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Abstract
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common law enforcement tools.
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1 Introduction

1 Introduction

Beginning in 1988, states passed legislation to create (and subsequently expand) databases of

criminal offenders’ DNA profiles. The goal of cataloguing these genetic fingerprints was to quickly

and accurately match known offenders with crime scene evidence. "Qualifying offenses"—the

types of offenses that qualify an offender for inclusion in the database—varied across states and

expanded over time: Databases typically started with sex offenses, then added violent offenses

and then non-violent crimes. Law enforcement officials made myriad promises about the crime-

reducing effects of this new tool, and its use has become widespread. The FBI currently links all

states’ databases to form the Combined DNA Index System (CODIS), which contained over 10

million offender profiles as of August 2011; this national database is well-known to the American

public thanks to popular television shows like CSI. However, despite the financial and (potential)

privacy costs of collecting and analyzing offenders’ DNA samples, it is unclear whether the

databases have had real benefits. This paper attempts to answer the following questions: How

has DNA profiling impacted criminal behavior, and what are the general equilibrium effects on

crime in the United States?

DNA profiling works by increasing the probability of conviction, conditional on offending,

for individuals in the database. A rational offender should compare the expected benefit of

committing a new offense to the expected cost, an increasing function of the probability of con-

viction and the (discounted) punishment he would receive. When the probability of conviction

increases, some offenders will choose not to commit a new crime—this is the deterrent effect of

the policy. Some offenders will decide to commit the crime anyway, and for them the higher

probability of conviction means they’re more likely to go to prison. While in prison, they will be

physically prevented from committing additional crimes—this is the incapacitation effect. These

effects should noticeably impact individuals’ criminal records. Do they?

Directly comparing the behavior of profiled and unprofiled offenders is potentially problem-

atic because, on average, profiled offenders have been convicted of more serious crimes than

unprofiled offenders, and it would be difficult to credibly isolate the effect of DNA profiling from

the effect of this underlying difference. Therefore, I use the effective dates of state database

expansions as a source of exogenous variation in DNA profiling. Consider a state that expands

its database to include all convicted and incarcerated burglars on date X. Convicted burglars

released just after date X are added to the database, while those released just before date X are

not. The two groups should be extremely similar in all other ways. In other words, there is a

sharp discontinuity in the probability of being profiled (the “treatment") at date X, but other

characteristics that might affect recidivism risk do not change discontinuously at this thresh-
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1 Introduction

old. Using an indicator of whether a newly-qualifying offender was released post-expansion, I

measure the effect of DNA profiling on observed recidivism.

Using information on expansion timing and criminal history data from seven states, I find

significant effects of DNA profiling on observed recidivism within three years for a representative

group of violent offenders: aggravated assault convicts. On average, DNA profiling has a large

net probative effect — it helps identify suspects (as designed). In other words, profiled offenders

continue to commit new offenses, but are caught much more often than those not in the database:

They are 23.4% more likely to be convicted of another crime within three years than their

unprofiled counterparts. The net probative effect is particularly large for offenders released

before age 25, but is much smaller for those profiled after their first incarceration. To the extent

that these differences stem from differences in deterrence, this suggests that collecting DNA

from more offenders early in their criminal careers could deter even violent offenders from

reoffending. Similar effects of DNA profiling are found on the probability of committing the most

serious violent and property offenses.

These partial equilibrium results suggest that DNA profiling affects individuals’ criminal

trajectories, but the general equilibrium effect on crime is clearly of greater relevance for policy-

makers. Both deterrence and incapacitation should decrease the total amount of crime in each

state, barring rapid replacement by new offenders. As more potential reoffenders are added to

state DNA databases, the number of crimes should fall proportionally. Does it?

I note that OLS estimates of the effect of this variable on crime rates will be biased upwards

because the number of profiles and number of crimes in a state are simultaneously determined.

Also, state governments’ adeptness and degree of motivation with regard to implementing

database expansions affect the number of profiles uploaded. These state characteristics might

also affect crime rates, resulting in omitted variable bias. I use an instrumental variable approach

to substantially reduce these biases.

