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The Term Structure of Variance Swaps and Risk Premia

Abstract

We study the term structure of variance swaps, equity and variance risk premia. A

model-free analysis reveals a significant jump risk component embedded in variance swaps.

A model-based analysis shows that the term structure of variance risk premia is negative

and downward sloping. Investors’ willingness to ensure against volatility risk increases after

a market crash. The effect is stronger over short horizons and more persistent over long

horizons. Variance risk premia over short horizons mainly reflect investors’ fear of a market

crash. A simple trading strategy with variance swaps generates significant returns.

Keywords: Variance Swap, Stochastic Volatility, Likelihood Approximation, Term Struc-

ture, Equity Risk Premium, Variance Risk Premium.

JEL Codes: C51, G12, G13.
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1. Introduction

Over the last decade, the demand for volatility derivative products has grown exponentially,

driven in part by the need to hedge volatility risk in portfolio management and derivative

pricing. In 1993, the Chicago Board Options Exchange (CBOE) introduced the VIX as a

volatility index computed as an average of the implied volatilities of short term, near the money,

S&P100 options. Ten years later, the definition of the VIX was amended to become based on

the more popular S&P500, itself the underlying of the most liquid index options (SPX), and

to be computed in a largely model-free manner as a weighted average of option prices across

all strikes at two nearby maturities, instead of relying on the Black–Scholes implied volatilities

(e.g., Carr and Wu (2006).) Shortly thereafter, VIX futures and options on VIX were introduced

at the CBOE Futures Exchange (CFE). Carr and Lee (2009) provide an excellent history of

the market for volatility derivatives and a survey of the relevant methodologies for pricing and

hedging volatility derivatives products.

Among volatility derivatives, variance swaps (VS) can be thought of as the basic building

block. According to the financial press (e.g., Gangahar (2006)), VS have become the preferred

tool by which market practitioners bet on and/or hedge volatility movements. VS are in princi-

ple simple contracts: the fixed leg agrees at inception that it will pay a fixed amount at maturity,

in exchange to receiving a floating amount based on the realized variance of the underlying as-

set, usually measured as the sum of the squared daily log-returns, over the life of the swap. One

potential difficulty lies in the path-dependency introduced by the realized variance.

The payoff of a VS can be replicated by dynamic trading in the underlying asset and a static

position in vanilla options on that same underlying and maturity date. This insight, originally

due to Neuberger (1994) and Dupire (1993), meant that the path-dependency implicit in VS

could be circumvented; it also made possible an important literature devoted to analyzing and

exploiting the various hedging errors when attempting to replicate a given VS (e.g., Carr and

Madan (1998), Britten-Jones and Neuberger (2000), Jiang and Tian (2005), Jiang and Oomen

(2008), Carr and Wu (2009), Carr and Lee (2010).) Because of the interest in replicating a

given contract, VS rates have generally been studied at a single maturity.

But VS rates give rise naturally to a term structure, by varying the maturity at which the

exchange of cash flows take place, and it is possible to analyze them in a framework comparable

to that employed for the term structure of interest rates, including determining the number

of factors necessary to capture the variation of the curve (see Bühler (2006), Gatheral (2008),

2



Amengual (2008) and Egloff et al. (2010).) We continue this line of research with two differences.

First, we do not proceed fully by analogy with the term structure of interest rates, i.e., taking

either the variances themselves or their latent factors as the primitives: instead, we incorporate

the fact that the variance in a VS is that of an underlying asset and explicitly incorporate the

presence of that asset in our modeling. This means that we can infer properties of the risk

premia associated not just with the variances but also with the asset itself, which in the case of

the S&P500 is the classical equity risk premium. Second, and most importantly, we allow for

the presence of jumps in asset returns and variance. When studying the term structure of VS

rates, we examine how they behave as a function of maturity and the information they convey,

particularly about risk premia.

This analysis allows for a better understanding of how volatility and jump risk is perceived

by investors, as reflected in VS contracts at different horizons. It also has implications for

investing in VS, as the profitability of the investment obviously depends on risk premia. We use

actual, rather than synthetic, daily VS rates on the S&P500 index with fixed time to maturity

of 2-, 3-, 6-, 12- and 24-month from January 4, 1996 to September 2, 2010.

The analysis reveals clear patterns in the term structure of VS rates. When time to maturity

increases, the level and persistence of VS rates increase, while their volatility, skewness and

kurtosis decrease. In agreement with Egloff et al. (2010), Gatheral (2008) and Amengual (2008),

we find through Principal Component Analysis that two factors, which can be interpreted as

level and slope factors, explain 99.8% of the variation in VS rates.

We then use a model-free approach to measure the jump component embedded in VS rates,

relying on recent theoretical results for model-free implied volatilities. Specifically, we compare

variance swap rates and VIX-type indices extracted from options on the S&P500 index (SPX)

for various maturities. We find that a large and time-varying jump risk component is embedded

in VS rates, which becomes even more pronounced in the latter part of the sample. A flexible

stochastic volatility model cannot fully explain the jump risk component. This suggests that

either the jump risk is heavily priced by VS traders or some segmentation between the VS and

option markets exits or both.

Various aspects of the VS term structure cannot be studied in a model-free manner, because

the necessary data are either insufficient in quantity or simply unavailable. A model-free analysis

of the term structure of jump risk in VS would require observations on long lived, out-of-the-

money, SPX options with a fixed time to maturity. These options are, unfortunately, unavailable
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or at least not sufficiently liquid.1 To further the analysis of the VS term structure, we therefore

rely on a parametric stochastic volatility model, namely a two-factor stochastic volatility model

with price jumps and variance jumps, which is consistent with the salient empirical features

of VS rates documented in the model-free analysis. The model is estimated using maximum-

likelihood, combining time series information on stock returns and cross sectional information

on the term structure of VS rates.

Our model-based analysis of risk premia uncovers the following phenomena. The integrated

variance risk premium (IVRP), i.e., the expected difference between objective and risk neutral

integrated variance, is negative and usually exhibits a downward-sloping term structure. As the

IVRP is the ex-ante, expected payoff of the variance swap, a negative risk premium implies that

the VS holder is willing to pay a “large” premium to get protection against volatility increases,

which in turn induces a negative return on average at maturity. As the IVRP increases with

the time to maturity, taking short positions in long-term VS contracts is more profitable on

average than taking short positions in short-term VS contracts. This term structure finding

complements the (model-free) analysis of IVRP for a single, short maturity in Carr and Wu

(2009).

The term structure of IVRP due to negative jumps is negative, generally downward sloping

in quiet times but upward sloping in turbulent times. The contribution of the jump component

is modest in quiet times, but becomes large during market crashes, and mostly impacts the

short-end of the IVRP term structure. This suggests that short-term variance risk premia

mainly reflect investors’ fear of a market crash, rather than the impact of stochastic volatility

on the investment set. It also suggests that investors’ willingness to ensure against future

volatility risk over given time horizons increases after a market crash. This effect is stronger for

short horizons but more persistent for long horizons. Recently, Bollerslev and Todorov (2011)

provided a model-free analysis of the jump component in the IVRP for a single, short time to

maturity (with median of 14 days). Todorov (2010) studied the IVRP due to jump risk over a

one-month time horizon. Using a model-based approach, we extend such analyses to the term

structure of IVRP.

Regression analysis shows that the term structure of IVRP responds nearly monotonically

to variables proxying for equity, option, corporate and Treasury bond market conditions. Not

surprisingly, a drop in the S&P500 index induces a more negative IVRP, but this effect “quickly

1Available options have discrete strike prices and fixed maturities, rather than fixed time to maturities. To carry
out such a model-free analysis, interpolation and extrapolation schemes across strike prices and time to maturities
are necessary with the potential to introduce significant approximation errors.
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dies out” in the term structure of the IVRP, becoming statistically insignificant beyond a 6-

month horizon. The VIX index, despite being a 30-day volatility index, has a fairly uniform

and strong impact throughout the term structure of the IVRP, acting more like a “level” factor,

than a short term factor, for variance risk premia.

We also study the term structure of the (integrated) equity risk premium, defined as the

expected excess return from a buy-and-hold position in the S&P500 index, over various time

horizons. Given our affine jump stochastic volatility model, equity risk premia are available

in semi-closed form, up to the solution of nonlinear ordinary differential equations, using the

transform analysis in Duffie et al. (2000). Equity risk premia exhibit significant countercyclical

dynamics. The term structure of risk premia is slightly upward sloping in quiet times but steeply

downward sloping during market crashes. This suggests that during, a financial crisis investors

demand a large risk premium to hold risky stocks, but the risk premium largely depends and

strongly decreases with the holding horizon. Indeed, in Fall 2008, after Lehman Brothers’

bankruptcy, 2-month equity risk premia reached historically high values, around 50%. During

low volatility periods, equity risk premia are about 6.5%, in line with historical estimates.

Recently, Martin (2013) and van Binsbergen et al. (2013) provided related studies on equity

risk premia, using different datasets and methods, and they also document large swings in equity

risk premia, comparable to those we document here. We complement these studies by analyzing

the term structure of equity risk premia and potential drivers.

Finally, as for the IVRP, we conduct regression analysis to understand which economic

variables may drive the term structure of the IERP. We find that an increase in the VIX index

increases the IERP, but the longer the horizon of the equity risk premium the smaller the effect.

Hence, in contrast to the IVRP, the VIX index does not behave like a level factor for the IERP.

An indicator of credit riskiness within the corporate sector (the difference between Moody’s BAA

and AAA corporate bond yields) has a positive and decreasing impact on the term structure of

the IERP, amplifying the countercyclical variation of the IERP. Other variables have opposite

impact on the term structure of the IERP. For example, the slope of the term structure of

Treasury yields (the difference between the yields on 10-year and 2-year Treasury securities)

has a positive impact on the short-end and a negative impact on the long-end of the IERP

term structure. In Fall 2008 such a difference increased significantly, it amplified the downward

slope of the IERP term structure. All in all, these empirical findings point to a rich impact of

economic indicators on the term structure of equity and variance risk premia.

The structure of the paper is as follows. Section 2 briefly describes variance swaps and their
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properties. Section 3 introduces the model and estimation methodology. Section 4 presents the

actual estimates. Section 5 reports risk premium estimates. Section 6 concludes. The Appendix

contains technical derivations.

2. Variance Swaps

We introduce the general setup we will work with in order to analyze the term structure of

variance swap contracts. Let (Ω,F , (Ft)t≥0, P ) be a filtered probability space satisfying usual

conditions (e.g., Protter (2004)), with P denoting the objective or historical probability measure.

Let S be a semimartingale modeling the stock (or index) price process with dynamics

dSt/St− = µt dt+
√
vt dW̃

P
t + (exp(Js,Pt )− 1) dNP

t − νPt dt (1)

where µt is the drift, vt the spot variance, W̃P
t a Brownian motion, NP

t a counting jump

process with stochastic intensity λPt , Js,Pt the random price jump size, and νPt = gPt λ
P
t the

compensator with gPt = EPt [exp(Js) − 1] and EPt the time-t conditional expectation under P .

When a jump occurs, the induced price change is (St−St−)/St− = exp(Js,Pt )−1, which implies

that log(St/St−) = Js,Pt . Thus, Js,Pt is the random jump size of the log-price under P . When

no confusion arises superscripts are omitted. The dynamics of the drift, variance, and jump

component are left unspecified and in this sense the first part of the analysis of VS contracts

will be model-free. Indeed, the Model (1) subsumes virtually all models used in finance with

finite jump activity.

Let t = t0 < t1 < · · · < tn = t+ τ denote the trading days over a given time period [t, t+ τ ],

for e.g., six months. The typical convention employed in the market is for the floating leg of

the swap to pay at t+ τ the annualized realized variance defined as the annualized sum of daily

squared log-returns (typically closing prices) over the time horizon [t, t+ τ ] :

RVt,t+τ =
252

n

n∑
i=1

(
log

Sti
Sti−1

)2

. (2)

Like any swap, no cash flow changes hands at inception of the contract at time t; the fixed

leg of the variance swap agrees to pay an amount fixed at time t, defined as the variance swap

rate, VSt,t+τ . Any payment takes place in arrears. Unlike many other swaps, such as interest

rates or currency swaps, a variance swap does not lead to a repeated exchange of cash flows, but
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rather to a single one at expiration, at time t+τ . Therefore, at maturity, t+τ , the long position

in a variance swap contract receives the difference between the realized variance between times t

and t+τ , RVt,t+τ , and the variance swap rate, VSt,t+τ , which was fixed at time t. The difference

is multiplied by a fixed notional amount to convert the payoff to dollar terms:

(RVt,t+τ −VSt,t+τ )× (notional amount).

Variance swaps tend to provide positive payoffs in high volatility periods. If the period [t, t+ τ ]

will be an unexpected high volatility period, the realized variance RVt,t+τ will be higher than

the variance swap rate VSt,t+τ set at time t, which will trigger a positive payoff to the long side

of the contract. Typically investors regard volatility increases as unfavorable events, because

volatility increases imply high uncertainty and are usually associated to market crashes, e.g.,

Bekaert and Wu (2000). Thus, variance swaps are effectively insurance contracts against such

negative events.

The analysis of variance swap contracts is simplified when the realized variance is replaced by

the quadratic variation of the log-price process. It is well-known that when supi=1,...,n (ti − ti−1)→

0 the realized variance in Equation (2) converges in probability to the annualized quadratic vari-

ation of the log-price, QVt,t+τ , (e.g., Jacod and Protter (1998)):

252

n

n∑
i=1

(
log

Sti
Sti−1

)2

−→ 1

τ

∫ t+τ

t
vu du+

1

τ

Nt+τ∑
u=Nt

(Jsu)2 = QVc
t,t+τ + QVj

t,t+τ = QVt,t+τ (3)

which is itself the sum of two terms, one due to the continuous part of the Model (1), QVc
t,t+τ ,

and one to its discontinuous or jump part, QVj
t,t+τ . This approximation is commonly adopted

in practice and is quite accurate at the daily sampling frequency (e.g., Broadie and Jain (2008)

and Jarrow et al. (2013)), as is the case in our dataset. Market microstructure noise, while

generally an important concern in high frequency inference, is largely a non-issue at the level

of daily returns. Note that, if the spot variance includes a jump component, the convergence

above still holds and such variance jumps are accommodated in the time integral of vu.

As usual, we assume absence of arbitrage, which implies the existence of an equivalent risk

neutral measure Q. By convention, the variance swap contract has zero value at inception.

