered in section 3.

The op notation here is to be understood as referring to an average both over the data
generating process and over the prior.

Remarks:

• The conditions imposed by proposition 2 are “high-level.” More primitive conditions
can be derived by building on the asymptotic arguments of section 5 as well as on
the recent literature on the asymptotics of Gaussian process regression.

• Instead of doing so, we propose the following approach:20 (i) Construct an approx-
imately optimal design using the condition of proposition 2. (ii) Plug this design
into the exact optimality condition of corollary 2. Calculate the remainder term of
the first order condition. (iii) If this remainder is large, numerically solve for the
exact optimum. Use the approximately optimal design as a starting point for the
optimization algorithm.

• The first order condition provided in proposition 2 is of relatively simple form. The
expression

l2 · f t
∗
(t) · tr

[
E[u′′(t)−1|t∗ = t] · Λ

]
is independent of the design density and only needs to be calculated once, for in-
stance using simulation methods. The expression f∗2(t) ·h(nf∗)dx+2 is a monotonic
transformation of the design density f∗. We know that for the squared exponen-
tial covariance kernel h(ρ) =

√
2π2l2/ log(ρ(2πl2)dx/2/σ2) (cf. Sollich and Williams,

2005); for spline regression with ‖K‖2C =
∫
K ′′(x)2dx we have h(ρ) = (σ2/ρ)1/4,

(cf. Silverman, 1984). It is thus fairly straightforward to solve for the approximately
optimal design density. The following algorithm provides a simple way of doing so.

20This approach might be advisable whether or not suitable primitive conditions for the result of
proposition 2 are fulfilled
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1. Pick a number N of Monte Carlo replications, choosing N as large as practically
feasible. Draw N times from the prior distribution for u, store t∗j and u′′j (t∗j ) for
j = 1, . . . , N .

2. Estimate f t
∗
(t) · tr

[
E[u′′(t)−1|t∗ = t] · Λ

]
by

1

N

∑
j

L(t∗j − t) · tr
[
(u′′j (t∗j ))

−1 · Λ
]

for some positive kernel L integrating to 1, where L is of appropriate bandwidth.
This yields an estimate of the right hand side of equation (66) up to a multiplicative
constant. If K can be written as K(x) =

∏
l K̃(xl) for a kernel function K̃, then Λ

can be replaced by the identity matrix.

3. Start with a guess for the multiplicative constant (Λ/κ in the one-dimensional case).
Solve for f∗, by inverting the left hand side of equation (66), using this guess.

4. Check whether f∗ integrates to 1. If it does not, adjust your guess of the constant,
and iterate until you found a value that leads to a valid design density.

5. Calculate the cumulative distribution function F ∗ corresponding to f∗. Turn f∗ into
a discrete experimental design by choosing Xi = F ∗−1(i/n−1/(2n)) for i = 1, . . . , n.

Algorithm 1: Approximately optimal experimental design

6.5 The optimal sample size

So far we have considered the problem of finding the optimal density f∗, given the sample
size n. Assume now that the marginal cost of increasing the sample size is equal to c(n),
where c is measured in the appropriate units. Under this assumption, how should we
choose n to maximize expected social welfare, net of experimental costs?

To answer this question we characterize the marginal return to an increase of n based
on a variation of the arguments which lead to theorem 2. Under the assumption that
either (i) the experimental design density f∗ is chosen independently of sample size, or (ii)
the experimental design f∗ is chosen optimally given sample size, we can ignore the effect
of sample size on the choice of design. In case (ii) this holds by an envelope condition
argument. The value function for sample size n is defined as υ̂(n) := E[maxt û(t)] in case
(i) and as υ̂(n) := maxf E[maxt û(t)] in case (ii).

Theorem 3 (The optimal sample size) Under the assumptions of theorem 2, and as-
suming that either (i) the experimental design density f∗ is chosen independently of sam-
ple size, or (ii) the design density f∗ is chosen optimally given sample size, the marginal
effect of an increase in sample size n on social welfare is equal to

∂

∂n
υ̂(n) =

1

2

σ2

n2
E

[
tr

[
û′′(t̂∗)−1 ·

(∫
wt(t̂

∗, x′)2

f∗(x′)
dx′

)]]
. (67)
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In case (ii), this marginal effect is also equal to

∂

∂n
υ̂(n) =

1

2

σ2

n
· κ, (68)

where κ is the Lagrange multiplier of corollary 2.

Under the assumption that the marginal cost of increasing sample size is equal to c(n),
the optimal sample size satisfies ∂

∂n υ̂(n) = c(n). Theorem 3 thus allows to evaluate the
first order condition for the optimal sample size.

7 Extensions

Up to this point, this paper has considered the conceptual baseline case of fully random
treatment assignment in a sample drawn at random from the population of interest. In
this section, we discuss two extensions of this baseline case. The first extension assumes
that additional covariates are available, and that exogeneity of treatment only holds
conditional on these covariates. The second extension assumes that an instrument is
available which is exogeneous, while treatment itself is possibly endogeneous. For either
extension, we characterize the posterior expectation of the average structural function m
and of social welfare u; the rest of our analysis then applies immediately.

7.1 Conditional independence

Assumption 3 posited the availability of experimental data which are such that potential
outcomes Y x and experimental treatments X are independent. We now generalize to
settings where we assume conditional independence instead of independence. We replace
assumption 3 (experimental data) and assumption 4 (prior) by the following assumption.

Assumption 8 (Conditional independence and prior)
The available data satisfy

1. (Xi, Yi,Wi)
n
i=1 are i.i.d.

2. Yi = g(Xi, εi).

3. Xi ⊥ εi|Wi.

4. εi ∼ Pε, the distribution of ε in the target population.

Let k(x,w) = E[Y |X = x,W = w]. The policy-maker has a prior which satisfies the
following conditions.