Specifically, I take advantage of the fact that DNA databases were generally expanded in

response to widely-publicized "if only" cases: cases where a number of terrible crimes could

have been prevented, or a wrongfully convicted person could have been exonerated sooner,

if only a particular offender had been required to submit a DNA sample based on a previous

conviction. Such cases are unrelated to underlying crime trends, and so produce idiosyncratic

variation in the timing of database expansions. I exploit this variation to construct a set of

simulated instrumental variables that predict the stock and flow of qualifying offenders, based

on the timing of expansions and pre-period crime rates. The resulting instruments are highly

correlated with actual database size, but are not simultaneously determined or affected by how

well states implement their database laws. They are correlated with crime rates only through
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their correlation with database size.

Using these simulated instruments and data I collected on database size in each state, I find

that larger databases are associated with lower crime rates during the years 2000 to 2008. The

estimated magnitudes imply that expanding databases to include individuals arrested (but not

convicted) for serious felonies — a common policy proposal — would result in a 3.2% decrease in

murders, a 6.6% decrease in rapes, a 2.9% decrease in aggravated assaults, and a 5.4% decrease in

vehicle thefts. The absence of any significant impact on robbery or burglary rates suggests more

limited use of DNA evidence from property crime scenes, or a high replacement rate for those

crimes. That is, as profiled offenders are deterred or incapacitated, new, unprofiled offenders

quickly take their place.

Furthermore, the size of the database has a significant, and perhaps unexpected, effect on the

probability of arresting a suspect in newly-committed crimes. The probability of identifying a

suspect should increase with DNA profiling for any given offender, but the decision to commit a

new crime is endogenous and profiled offenders commit fewer crimes. A police officer’s decision

to arrest a suspect is also endogenous, and depends on the perceived strength of available

evidence. I find that the probability of arresting a suspect in new cases falls significantly as

database size increases, for all types of offenses except rape. This result is consistent with two

hypotheses: (1) As DNA databases grow, “easy to catch" offenders are deterred or incarcerated

quickly, so new crimes are committed by more elusive offenders. This would imply that—though

fewer in number—new crimes are more difficult to solve. (2) As they become more familiar with

DNA and other forensic evidence, police officers grow more aware of the limited accuracy of

traditional methods, and are increasingly selective in whom they arrest. This would imply that

arrests are fewer but more accurate.

Though DNA databases are widely used and rapidly growing, this paper is the first attempt

to measure the impact of this law enforcement tool on crime. This analysis is a particularly

useful contribution because DNA profiling is different from previously-studied crime prevention

strategies in important ways.

Economists have long been intrigued by the ways in which changing the expected cost of

committing a criminal offense affects an individual’s decision to do so. Increasing the length

of punishment appears to have some deterrent effect, but criminal offenders seem to heavily

discount the future and so adding time to one’s sentence many years out may have little impact

on his behavior today. There is much less evidence regarding the other component of offenders’

expected cost function: the probability of punishment. Increasing this parameter could be more

cost effective than extending sentences because it is not as affected by high discount rates. Hiring

additional police officers appears to lower crime, but police officers have many duties aside from
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simply identifying and arresting offenders, so the precise treatment is unclear. DNA databases

work mainly by increasing the probability of punishment, and so provide a unique opportunity

to study the effects of this parameter on criminal behavior.

Furthermore, unlike prisons and police officers, DNA databases exhibit tremendous returns

to scale. Given the rapidly decreasing marginal cost of a DNA profile (currently less than $40),

databases must only decrease crime a small amount to justify the financial cost of database

expansions. (Privacy concerns are a separate issue and clearly more difficult to quantify.) Based

on others’ estimates of the effects of sentence enhancements and police hiring on crime rates,

I calculate that the marginal cost of preventing a serious offense1 is about $7,600 using longer

sentences and $26,300-62,500 using police officers. In contrast, my results on the impact of DNA

databases suggest that the marginal cost of preventing a serious offense using DNA profiling is

only $70, and falling.