Assuming that the interest rate does not depend on the quadratic variation, which is certainly

a tenuous assumption and one commonly made when valuing these contracts, no arbitrage
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implies that the variance swap rate is

VSt,t+τ = EQt [QVt,t+τ ] = vQt,t+τ + EQt [(Js)2]λ
Q
t,t+τ (4)

where EQt denotes the time-t conditional expectation under Q, vQt,t+τ = EQt [QVc
t,t+τ ], and

λ
Q
t,t+τ = EQt

∫ t+τ
t λQu du/τ , i.e., the average risk neutral jump intensity.

The variance swap rate depends, of course, on the information available at time t. It also

depends on the time to maturity, τ . The latter dependence produces the term structure we are

interested in.

2.1. Preliminary Data Analysis

Our dataset consists of over the counter quotes on variance swap rates on the S&P500 index

provided by a major broker-dealer in New York City. The data are daily closing quotes on

variance swap rates with fixed time to maturities of 2, 3, 6, 12, and 24 months from January

4, 1996 to September 2, 2010, resulting in 3,624 observations for each maturity. Standard

statistical tests do not detect any day-of-the-week effect, so we use all available daily data.

We start by identifying some of the main features of the VS rates data. These salient features

are important not only because allow us to understand the dynamics of the VS rates, but also

because they single out model-free characteristics of VS rates that any parametric model should

be able to reproduce. Figure 1 shows the term structure of VS rates over time and suggests

that VS rates are mean-reverting, volatile, with spikes and clustering during the major financial

crises over the last 15 years, and historically high values during the acute phase of the recent

financial crisis in Fall 2008. While most term structures are upward sloping (53% of our sample),

they are often ∪-shape too (23% of our sample). The remaining term structures are roughly

split in downward sloping and ∩-shape term structures.2 The bottom and peak of the ∪- and

∩-shape term structures, respectively, can be anywhere at 3 or 6 or 12 months to maturity VS

rate. The slope of the term structure (measured as the difference between the 24 and 2 months

VS rates) shows a strong negative association with the contemporaneous volatility level. Thus,

in high volatility periods or turbulent times, the short-end of the term structure (VS rates with

2 or 3 months to maturity) rises more than the long-end, producing downward sloping term

structures.

2On some occasions, the term structure is ∼-shape, but the differences between, for e.g., the 2 and 3 months VS
rates are virtually zero and these term structures are nearly ∪-shape.
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Table 1 provides summary statistics of our data. For the sake of interpretability, we follow

market practice and report variance swap rates in volatility percentage units, i.e.,
√

VSt,t+τ ×

100. Various patterns emerge from these statistics. The mean level and first order autocorre-

lation of swap rates are slightly but strictly increasing with time to maturity. The standard

deviation, skewness and kurtosis of swap rates are strictly decreasing with time to maturity.

Ljung–Box tests strongly reject the hypothesis of zero autocorrelations, while generally Dickey–

Fuller tests do not detect unit roots,3 except for longest maturities – it is well-known that the

outcome of standard unit root tests should be carefully interpreted with slowly decaying mem-

ory processes; e.g., Schwert (1987). First order autocorrelations of swap rates range between

0.982 and 0.995, confirming mean reversion in these series. As these coefficients increase with

time to maturity, the longer the maturity the higher the persistence of VS rates with mean

half-life4 of shocks between 38 and 138 days.

Principal Component Analysis (PCA) shows that the first principal component explains

about 95.4% of the total variance of VS rates and can be interpreted as a level factor, while

the second principal component explains an additional 4.4% and can be interpreted as a slope

factor.5 This finding is somehow expected because PCA of several other term structures, such

as bond yields, produce qualitatively similar results. Less expected is that two factors explain

nearly all the variance of VS rates, i.e., 99.8%. Repeating the PCA for various subsamples

produces little variation in the first two factors and explained total variance. Overall, PCA

suggests that at most two factors are driving VS rates. When compared to typical term struc-

tures of bond yields, the one of VS rates appears to be simpler, as a third principal component

capturing the curvature of the term structure is largely nonexistent here.

Table 1, Panel D, also shows summary statistics of ex-post realized variance of S&P500

index returns for various time to maturities. Realized variances are substantially lower on

average than VS rates, which implies that shorting variance swaps is profitable on average.

However, realized variances are also more volatile, positively skewed and leptokurtic than VS

rates, which highlights the riskiness of shorting VS contracts. The large variability and in

particular the positive skewness of ex-post realized variances can induce large losses to the short

side of the contract. The ex-post variance risk premium, i.e., the difference between average

realized variance and VS rate, is negative and increasing with time to maturities. Shorting VS

3Under the null hypothesis of unit root the Dickey–Fuller test statistic has zero expectation.
4The half-life H is defined as the time necessary to halve a unit shock and solves %H = 0.5, where % is the first
order autocorrelation coefficient.
5To save space, factor loadings are not reported, but are available from the authors upon request.
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contracts with different time to maturities allows to earn such variance risk premia.

2.2. Model-free Jump Component in Variance Swap Rates

We start with a model-free method to quantify the price jump component in VS rates. We take

advantage of recent theoretical advances collectively described as “model-free implied volatil-

ities” (see Neuberger (1994), Dupire (1993), Carr and Madan (1998), Demeterfi et al. (1999),

Britten-Jones and Neuberger (2000), Jiang and Tian (2005), Jiang and Oomen (2008), Carr and

Wu (2009) and Carr and Lee (2010).)6 The main result in this literature is that, under some

conditions, if the stock price process is continuous, the variance swap payoff can be replicated

by dynamic trading in futures contracts (or in the underlying asset) and a static position in

a continuum of European options with different strikes and same maturity. The replication

is model-free in the sense that the stock price can follow the general Model (1), but with the

restriction λPt = 0 and/or Js,Pt = 0.

If the stock price has a jump component, this replication no longer holds. This observation

makes it possible to assess whether VS rates embed a priced jump component and to quantify

how large it is, in a model-free manner. Specifically, we compare the variance swap rate and the

cost of the replicating portfolio using options. If the difference between the two is zero, then the

stock price has no jump component and the VS rate cannot embed a priced jump component. If

the difference is not zero, a priced jump component is likely to be reflected in such a difference

and thus in the VS rate.

In practice, of course, only a typically small number of options is available to construct

the replicating portfolio for a given horizon τ . Moreover, options are available only for a few

maturities that typically do not match the horizon τ . An interpolation across maturities is

therefore necessary. Jiang and Tian (2005) provide a detailed discussion of these issues that

likely introduce approximation errors.

Our procedure to detect the price jump component in VS rates is as follows. Model (1)

implies the following risk neutral dynamic for the futures price Ft

d logFt = −1

2
vt dt+

√
vtdW

Q
t + Js,Qt dNQ

t − E
Q
t [exp(Js)− 1]λQt dt.

6Recently, Fuertes and Papanicolaou (2011) developed a method to extract the probability distribution of stochas-
tic volatility from observed option prices.

10



The VIX contract is priced from an options portfolio that replicates a log contract7

VIXt,t+τ = −2

τ
EQt

[
log

Ft+τ
Ft

]
= −2

τ
EQt

∫ t+τ

t
d logFu = vQt,t+τ + 2EQt [exp(Js)− 1− Js]λQt,t+τ .

The difference between the VS rate in (4) and VIXt,t+τ is

VSt,t+τ −VIXt,t+τ = 2EQt

[
(Js)2

2
+ J + 1− exp(Js)

]
λ
Q
t,t+τ (5)

which provides a model-free assessment of the price jump term. Thus, up to a discretization

error, VSt,t+τ −VIXt,t+τ is a model-free measure of a price jump component in VS rates. If the

jump component is zero, i.e., Js = 0 and/or the intensity λQt = 0, then VSt,t+τ − VIXt,t+τ is

zero as well, and the VIX index is indeed a VS rate. If the jump component is not zero, then

VSt,t+τ − VIXt,t+τ is expected to be positive. The reason is that the function in the square

brackets in Equation (5) is downward sloping and passing through the origin. If the jump

distribution under Q is mainly concentrated on negative values, suggesting that jump risk is

priced, the expectation in Equation (5) tends to be positive. The average risk neutral jump

intensity λ
Q
t,t+τ is, of course, always nonnegative. Note that if the price jump risk is not priced,

i.e., the jump size distributions under P and Q are the same, the difference VSt,t+τ −VIXt,t+τ

could be nonzero, depending on the expectation in Equation (5).

Following the revised post-2003 VIX methodology, we calculate daily VIX-type indices,

VIXt,t+τ , for τ = 2, 3, and 6 months to maturity from January 4, 1996 to September 2, 2010

and compute the difference VSt,t+τ − VIXt,t+τ . SPX option prices are obtained from Option-

Metrics. Although it is straightforward to calculate VIX-type indices for longer maturities, the

interpolation of existing maturities straddling 12 and 24 months is likely to introduce significant

approximation errors. Table 1, Panel B, shows summary statistics of calculated VIX-type in-

dices. These indices have the same term structure features as VS rates, qualitatively. However,

on average, VS rates are higher, more volatile, skewed, and leptokurtic than VIX-type indices

for each maturity. Moreover, the difference VSt,t+τ − VIXt,t+τ increases with time to matu-

rity. Figure 2 shows time series plots of VSt,t+τ − VIXt,t+τ for the various times to maturity.

7The identity
Ft+τ
Ft
− 1− log

Ft+τ
Ft

=

∫ Ft

0

(K − Ft+τ )+

K2
dK +

∫ ∞
Ft

(Ft+τ −K)+

K2
dK

leads to computing the VIX index using forward prices of the out-of-the-money put and call options on the
S&P500 index with maturity t + τ . The VIX index is based on a calendar day counting convention and linear
interpolation of options whose maturities straddle 30 days (e.g., Carr and Wu (2006) provide a description of the
VIX calculation.)
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Such differences are mostly positive, statistically significant, larger during market turmoils but

sizeable also in quiet times. In volatility units, they easily exceed 2% suggesting that they are

economically important when compared to an average volatility level of about 20%. A positive

difference is not a crisis-only phenomenon, when jumps in stock price are more likely to occur

and investors may care more about jump risk. These findings are consistent with the presence

of a significant priced jump component embedded in VS rates.

A few reasons are conceivable for a non-zero difference of VSt,t+τ − VIXt,t+τ . The first

reason is that, since European options on the S&P500 index (SPX) are likely to be more liquid

than VS contracts, a larger liquidity risk premium could be embedded in VS rates than in SPX

options. Everything else equal, the higher the illiquidity of VS the higher the return of a long

position in VS should be, reflecting a liquidity risk premium. However, this would imply that

the higher the liquidity risk premium, the lower the VS rate. Thus, if anything, liquidity issues

should bias downward, an otherwise larger and positive difference VSt,t+τ −VIXt,t+τ .

A second reason for the non-zero difference in (5) could be that the SPX and VS are

segmented or disconnected markets. In that case, comparing asset prices from the two markets

could easily generate large gaps between VSt,t+τ and VIXt,t+τ . On one hand, there is anecdotal

evidence that VS contracts are typically hedged with SPX options and vice versa.8 Thus, it is

unlikely that the two markets are completely segmented. On the other hand, Bardgett et al.

(2013) provide evidence that VIX derivatives and SPX options carry different information about

volatility dynamics, which could be interpreted as a form of segmentation between volatility

and option markets. A temporary disconnection between the two markets could explain the

negative difference VSt,t+τ − VIXt,t+τ observed on a few occasions in Fall 2008. For example

if the SPX market reacts more quickly than the VS market to negative news, option prices

increase faster than VS rates, inducing a negative difference.

A third reason for the non-zero difference in (5) could be that VS sellers price heavily jump

risk, and VS buyers are ready to pay such high premiums. Indeed, the trading strategy of

taking at day t a short position in a VS and a long, static position in SPX options generates

a random payoff at day t + τ , which includes a fixed cash flow given by VSt,t+τ − VIXt,t+τ .

If the difference VSt,t+τ − VIXt,t+τ is positive, it is then cashed by the trader shorting VS

and hedging the position with SPX options, and can be interpreted as compensation for the

imperfect hedging due to jumps in the underlying asset.

8The difficulties involved in carrying out such hedging strategies became prominent in October 2008 when volatil-
ity reached historically high values (see Schultes (2008).)
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While an average positive difference in (5) is economically sensible, the remaining question

is whether quantitatively the difference documented in Table 1 is economically “fair.” To tackle

this issue, we computed the difference in (5) using the general stochastic volatility Model (6)–

(7) introduced in the next section and fitted to VS rates and S&P500 returns. Although the

model produces a positive and time-varying difference, it cannot match the observed large time-

variation of VSt,t+τ −VIXt,t+τ . Therefore, based on this metric, the positive difference appears

to be excessively high, hinting to some segmentation between the VS and SPX markets.

The CBOE methodology to select options for the VIX calculation is to include all out-of-the-

money options, far in the moneyness range, until two consecutive zero bid prices are found. The

rationale is to exclude illiquid options from the VIX calculation. Unfortunately, this procedure

implies that the actual number of options used in the VIX calculation can change substantially

from one day to the next, for example if options with zero bid price are suddenly traded and

deeper out-of-the-money options had non-zero bid prices. This may produce some instabilities

in the calculated VIX-type indices.9

As a robustness check of the findings above, we also calculated the VIX-type indices using

the Carr and Wu (2009) methodology.10 Table 1, Panel C, shows that the corresponding VIX-

type indices are on average rather constant across maturities and closer to the VS rates than

VIX-type indices based on the CBOE methodology. VIX-type indices based on the Carr–Wu

methodology are still less volatile and somewhat smaller than VS rates for the 6-month time to

maturity (and even more so for the unreported 12-month time to maturity). The corresponding

time series of VSt,t+τ − VIXt,t+τ , for τ = 2, 3, 6 months, are similar to the trajectories shown

in Figure 2 and thus exhibit a significant time variation. This suggests that when the VIX-type

indices are calculated more accurately the jump risk premium embedded in VS rates appears

to be smaller. In other words, based on the Carr–Wu methodology, the VS market appears

9Andersen et al. (2012) argue that the CBOE rule for selecting liquid options induces significant instabilities
in the intraday calculation of the VIX index, especially during periods of market turmoil, when an accurate
assessment of volatility risk is most needed. We use the CBOE methodology to compute VIX-type indices on a
daily basis. These instabilities should be less severe than on an intraday basis.
10The Carr–Wu methodology is as follows. For a given day t and time to maturity τ , implied volatilities at different
moneyness levels are linearly interpolated to obtain 2,000 implied volatility points. The strike range is±8 standard
deviations from the current stock price. The standard deviation is approximated by the average implied volatility.
For moneyness below (above) the lowest (highest) available moneyness level in the market, the implied volatility
at the lowest (highest) strike price is used. Given the interpolated implied volatilities, the forward price at day t
of out-of-the-money options with different strikes K and time to maturity τ , Ot(K, τ), are computed using the
Black–Scholes formula. The VIX-type index is then given by a discretization of 2/τ

∫∞
0
Ot(K, τ)/K2 dK. This

procedure is repeated for each day t in our sample and for the two time to maturities available in the market,
say τ and τ , straddling the time to maturity τ (which may not be available in the market), i.e., τ ≤ τ ≤ τ , where
τ = 2, 3, 6 months. Finally, the linear interpolation across time to maturities of 2/τ

∫∞
0
Ot(K, τ)/K2 dK and

2/τ
∫∞
0
Ot(K, τ)/K2 dK gives the (squared) VIX-type index for the time to maturity τ .
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to set VS rates at levels which are roughly in line with option market’s expectations of future

quadratic variations, at least over short time horizons. However, there is an important difference

between the CBOE and Carr–Wu methodologies, namely that only the former is associated to

the trading strategy of shorting variance swaps and hedging this position with SPX options.