1. k ∼ GP (µk(.), C(., .)), where

(a) GP (µk(.), Ck(., .)) is the law of a Gaussian process

(b) such that E[k(x,w)] = µk(x,w), and

(c) Cov(k(x,w), k(x′, w′)) = Ck((x,w), (x′, w′)).

2. PW ∼ DP (α, P 0
W ), where
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(a) DP (α, P 0
W ) is the law of a Dirichlet process

(b) such that E[PW (.)] = P 0
W (.), and

(c) α is the “precision” of the prior.21

3. The function m, the probability distribution PW , and the probability distribution
PX|W are mutually independent.

Under this assumption, we can generalize our previous analysis to optimal policy
choice controlling for covariates.

7.1.1 The posterior expectation m̂ of m

We first derive the posterior expectation of the average structural function m, which is
defined as before, m(x) = E[g(x, ε)]. Under the conditional independence assumption,
we can write

m(x) = E[g(x, ε)] =

∫
k(x,w)dPW (w). (69)

Under the assumption of independence of the prior components, we can take posterior
expectations in this expression for m to get

m̂(x) =

∫
k̂(x,w)dP̂W (w), (70)

where k̂ and P̂W are the corresponding posterior expectations.

Maintaining assumption 8, we use the following notation for the prior moments of k
given X and W ,

µki = E[k(Xi)|X,W ] = µk(Xi,Wi),

Cki,j = Cov(k(Xi,Wi, k(Xj ,Wj)|X,W ) = C((Xi,Wi), (Xj ,Wj)), and

Cki (x,w) = Cov(k(x,w), k(Xi,Wi)|X,W ) = Ck((x,w), (Xi,Wi)).

Let furthermore µk, Ck, and Ck(x,w) denote the vectors and matrix collecting these
terms for i, j = 1, . . . , n. Assuming again that the posterior expectation of k is the
posterior best linear predictor of k, the posterior mean of k(x,w) is given by

k̂(x,w) = E[k(x,w)|X,Y,W ]

= E[k(x,w)|X,W ] + Cov(k(x,w), Y |X,W ) ·Var(Y |X,W )−1 · (Y − E[Y |X,W ])

= µk(x,w) + Ck(x,w) ·
[
Ck + σ2I

]−1 · (Y − µk). (71)

Invoking the assumption that the prior for PW is Dirichlet implies

dP̂W (w) =
α

α+ n
dP 0

W +
n

α+ n
dPnW , (72)

where PnW is the empirical distribution of W in the sample.

21For a discussion of Dirichlet priors, see for instance Ghosh and Ramamoorthi (2003).
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Combination of equations (70), (71), and (72) yields

m̂(x) =

∫
k̂(x,w)dP̂W (w)

=

∫ [
µk(x,w) + Ck(x,w) ·

[
Ck + σ2I

]−1 · (Y − µk)
]
d

[
α

α+ n
P 0
W +

n

α+ n
PnW

]
= µ̂(x) + Ĉ(x) ·

[
Ck + σ2I

]−1 · (Y − µk), (73)

where

µ̂(x) :=

∫
µk(x,w)dP̂W (w)

=
α

α+ n

∫
µk(x,w)dP 0

W (w) +
1

α+ n

∑
i

µk(x,Wi),

and

Ĉ(x) :=

∫
Ck(x,w)dP̂W (w)

=
α

α+ n

∫
Ck(x,w)dP 0

W (w) +
1

α+ n

∑
i

Ck(x,Wi).

7.1.2 The posterior expectations of u and u′

The posterior expectation of m again maps linearly into the posterior expectation of u
by the linearity of u = L ·m+ u0. We get, in particular,

û(t) = (L · m̂) (t) + u0(t)

= ν̂(t) + D̂(t) ·
[
Ck + σ2I

]−1 · (Y − µk), (74)

where

ν̂ := (L · µ̂) (t) + u0

=

∫
Lxµ

k(x,w)dP̂W (w) + u0,

and

D̂(t) :=

∫
LxC

k(x,w)dP̂W (w).

As before, the optimal t satisfies

t̂∗ = t̂∗(X,Y ) ∈ argmax
t

û(t).

Assuming again differentiability of û, the first order condition for t̂∗ is ∂
∂t û(t̂∗) = 0. We

can write this first order condition more explicitly as

∂

∂t
û(t) =

∂

∂t
(L · m̂) (t) +

∂

∂t
u0(t)

= ν̂′(t) + B̂(t) ·
[
Ck + σ2I

]−1 · (Y − µk), (75)
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where

ν̂′ :=
∂

∂t
(L · µ̂) (t) +

∂

∂t
u0

=

∫
∂

∂t
Lxµ

k(x,w)dP̂W (w) +
∂

∂t
u0,

and

B̂(t) :=

∫
∂

∂t
LxC

k(x,w)dP̂W (w).

7.1.3 Multiplicative covariance kernels

Many covariance kernels Ck are multiplicative in the sense that they can be written in
the form

Ck((x,w), (x′, w′)) = C(x, x′) · Cw(w,w′). (76)

This is the case in particular for the squared exponential covariance kernel. If the covari-
ance kernel has such a structure, then we get the following simplifications:

Ĉ(x)i = ci · C(x,Xi)

D̂(t)i = ci ·D(t,Xi)

B̂(t)i = ci ·B(t,Xi),

where

ci :=

∫
Cw(w,Wi)dP̂W (w) (77)

and D and B are as in definition 1. The analysis in the conditional independence setting
is then completely analogous to the analysis in the experimental setting, except that
“correction factors” ci are applied to all covariances.

7.2 Instruments

The main discussion in this paper assumed that we have experimental data; the last
section assumed we have data such that treatment X is exogeneous conditional on a
set of covariates. In this section we assume instead that an exogenous instrument Z is
available.