The paper proceeds as follows: Section 2 reviews related literature on the economics of crime;

section 3 provides background on DNA database policy; section 4 discusses the data, empirical

strategy, and results for the partial equilibrium analysis; section 5 does the same for the general

equilibrium analysis; section 6 considers the cost effectiveness of DNA databases; and section 7

concludes.

2 The Economics of Crime

Economists have long been fascinated by criminal behavior, with an eye toward finding more

cost-effective ways to reduce crime. Becker’s (1968) classic model of criminal decision-making

predicts that fewer people will choose to commit crime when the expected punishment increases.

More explicitly, an individual will only offend if:

E(Benefit) > E(Cost) and I(Incarcerated) = 0, (1)

where E(Cost) = f(p, δ, s); p is the probability of conviction, conditional on reoffending; δ is a

discount factor; and s is the punishment (e.g., sentence length). E(Cost) is increasing in each of

these parameters. I(Incarcerated) indicates whether the individual is currently incarcerated.

Consider a recently-released criminal offender who is deciding whether to recidivate. We can

decrease the probability that he reoffends by increasing p or s; this is the deterrent effect. If he

reoffends and is convicted of the crime, which happens with probability p, he will be unable

1I will use the term "serious offense" to refer to FBI Index I offenses: felony homicide and non-negligent manslaugh-
ter, forcible rape, aggravated assault, robbery, burglary, larceny, and vehicle theft. These are the offenses tracked
in the FBI’s Uniform Crime Reports.
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to reoffend again because he is in prison; this is the incapacitation effect. The total effect of a

policy on crime could depend on either or both of these effects: Criminals can be deterred from

offending when they are free, and physically prevented from offending when they are in jail.

It has been difficult to determine to what extent criminal behavior can be deterred in practice.

Policies that depend primarily on the incapacitation effect are extremely costly: Housing inmates

is expensive2 and US prisons are chronically overcrowded, so incarcerating new inmates might

necessitate freeing others.3 Knowing whether E(Cost) can have a deterrent effect – i.e., whether

potential offenders can be induced to police themselves – is therefore quite policy-relevant. Also

of interest is the relative effectiveness of increasing p and s. If offenders have high discount rates

(δ is small), increasing s might have little to no deterrent effect, in which case increasing p could

be a more cost-effective way to lower crime rates.

Given the high cost of incarceration, measuring its effectiveness has been of primary interest.

Many papers address the impact of incarceration on crime rates, typically finding at least some

negative combined effect of deterrence and incapacitation.4 There is a related literature on

the impact of “three-strikes laws" mandating extremely long sentences for an offender’s third

conviction; the consensus seems to be that this type of policy is not particularly cost-effective.5

Others attempt to isolate the deterrent effect of incarceration, with mixed results. For example,

Abrams (2011) and Drago, Galbiati, and Vertova (2009) find that increasing expected sentences

deters criminal behavior, while Lee and McCrary (2005) argue that 18-year-olds demonstrate

extreme impatience or myopia when faced with the prospect of longer sentences when they

legally become adults. A key takeaway from these studies is that if the future is heavily discounted,

adding years to a sentence has minimal impact on an offender’s cost-benefit calculation. It is

also important to note that deterrent effects could be heterogeneous across age groups and other

offender characteristics, so studies that find different effects are not necessarily in conflict.

Furthermore, longer or harsher punishments could have negative effects on criminal behavior

that counteract any incapacitative and deterrent effects. There is both theoretical and empirical

evidence that the experience of prison enhances offenders’ criminal tendencies for a variety

2A study by the Pew Center on the States estimated the average cost of housing a prison inmate in the United States
was $23,876 per year in 2005. This estimate varied by state, ranging from $13,000 in Louisiana to $45,000 in Rhode
Island. (Pew Center on the States, 2008) In a separate analysis, the California state government estimated its total
per-inmate annual costs to be $47,102 during the 2008-09 fiscal year. ["California’s Annual Costs to Incarcerate
an Inmate in Prison." Available at http://www.lao.ca.gov/.] A large, and rapidly rising, incarceration expense is
health care for the aging inmate population.

3A 2011 Supreme Court decision ordered California to reduce its prison population to 110,000 — 137.5% of capacity
— because the overcrowded conditions constituted cruel and unusual punishment under the US Constitution.
(Liptak, 2011) While this is an extreme example, the decision made the opportunity costs of incarceration explicit.