Given the available SPX options, the compensation for jump risk premium embedded in VS

appears to be substantial.

2.3. A Parametric Stochastic Volatility Model

The limitations of the data available make it necessary to adopt a parametric structure, with

a specification informed by the model-free analysis above, in order to go further. So we now

parameterize the Model (1). Given the data analysis above, as well as the evidence in Gatheral

(2008) and Egloff et al. (2010) that two factors are both necessary and sufficient to accurately

capture the dynamics of the VS rates, we adopt under the objective probability measure P , the

following model for the ex-dividend stock price and its variance:

dSt/St− = µt dt+
√

(1− ρ2)vt dW
P
1t + ρ

√
vt dW

P
2t + (exp(Js,Pt )− 1) dNt − νPt dt

dvt = kPv (mt k
Q
v /k

P
v − vt) dt+ σv

√
vt dW

P
2t + Jv,Pt dNt (6)

dmt = kPm(θPm −mt) dt+ σm
√
mt dW

P
3t

where µt = r− δ+ γ1(1− ρ2)vt + γ2ρvt + (gP − gQ)λt, r is the risk free rate and δ the dividend

yield, both taken to be constant for simplicity only. The instantaneous correlation between

stock returns and spot variance changes, ρ, captures the so-called leverage effect. The base

Brownian increments, dWP
it , i = 1, 2, 3, are uncorrelated.11

The random price jump size, Js,Pt , is independent of the filtration generated by the Brownian

motions and jump process, and normally distributed with mean µPj and variance σ2
j . Hence,

gP = exp(µPj + σ2
j/2) − 1 is the Laplace transform of the random jump size. Similarly, gQ =

exp(µQj +σ2
j/2)−1. The jump intensity is the same under the P and Q measures and it is given

by λt = λ0 + λ1vt, where λ0 and λ1 are positive constants. This specification allows for more

jumps to occur during more volatile periods, with the intensity bounded away from 0 by λ0.

Bates (2006) provides time series evidence that the jump intensity is stochastic. Besides the

empirical evidence on jumps in stock returns, the main motivation for introducing such a jump

component in stock returns is to account for the jump component in VS rates, as suggested by

11Under this model specification, dW̃P
t in Model (1) becomes

√
(1− ρ2) dWP

1t + ρ dWP
2t in Model (6).
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our model-free analysis in Section 2.2.

The spot variance, vt, follows a two-factor model where mt controls its stochastic long-

run mean or central tendency. The speed of mean reversion is kPv under P , kQv under Q and

kPv = kQv −γ2σv, where γ2 is the market price of risk for WP
2t ; Section 2.4 discusses the last equal-

ity. The process mt controlling the stochastic long run mean follows its own stochastic mean

reverting process and mean reverts to a positive constant θPm, when the speed of mean reversion

kPm is positive. Typically, vt is fast mean reverting and volatile to capture sudden movements

in volatility, while mt is more persistent and less volatile to capture long term movements in

volatility. Andersen et al. (2002), Alizadeh et al. (2002), and others, provide evidence that

two factors are necessary to describe variance dynamics.12 The square-root specification of the

diffusion components, σv
√
vt and σm

√
mt, is adopted to keep Model (6) close to commonly used

models, e.g., Chernov and Ghysels (2000), Pan (2002), Broadie et al. (2007, 2009), Egloff et al.

(2010), and Todorov (2010).

The random jump size of the spot variance, Jv,Pt , is independent of WP
t and Js,Pt , and ex-

ponentially distributed with parameter µPv , i.e., E[Jv,Pt ] = µPv , ensuring that vt stays positive.

Thus, the variance jump Jv,Pt captures quick upward movements of vt. The Model (6) features

contemporaneous jumps both in returns and variance, that is the double-jump model introduced

by Duffie et al. (2000). Eraker et al. (2003) fit models with contemporaneous and independent

jumps in returns and variance to S&P500 data. They find that the two models perform simi-

larly, but the model with contemporaneous jumps is estimated more precisely. Eraker (2004),

Broadie et al. (2007), Chernov et al. (2003), and Todorov (2010) provide further evidence for

contemporaneous jumps in returns and variance.

Model (6) covers existing stochastic volatility models along most dimensions. For example,

none of the studies cited above allow at the same time for stochastic long run mean, stochastic

jump intensity and jumps in returns and variance. Bakshi et al. (1997), Bates (2000, 2006), Pan

(2002), Eraker et al. (2003), Eraker (2004), Broadie et al. (2007, 2009) set mt to a constant,

positive value. Almost all studies assume either constant jump intensities (e.g., Eraker et al.

(2003) and Broadie et al. (2007)) or jumps in returns but not in variance (e.g., Pan (2002) and

Broadie et al. (2009)).

12Using alternative approaches, Adrian and Rosenberg (2008), Engle and Rangel (2008), Christoffersen et al.
(2009) and Corradi et al. (2013) provide additional evidence for a two-factor volatility structure.
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Under Q, the ex-dividend price process evolves as

dSt/St− = (r − δ) dt+
√

(1− ρ2)vt dW
Q
1t + ρ

√
vt dW

Q
2t + (exp(Js,Qt )− 1) dNt − νQt dt

dvt = kQv (mt − vt) dt+ σv
√
vt dW

Q
2t + Jv,Qt dNt (7)

dmt = kQm(θQm −mt) dt+ σm
√
mt dW

Q
3t

where the Brownian motions WQ
i , i = 1, 2, 3, price jump size Js,Q, counting jump process N ,

its compensator νQ, and variance jump size Jv,Q are governed by the measure Q.

Given the stochastic volatility model above, the VS rate is available in closed form. We

first calculate vQt,t+τ in Equation (4). Interchanging expectation and integration (justified by

Tonelli’s theorem)

vQt,t+τ =
1

τ

∫ t+τ

t
EQt [vu] du = (1− φQv (τ)− φQm(τ))θQm + φQv (τ)vt + φQm(τ)m̃t (8)

where m̃t = (kQv mt + µQv λ0)/k̃Qv , k̃Qv = kQv − µQv λ1, and

φQv (τ) =
(

1− exp(−k̃Qv τ)
)
/(k̃Qv τ)

φQm(τ) =
(

1 + exp(−k̃Qv τ)kQm/(k̃
Q
v − kQm)− exp(−kQmτ)k̃Qv /(k̃

Q
v − kQm)

)
/(kQmτ).

Equation (8) is obtained using the risk neutral jump-compensated dynamic of vt.
13 Finally,

using independence among Js,Q, Jv,Q and N

VSt,t+τ = vQt,t+τ + EQt [(Js)2]λ
Q
t,t+τ (9)

where EQt [(Js)2] = EQ[(Js)2] = (µQj )2 + σ2
j , as the return jump size is time-homogeneous, and

λ
Q
t,t+τ = λ0 + λ1v

Q
t,t+τ . Note that if the variance jump component was absent, i.e., Jv,Qt = 0,

then µQv = 0 and vQt,t+τ had the same analytical expression as in (8) with m̃t = mt and k̃Qv = kQv .

Given the linearity of the variance swap payoff in the spot variance, only the drift of vt

13The risk neutral jump-compensated dynamic is dvt = kQv (mt − vt) dt + µQv (λ0 + λ1 vt)dt + dMQ
t , where the

martingale increment dMQ
t = σv

√
vt dW

Q
2t + Jv,Qt dNt − µQv (λ0 + λ1 vt)dt. Rewriting the dynamic as dvt =

k̃Qv (m̃t−vt) dt+dMQ
t gives the expressions for k̃Qv and m̃t. Applying Itô’s Lemma to ek̃

Q
v tvt, integrating between

time t and s, and rearranging terms, as usual, give

vs = vte
−k̃Qv (s−t) +

∫ s

t

e−k̃
Q
v (s−u)k̃Qv m̃u du+

∫ s

t

e−k̃
Q
v (s−u)dMQ

u .

Taking EQt , the last term above vanishes. The expectation EQt [m̃u] can be computed following similar steps.
Calculating all integrals gives Equation (8).
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enters the variance swap rate. The martingale part of vt (diffusion and jump compensated

parts) affects only the dynamic of VSt,t+τ . The Q-expectation of the stochastic jump intensity

provides a time-varying contribution to VSt,t+τ , given by λ
Q
t,t+τ , which depends on the time to

maturity of the contract.

According to our model estimates in Section 4, when τ → 0, φQv (τ) → 1 and φQm(τ) → 0.

Thus, short maturities VS rates are mainly determined by vt. In contrast, when τ → ∞,

φQv (τ) → 0 and φQm(τ) → 0, and long maturities VS rates are mainly determined by θQm. As

φQm(τ) is slower than φQv (τ) in approaching zero when τ → ∞, mt has also a relatively large

impact on long maturity VS rates.

The two-factor model for the spot variance is key to reproduce the variety of shapes of VS

term structures described in Section 2.1. Egloff et al. (2010) also made this observation. In

Equation (8), the right hand side is a weighted average of θQm, vt and m̃t. The relative level of

the three components controls the shape of the term structure. For example, the term structure

is monotonically increasing in τ when vt < m̃t = θQm, or it is hump-shape when vt < m̃t and

m̃t > θQm. Moreover, the two-factor model can produce level, persistency, volatility and higher

order moments of VS rates which are broadly consistent with the observed empirical features.

For example, as vt is less persistent, more volatile and positively skewed than mt, according to

our estimates, the shorter the time to maturity, the more the VS rates inherit such properties,

as observed empirically. Indeed, Section 4 shows that Model (6)–(7) matches such features quite

well. As shown in Section 2.1, two principal components virtually explain all the variation in

VS rates. Thus, PCA supports the two-factor model as well. All in all, Model (6)–(7) appears

to be a parsimonious parametric model consistent with the model-free analysis of actual VS

rates.

2.4. Market Prices of Risk

As in Pan (2002), Aı̈t-Sahalia and Kimmel (2010), and others, we specify the market price of

risks for the Brownian motions as

Λ′t = [γ1

√
(1− ρ2)vt, γ2

√
vt, γ3

√
mt] (10)

where ′ denotes transposition. Thus, P and Q parameters controlling vt and mt are related as

follows

kPv = kQv − γ2σv, kPm = kQm − γ3σm, θPm = θQm k
Q
m/k

P
m.
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More flexible specifications of the market price of risks for the Brownian motions have been

suggested (e.g., Cheridito et al. (2007).) In the present application, there does not appear to be

a strong need for an extension of (10), given the tradeoffs between the benefits of a more richly

parameterized model and the costs involved in its estimation and out-of-sample performance.

The price jump size risk premium is (gP − gQ) = exp(µPj + σ2
j/2) − exp(µQj + σ2

j/2). The

variance of the price jump size is the same under P and Q, implying that the jump distribution

has the same shape but potentially different location under P and Q. As, e.g., in Pan (2002),

Eraker (2004), and Broadie et al. (2007), we assume that the jump intensity is the same under

both measures. The main motivation for this assumption is the well-known limited ability to

estimate jump components in stock returns and the corresponding risk premium using daily

data. Thus, all price jump risk premium is absorbed by the price jump size risk premium,

(gP −gQ). The total price jump risk premium is time-varying and given by (gP −gQ)(λ0 +λ1vt).

Similarly, the variance jump size risk premium is (µPv −µ
Q
v ), and the total variance jump premium

is (µPv − µ
Q
v )(λ0 + λ1vt).

The jump component makes the market incomplete with respect to the risk free bank ac-

count, the stock and any finite number of derivatives. Hence, the state price density is not

unique. The specification we adopt is

dQ

dP

∣∣∣∣
Ft

= exp

(
−
∫ t

0
Λ′s dW

P
s −

1

2

∫ t

0
Λ′sΛs ds

)
Nt∏
u=1

exp

(
(µPj )2 − (µQj )2

2σ2
j

+
µQj − µPj

σ2
j

Js,Pu +
µQv − µPv
µPv µ

Q
v

Jv,Pu

)
. (11)

Appendix A shows that Equation (11) is a valid state price density. The first exponential

function is the usual Girsanov change of measure of the Brownian motions. The remaining part

is the change of measure for the jump component in the stock price and variance. Equation (11)

shows that, in the economy described by this model, price and variance jumps are priced because

when a jump occurs the state price density jumps as well. Bad states of the economy, in which

marginal utility is high, can be reached when a negative price jump and/or a positive variance

jump occur. When the risk neutral mean of the price jump size is lower than the objective

mean, i.e., µQj < µPj , and a negative price jump occurs (Js,P < 0), the state price density jumps

up giving high prices to (Arrow–Debreu) securities with positive payoffs in these bad states of

the economy, namely when the stock price falls. Similarly, when the risk neutral mean of the

variance jump size is larger than the objective mean, i.e., µQv > µPv , and a positive variance jump
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occurs (Jv,P > 0), the state price density jumps up in these bad states of the economy, namely

when volatility is high. In our empirical estimates, we do find that µQj < µPj and µQv > µPv .

3. Likelihood-Based Estimation Method

Model (6)–(7) is estimated using the general approach in Aı̈t-Sahalia (2002, 2008). The pro-

cedure we employ then combines time series information on the S&P500 returns and cross

sectional information on the term structures of VS rates in the same spirit as in other derivative

pricing contexts, e.g., Chernov and Ghysels (2000) and Pan (2002). Hence, P and Q parame-

ters, including risk premia, are estimated jointly by exploiting the internal consistency of the

model, thereby making the inference procedure theoretically sound.

Let X ′t = [log(St), Y
′
t ] denote the state vector, where Yt = [vt,mt]

′. The spot variance and

its stochastic long run mean, collected in Yt, are not observed and will be extracted from actual

VS rates. Likelihood-based estimation requires evaluation of the likelihood function of index

returns and term structures of variance swap rates for each parameter vector during a likelihood

search. The procedure for evaluating the likelihood function consists of four steps. First, we

extract the unobserved state vector Yt from a set of benchmark variance swap rates, assumed

to be observed without error.14 Second, we evaluate the joint likelihood of the stock returns

and extracted time series of latent states, using an approximation to the likelihood function.