Nonparametric identification with instrumental variables is the subject of a large lit-
erature in econometrics. Two popular approaches for continuous treatments are (i) con-
ditional moment restrictions, as in Newey and Powell (2003), and (ii) control functions,
as in Imbens and Newey (2009). Both of these rely on restrictions on the dimensionality
of unobserved heterogeneity. In this section we follow the identification approach of Kasy
(2013a), which does not rely on such restrictions. In the latter paper, triangular systems
of the following form are considered:

Y = g(X, ε)

X = h(Z, η) (78)
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where X,Y, Z are random variables taking their values in R, the unobservables ε, η have
their support in an arbitrary measurable space of unrestricted dimensionality, and

Z ⊥ (ε, η). (79)

It is shown in Kasy (2013a) that under these assumptions, if the first stage relationship
h(z, v) is strictly increasing in z for all v and if some continuity conditions are satisfied,
then

m(x) = E[g(x, ε)] =

∫
E[Yi|Xi = x, Zi = z]dFZx(z), (80)

where
FZx(z) = P (Xi ≥ x|Zi = z). (81)

Assumption 9 (Instrumental variables and prior)
The available data satisfy

1. (Xi, Yi, Zi)
n
i=1 are i.i.d.

2. m(x) =
∫
E[Y |X = x, Z = z]dFZx(z), where FZx(z) = P (X ≥ x|Z = z).

Let k(x, z) = E[Y |X = x, Z = z]. The policy-maker has a prior which satisfies the
following conditions.

1. k ∼ GP (µk(.), C(., .)), where

(a) GP (µk(.), Ck(., .)) is the law of a Gaussian process

(b) such that E[k(x, z)] = µk(x, z), and

(c) Cov(k(x, z), k(x′, z′)) = Ck((x, z), (x′, z′)).

2. PX|Z ∼ L , where L is some general prior for the conditional distribution of X
given Z.

3. The function m, the probability distribution PZ , and the probability distribution
PX|Z are mutually independent.

Under this assumption, we can proceed to a large extent as in section 7.1. As before

k̂(x, z) = E[k(x, z)|X,Y, Z] = µk(x, z) + Ck(x, z) ·
[
Ck + σ2I

]−1 · (Y − µk).

Furthermore,

m̂(z) =

∫
k̂(x, z)dF̂Zx(z)

= µ̂(x) + Ĉ(x) ·
[
Ck + σ2I

]−1 · (Y − µk), (82)

where

µ̂(x) =

∫
µk(x,w)dF̂Zx(z)

and

Ĉ(x) =

∫
Ck(x,w)dF̂Zx(z).
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From here on, we can proceed as before, to find the posterior expectations of û and û′,
the optimal policy choice t̂∗, etc.

In this discussion we have not explicitly characterized the posterior expectation of
P (Xi ≥ x|Zi = z), that is, F̂Zx . Assumption 9 left the prior distribution for PX|Z
unspecified. The reason is that there seems to be no nonparametric prior for conditional
distributions which allows for an easy analytic characterization of the posterior mean
of PX|Z . This contrasts with the elegant and simple posterior means for conditional
expectations such as k, and of unconditional distributions such as PW as in section 7.1.
That said, there are a number of nonparametric priors for conditional distributions which
have been proposed in the literature. One class of approaches considers the conditional
distributions corresponding to continuous joint distributions. For the latter, Dirichlet
process mixtures are an appropriate class of nonparametric priors; see for instance (Ghosh
and Ramamoorthi, 2003, section 3.6). Another class of approaches assumes that P (Xi ≥
x|Zi = z) is given by the value of some link function (such as the logistic cdf), applied to
a latent function l, where the prior for the latter is given by a Gaussian process; see for
instance (Williams and Rasmussen, 2006, section 3.3). For any of these approaches, we
can obtain draws from the distribution FZx using Markov Chain Monte Carlo or related
methods. Such draws then allow us to evaluate m̂, û, and û′ in a straightforward manner.

8 Application - The RAND health insurance experi-
ment

As an empirical application for the results derived in this paper we consider is the choice of
coinsurance rates in health insurance. A policy maker who is in charge of a public health
insurance program has to choose how much to redistribute from healthy contributors to
those in need of health care. Such redistribution is justified on grounds of risk aversion
(insurance) and on grounds of equity (redistribution). Lowering coinsurance rates redis-
tributes more. It also affects public expenditures mechanically and through the behavioral
response of possibly increased health care spending. We use the data of the RAND health
insurance experiment in order to estimate this behavioral response and use the estimated
relationship to determine the optimal coinsurance rate under an assumption about the
relative welfare weight assigned to those in need of health expenditures.

Background and data

The following discussion is based on the review of the RAND experiment provided by
Aron-Dine et al. (2013). The RAND experiment, which took place between 1974 and 1981,
provided health insurance to more than 5,800 individuals from about 2,000 households in
six different locations across the United States. Families participating in the experiment
were assigned to plans with one of six coinsurance rates, where the coinsurance rate is
the share of medical expenditures paid by the enrollee. Four of the six plans simply set
different overall coinsurance rates of 95, 50, 25, or 0 percent (free care). The other two
plans were somewhat more complicated, with higher coinsurance rates for dental and
outpatient mental health services, or for outpatient services in general. For the sake of
simplicity of our discussion, we neglect data from the last two plans and focus our analysis
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on the first four plans. The probability of assignment to each of these was .32 for the free
care plan, .07 for the 50% coinsurance plan, .11 for 25% coinsurance plan, and .19 for the
95% coinsurance plan.

Families were additionally randomly assigned, within each of the six plans, to different
out-of-pocket maximums, referred to as the Maximum Dollar Expenditure. The possible
Maximum Dollar Expenditure limits were 5, 10, or 15 percent of family income, up to
a maximum of $750 or $1,000 (roughly $3,000 or $4,000 in 2011 dollars). We pool data
across Maximum Dollar Expenditure, and only consider the effect of coinsurance rates on
expenditures.