Third, we multiply this joint likelihood by a Jacobian determinant to compute the likelihood of

observed data, namely index returns and term structures of VS rates. Finally, for the remaining

VS rates assumed to be observed with error, we calculate the likelihood of the observation errors

induced by the previously extracted state variables. The product of the two likelihoods gives

the joint likelihood of the term structures of all variance swap rates and index returns. We then

maximize the joint likelihood over the parameter vector to produce the estimator.

3.1. Extracting State Variables from Variance Swap Rates

Model (6)–(7) implies that the VS rates are affine in the unobserved state variables. This

feature suggests a natural procedure to extract latent states and motivates our likelihood-based

approach.

14This assumption makes the filtering of the latent variables Yt unnecessary and is often adopted in the term
structure literature, e.g., Pearson and Sun (1994) and Aı̈t-Sahalia and Kimmel (2010). Alternatively, one could
assume that all VS rates are observed with errors, which would require filtering of the latent variables Yt, as, e.g.,
in Eraker (2004) and Wu (2011). The latter approach is more computationally intensive and not pursued here.
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The unobserved part in the state vector, Yt, is ` dimensional, where ` = 2 in Model (6)–(7).

As the method can be applied for ` ≥ 1, we describe the procedure for a generic `. At each

day t, ` variance swap rates are observed without error, with times to maturities τ1, . . . , τ `. The

state vector Yt is exactly identified by the ` variance swap rates, VSt,t+τ1 , . . . ,VSt,t+τ` . These

VS rates jointly follow a Markov process and satisfy


VSt,t+τ1

...

VSt,t+τ`

 =


a(τ1; Θ)

...

a(τ `; Θ)

+


b(τ1; Θ)′

...

b(τ `; Θ)′

Yt (12)

where Θ denotes the model parameters. Rearranging Equation (9) gives VSt,t+τ = a(τ ; Θ) +

b(τ ; Θ)′[vt,mt]
′, where

a(τ ; Θ) = EQ[J2]λ0 + (1 + λ1E
Q[J2])

(
(1− φQv (τ)− φQm(τ))θQm + φQm(τ)µQv λ0/k̃

Q
v

)
b(τ ; Θ)′ = (1 + λ1E

Q[J2]) [φQv (τ), φQm(τ)kQv /k̃
Q
v ].

Equation (12) in vector form reads VSt,· = a(Θ)+b(Θ)Yt, with obvious notation. The current

value of the unobserved state vector Yt can easily be found by solving the equation for Yt, i.e.,

Yt = b(Θ)−1[VSt,· − a(Θ)]. The affine relation between VS rates and latent variables makes

recovering the latter numerically costless, especially compared to recovering latent variables

from standard call and put options as, for e.g., in Pan (2002).

3.2. Likelihood of Stock Returns and Variance Swap Rates Observed Without Error

The extracted time series values of the unobserved state vector Yt at dates t0, t1, . . . , tn allows

to infer the dynamics of the state variables X ′t = [log(St), Y
′
t ] under the objective probability P .

Since the relationship between the unobserved state vector Yt and variance swap rates is affine,

the transition density of variance swap rates can be derived from the transition density of Yt

by a change of variables and multiplication by a Jacobian determinant which depends, in this

setting, on model parameters but not on the state vector.

Let pX(x∆|x0; Θ) denote the transition density of the state vector Xt under the measure P ,

i.e., the conditional density ofXt+∆ = x∆, givenXt = x0. LetAt = [log(St),VSt,t+τ1 , . . . ,VSt,t+τ` ]
′

be the vector of observed asset prices and pA(a∆|a0; Θ) the corresponding transition density.
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Observed asset prices, At, are given by an affine transformation of Xt

At =

 log(St)

VSt,·

 =

 log(St)

a(Θ) + b(Θ)Yt

 =

 0

a(Θ)

+

 1 0′

0 b(Θ)

Xt

and rewritten in matrix form reads At = ã(Θ) + b̃(Θ)Xt, with obvious notation. The Jacobian

term of the transformation from Xt to At is therefore

det

∣∣∣∣∂At∂X ′t

∣∣∣∣ = det
∣∣∣b̃(Θ)

∣∣∣ = det |b(Θ)| .

In Model (6)–(7), det |b(Θ)| = |(1 +λ1E
Q[J2])2

(
φQv (τ1)φQm(τ2)− φQv (τ2)φQm(τ1)

)
kQv /k̃

Q
v |. Since

Xt = b̃(Θ)−1[At − ã(Θ)],

pA(A∆|A0; Θ) = det
∣∣b(Θ)−1

∣∣ pX(b̃(Θ)−1[A∆ − ã(Θ)]|b̃(Θ)−1[A0 − ã(Θ)]; Θ). (13)

As the vector of asset prices is Markovian, applying Bayes’ Rule, the log-likelihood function of

the asset price vector At sampled at dates t0, t1, . . . , tn has the simple form

ln(Θ) =
n∑
i=1

lA(Ati |Ati−1 ; Θ) (14)

where lA = ln pA. As usual in likelihood estimation, we discard the unconditional distribution

of the first observation since it is asymptotically irrelevant.

In our applications below, models are estimated using daily data, hence the sampling process

is deterministic and ti− ti−1 = ∆ = 1/252; see Aı̈t-Sahalia and Mykland (2003) for a treatment

of maximum likelihood estimation in the case of randomly spaced sampling times.

3.3. Likelihood of Stock Returns and All Variance Swap Rates

From the coefficients a(τ ; Θ) and b(τ ; Θ) and the values of the state vector Xt found in the first

step, we can calculate the implied values of the variance swap rates which are assumed to be

observed with error and whose time to maturities are denoted by τ `+1, . . . , τ `+h
VSt,t+τ`+1

...

VSt,t+τ`+h

 =


a(τ `+1; Θ)

...

a(τ `+h; Θ)

+


b(τ `+1; Θ)′

...

b(τ `+h; Θ)′

Yt.
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The observation errors, denoted by ε(t, τ `+i), i = 1, . . . , h, are the differences between such

model-based implied VS rates and actual VS rates from the data. By assumption, these errors

are Gaussian with zero mean and constant variance, independent of the state process and across

time, but possibly correlated across maturities. The joint likelihood of the observation errors can

be calculated from the h dimensional Gaussian density function. Since the observation errors are

independent of the state variable process, the joint likelihood of stock returns and all observed

variance swap rates is simply the product of the likelihood of stock returns and variance swap

rates observed without error, multiplied by the likelihood of the observation errors. Equivalently,

the two log-likelihoods can simply be added to obtain the joint log-likelihood of stock returns

and all variance swap rates.

3.4. Likelihood Approximation

Since the state vector X is a continuous-time multivariate jump diffusion process, its transition

density is unknown. Since jumps are by nature rare events in a model with finite jump activity,

it is unlikely that more than one jump occurs on a single day ∆. This observation motivates

the following Bayes’ approximation of pX

pX(x∆|x0) = pX(x∆|x0, N∆ = 0) Pr(N∆ = 0) + pX(x∆|x0, N∆ = 1) Pr(N∆ = 1) + o(∆)

where Pr(N∆ = j) is the probability that j jumps occur at day ∆, omitting the dependence on

the parameter Θ for brevity. An extension of the method due to Yu (2007) for jump-diffusion

models can provide higher order terms if necessary.

In Model (6)–(7), the largest contribution to the transition density of X (hence to the

likelihood) comes from the conditional density that no jump occurs at day ∆. The reason is that

the probability of such an event, Pr(N∆ = 0), is typically large and of the order 1−(λ0+λ1v0) ∆.

The contribution of the second term is only of the order (λ0 + λ1v0) ∆. As ∆ is one day in

our setting, the contribution of higher order terms appears to be quite modest. The main

advantage of this approximation is that the leading term, pX(x∆|x0, N∆ = 0), can be accurately

computed using the likelihood expansion method. The expansion for the transition density of

X conditioning on no jump has the form of a Taylor series in ∆ at order K, with each coefficient

C(k) in a Taylor series in (x − x0) at order jk = 2(K − k). Denoting C(jk,k) such expansions,

22



the transition density expansion is

p̃(K)(x|x0; Θ) = ∆−(`+1)/2 exp

[
−C

(j−1,−1)(x|x0; Θ)

∆

]
K∑
k=0

C(jk,k)(x|x0; θ)
∆k

k!
. (15)

Coefficients C(jk,k) are computed by forcing the Equation (15) to satisfy, to order ∆K , the for-

ward and backward Kolmogorov equations. A key feature of the method is that the coefficients

are obtained in closed form by solving a system of linear equations. This holds true for arbi-

trary specifications of the dynamics of the state vector X. Moreover, the coefficients need to be

computed only once and not at each iteration of the likelihood search. Equation (15) provides

a very accurate approximation of the transition density of X already when K = 2; e.g., Jensen

and Poulsen (2002). In our empirical application below, we use expansions at order K = 2.

4. Fitting Variance Swap Rates

4.1. In-Sample Estimation

Table 2 reports parameter estimates for Model (6)–(7), based on the in-sample period January

4, 1996 to April 2, 2007. The spot variance is relatively fast mean reverting as kPv implies a half-

life15 of 33 days. Its stochastic long run mean is slowly mean reverting with a half-life of about

1.5 years. The instantaneous volatility of vt is about twice that of mt. The correlation between

stock returns and variance changes, ρ, is −69%, confirming the so-called leverage effect. The

long-run average volatility,
√
θPm, is 20%, in line with the summary statistics in Table 1. Both

γ2 and γ3 are negative, implying negative instantaneous variance risk premia. The correlation

parameter for the VS pricing errors, ρe, is slightly negative suggesting that the model does not

produce any systematic pricing error.16

The expected jump size is slightly negative under the objective probability measure, µPj , and

even more negative under the risk neutral measure, µQj , which implies a positive price jump risk

premium. Estimates of jump intensity implies about 2.5 jumps per year (i.e., λ0 + λ1(kQv θ
P
m +

µPv λ0)/(κPv −µPv λ1)), which is roughly in line with previous estimates reported in the literature.

Table 2 also reports estimates of three nested models: (i) a two-factor model with price

jumps only (labeled SV2F-PJ) obtained setting µPv = µQv = 0, (ii) a two-factor model with no

15The half-life is defined as the time necessary to halve a unit shock and is given by − log(0.5)/kPv × 252 in
number of days.
16The determinant of the 3 × 3 error term correlation matrix is 2ρ3e − 3ρ2e + 1, which is strictly positive when
ρe > −0.5.
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jump component (labeled SV2F) imposing the additional restriction λ0 = λ1 = 0, and (iii) the

Heston model (labeled SV1F) imposing the additional restriction mt = θPm for all t. Imposing

each additional restriction significantly deteriorates the fitting of VS rates and S&P500 returns,

according to likelihood ratio tests. Thus, Model (6)–(7) outperforms all nested models.

4.2. Out-of-Sample Robustness Checks

We conduct all subsequent analyses using two subsamples. Data from January 4, 1996 to April

2, 2007 are used for in-sample analysis, as Model (6)–(7) is estimated using these data. The

remaining sample data, from April 3, 2007 to September 2, 2010, are used for out-of-sample

analysis and robustness checks. Such out-of-sample analysis appears to be particularly inter-

esting because this subsample covers the financial crisis of Fall 2008, a period of unprecedented

market turmoil, which was not experienced in the prior fitting sample.

Table 3 shows the pricing errors of Model (6)–(7) when fitting VS rates, for the in- and out-

of-sample periods. Pricing errors of the Heston model are also reported for comparison.17 The

pricing error is defined as the model-based VS rate minus the observed VS rate. Model (6)–(7)

fits VS rates well both in- and out-of-sample and significantly outperforms the Heston model.

For example, its root mean square error is 6 times smaller than that of the Heston model when

fitting 24-month to maturity VS rates. The small pricing errors imply that Model (6)–(7)

captures well the empirical features of VS rates documented in Table 1.

In terms of likelihood, Model (6)–(7) significantly outperforms the two-factor price-jump

model, obtained by setting µPv = µQv = 0 in Model (6)–(7). However, unreported pricing

errors of the restricted model, especially out-of-sample, are only slightly larger than those of

the general model. This suggests that variance jumps are less important than the two-factor

variance structure to price variance swaps. Several studies have shown that variance (and price)

jumps are important for pricing short term, out-of-the-money put options. Compared to options

data, available variance swap rates are long term (the shortest maturity is already 2 months)

and have no strike price dimension (there is a single variance swap rate for each maturity).

These features of variance swap rates may explain why variance jumps do not appear to be so

important for fitting these data. The main difference between Model (6)–(7) and the restricted

model (with µPv = µQv = 0) is that the former induces lower estimates of the jump intensity,

which are more in line with previous studies. This difference may be explained by the more

17Pricing errors of other nested models are in most cases somewhere between the pricing errors of the Heston
model and Model (6)–(7), and are not reported.
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flexible dynamic of vt in the general model.

Below, we explore the ability of the model, fitted in-sample, to explain the in-sample realized

risk premia and predict the out-of-sample risk premia.

5. Risk Premia: Equity Premium and Volatility Premium

One advantage of modeling the underlying asset returns jointly with the VS rates is that the

resulting model produces estimates of risk premia for both sets of variables, including in particu-

lar estimates of the classical equity premium. We distinguish between the spot or instantaneous

risk premia at each instant t and the integrated ones, defined over each horizon τ . In each case,

the model provides a natural breakdown between the continuous and jump components of the

respective risk premia.

What have we learned about risk premia that we did not know before? The term structure of

integrated equity and variance risk premia, which is largely unexplored in the finance literature,

exhibits significant time variation throughout our sample period and large swings during crisis

periods. Integrated equity risk premia are countercyclical but the slope of the term structure

is procyclical. This suggests that after a financial crisis investors demand a large risk premium

to hold risky stocks, but the risk premium largely depends and strongly decreases with the

holding horizon. Integrated variance risk premia become more negative as the horizon increases,

especially during turbulent times. This suggests that, to insure against volatility risk, investors

are ready not only to pay a large premium (variance swap rates are high) but also to suffer a

large expected loss (variance risk premia are negative and large). Market crashes impact and

propagate differently throughout the term structure of equity and variance risk premia, with

the short-end being more affected, but the long-end exhibiting more persistency. Both term

structures respond nearly monotonically to various economic variables, such as credit spreads,

VIX index, and slopes of the interest rate term structure.