Results

As a first step, we replicate some of the results of Aron-Dine et al. (2013). We estimate
predicted expenditures, using specifications corresponding to those used by Aron-Dine
et al. (2013) for the estimation of the treatment effects reported in rows 2 and 3 in each
of the panels of their Table 3. The chosen regression specification controls for month
× site fixed effects and year fixed effects (this is necessary, since treatment was only
conditionally random). This specification additionally corrects for under-reporting of
spending, by proportionally scaling up spending for outpatient services based on estimated
rates of under-reporting (as discussed in Aron-Dine et al. (2013), this adjustment has
only a minor impact on results). Table 1 reports predicted values for the share of families
with any spending, and for the average amount of spending, within each of the treatment
categories. Column 3 and 4 of this table control additionally for a rich set of predetermined
covariates, to correct for imbalance in the assignment (this correction again has only a
minor effect). As can be seen from this table, spending is essentially unaffected by the
coinsurance rate in the range from 95% coinsurance to 25% coinsurance. Only when
approaching the free-care treatment does there appear to be an effect of the coinsurance
rate on spending.

We next apply the methods proposed in this paper to these data. We consider the
model of optimal insurance, as discussed in section 3.1. Consider first estimation of m,
the response function which gives expected spending as a function of the subsidy rate t.
The subsidy rate t equals 1 minus the coinsurance rate. We use a prior for m which is a
Gaussian process prior with squared exponential covariance kernel (cf. appendix B), and
which is made uninformative about the level and slope of m. We use the same controls
as in column 4 of table 1, so that our estimate m̂ is effectively a smooth interpolation
of the estimates in table 1, column 4. Figure 1 shows our estimate m̂, as well as the
estimated slope of m, m̂′. As to be expected based on the predicted values of table 1, m̂
is flat over most of it’s support and curves upward toward the right, as t approaches 1,
corresponding to the free care plan.

Assuming (and this is a crucial parameter), that the marginal welfare weight on income
for those needing medical services relative to healthy contributors is given by λ, we can
write expected social welfare as a function of the subsidy rate, û(t) = λ

∫ t
0
m̂(x)dx−t·m̂(t),

and the expected marginal social return to an increase of t as û′(t) = (λ−1)·m̂(t)−t·m̂′(t).
Figure 2 plots our estimate of social welfare û and its derivative û′, assuming that λ = 1.5.
The optimal policy choice t̂∗ solves the first order condition û′(t̂∗) = 0. We find an optimal
policy choice of t̂∗ = 0.82, corresponding to a coinsurance rate of 18%. As the objective
function is fairly flat around this point, the free care plan performs almost as well in terms
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Table 1: Expected spending for different coinsurance rates

(1) (2) (3) (4)
Share with Spending Share with Spending

any in $ any in $
Free Care 0.931 2166.1 0.932 2173.9

(0.006) (78.76) (0.006) (72.06)
25% Coinsurance 0.853 1535.9 0.852 1580.1

(0.013) (130.5) (0.012) (115.2)
50% Coinsurance 0.832 1590.7 0.826 1634.1

(0.018) (273.7) (0.016) (279.6)
95% Coinsurance 0.808 1691.6 0.810 1639.2

(0.011) (95.40) (0.009) (88.48)
N 14777 14777 14777 14777

Notes: This table shows OLS estimates of average health care expenditures for the
different treatment arms. Columns (1) and (2) control for month × site fixed effects and
year fixed effects, columns (3) and (4) control additionally for a large set of further pre-
determined covariates. All regressions are pooled across Maximum Dollar Expenditure
values.

of social welfare.
Based on the considerations of section 5, we can also perform frequentist inference for

the optimal choice of t. Figure 3 plots a pointwise frequentist 95% confidence band for u′.
The intersection of this confidence band with the horizontal axis yields an asymptotically
valid 95% confidence interval for the optimal policy choice, which in this case ranges from
a subsidy rate of about 70% to a subsidy rate of 100%, that is free care.

To check the robustness of our results, we replicate the analysis without controlling
for predetermined covariates. This corresponds to the estimates in column 2 of table 1.
Figure 4 replicates figures 1, 2, and 3 using this alternative specification. As can be seen,
this results in a slightly higher estimated slope of m toward the right end of its support, a
social welfare function which peaks slightly further left, and a downward shifted estimate
of the slope of social welfare. The corresponding optimal policy choice equals t̂∗ = .75,
corresponding to a copay of 25%. The 95% confidence interval for the optimal t ranges
from .64 to .98. Recall, however, that it is more plausible that the specification using
predetermined controls yields the right estimates of m and u, and that this specification
suggests higher insurance / lower copay rates.

Comparison to the conventional “sufficient statistic” approach

It is useful to compare these results – in particular the optimal choice t̂∗ = 0.82 – to the
recommended coinsurance rate obtained using a more conventional “sufficient statistic”
approach as in Chetty (2009). Under the assumptions of section 3.1, we can rewrite the
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Figure 1: Estimated dependence of health expenditures on copay using the RAND health
insurance experiment
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Notes: This graph shows our estimate of m, which describes expected health care ex-
penditures as a function of the subsidy rate t and our estimate of m′.

Figure 2: Estimated social welfare function using the RAND health insurance experiment
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Notes: This graph shows our estimate of u, which describes social welfare as a function
of t assuming λ = 1.5, and our estimate of u′.
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Figure 3: 95% confidence band for the slope of social welfare
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Notes: This graph shows a pointwise frequentist .95 confidence band for u′.

marginal social return to an increase of t as

u′(t) = (λ− 1) ·m(t)− t ·m′(t)
= m(t) · [(λ− 1)− t ·m′(t)/m(t)]

= m(t) ·
[
(λ− 1)− η · t

1− t

]
,

where η is the elasticity of health-care expenditures m with respect to copay 1− t,

η := − ∂m(t)

∂(1− t)
· 1− t
m(t)

. (83)

Note that η is a function of t unless m is log-linear. Solving the first order condition
u′(t∗) = 0 yields

t∗ =
1

1 + η/(λ− 1)
. (84)

The approach suggested by Chetty (2009) (and many other contributions to the literature)
is to obtain an estimate η̂ of the elasticity η, and to plug it into this formula to obtain a
recommended copay of

t̃∗ =
1

1 + η̂/(λ− 1)
.

Assuming the same relative marginal value λ of income for those requiring health-care
expenditures as before, λ = 1.5, yields t̃∗ = 1/(1 + 2 · η̂).
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Figure 4: Replicating estimates without use of controls
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Notes: These graphs replicate figures 1 through 3, without using controls.
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It remains to obtain an estimate of η. The most natural approach would fit a linear
regression of log(Y ) on log(1−t) as well as the appropriate controls, and take the negative
of the coefficient on log(1 − t) as the estimate of η. This turns out not to be feasible in
the present context, given that t = 1 for an important part of the experimental sample.
For these observations, the log-linear specification clearly makes no sense.

Various estimates for η based on the RAND experiment have been proposed in the lit-
erature, as discussed by Aron-Dine et al. (2013). The most famous estimate, constructed
by the RAND investigators themselves, is given by η̂ = 0.2. This estimate was con-
structed in a fairly complicated manner, based on so-called “arc-elasticities” for pairwise
comparisons and averaging across these comparisons. Plugging this estimate into the
sufficient-statistic formula yields t̃∗ = 1/1.4 ≈ 0.7, that is a suggested copay of approxi-
mately 30%. This is 12 percentage points or 50 percent higher than the optimal copay of
18% according to our calculations.

Table 4 of Aron-Dine et al. (2013) presents various alternative estimates η̂, based
on the more standard definition of an elasticity underlying our derivation of the suffi-
cient statistic formula. Their estimates, omitting the free-care plan from calculations, are
slightly larger than 0.5. Plugging this into the formula for t̃∗ yields t̃∗ ≈ 1/2 = .5 – that
is a suggested copay of approximately 50%. This is 32 percentage points or almost 180
percent higher than the optimal copay of 18% according to our calculations.

Where do these large differences come from? Note that we have (i) assumed the same
model and the same social welfare function, (ii) have imposed the same value of λ = 1.5,
and (iii) used the same data to estimate the behavioral relationship m. The difference
stems from the way m, and thus u, are estimated. First, and most importantly, we have
not imposed the log-linear functional form implicit in the constant-elasticity specification.
In fact, η seems to vary significantly across t. Second, we estimate m in levels rather than
in logs. This gives a larger weight to infrequent but high occurrences of large expenditures
Y . Estimation in levels is appropriate according to the decision-theoretic setup. Third,
we estimate m in a Bayesian way. This imposes some “shrinkage.” Note however that
we have used a prior which is uninformative about the level and slope of m, so that this
seems only a minor driver of the difference in estimates.

9 Conclusion

In this paper, a general framework is proposed for the use of (quasi-) experimental data
when choosing policies such as tax rates or inputs into a production process. This frame-
work is based on the following assumptions: (i) There is random variation of the policy
choice variables in the available data (possibly conditional on covariates), or there is a
valid instrument for the policy choice. (ii) The policy objective function can be written as
a transformation of the relevant technological or behavioral relationships by some affine
operator. (iii) The prior distribution of these relationships is given by a Gaussian process.
Under these assumptions we provide explicit expressions, as well as characterizations, of
optimal policy choices and of optimal experimental designs. This setting leads to policy
choice procedures which are easy to implement in practice. The resulting policy choices
may differ strongly from those suggested by sufficient statistic approaches (which implic-
itly rely on stronger assumptions), as demonstrated by our empirical analysis of data
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from the RAND health insurance experiment.
Let us conclude by briefly discussing some of the larger context of the approach pro-

posed in this paper. Arguably there are several conceptually distinct roles of econometrics.
The first of these is the purely statistical task of forecasting or prediction, answering ques-
tions of the form “What will be?”. This task needs no notion of causality. The second is
the task of testing theories, answering questions of the form “Is statement A correct?”.
This task usually involves some notion of causality or structural invariance. The third
is the task of informing policy choice, answering questions of the form “What should we
do?”. This task generally involves notions of causality or counterfactuals, as well as a
normative evaluation of possible counterfactual outcomes. It is to this last task that the
present paper aims to contribute.

In contrast to much of the literature in econometrics, this paper takes a Bayesian ap-
proach to solving a decision problem. The central motivation for taking such an approach
is the complete class theorem, which loosely speaking says the following: Any decision
procedure which is admissible (not dominated) is a Bayesian procedure. Put differently,
we can not avoid trading off risk across different states of the world – Bayesian procedures
just make this tradeoff explicit by assigning weights (“prior probabilities”) to these states.
One of the main objections to Bayesian procedures is that their results are not replica-
ble because they depend on the choice of weights (prior). While a valid and important
concern, the complete class theorem implies that non-Bayesian procedures are either (i)
inadmissible, or (ii) in fact Bayesian procedures based on a conventional choice of weights,
or (iii) Bayesian procedures based on a “subjective” but implicit choice of weights. While
there is much to be said for procedures in category (ii), explicitly Bayesian solutions of de-
cision problems seem preferable to those in categories (i) and (iii). Category (iii) includes
any nonparametric procedure involving the choice of tuning or bandwidth parameters.
Indeed, as the equivalence between Gaussian process regression and spline regression,
and the asymptotic equivalence between Gaussian process regression and Kernel regres-
sion shows, there is a direct correspondence between these tuning parameters and prior
assumptions about smoothness.
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A Proofs

Proof of Lemma 1:
The claims are immediate once we can show the required exchangeability of expectation
and linear operator L, i.e.,

E[(L ·m)(t)] = (L · E[m])(t),

E[(L ·m)(t) ·m(x)] = Lx′E[m(x′) ·m(x)](t).

etc. This exchangeability follows from Lemma 2.1 in van der Vaart and van Zanten
(2008b), which implies the existence of the required Pettis integrals. �

Proof of theorem 1:

• For the policy problems of section 3, u = λ
∫ t

0
m(x)dx− t ·m(t) or u = λm(t)− p′t.