5.1. Spot Risk Premia

Model (6)–(7) features four main instantaneous or spot risk premia: A Diffusive Risk Premium

(DRP), a Jump Risk Premium (JRP), a Variance Risk Premium (VRP), and a Long-run Mean

Risk Premium (LRMRP) which are defined as

DRPt = (γ1(1− ρ2) + γ2ρ)vt, JRPt = (gP − gQ)(λ0 + λ1vt)

VRPt = γ2σvvt, LRMRPt = γ3σmmt.
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DRP is the remuneration for diffusive-type risk only (due to Brownian motions driving stock

prices). JRP is the remuneration for the jump component in stock price. The instantaneous

Equity Risk Premium (ERP) is the sum of the two, i.e., ERPt = DRPt + JRPt.

The mean growth rates of vt and mt are different under the probability measures P and Q,

and such differences are given by VRPt and LRMRPt, respectively. As γ2 and γ3 are estimated

to be negative (Table 2), VRP and LRMRP are both negative, and on average vt and mt are

higher under Q than under P . The negative sign of the variance risk premium is not abnormal.

The risk premium for return risk is positive, because investors require a higher rate of return as

compensation for return risk. On the other hand, investors require a lower level of variance as

compensation for variance risk, hence the negative variance risk premium. Risk-averse investors

dislike both higher return variance, and higher variance of the return variance.

Table 4 reports the estimated risk premia. During our in-sample period, January 1996 to

April 2007, the average ERP is 7%. Notably, about 1/3 of the ERP is due to the jump risk

premium, which thus accounts for a large fraction of the equity risk premium. Jump prices are

quite rare events (about 2.5 jumps per year), but arguably jump risk is important as it cannot

be hedged with any finite number of securities. The average VRP is also substantial and around

−8%, while the LRMRP is much lower and around −0.8%. During the out-of-sample period,

April 2007 to September 2010, all risk premia almost doubled reflecting the unprecedented

turmoil in financial markets around the Lehman Brothers’ bankruptcy.

Unreported results show that VRP estimated using the Heston model is only −1.7%, but

it increases to about −4% for all other nested models with reacher variance dynamics. Heston

and two-factor models without jump component imply an ERP of 7%, which is roughly the sum

of the DRP and JRP based on Model (6)–(7). This suggests that, in nested models without

jump component, all ERP is artificially absorbed by DRP.

As discussed above, Model (6)–(7) also features a variance jump risk premium, (µPv −

µQv )(λ0 + λ1vt), which is estimated to be negative but small, as estimates of µPv and µQv are

rather close, and hence it is not reported. This means that setting µPv = µQv as, e.g., in Eraker

et al. (2003) and Eraker (2004), does not materially change estimates of risk premia based on

Model (6)–(7).
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5.2. Integrated Risk Premia

5.2.1 Integrated Equity Risk Premium

The annualized integrated Equity Risk Premium (IERP) is defined as

IERPt,t+τ = EPt [St+τ/St]/τ − EQt [St+τ/St]/τ (16)

and represents the ex-ante expected (or forward looking) excess return from buying and holding

the S&P500 index from t to t + τ .18 Extensive research has been devoted to study levels and

dynamics of the IERP for a single maturity (often one year, using ex-post measures of the

IERP), in particular investigating the so-called equity premium puzzle. Surprisingly, much less

attention has been devoted to study the term structure of the IERP, which is the focus of this

section.

The IERP can be decomposed in the continuous and jump part, i.e., IERPt,t+τ = IERPct,t+τ+

IERPjt,t+τ , where the continuous part IERPct,t+τ is the IERP when the jump component is

absent, i.e., the jump intensity λt = 0 in the drift µt of Model (6), and the jump part

IERPjt,t+τ = IERPt,t+τ − IERPct,t+τ . This decomposition allows us to quantify how the var-

ious risks contribute to the IERP and the corresponding term structure of risk premia.

An advantage of studying the term structure of IERP in a parametric model is that risk

premia and their decompositions are exact. Model-free approaches typically involve options,

which in turn require interpolations or moving average schemes to reduce the impact on risk

premia of time-varying maturities; see Bollerslev and Todorov (2011) for a discussion of this

issue.

The time-t conditional expectations in (16) can be computed using the transform analysis in

Duffie et al. (2000), i.e., numerically solving a system of nonlinear ordinary differential equations

derived in Appendix B. The IERP is exponentially affine in the state variables, i.e., IERPt,t+τ =

exp(A(τ) + B(τ)vt + C(τ)mt). Our model estimates in Table 2 imply that A(τ), B(τ) and

C(τ) are positive coefficients. Therefore, in quiet times, when the spot variance vt and its

stochastic long run mean mt are low, IERPs are low as well. When asset prices fall and vt

and/or mt increase, IERPs increase as well, reflecting distressed asset prices. Thus, the IERP

is countercyclical.

To compute the IERP, we use the daily term structure of interest rates, downloaded from

18The IERP is the familiar equity risk premium. We use the wording “integrated” to distinguish it from the
instantaneous equity risk premium discussed in the previous section.
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OptionMetrics and linearly interpolated to match the VS time to maturities, rather than a

constant interest rate as in the analysis above. Table 5 reports mean and standard deviation

of the integrated equity risk premium over 2-, 6-, 12- and 24-month horizons.19 From January

1996 to April 2007, our in-sample period, IERPs are around 6.5% and the term structure is

essentially flat. From April 2007 to September 2010, our out-of-sample period, IERPs are sig-

nificantly larger and about 10%, reflecting distressed asset prices around the Lehman Brothers’

bankruptcy. In this period, the term structure of IERPs is downward sloping on average.

Figure 3 shows the evolution of the IERP over time, along with the S&P500 index. The

entire term structure of the IERP exhibits significant variation over time, with the short-end

being more volatile than the long-end. When the S&P500 steadily increased, such as in 2005–7,

the 2-month IERP dropped at the lowest level, around 4%, during our sample period. The

term structure was slightly upward sloping with the 24-month IERP at almost 6%. At the

end of 2008 and beginning of 2009, after Lehman Brothers collapsed, the term structure of

the IERP became significantly downward sloping with the 2-month IERP reaching the highest

values in decades. This implies that at the peak of the crisis, investors required equity risk

premia as large as 50% to invest in the S&P500 index over short horizons like 2 months, and

required less than half these risk premia for investing over long horizons like 2 years.20 When

volatility is high, equity positions carry a large risk. However, this risk is expected to decrease

in the long run, when volatility will revert to lower levels and the positive drift of equities will

induce price recoveries on average. On November 20, 2008, the annualized 2-month IERP was

as high as 54%, and between October and December 2008, was above 30% on various occasions,

somehow mirroring the fall of the index. Indeed, from mid-September to mid-November 2008,

the S&P500 index dropped from 1,200 to 750, loosing 37% of its value. On March 9, 2009, it

reached the lowest historical value in more than a decade, at 677, and then recovered 35% of

its value within the next two months. Such large swings in the S&P500 index suggest that the

large model-based estimates of the IERP are quite sensible. Recently, Martin (2013) provides a

model-free lower bound on the equity premium that is by construction lower than, but closely

mimics, the equity risk premia depicted in Figure 3.21

19As the IERP for the 2- and 3-month horizons are rather close, the latter is not reported.
20It’s now obvious in retrospect that Spring 2009 was a great time to go long equities, on the basis of the large
equity premium at that point in time, but note that this is here an ex-ante prediction of the model (in fact, made
on the basis of the in-sample data only).
21van Binsbergen et al. (2013) study the term structure of “equity yields,” in analogy to bond yields, extracted
from dividends derivatives. The term structure of forward equity yields on the S&P500 has similar dynamics as
the term structure of equity risk premia depicted in Figure 3. Lettau and Wachter (2007, 2011) provide related
studies on the term structure of equity returns, focusing on value and growth stocks.
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Table 5 shows that the jump component, IERPjt,t+τ , contributes significantly to the IERP

and its term structure. For example, during our in-sample period, the one-year IERP is 6.3%

and 2.5% is due to jump risk. Using a model-free approach, Bollerslev and Todorov (2011) also

find that a large fraction of the equity risk premium, around 5% in their study, is due to (large)

jump risk, for a short time horizon τ .22

To understand which economic factors may drive the term structure of the IERP we conduct

regression analysis. We regress the IERP, for each horizon τ , on variables proxying for overall

equity, option, corporate and Treasury bond market conditions, namely daily S&P500 returns,

VIX index, the difference between Moody’s BAA and AAA corporate bond yields (CScorp, an

indicator of credit riskiness within the corporate sector), the difference between Moody’s AAA

corporate bond yield and 3-month Treasury securities (CSgov, an indicator of credit spread

between corporate and Treasury sectors), the difference between the yields on 2-year and 3-

month Treasury securities (TermS, the short term slope of the interest rate term structure), the

difference between the yields on 10-year and 2-year Treasury securities (TermL, the long term

slope of the interest rate term structure). Figure 4 shows the time series plots of the latter four

variables.

Panel A in Table 6 summarizes the regression results. Interestingly, these variables have

a monotonic (decreasing or increasing) impact on the term structure of IERP, as measured

by the slope coefficients. For example, daily S&P500 returns have progressively less negative

impact on the IERP as the horizon increases, with the impact becoming insignificant beyond

the 6-month horizon. In other words, a negative S&P500 return does increase the IERP but

propagates differently throughout the term structure of IERP, with the short-end being more

sensitive than the long-end to the shock. An increase of the VIX index has progressively less

positive impact on the IERP as the time horizon increases, but the impact remains statistically

and economically significant also for the 2-year horizon. CScorp has a positive and decreasing

impact on the IERP, amplifying the countercyclical variation of the IERP, especially in the short-

end of the term structure. The slope coefficients of other variables change sign throughout the

term structure of IERP, for example from positive to negative for TermL. During the market

crash in Fall 2008, TermL increased (Figure 4). Consequently, the positive slope coefficients for

short term IERP and negative slope coefficients for long term IERP amplified the downward

slope of the IERP term structure during those turbulent times.

22Bollerslev and Todorov rely on intraday S&P500 data and SPX options to study the equity risk premium over
a single time horizon τ , with median of 14 days.
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5.2.2 Integrated Variance Risk Premium

The annualized integrated variance risk premium (IVRP) is defined as IVRPt,t+τ = EPt [QVt,t+τ ]−

EQt [QVt,t+τ ] and represents the ex-ante expected profit to the long side of a VS contract, which

is entered at time t and held till maturity t+ τ . In our setting, EPt [QVt,t+τ ] can be computed

following similar steps as in Equations (8) and (9).

Besides the studies mentioned above, an important literature has investigated the variance

risk premium, albeit almost exclusively for a single maturity. Bakshi and Kapadia (2003) pro-

vide early evidence for the variance risk premium using S&P500 and S&P100 index options,

while Bakshi et al. (2003) analyze risk premiums for individual stocks. Bollerslev et al. (2009)

linked the one-month variance risk premium to time-varying economic uncertainty and show

empirically that this premium predicts aggregate market returns. Bekaert and Hoerova (2013)

expand the evidence on the predictive power of one-month variance risk premium for stock re-

turns. Mueller et al. (2013) study the term structure of Treasury bond variance risk premia and

document a significant negative risk premium, albeit decreasing with the time horizon. Amen-

gual (2008) studies the term structure of S&P500 variance risk premia, under the assumption

that the risk premium for the jump component is zero.

Table 5 reports summary statistics of the annualized integrated variance risk premia and

Figure 5 shows the dynamic over time. For example, average IVRP for 24-month maturity is

−2.9% during our out-of-sample period and can be as high as −5% in variance units. These

are large risk premia compared to an average spot variance of 4% in variance units. While

Model (6)–(7) is flexible enough to generate positive and negative IVRP, estimated ex-ante

IVRP is always negative. This confirms that investors perceive volatility increases as unfavorable

events and are willing to suffer large expected losses to insure against such volatility increases.

The longer the time to maturity the higher in absolute value the annualized IVRP. Thus,

the term structure of IVRP is on average downward sloping, suggesting that long-term VS

contracts carry more risk premium for stochastic variance than short-term contracts. Filipović

et al. (2012) find that an optimal investment in VS is to go short in long-term VS and partially

hedge the exposure by going long in short-term VS and the underlying stock. Shorting long-term

variance swaps allows to earn the large risk premium embedded in such contracts.23

As for the IERP, we conduct regression analysis to understand which economic factors

23Egloff et al. (2010) also study optimal investment in VS but they reach the opposite conclusion for the optimal
allocation. This can be explained by the different stochastic volatility models, investment strategies and market
price of risk specifications used in the two studies.
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may drive the term structure of the IVRP. Panel B in Table 6 summarizes the regression

results. The variables have nearly a monotonic impact, measured by the corresponding slope

coefficients, on the term structure of IVRP. For example, a negative S&P500 return induces a

more negative IVRP, especially for the short-end of the term structure, and the effect becomes

statistically insignificant beyond the 1-year horizon. An increase of the VIX index also induces a

more negative IVRP and its impact is quite uniform, statistically and economically significant,

throughout the IVRP term structure. Thus, despite being a 30-day index, the VIX index

behaves more like a “level” factor than a short term factor for variance risk premia. CScorp

has a negative and decreasing impact on the IVRP, amplifying the procyclical variation of the

IVRP. The slope coefficients of other variables change sign throughout the term structure of

IVRP, for example from negative to positive for TermL, therefore amplifying or reducing the

negative IVRP.

As the quadratic variation can be naturally decomposed in the continuous, QVc
t,t+τ , and

discontinuous, QVj
t,t+τ , part (see Equation (3)), the IVRP can also be decomposed as

IVRPt,t+τ = EPt [QVt,t+τ ]− EQt [QVt,t+τ ]

= (EPt [QVc
t,t+τ ]− EQt [QVc

t,t+τ ]) + (EPt [QVj
t,t+τ ]− EQt [QVj

t,t+τ ])

= IVRPct,t+τ + IVRPjt,t+τ .

We now investigate the impact of negative price jumps and the induced term structure of

variance risk premia. As many investors are “long in the market” and the leverage effect is

very pronounced, negative price jumps are perceived as unfavorable events and thus can carry

particular risk premia. The contribution of negative price jumps to the IVRP is given by

IVRP(k)jt,t+τ = EPt [QVj
t,t+τ 1{Js < k}]− EQt [QVj

t,t+τ 1{Js < k}]

where 1{Js < k} is the indicator function of the event Js < k. We set k = −1%, i.e., we study

the contribution of daily jumps below −1% to the IVRP.24 Similar values of the threshold k

produce similar results for IVRP(k)jt,t+τ . Given Model (6)–(7), IVRP(k)jt,t+τ is available in

closed form.