• Consistency of m̂ in C 2 then immediately implies consistency of û in C 2 on the
compact support of t.

• This, combined with strict convexity of u at its maximum, in turn implies consis-
tency of t̂∗.

• Given smoothness of u, and using the first order conditions for t̂∗, a Taylor expansion
yields

0 = û′(t̂∗) = û′(t∗) + û′′(t̃∗) ·
(
t̂∗ − t∗

)
,

where t̃∗ ∈ [t̂∗, t∗], and thus

t̂∗ − t∗ = −u′′(t∗)−1 · û′(t∗) + ∆t,

where
∆t = û′(t∗) ·

(
û′′(t̃∗)−1 − u′′(t∗)−1

)
• ∆t = op(û

′(t∗)) by consistency of t̂∗ and C 2 consistency of û.

• For the policy problems of section 3, û′(t) = (λ − 1) · m̂(t) − t · m̂′(t) or û′(t) =
λ · m̂′(t)− p. By assumption 6, (m̂(t∗)−m(t∗)) = op(m̂

′(t∗)−m′(t∗)). This implies
û′(t∗)− u′(t∗) = l · (m̂′(t∗)−m′(t∗)) · (1 + op(1)).

• Asymptotic normality of m̂(t∗) therefore implies

V
−1/2
n,u′ · (û

′(t∗)− u′(t∗)−Bn,u′)→d N(0, I),

where

Vn,u′ = l2 · Vn,m′
Bn,u′ = l ·Bn,m′ .

for l = t or l = λ, depending on the application.
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• Collecting these results yields the asymptotic normality of

t̂∗ − t∗ = −l · u′′(t∗)−1 · (m̂′(t∗)−m′(t∗)) · (1 + op(1))

and the expressions for Vn and Bn.

�

Proof of Corollary 1:
By the first order condition for t∗ u′(t∗) = 0, and thus, using the fact that u ∈ C 2 and
the consistency of t̂∗ for t∗,

u(t∗)− u(t̂∗) = −1

2
(t̂∗ − t∗)t · u′′(t∗) · (t̂∗ − t∗) + op(‖t̂∗ − t∗‖2).

The claims follow from this equation, the continuous mapping theorem and the δ-method.
�

Proof of proposition 1:

• Consistency of t̂∗ and C 2 consistency of û implies consistency of û(t̂∗) for u(t∗).

• By the form of the estimator m̂ (assumption 5) and the independence of observa-
tions, we can choose

Vm′ = Var(m̂′(t∗)|X, θ) =
∑
i

wx(x,Xi)
2σ2(Xi).

The subscript x denotes the partial derivative wx(x,Xi) := ∂/∂x w(x,Xi). We

need to show V̂m′/Vm′ →p 1.

• Let εi = Yi −m(Xi), ε̂i = Yi − m̂(Xi), and wt,i = wt(t̂
∗, Xi). We can decompose

V̂m′

Vm′
= 1 +

∑
w2
t,i[ε

2
i − σ2

i ]∑
w2
t,iσ

2
i

+

∑
w2
t,i[ε̂

2
i − ε2i ]∑

w2
t,iσ

2
i

= 1 +R1 +R2.

We have to show R1 →p 0 and R2 →p 0.

• Note that E[R1|X] = 0 and, under the assumption of bounded 2nd and 4th mo-
ments,

Var(R1|X) =

∑
w4
t,i Var(ε2i |Xi)(∑
w2
t,iσ

2
i

)2 ≤M2 ·
∑(

w2
t,i∑
w2
t,i

)2

≤M2 · n ·W 2
n

and thus Var(R1|X) → 0 under the assumption on the large n behavior of Wn,
which implies R1 →p 0.
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• For the second term, note that ε̂i = εi +mi − m̂i, therefore ε̂2i − ε2i = (mi − m̂i)
2 +

2εi(mi − m̂i), and thus

R2 =

∑
w2
t,i(fi − f̂i)2∑
w2
t,iσ

2
i

+

∑
w2
t,i2εi(mi − m̂i)∑

w2
t,iσ

2
i

≤M · n ·Wn ·
[
‖m̂− f‖2n + 2‖ε‖n · ‖m̂−m‖n

]
.

It is easy to see that ‖ε‖n = Op(1). We get that R2 = Op(n ·Wn · ‖m̂−m‖n), and
thus R2 → 0 under our assumption on the rate of convergence of m̂.

�

Proof of Lemma 2:
This follows from the equivalent kernel representation and the asymptotics of kernel
regression estimators; (see for instance Li and Racine, 2011, chapter 2). By consistency,
smoothness, and a change of variables,

Var(m̂′(x)|θ) =
n

ρ2

∫ [
1

h(ρ)dx+1
K ′
(
x̃− x
h(ρ)

)]2

· σ2(x̃) · f(x̃)dx̃

= (1 + o(1)) · σ
2(x)

ρ

∫ [
1

h(ρ)dx+1
K ′
(
x̃− x
h(ρ)

)]2

dx̃

= (1 + o(1)) · σ2(x)

ρ · h(ρ)dx+2

∫
K ′(x̃) ·K ′(x̃)tdx̃

and, by partial integration and change of variables,

E[m̂′(x)|θ]−m′(x) = −n
ρ

∫
1

h(ρ)dx+1
K ′
(
x̃− x
h(ρ)

)
· [m(x̃)−m(x)] · f(x̃)dx̃

= (1 + o(1)) ·
∫

1

h(ρ)dx
K

(
x̃− x
h(ρ)

)
·m′(x̃)dx̃

= (1 + o(1)) ·
∫
K (x̃) ·m′(x+ h · x̃)dx̃.

Asymptotic normality follows from a central limit theorem for triangular arrays. �

Proof of theorem 2: We are interested perturbation of the design density f by a
point mass f̃ at the point x′. We can approximate f̃ by a sequence of continuous densities
f̃j(x) = 1/jK̃(x′/j) for some continuous kernel function K̃ integrating to 1. Equation

(64) gives the effect of perturbations by f̃j on V . Taking the limit with respect to j, we

get that the marginal effect of perturbations by f̃ is equal to

(Vδg)(x) =
σ2

nf(x′)2

∫
w(x, x′)w(x′′, x′)g(x′′)dx′′. (85)

This expression for Vδ is equal to the covariance kernel of the random function

v(x) =
σ√

nf(x′)
· w(x, x′) · ε, (86)
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where ε ∼ N(0, 1). Modifying the experimental design density f by adding a point mass
of measure δ at x′ is thus equivalent, for small δ, to adding the random function

√
δ · v

to û, where v ⊥ û. Let us therefore consider the random function

û(δ) := û+
√
δ · v, (87)

the optimal policy t̂∗(δ) = argmax t û(δ, t) and the corresponding expected social welfare
υ̂(δ) = E[max û(δ)]. Taylor expansion of these objects, using that û′(t̂∗) = 0, yields

û(δ, t̂∗(δ)) = û(t∗) +
1

2
(t̂∗(δ)− t̂∗)t · û′′(t̂∗) · (t̂∗(δ)− t̂∗)

+
√
δ[v(t̂∗) + v′(t̂∗) · (t̂∗(δ)− t̂∗)] + op(δε

2), (88)

and
t̂∗(δ) = t̂∗ −

√
δ · û′′(t̂∗)−1 · v′(t̂∗) + op(

√
δε). (89)

Plugging the expansion for t̂∗(δ) into the expansion for û(δ, t̂∗(δ)), we get

û(δ, t̂∗(δ)) = û(t∗) +
√
δv(t̂∗) + δ · 1

2
v′(t̂∗)t · û′′(t̂∗)−1 · v′(t̂∗) + op(δε

2). (90)

By construction of v, we have E[v(t)] = 0, and v′(t) = σ√
nf(t)

· wt(t, x′) · ε. Taking

expectations conditional on û thus yields

E[û(δ, t̂∗(δ))|û] = û(t∗) + δ · 1

2

σ2

nf2(x′)
tr
[
û′′(t̂∗)−1 ·

(
wt(t̂

∗, x′)wt(t̂
∗, x′)t

)]
+ o(δ). (91)

Taking the derivative with respect to δ and the expectation over the distribution of û
proves the claim. �

Proof of Corollary 2:
The optimal design f∗ solves the variational problem

max υ̂(f)

s.t.

∫
f(x)dx = 1. (92)

The first order conditions to this problem are given by

∂

∂δ
υ̂(f + δf̃) = κ̃ ·

∫
f̃(x)dx = κ̃, (93)

where f̃ might be any probability density function. Considering perturbations f̃ that
approximate point masses at x, and using the limiting expression for ∂

∂δ υ̂(f + δf̃) given
by theorem 2 yields the claim of the corollary. �

Proof of proposition 2:
By corollary 2 of theorem 2,

1

f∗2(x)
E
[
tr
[
û′′(t̂∗)−1 ·

(
wt(t̂

∗, x)wt(t̂
∗, x)t

)]]
= κ
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for all x. Under the maintained conditions,

E
[
tr
[
û′′(t̂∗)−1 ·

(
wt(t̂

∗, x)wt(t̂
∗, x)t

)]]
=E

tr

(u′′(t̂∗)−1 + op(1)) · l2

h2dx+2

K ′(x− t̂∗
h

)
K ′

(
x− t̂∗

h

)t
+ o(1)


=

∫
E[u′′(t)−1|t∗ = t] · l2

h2dx+2
K ′

(
x− t̂∗

h

)
K ′

(
x− t̂∗

h

)t
f t
∗
(t)dt+ o(1).

A change of the variable of integration, combined with the continuity and positivity of
f t
∗

and compactness of support yields the claim. �

Proof of Theorem 3:
Under either of the two cases, we can treat f∗ as fixed as we vary sample size. In case
(ii) this holds by an envelope condition argument. By similar arguments as those leading
to theorem 2, the dependence of the covariance kernel of û on n is given by

Vn = −WEnW
t

=
1

n
WEW

t
,

since E = σ2

n F
−1 . Writing this in integral form, we get

(Vng)(x) =
σ2

n2

∫
w(x, x′)w(x′′, x′)

1

f∗(x′)
g(x′′)dx′dx′′.

Increasing sample size n is therefore equivalent, to first order, to adding the random
function

v(x) =

∫
w(x, x′)

σ

n
√
f∗(x)

dW̃ (x)

to û, where dW̃ is a standard white noise process independent of û. For this process v,
we get E[v(t)] = 0,

v′(t) =

∫
wt(t, x

′)
σ

n
√
f∗(x)

dW̃ (x),

and

Var(v′(t)|û) =
σ2

n2

∫
wt(t, x

′)2

f∗(x′)
dx′.

The same Taylor expansions as in the proof of theorem 2 apply, so that

û(δ, t̂∗(δ)) = û(t∗) +
√
δv(t̂∗) + δ · 1

2
v′(t̂∗)t · û′′(t̂∗)−1 · v′(t̂∗) + op(δ · ‖v‖).

and

E[û(δ, t̂∗(δ))|û] = û(t∗) + δ · 1

2
tr
[
û′′(t̂∗)−1 · (Var(v′(t)|û))

]
+ o(δ).

Taking expectations over the distribution of û and then the derivative with respect to δ
proves the first claim. The second claim is an immediate consequence of theorem 2. �
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B Common choices for the covariance kernel C.

This section provides a brief review of some popular covariance kernels for Gaussian
process priors.

Linear models

Consider a set of regressors W which might include interactions, powers, and other trans-
formations of observed variables X, W = w(X). Assume that we have a multivariate
normal prior for the coefficients of a linear regression model, where

Y = w(X)β + ε

E[ε|β,X] = 0

E[β|X] = 0

Var(β|X) = Σβ .