Table 5 reports summary statistics for IVRP(k)jt,t+τ , when k = −1%. Since IVRP(k)jt,t+τ

is essentially constant when the time horizon τ increases, its relative contribution to the IVRP

24From January 1996 to September 2010, daily S&P500 returns are on average 3 times a month below −1%,
having a standard deviation of 1.4%.
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is decreasing on average and thus largest for the 2-month IVRP. This suggests that short-term

variance risk premia mainly reflect investors’ fear of a market crash, rather than the impact

of stochastic volatility on the investment opportunity set. Although price jumps below −1%

are infrequent events, their contribution to short-term IVRP is substantial. For the 2-month

horizon, IVRP(k)jt,t+τ accounts for about 20% of the IVRP.

Figure 5 shows the term structure of IVRP(k)jt,t+τ over time. Similarly to the IVRP, the term

structure of IVRP(k)jt,t+τ is generally downward sloping in quiet times. However, in contrast

to IVRP, during market crashes the term structure of IVRP(k)jt,t+τ becomes suddenly upward

sloping, reflecting the large jump risk due to a price fall. As an example, in Fall 2008 the whole

term structure of IVRP(k)jt,t+τ moved downward but the two-month IVRP(k)jt,t+τ exhibited

the largest negative drop and took several months to revert to average values. The 12- and

24-month IVRP(k)jt,t+τ took even longer to revert to average values. All in all, these findings

suggest that investors’ willingness to ensure against a market crash increases after a price fall

with a persistent impact on the IVRP. The dynamics of the term structure of IVRP(k)jt,t+τ

further show that the price fall has the strongest impact on the short-term IVRP but the

persistency is more pronounced for long-term IVRP.

In order to examine the extent to which the large variance risk premia potentially translate

into economic gains, we consider a simple but relatively robust trading strategy involving VS.

The trading strategy is robust in the sense that Model (6)–(7) and corresponding estimates are

used only to decide whether or not to invest in VS, i.e., to extract a trading signal.

Since realized variances are lower on average than VS rates, shorting VS contracts generates

a positive return on average. Such a trading strategy can be refined as follows. At each day t,

we compute the expected profit from shorting a VS contract, i.e., VSt,t+τ −EPt [QVt,t+τ ]. Then,

the strategy is to short the VS contract only when the expected profit is large enough and

precisely n times larger than its expected standard deviation. When n = 0, the VS contract

is shorted as soon as the expected profit is positive. When n > 0, the contract is shorted

less often. When at day t the VS contract is shorted, we compute the actual return from the

investment by comparing the VS rate and the ex-post realized variance, i.e., VSt,t+τ −RVt,t+τ .

Since the strategy is short-and-hold (conditional on a model-based signal), transaction costs are

unlikely to affect the results and will not be considered. If at day t the VS is not shorted, the

return from t to t + τ is obviously zero and not considered when assessing the performance of

the strategy. We repeat this procedure for each day t in our sample.

As a benchmark, we consider the following trading strategy based on the S&P500 index. If
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at day t the VS contract with maturity t+ τ is shorted, we invest $1 in the S&P500 index and

liquidate the position at day t + τ . Thus, the investment horizon is the same as the one for

the VS strategy. The actual return is computed using S&P500 index prices. This buy-and-hold

strategy is repeated for each day t in our sample.

Table 7 compares the trading strategies using the classical Sharpe ratios. We also computed

Sortino ratios25 and results were very similar, and not reported. As the VS is a forward contract,

Sharpe ratios of corresponding short-and-hold strategies are calculated simply as the average

return throughout our sample divided by its standard deviation. To compute Sharpe ratios

of buy-and-hold strategies with the S&P500 index, we use the daily term structure of interest

rates, downloaded from OptionMetrics and linearly interpolated to match the various investment

horizons. We experimented other values of interest rates, such as a constant rate of zero or 4%,

and the results reported in Table 7 change only marginally.

Shorting VS appears to be significantly more profitable than investing in the S&P500 index,

over the same time horizons. This suggests that VS contracts offer economically important

investment opportunities. It also confirms our model-based finding that investors are ready to

pay high “insurance premia” to obtain protection against volatility increases.

When the threshold n increases, the VS is shorted less often.26 As shown in Table 7, Sharpe

ratios from investing in VS are nearly uniformly and significantly increasing in the threshold

n. Thus, Model (6)–(7) seems to provide valuable information to generate a trading signal for

shorting variance swaps.

Figure 6 shows the returns of the short-and-hold trading strategy based on 12-month VS

and the long-and-hold trading strategy based on the S&P500 index. With the exception of

2008, shorting VS tends to provide stable and substantial positive returns. The losses during

2008 reflect jump and volatility risk that short positions are carrying, but they are smaller than

the losses from the buy-and-hold S&P500 strategy. Long positions in the S&P500 generate

substantial more volatile returns. Interestingly, shorting VS does not appear to suffer from the

“picking up nickels in front of steamroller” syndrome during the period we looked at, despite

the inclusion out-of-sample of the 2007–2009 financial crisis.

25The Sortino ratio is a popular performance measure and defined as the mean return in excess of a minimum
acceptable return divided by the downside deviation. This ratio penalizes only returns below the minimum
acceptable return, in contrast to the standard deviation which equally penalizes returns below and above the
average return. In our computations we set the minimum acceptable return to zero, and the Sortino ratio
is (

∑T
t=1 rt/T )/σD, where rt is the time-t return of a given trading strategy, the downside variance σ2

D =∑T
t=1(rt 1{rt < 0})2/T and T is the total number of returns.

26For example, the 12-month VS contract is shorted 80%, 59% and 23% of the times when n = 1/4, 1/2, 1,
respectively.
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Finally, does shorting VS provide any diversification benefit? Table 8 shows correlations

between daily returns of short positions in VS, long positions in the S&P500 index, and Treasury

bond yields over the same time horizons. Short positions in VS are generally positively correlated

with long positions in the S&P500 and, consistently with the patterns of the integrated risk

premia, more so during turbulent than quiet times. They are also generally negatively correlated

with long bond positions.

5.3. Risk Premia: Robustness Checks

To check the robustness of the parametric model, we note that the change of measure in Equa-

tion (11) implies that the mean jump size is different, not the jump intensity, under P and Q.

Now we let the jump intensity be λPt = λP0 + λP1 vt under P and λQt = λQ0 + λQ1 vt under Q. The

drift under P of the index price process becomes

µt = r − δ + γ1(1− ρ2)vt + γ2ρvt + gP (λP0 + λP1 vt)− gQ(λQ0 + λQ1 vt)

and jump risk premia become

JRPt = gP (λP0 + λP1 vt)− gQ(λQ0 + λQ1 vt)

IVRPjt,t+τ = EP [(Js)2](λP0 + λP1 E
P
t [QVc

t,t+τ ])− EQ[(Js)2](λQ0 + λQ1 E
Q
t [QVc

t,t+τ ]).

Estimation results of this more general model imply nearly the same dynamics for spot variance,

stochastic long run mean, instantaneous risk premia, and integrated risk premia due to the

continuous part of the quadratic variation. However, the estimated overall risk neutral jump-

intensity, λQt , turns out to be smaller than objective jump-intensity, λPt ; Pan (2002) reports

the same finding using her stochastic volatility model.27 These estimates would imply positive

jump-timing risk premium, λPt − λ
Q
t , which in turn would induce positive IVRPj . This finding

confirms the limited ability of estimating very flexible change of measures.

27Pan considers jump intensities λP1 vt under P and λQ1 vt under Q, in our notation, and defines the jump-timing
risk premium as λQ1 −λP1 , the opposite of our definition. Note that Pan’s specification of jump intensities can be
recovered setting λP0 = λQ0 = 0 in our model.
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6. Conclusions

We study the term structure of variance swaps, equity and variance risk premia. Using a model-

free approach to compare VS rates and VIX-type indices, we find evidence for a significant and

time-varying jump risk component in VS rates. A flexible stochastic volatility model cannot

explain such a jump risk component. This suggests that either the jump risk is heavily priced

by VS traders or some segmentation between the VS and option markets exists or both.

Based on our model estimates, the term structure of variance risk premia is negative and

generally downward sloping. The term structure of variance risk premia due to negative price

jumps exhibits similar features in quiet times but is upward sloping in turbulent times. This

implies that the short-end of term structure mainly reflects investors’ fear of a market crash,

rather than the impact of stochastic volatility on the investment set. It also suggests that

investors’ willingness to ensure against volatility risk over certain horizons increases after a

market crash. This effect is stronger for short horizons and more persistent for long horizons.

We find that the term structure of equity risk premia is countercyclical while the slope

is procyclical. Thus, at the peak of a crisis, investors appear to demand large risk premia for

holding equities over short horizons (like 2 months), but require significantly smaller risk premia

for holding equities over long horizons (like 2 years).

Finally, both term structures of equity and variance risk premia respond nearly monotoni-

cally to usual economic indicators. For example, an increase in the VIX index has progressively

less impact on the equity risk premia as the horizon increases, but has a rather uniform and

strong impact throughout the term structure of the variance risk premia.
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A. Pricing Kernel

Recall that the market price of risks for the Brownian motions are

Λ′t = [γ1

√
(1− ρ2)vt, γ2

√
vt, γ3

√
mt].

The pricing kernel (or Stochastic Discount Factor) is defined as

πt = e−rt
dQ

dP

∣∣∣∣
Ft

= exp

(
−rt−

∫ t

0
Λ′u dW

P
u −

1

2

∫ t

0
Λ′uΛu du

) Nt∏
u=1

exp
(
aj + bjJ

s,P
u + cjJ

v,P
u

) µPv
µQv

where aj = ((µPj )2 − (µQj )2)/(2σ2
j ), bj = (µQj − µPj )/σ2

j , and cj = (µQv − µPv )/(µPv µ
Q
v ). The

process πt is a valid pricing kernel when deflated bank account and deflated cum-dividend price

processes are P -martingales.

When a jump occurs the pricing kernel jumps from πt− to πt = πt−e
aj+bjJ

s,P
t +cjJ

v,P
t

µPv
µQv

,

hence

dπt
πt

= −r dt− Λ′t dW
P
t + (exp(aj + bjJ

s,P
t + cjJ

v,P
t )

µPv

µQv
− 1) dNP

t

= −r dt− (γ1

√
(1− ρ2)vt dW

P
1t + γ2

√
vt dW

P
2t + γ3

√
mt dW

P
3t)

+(exp(aj + bjJ
s,P
t + cjJ

v,P
t )

µPv

µQv
− 1) dNP

t .

Let Bt = ert denote the bank account level and Bπ
t = Bt πt the deflated bank account. Applying

Itô’s formula

d(Bπ
t ) = Bt dπt + πt dBt

= Bπ
t (−r dt− Λ′t dW

P
t + (exp(aj + bjJ

s,P
t + cjJ

v,P
t )

µPv

µQv
− 1) dNP

t ) +Bπ
t r dt

d(Bπ
t )/Bπ

t = −Λ′t dW
P
t + (exp(aj + bjJ

s,P
t + cjJ

v,P
t )

µPv

µQv
− 1) dNP

t .

Hence, Bπ
t is a P -martingale (or has zero drift) when EP [exp(aj + bjJ

s,P
t + cjJ

v,P
t )µ

P
v

µQv
] = 1.

As Js,P and Jv,P are independent, the last equation holds when EP [exp(aj + bjJ
s,P
t )] = 1 and
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EP [exp(cjJ
v,P
t )µ

P
v

µQv
] = 1, which is shown in the following calculations:

EP [exp(aj + bjJ
s,P
t )] = exp(aj + bjµ

P
j + b2j

σ2
j

2
)

aj + bjµ
P
j + b2j

σ2
j

2
=

(µPj )2 − (µQj )2

2σ2
j

+
µQj − µPj

σ2
j

µPj +

(
µQj − µPj

σ2
j

)2
σ2
j

2

=
(µPj )2 − (µQj )2 + 2µQj µ

P
j − 2(µPj )2 + (µQj )2 + (µPj )2 − 2µQj µ

P
j

2σ2
j

= 0

where we used Js,P ∼ N (µPj , σ
2
j ). As Jv,P ∼ Exp(µPv )

EP [exp(cjJ
v,P
t )

µPv

µQv
] =

µPv

µQv

∫ ∞
0

ecjJ
v e−J

v/µPv

µPv
dJv = 1.

Let Sδ,t = Ste
δt denote the cum-dividend stock price, hence

dSδ,t
Sδ,t

=
dSt
St

+ δ dt = (r + γ1(1− ρ2)vt + γ2ρvt − gQλt) dt+
√

(1− ρ2)vt dW
P
1t + ρ

√
vt dW

P
2t

+(exp(Js,Pt )− 1) dNP
t

where St is the ex-dividend stock price. Let Sπδ,t be the deflated cum-dividend stock price,

i.e., Sδ,t πt. When a jump occurs, both πt and St jump and Sπδ jumps from Sπδ,t− to Sπδ,t =

Sπδ,t− exp(aj + bjJ
s,P
t + Js,Pt + cjJ

v,P
t )µ

P
v

µQv
. Hence, at the jump time, dSπδ,t/S

π
δ,t = exp(aj + (bj +

1)Js,Pt + cjJ
v,P
t )µ

P
v

µQv
− 1.

Applying Itô’s formula, with πct and Scδ,t denoting the continuous part of πt and Sδ,t, respec-

tively,

dSπδ,t = Sδ,t dπ
c
t + πt dS

c
δ,t + dScδ,t dπ

c
t + Sδ,tπt(exp(aj + (bj + 1)Js,Pt + cjJ

v,P
t )

µPv

µQv
− 1) dNP

t

= Sδ,t πt(−r dt− γ1

√
(1− ρ2)vt dW

P
1t − γ2

√
vt dW

P
2t − γ3

√
mt dW

P
3t)

+πt Sδ,t((r + γ1(1− ρ2)vt + γ2ρvt − gQλt) dt+
√

(1− ρ2)vt dW
P
1t + ρ

√
vt dW

P
2t)

−Sδ,tπt(γ1(1− ρ2)vt + γ2ρvt) dt+ Sδ,tπt(exp(aj + (bj + 1)Js,Pt + cjJ
v,P
t )

µPv

µQv
− 1) dNP

t

dSπδ,t
Sπδ,t

=
√

(1− ρ2)vt(1− γ1) dWP
1t + (ρ− γ2)

√
vt dW

P
2t − γ3

√
mt dW

P
3t

+(exp(aj + (bj + 1)Js,Pt + cjJ
v,P
t )

µPv

µQv
− 1) dNP

t − gQλt dt.
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Hence, Sπδ,t is a P -martingale (or has zero drift) when EP [exp(cjJ
v,P
t )µ

P
v

µQv
] = 1, which we already

showed above, and when EP [exp(aj +(bj +1)Js,Pt )−1] = gQ, which is indeed the case as shown

in the following calculations:

EP [exp(aj + (bj + 1)Js,Pt )− 1] = gQ

exp(aj + (bj + 1)µPj + (bj + 1)2
σ2
j

2
)− 1 = exp(µQj +

σ2
j

2
)− 1

aj + bjµ
P
j + µPj + b2j

σ2
j

2
+ 2bj

σ2
j

2
= µQj

µPj +
µQj − µPj

σ2
j

σ2
j = µQj

where we used aj +bjµ
P
j +b2j

σ2
j

2 = 0, which is implied by the martingale property of the deflated

bank account.

Finally, the relation between the pricing kernel πt and the risk-neutral dynamics is derived

as usual. Define the density process ξt = πte
rt. Under usual technical conditions, applying Itô’s

formula, dξt/ξt = −Λ′t dW
P
t + (exp(aj + bjJ

s,P
t + cjJ

v,P
t )µ

P
v

µQv
− 1) dNP

t , which shows that ξt is

a P -martingale and hence it uniquely defines an equivalent martingale measure Q. Defining

the Q-Brownian motions as dWQ
1t = dWP

1t + γ1

√
(1− ρ2)vt dt, dW

Q
2t = dWP

2t + γ2
√
vt dt and

dWQ
3t = dWP

3t + γ3
√
mt dt, gives the risk-neutral dynamic of the stock price S, spot variance v,

and stochastic long run mean m in Equation (7).

B. Integrated Equity Risk Premium

To compute the IERP in (16) we rely on the transform analysis of Duffie et al. (2000), which

is often used in finance applications; e.g., Duffie et al. (2003). In this appendix we provide a

self-contained application of this theory to the calculation of the IERP in our setting.

The basic step is to compute a conditional expectation of the form EPt [exp(ζ
∫ t+τ
t vs ds)],

where ζ is a given constant. The first conditional expectation in (16) is EPt [St+τ/St] =

EPt [exp(
∫ t+τ
t µs ds)], where µs is an affine function of vs, defined after (6).28

Define the stochastic process ψt = EPt [exp(ζ
∫ T

0 vs ds)], which is a P -martingale by con-

struction for all t ≥ 0, under standard integrability conditions. Guess the functional form

ψt = exp(ζ
∫ t

0 vs ds) exp(A(τ) + B(τ)vt + C(τ)mt), which is exponentially affine in the state

28The second conditional expectation is simply EQt [St+τ/St] = exp((rt,t+τ − δ)τ), assuming a time varying but
deterministic term structure of interest rates.
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variables vt and mt. Recall τ = T − t. The necessary derivatives to apply Itô’s formula to ψt

are

∂ψt
∂t

= ψt(ζvt −A(τ)′ −B(τ)′vt − C(τ)′mt)

∂ψt
∂vt

= ψtB(τ),
∂2ψt
∂v2

t

= ψtB(τ)2

∂ψt
∂mt

= ψtC(τ),
∂2ψt
∂m2

t

= ψtC(τ)2

If a jump occurs at time t, the spot variance jumps from vt− to vt = vt− + Jv,Pt , and

consequently the process ψ jumps from ψt− to ψt, which implies that

ψt
ψt−
− 1 =

eζ
∫ t
0 vs ds eA(τ)+B(τ)vt

eζ
∫ t
0 vs ds eA(τ)+B(τ)vt−

− 1 = eB(τ)(vt−vt− ) − 1 = eB(τ)Jv,Pt − 1.

Rewriting the P -dynamic of the spot variance, with obvious notation, as

dvt = (kQv mt − kPv vt) dt+ σv
√
vt dW

P
2t + Jv,Pt dNt = dvcontt + Jv,Pt dNt

and applying Itô’s formula to ψt gives

dψt
ψt−

= (ζvt −A(τ)′ −B(τ)′vt − C(τ)′mt) dt+B(τ)(dvcontt ) +
1

2
B(τ)2(dvcontt )2

+C(τ)(dmt) +
1

2
C(τ)2(dmt)

2 + (
ψt
ψt−
− 1)dNt

= (ζvt −A(τ)′ −B(τ)′vt − C(τ)′mt) dt+B(τ)(kQv mt − kPv vt)dt+ σv
√
vtdW

P
2t) +

1

2
B(τ)2σ2

vvt dt

+C(τ)(kPm(θPm −mt)dt+ σm
√
mtdW

P
3t) +

1

2
C(τ)2σ2

mmt dt

+(eB(τ)Jv,Pt − 1)dNt − EP [eB(τ)Jvt − 1](λ0 + λ1vt) dt+ EP [eB(τ)Jvt − 1](λ0 + λ1vt) dt

= (ζvt −A(τ)′ −B(τ)′vt − C(τ)′mt) dt+B(τ)(kQv mt − kPv vt)dt+
1

2
B(τ)2σ2

vvt dt

+C(τ)kPm(θPm −mt)dt+
1

2
C(τ)2σ2

mmt dt

+EP [eB(τ)Jvt − 1](λ0 + λ1vt) dt+ dMP
t

where dMP
t = σv

√
vt dW

P
2t + σm

√
mt dW

P
3t + (eB(τ)Jv,Pt − 1)dNt −EP [eB(τ)Jvt − 1](λ0 + λ1vt) dt

is a P -martingale increment.

As ψt is a P -martingale, the drift must be zero for each time t and level of the state variables

vt and mt. Collecting terms in dt, vt dt and mt dt, respectively, and setting them equal to zero,
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give three nonlinear ordinary differential equations

0 = −A(τ)′ + C(τ)kPmθ
P
m + EP [eB(τ)Jvt − 1]λ0

0 = ζ −B(τ)′ −B(τ)kPv +
1

2
B(τ)2σ2

v + EP [eB(τ)Jvt − 1]λ1

0 = −C(τ)′ +B(τ)kQv − C(τ)kPm +
1

2
C(τ)2σ2

m

for the coefficients A(τ), B(τ) and C(τ), with terminal conditions A(0) = B(0) = C(0) = 0. As

the system is time-homogenous, for each time horizon τ , these coefficients need to be computed

only once. Thus, at each time t, EPt [exp(ζ
∫ t+τ
t vs ds)] = exp(A(τ) +B(τ)vt + C(τ)mt).

The expectation in the first two differential equations is

EP [eB(τ)Jvt ] =

∫ ∞
0

eB(τ)Jv e
−Jv/µPv

µPv
dJv =

1

µPv

∫ ∞
0

e
−Jv

(
1

µPv
−B(τ)

)
dJv =

1

1−B(τ)µPv

and the integral above converges when
(

1
µPv
−B(τ)

)
> 0, which is indeed the case according to

our estimates. Then

EP [eB(τ)Jvt − 1] =
B(τ)µPv

1−B(τ)µPv

is substituted in the first two differential equations, and the system is solved numerically.
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Figure 1. Term structure of variance swap rates. Values are in volatility percentage units, i.e.,

VS
1/2
t,t+τ ×100, with 2-, 3-, 6-, 12-, and 24-month to maturity from January 4, 1996 to September

2, 2010, that are 3,624 observations for each time to maturity.

41



97 98 99 00 01 02 03 04 05 06 07 08 09 10

−5

0

5

10

15

Year

V
S

 m
in

us
 V

IX
 %

 

 

In−Sample Out−of−Sample

2−month
3−month
6−month

Figure 2. Term structure of model-free jump component in variance swap rates. VS rates
minus calculated VIX-type indices for 2-, 3-, and 6-month to maturity from January 4, 1996 to
September 2, 2010, that are 3,624 observations for each maturity. The difference is in volatility

percentage units, i.e., (VS
1/2
t,t+τ −VIX

1/2
t,t+τ )× 100.
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Figure 3. Term structure of integrated equity risk premia and S&P500 index. Upper graph:
annualized integrated equity risk premia, i.e., (EPt [St+τ/St]/τ − EQt [St+τ/St]/τ)× 100. Lower
graph: S&P500 index, St. Vertical line denotes beginning of out-of-sample period, i.e., April 3,
2007.
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Figure 4. Time series plots of macro variables: CScorp the difference between Moody’s BAA
and AAA corporate bond yields, CSgov the difference between Moody’s AAA corporate bond
yield and 3-month Treasury securities, TermS the difference between the yields on 2-year and
3-month Treasury securities, TermL the difference between the yields on 10-year and 2-year
Treasury securities. All variables are daily. Vertical line denotes beginning of out-of-sample
period, i.e., April 3, 2007.

44



97 98 99 00 01 02 03 04 05 06 07 08 09 10

−10

−8

−6

−4

−2

0

IV
R

P
 %

Year

In−Sample Out−of−Sample

97 98 99 00 01 02 03 04 05 06 07 08 09 10

−0.5

−0.4

−0.3

−0.2

−0.1

Year

IV
R

P
 %

, J
s  <

 −
0.

01

 

 

In−Sample Out−of−Sample

2−month
12−month
24−month

Figure 5. Term structure of integrated variance risk premia. Upper graph: integrated variance
risk premia, i.e., (EPt [QVt,t+τ ]−EQt [QVt,t+τ ])×100. Lower graph: integrated variance risk pre-

mia due to price jump below k = −0.01, i.e., (EPt [QVj
t,t+τ 1{Js < k}]−EQt [QVj

t,t+τ 1{Js < k}])×
100. Vertical line denotes beginning of out-of-sample period, i.e., April 3, 2007.
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Short VS (dash-dot line) denotes ex-post annual returns of the short-and-hold trading strategy
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beginning of out-of-sample period, i.e., April 3, 2007.
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Panel A: Variance Swap Rates
Maturity Mean Std Skew Kurt AC1 Q22 ADF

2 22.14 8.18 1.53 7.08 0.982 62,908.97 −3.79
3 22.32 7.81 1.32 6.05 0.988 66,449.22 −3.52
6 22.87 7.40 1.10 4.97 0.992 69,499.72 −3.30
12 23.44 6.88 0.80 3.77 0.994 71,644.69 −2.82
24 23.93 6.48 0.57 2.92 0.995 72,878.68 −2.47

Panel B: Calculated VIX-type Indices, CBOE method
2 21.74 7.63 1.53 7.22 0.985 63,551.35 −3.83
3 21.95 7.32 1.43 6.83 0.987 64,644.41 −3.72
6 22.08 6.85 1.16 5.58 0.991 65,736.38 −3.62

Panel C: Calculated VIX-type Indices, Carr–Wu method
2 22.34 7.82 1.53 7.19 0.985 63,699.78 −3.83
3 22.34 7.46 1.42 6.78 0.989 65,703.56 −3.83
6 22.30 7.00 1.20 5.75 0.999 66,490.72 −3.70

Panel D: Realized Variances
2 18.09 8.62 2.13 10.70 0.997 68,750.50 −4.96
3 18.21 8.47 2.13 10.43 0.998 73,156.42 −4.73
6 18.58 8.37 2.04 9.07 0.999 76,928.13 −3.44
12 19.07 7.88 1.54 5.97 0.999 78,412.59 −2.51
24 19.91 6.97 0.68 3.02 0.999 76,028.01 −1.97

Table 1. Summary statistics. Panel A: Summary statistics of the variance swap rates on the
S&P500 index. Time to maturities are in months. The sample period is from January 4, 1996 to
September 2, 2010, for a total of 3,624 observations for each time to maturity. The table reports
mean, standard deviation (Std), skewness (Skew), kurtosis (Kurt), first order autocorrelation
(AC1) the Ljung–Box portmanteau test for up to 22nd order autocorrelation (Q22), the test 10%
critical value is 30.81; the augmented Dickey–Fuller test for unit root involving 22 augmentation
lags, a constant term and time trend (ADF), the test 10% critical value is −3.16. Panels B
and C: summary statistics of the 2-, 3-, and 6-month VIX-type indices calculated using SPX
options and applying the revised CBOE VIX and Carr–Wu methodologies, respectively. Panel
D: summary statistics of ex-post S&P500 realized variances for various time to maturities. All
variables are in volatility percentage units.
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SV1F SV2F SV2F-PJ SV2F-PJ-VJ
Estim. S.E. Estim. S.E. Estim. S.E. Estim. S.E.

κPv 0.797 0.008 5.060 0.005 4.803 0.353 5.340 0.406
σv 0.272 0.002 0.525 0.003 0.419 0.009 0.394 0.006
κPm 0.221 0.011 0.234 0.086 0.491 0.039
σm 0.154 0.002 0.141 0.002 0.167 0.001

θPm 0.047 0.001 0.054 0.001 0.043 0.016 0.038 0.009
ρ −0.674 0.008 −0.743 0.006 −0.713 0.010 −0.688 0.008
γ1 1.303 2.537 0.742 2.591 −2.545 4.206 −5.054 5.495
γ2 −1.322 1.173 −1.838 1.374 −2.244 0.851 −5.633 2.016
γ3 −0.548 1.012 −0.673 0.610 −0.954 1.294
λ0 3.669 0.621 2.096 0.467
λ1 44.770 17.227 21.225 18.584
µPj 0.010 0.008 −0.004 0.001

µQj −0.001 0.009 −0.012 0.001

σj 0.038 0.003 0.043 0.000
µPv 0.001 0.000

µQv 0.002 0.000
σe1 0.006 0.000 0.004 0.000 0.004 0.000 0.004 0.000
σe2 0.006 0.000 0.002 0.000 0.002 0.000 0.002 0.000
σe3 0.011 0.000 0.003 0.000 0.003 0.000 0.007 0.000
σe4 0.014 0.000
ρe 0.288 0.016 −0.093 0.005 −0.088 0.006 −0.053 0.000

Log-likelihood 60,008.4 73,274.5 74,381.8 74,490.5

Table 2. Model estimates. Estimation results for the Model (6)–(7) (labeled SV2F-PJ-VJ) and
three nested models (labeled SV1F, SV2F and SV2F-PJ, respectively). For each model, estimate
(Estim.) and standard errors (S.E.) are reported. The likelihood-based estimation procedure
is described in Section 3. Variance swap rates with 2-, 3-, 6-, 12-, 24-month to maturity and
S&P500 returns range from January 4, 1996 to April 2, 2007. Variance swap rates with 3-
and 12-month (3-month) to maturity are assumed to be observed without errors (for the SV1F
model). Variance swap rates with 2-, 6-, 24-month (and, for the SV1F model, 12-month) to
maturity are assumed to be observed with errors whose standard deviations are σe1 , σe2 , σe3
(and σe4), respectively, and correlation ρe. Interest rate r = 4% and dividend yield δ = 1.5%.