This assumption implies a Gaussian process prior for m(x) = E[Y |X = x] = w(x) · β,
with covariance kernel

C(x1, x2) = w(x1)′ · Σβ · w(x2).

Squared exponential covariance function

A common choice of prior in the machine learning literature (cf. Williams and Rasmussen,
2006) is defined by the covariance kernel

C(x1, x2) = exp

(
− 1

2l2
‖x1 − x2‖2

)
, (94)

where ‖.‖ is some appropriately defined norm measuring the distance between covariate
vectors. The parameter l determines the length scale of the process.

This prior does not restrict functional form and can accommodate any shape of m. In
this sense it is a nonparametric prior. One attractive feature of the squared exponential
covariance kernel is that is puts all its mass on smooth functions, in the sense that m
is infinitely mean-square differentiable. A function is mean-square differentiable if the
normalized differences of m converge in L2 to some function ∂m(x)/∂x,

m(x+ ε)−m(x)

‖ε‖
→L2 ∂m(x)

∂x

as ‖ε‖ → 0 , cf. Williams and Rasmussen (2006, p81). Infinite mean square differentiabil-
ity holds for all processes that have a covariance kernel C which is infinitely differentiable
around points where x1 = x2.

The length scale l, and more generally the norm ‖x1−x2‖, determines the smoothness
of the process, where larger length scales correspond to smoother processes. One measure
of smoothness are the expected number of “upcrossings” at 0, i.e., the expected number
of times the process crosses 0 from below in the interval [0, 1]. For a one-dimensional
process with squared exponential kernel, this number equals 1/(2πl), cf. again Williams
and Rasmussen (2006, p81).
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Noninformativeness

We might want to consider priors which are “non-informative” about some key parameters
of the behavioral relationships under consideration, such as level and slope, while at the
same time using our prior assumptions about smoothness of m.22 One way to formalize
such non-informativeness is to consider limit cases where the prior variance for some
parameters goes to infinity, and to use the corresponding limit estimators of m and u as
posterior expectations.

In particular, given a covariance kernel K for a stochastic process n as well as a subset
of regressors X∗, consider the process

Y = n(X) +X∗β + ε

E[n] = 0

E[β|X] = 0

E[ε|X] = 0

Cov(n(x1), n(x2)) = K(x1, x2)

Var(β|X) = λΣβ

Var(ε|X,β) = σ2I

βd ⊥ n.

For this process we get

C(x1, x2) = K(x1, x2) + λx∗1Σβx
∗
2.

In the limit-case λ→∞ the prior over β becomes “non-informative.” In the limit we get
(cf. Kasy 2013b)

m̂(x) = x1β̂ +K(x)(K + σ2I)−1(Y −X1β̂), (95)

where
β̂ =

(
X ′(K + σ2I)−1X

)−1
X ′(K + σ2I)−1Y. (96)

C Explicit formulas and graphs for covariance kernels

In section 3 we introduced several policy problems that fit into our general framework,
and derived expressions for the covariance kernels B,D and K for these problems from
a general covariance kernel C. In this section we provide analytic expressions and plots
of these kernels, assuming that the covariance kernel C is equal to a squared exponential
kernel

C(x1, x2) = exp

(
− (x1 − x2)2

2l2

)
=

1

φ(0)
· φ
(
x1 − x2

l

)
(97)

where φ is the standard normal pdf and l is a parameter determining the length scale of
the kernel.

22And note that any nonparametric estimation method has to use assumptions about smoothness!
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The form of the operator L for the optimal insurance and optimal taxation problems
discussed in section 3.1 was

(Lm)(t) = λ

∫ t

0

m(x)dx− t ·m(t).

For this operator L and kernel C, the prior (co)variances D, K and B are given by

D(t, x) = λ ·
∫ t

0

C(x′, x)dx′ − t · C(t, x)

=
1

φ(0)
·
[
λl ·

(
Φ

(
t− x
l

)
− Φ

(
−x
l

))
− t · φ

(
t− x
l

)]
,

where Φ denotes the standard normal cdf,

K(t, t′) = λ2 ·
∫ t

0

∫ t′

0

C(x, x′)dx′dx+ t · t′ · C(t, t′)

− λ ·

(
t′ ·
∫ t

0

C(x, t′)dx+ t ·
∫ t′

0

C(x′, x)dx′

)

=
1

φ(0)
·
[
λ2 ·

∫ t

0

l ·
(

Φ

(
x− t
l

)
− Φ

(
−t
l

))
dx+ t · t′ · φ

(
x1 − x2

l

)
−λl ·

(
t′ ·
(

Φ

(
t− t′

l

)
− Φ

(
−t′

l

))
+ t ·

(
Φ

(
t′ − t
l

)
− Φ

(
−t
l

)))]
and

B(t, x) = (λ− 1) · C(t, x)− t · ∂
∂t
C(t, x)

=
1

φ(0)
·
[
(λ− 1) · φ

(
t− x
l

)
− t

l
· φ′
(
t− x
l

)]
=
φ
(
t−x
l

)
φ(0)

·
[
(λ− 1)− t · (t− x)

l2

]
.

We finally get

Var(u′(t)) = Var((λ− 1) ·m(t)− t ·m′(t)) =

= (λ− 1)2 · C(t, t)− (λ− 1) · t · ∂
∂t′

C(t, t′) + t2 · ∂2

∂t′∂t
C(t, t′)

=
1

φ(0)
· φ
(
x1 − x2

l

)
·
[
(λ− 1)2 +

t2

l2

]
,

where in the last expression several terms drop out since they are multiplied by (t− t)/l;
in particular Cov(m(t),m′(t)) = 0 for the squared exponential covariance kernel.

The following figures illustrate.
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Figure 5: Covariance kernels for the optimal insurance problem
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