In-Sample Out-of-Sample
Mean RMSE Mean RMSE Mean RMSE Mean RMSE

Heston SJSV Heston SJSV

V̂S2m −VS2m −0.081 0.851 −0.151 0.739 0.259 1.420 0.194 1.036

V̂S6m −VS6m 0.002 1.119 0.058 0.397 −0.258 1.403 −0.209 0.470

V̂S24m −VS24m 1.001 2.950 0.144 0.555 0.469 3.074 −0.137 0.559

Table 3. Variance swap pricing errors. The pricing error is defined as the model-based VS rate

minus observed VS rate, in volatility percentage units, i.e., (EQt [QVt,t+τ ]1/2 − VS
1/2
t,t+τ ) × 100.

The table reports mean and root mean square error of pricing errors for VS rate with 2-, 6-,
and 24-month to maturity, under the Heston model and Model (6)–(7). In-sample period, used
to estimate the models, ranges from January 4, 1996 to April 2, 2007. Out-of-sample period
ranges from April 3, 2007 to September 2, 2010.
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In-Sample Out-of-Sample
Mean Std Mean Std

DRP 4.66 3.99 9.30 9.49
JRP 2.38 0.57 3.05 1.36
VRP −8.56 7.33 −17.08 17.42
LRMRP −0.77 0.56 −1.20 0.68

Table 4. Spot risk premia. Diffusive risk premium DRPt = (γ1(1 − ρ2) + γ2ρ)vt; Jump risk
premium JRPt = (EP [eJ ]−EQ[eJ ])(λ0+λ1vt); Variance risk premium VRPt = γ2σvvt; Long run
mean risk premium LRMRPt = γ3σmmt. Risk premia are based on Model (6)–(7). In-sample
period, used to estimate the model, ranges from January 4, 1996 to April 2, 2007. Out-of-sample
period ranges from April 3, 2007 to September 2, 2010. Entries are in percentage.

In-Sample Out-of-Sample In-Sample Out-of-Sample
Maturity Mean Std Mean Std Mean Std Mean Std

Equity Variance
2 6.68 3.71 11.00 8.29 −0.63 0.47 −1.18 1.06
6 6.37 3.08 9.63 5.81 −1.23 0.87 −2.21 1.72
12 6.28 2.79 8.82 4.43 −1.59 1.11 −2.71 1.83
24 6.45 2.52 8.28 3.40 −1.79 1.22 −2.89 1.74

Price Jump Contribution Js < −1% Contribution
2 2.40 0.49 2.97 1.11 −0.12 0.03 −0.16 0.07
6 2.44 0.44 2.89 0.84 −0.13 0.04 −0.18 0.08
12 2.52 0.43 2.88 0.68 −0.14 0.05 −0.19 0.07
24 2.71 0.46 2.97 0.59 −0.15 0.05 −0.19 0.07

Table 5. Term structure of integrated equity risk premia and integrated variance risk premia.
Left panels: integrated equity risk premium, i.e., (EPt [St+τ/St]/τ −EQt [St+τ/St]/τ)× 100, and
equity risk premium due to the price jump component. Right panels: integrated variance risk
premium, i.e., (EPt [QVt,t+τ ]−EQt [QVt,t+τ ])×100, and variance risk premium due to price jump
Js below −1%. Risk premia are based on Model (6)–(7). In-sample period, used to estimate
the model, ranges from January 4, 1996 to April 2, 2007. Out-of-sample period ranges from
April 3, 2007 to September 2, 2010.
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Mat. Interc. S&P VIX CScorp CSgov TermS TermL R2

Panel A: Integrated Equity Risk Premium
2 −5.27 −20.22 0.59 1.99 −1.20 1.04 0.96 93.1

(−10.33) (−3.25) (14.79) (3.11) (−3.45) (2.72) (2.25)
3 −4.56 −16.06 0.53 1.71 −0.67 0.70 0.29 92.5

(−10.33) (−2.79) (13.75) (2.91) (−1.84) (1.79) (0.63)
6 −3.10 −8.21 0.41 1.15 0.33 0.07 −0.95 88.2

(−7.35) (−1.63) (10.28) (2.06) (0.62) (0.13) (−1.35)
12 −1.57 −1.96 0.31 0.65 1.07 −0.39 −1.91 79.2

(−2.88) (−0.44) (6.94) (1.05) (1.44) (−0.56) (−1.86)
24 0.01 1.20 0.23 0.26 1.39 −0.54 −2.37 70.9

(0.02) (0.31) (5.31) (0.42) (1.73) (−0.73) (−2.12)

Panel B: Integrated Variance Risk Premium
2 0.88 2.72 −0.08 −0.26 0.18 −0.14 −0.16 93.3

(13.36) (3.50) (−15.44) (−3.21) (4.20) (−3.07) (−3.11)
3 1.13 3.13 −0.10 −0.31 0.17 −0.15 −0.13 93.3

(14.48) (3.16) (−14.86) (−3.10) (2.92) (−2.35) (−1.76)
6 1.52 2.89 −0.12 −0.36 −0.02 −0.05 0.14 90.6

(14.12) (2.06) (−11.80) (−2.44) (−0.12) (−0.42) (0.87)
12 1.65 1.06 −0.13 −0.29 −0.41 0.17 0.67 81.4

(7.84) (0.61) (−7.39) (−1.24) (−1.41) (0.64) (1.68)
24 1.46 −0.88 −0.11 −0.19 −0.73 0.37 1.09 70.3

(4.71) (−0.48) (−4.98) (−0.60 (−1.71) (0.95) (1.83)

Table 6. Regression analysis for integrated risk premiums. Panel A: regression analysis of
the annualized integrated equity risk premium, i.e., (EPt [St+τ/St]/τ − EQt [St+τ/St]/τ) × 100,
based on Model (6)–(7). For each maturity (Mat.), the integrated equity risk premium is
regressed on a constant (Interc.), S&P500 returns, VIX index, CScorp the difference between
Moody’s BAA and AAA corporate bond yields, CSgov the difference between Moody’s AAA
corporate bond yield and 3-month Treasury securities, TermS the difference between the yields
on 2-year and 3-month Treasury securities, TermL the difference between the yields on 10-year
and 2-year Treasury securities. All variables are daily. Maturity is in months. The sample
period ranges from January 4, 1996 to September 2, 2010. For each maturity, the first row
reports point estimates, the second row reports (in parenthesis) t-statistics based on robust
standard errors computed using the Newey and West (1987) covariance matrix estimator with
the number of lags optimally chosen according to Andrews (1991). R2 is the adjusted R2 in
percentage. Panel B: corresponding regression analysis for the integrated variance risk premia,
i.e., (EPt [QVt,t+τ ]− EQt [QVt,t+τ ])× 100.
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In-Sample
Short Variance Swap Long S&P500

Horizon 2 3 6 12 24 2 3 6 12 24

Threshold
Always 0.59 0.61 0.68 0.85 0.67 0.13 0.16 0.22 0.27 0.18

0 0.59 0.61 0.68 0.85 0.68 0.13 0.16 0.22 0.27 0.18
1/4 0.67 0.72 0.71 0.93 1.22 0.07 0.14 0.15 0.22 0.10
1/2 0.94 1.39 1.30 1.02 1.37 0.59 0.85 0.55 −0.03 −0.18
1 1.47 3.16 2.05 2.21 2.64 1.04 2.92 1.32 0.61 −0.33

Out-of-Sample
Short Variance Swap Long S&P500

Always 0.23 0.17 0.08 0.03 0.07 −0.02 −0.10 −0.10 −0.18 −0.06
0 0.23 0.17 0.08 0.03 0.08 −0.02 −0.10 −0.10 −0.18 −0.05

1/4 0.67 0.21 0.10 0.04 0.26 0.36 −0.03 −0.10 −0.14 0.12
1/2 0.57 1.13 0.36 0.06 0.43 0.34 0.46 0.19 −0.09 0.29
1 0.32 0.76 1.84 2.47 2.98 0.09 0.11 1.20 1.33 1.51

Table 7. Sharpe ratios of short positions in variance swaps and long positions in the S&P500
index. For each day t in the sample, the expected profit from a short position in a VS contract is
computed, i.e., VSt,t+τ −EPt [QVt,t+τ ]. If the expected profit is n times larger than its standard
deviation, then the VS contract is shorted. Otherwise no position is taken at day t. The
column “Threshold” reports the number of standard deviations n. “Always” means the VS
contract is always shorted. At time t+ τ , the actual profit is computed, i.e., VSt,t+τ −RVt,t+τ ,
where RVt,t+τ is the ex-post realized variance. The notional amount in the VS contract is such
that for each unit increase of the variance payoff, the contract pays out $1. The investment
strategy in the S&P500 is as follows. If at day t the VS contract with maturity t+ τ is shorted,
$1 is invested in the S&P500 at day t. The position is held until t + τ and then liquidated.
Sharpe ratios are computed using all the returns from each investment strategy. Interest rates
are obtained by linearly interpolating the daily term structure of zero-coupon Treasury bond
yields. VS contracts with 2-, 3-, 6-, 12- and 24-month to maturities are considered. The row
“Horizon” reports the time to maturity. In-sample period, used to estimate the model, ranges
from January 4, 1996 to April 2, 2007. Out-of-sample period ranges from April 3, 2007 to
September 2, 2010.
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In-Sample Out-of-Sample
S&P500 Int-Rate Short VS S&P500 Int-Rate Short VS

2-month Returns 2-month Returns
S&P500 1.00 0.09 0.57 1.00 −0.31 0.63
Int-Rate 0.09 1.00 −0.01 −0.31 1.00 −0.25
Short VS 0.57 −0.01 1.00 0.63 −0.25 1.00

12-month Returns 12-month Returns
S&P500 1.00 0.05 0.30 1.00 −0.64 0.91
Int-Rate 0.05 1.00 −0.01 −0.64 1.00 −0.54
Short VS 0.30 −0.01 1.00 0.91 −0.54 1.00

Table 8. Correlations between returns of short positions in variance swaps, long positions in the
S&P500 index and interest rates. Short VS denotes actual, ex-post returns of the short-and-hold
VS position, i.e., VSt,t+τ − RVt,t+τ for each day t in our sample, where τ is 2- and 12-month.
S&P500 denotes actual, ex-post returns of the long-and-hold S&P500 position, i.e., St+τ/St− 1
for each day t in our sample, where τ is 2- and 12-month. Int-Rate denotes the annualized
interest rate for 2- and 12-month time horizons observed at a daily frequency. In-sample period
ranges from January 4, 1996 to April 2, 2007. Out-of-sample period ranges from April 3, 2007
to September 2, 2010.

52



References

Adrian, T., Rosenberg, J. V., 2008. Stock returns and volatility: Pricing the short-run and
long-run components of market risk. The Journal of Finance 63, 2997–3030.

Aı̈t-Sahalia, Y., 2002. Maximum-likelihood estimation of discretely-sampled diffusions: A
closed-form approximation approach. Econometrica 70, 223–262.

Aı̈t-Sahalia, Y., 2008. Closed-form likelihood expansions for multivariate diffusions. Annals of
Statistics 36, 906–937.

Aı̈t-Sahalia, Y., Kimmel, R., 2010. Estimating affine multifactor term structure models using
closed-form likelihood expansions. Journal of Financial Economics 98, 113–144.

Aı̈t-Sahalia, Y., Mykland, P. A., 2003. The effects of random and discrete sampling when
estimating continuous-time diffusions. Econometrica 71, 483–549.

Alizadeh, S., Brandt, M., Diebold, F., 2002. Range-based estimation of stochastic volatility
models. The Journal of Finance 57, 1047–1091.

Amengual, D., 2008. The term structure of variance risk premia. Tech. rep., Princeton Univer-
sity.

Andersen, T. G., Benzoni, L., Lund, J., 2002. An empirical investigation of continuous-time
equity return models. The Journal of Finance 57, 1239–1284.

Andersen, T. G., Bondarenko, O., Gonzalez-Perez, M. T., 2012. Uncovering novel features of
equity-index return dynamics via corridor implied volatility. Tech. rep., Northwestern Uni-
versity.

Andrews, D., 1991. Heteroskedasticity and autocorrelation consistent covariance matrix estima-
tion. Econometrica 59, 817–858.

Bakshi, G., Cao, C., Chen, Z., 1997. Empirical performance of alternative option pricing models.
The Journal of Finance 52, 2003–2049.

Bakshi, G., Kapadia, N., 2003. Delta-hedged gains and the negative market volatility risk
premium. Review of Financial Studies 16, 527–566.

Bakshi, G., Kapadia, N., Madan, D., 2003. Stock return characteristics, skew laws, and the
differential pricing of individual equity options. Review of Financial Studies 16, 101–143.

Bardgett, C., Gourier, E., Leippold, M., 2013. Inferring volatility dynamics and risk-premia
from the S&P 500 and VIX markets. Tech. rep., Swiss Finance Institute.

Bates, D. S., 2000. Post-’87 crash fears in the S&P 500 futures option market. Journal of
Econometrics 94, 181–238.

Bates, D. S., 2006. Maximum likelihood estimation of latent affine processes. Review of Financial
Studies 19, 909–965.

Bekaert, G., Hoerova, M., 2013. The VIX, the variance premium and stock market volatility.
Tech. rep., Columbia GSB.

53



Bekaert, G., Wu, G., 2000. Asymmetric volatility and risk in equity markets. Review of Financial
Studies 13, 1–42.

Bollerslev, T., Tauchen, G., Zhou, H., 2009. Expected stock returns and variance risk premia.
Review of Financial Studies 22, 4463–4492.

Bollerslev, T., Todorov, V., 2011. Tails, fears and risk premia. Journal of Finance 66, 2165–2211.

Britten-Jones, M., Neuberger, A., 2000. Option prices, implied price processes, and stochastic
volatility. The Journal of Finance 55, 839–866.

Broadie, M., Chernov, M., Johannes, M., 2007. Model specification and risk premia: Evidence
from futures options. The Journal of Finance 62, 1453–1490.

Broadie, M., Chernov, M., Johannes, M., 2009. Understanding index options returns. Review
of Financial Studies 22, 4493–4529.

Broadie, M., Jain, A., 2008. The effect of jumps and discrete sampling on volatility and variance
swaps. International Journal of Theoretical and Applied Finance 11, 761–797.

Bühler, H., 2006. Consistent variance curve models. Finance and Stochastics 10, 178–203.

Carr, P., Lee, R., 2009. Volatility derivatives. Annual Review of Financial Economics 1, 319–339.

Carr, P., Lee, R., 2010. Hedging variance options on continuous semimartingales. Finance and
Stochastics 14, 179–207.

Carr, P., Madan, D. B., 1998. Towards a theory of volatility trading. In: Jarrow, R. (Ed.), Risk
Book on Volatility. New York: Risk, pp. 417–427.

Carr, P., Wu, L., 2006. A tale of two indices. Journal of Derivatives 13, 13–29.

Carr, P., Wu, L., 2009. Variance risk premiums. Review of Financial Studies 22, 1311–1341.
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