4See Levitt (1996), Johnson and Raphael (2011), Kuziemko and Levitt (2004), and Owens (2009).
5See Helland and Tabarrok (2007), Shepherd (2002), Stolzenberg and D’Alessio (1997), and Chen (2008).
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of reasons (Pritikin, 2008; Camp and Gaes, 2005; Bayer, Hjalmarsson, and Pozen, 2009). In

recent years, law enforcement has made greater use of increasingly-inexpensive computing

power to impose harsher penalties without relying strictly on incarceration. (DNA databases

are made possible by the same technological trends.) Unfortunately these policies can also

have unintended consequences: Laws that require convicted sex offenders to register their

whereabouts in a publicly-accessible database were intended to deter criminal behavior. They do

increase the probability of catching repeat offenders, but also dramatically increase the stigma

associated with the crime and make it very difficult for registered sex offenders to reintegrate

into society. Prescott and Rockoff (2011) find that sex offender registries decrease the number of

reported sex offenses by deterring nonregistered offenders, but that such laws actually increase

recidivism among those who are registered. Lee (2011) investigates the effects of making a

broader set of criminal records public, and finds similar effects: Some crime rates fall, but

recidivism appears to increase.6

If offenders heavily discount the future, and/or if punishment has a strong negative influence

on behavior, then increasing the probability of conviction might be a more cost-effective crime

prevention strategy than increasing sentences. One way to increase p is to increase the size

of the police force, and several papers find that the effect of a larger police force on crime is

negative.7 However, police officers have many responsibilities in addition to identifying and

arresting criminal suspects, so the precise treatment implied by a larger police force is unclear.

Furthermore, the effects of adding additional police officers are probably very local, and thus

very expensive to achieve. Di Tella and Schargrodsky (2004) find that adding police officers on

particular blocks after a terrorist attack in Argentina had a significant deterrent effect on motor

vehicle thefts in those precise areas, but this suggests very limited returns to scale. Similarly,

recent studies of foot patrols in crime hotspots imply that additional police officers are an

effective intervention, but must be locally targeted. (See Ratcliffe et al., 2011, for a review.)

DNA databases work mainly by increasing p for reoffenders, and the treatment is much cleaner

than in the police officer case. Furthermore, this law enforcement tool exhibits tremendous

returns to scale: Initial investments in crime labs and computer databases were costly, but

the marginal cost of each offender profile is very low. Together, these facts suggest that DNA

databases could be much more cost effective than other common crime-prevention methods.

So far there has been very little research on DNA databases. Roman, et al. (2008) conducted a

6While DNA databases to these other databases are similar in some aspects, they differ in one fundamental way:
The records aren’t public, so inclusion in a DNA database does not create a social stigma that might increase
criminal behavior.

7For a review, see Levitt (2004). See also Levitt (1997) and subsequent comment, McCrary (2002), and reply, Levitt
(2002). See also Corman and Mocan (2000), Klick and Tabarrok (2004), Evans and Owens (2007).
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field experiment in five communities to test the cost-effectiveness of collecting DNA evidence in

high-volume property crimes like burglary. The authors found that investigators identified more

suspects and had more cases accepted for prosecution when they used DNA evidence, and that

the suspects identified were more likely to have prior felony arrests and convictions. Bhati (2010)

proposed and tested a structural model of recidivism using data on criminal histories and DNA

profiling from Florida, and found 2-3% reductions in recidivism risk attributable to deterrence

for robbery and burglary, but increases in recidivism risk attributable to deterrence for other

categories. The model’s primary identification assumption is that the deterrent and probative

effects of DNA profiling are separable, but in fact any deterrent effect is crucially dependent on

an expected probative effect (that is, the increased probability of getting caught). In addition,

it is likely that the deterrent effect begins at the time of DNA sample collection, which is quite

salient, not on the (unknown, to the offender) date that the profile is ultimately uploaded to the

database.

This paper uses criminal history data from a wider sample of states, new data on expansion

timing and DNA database size, and identification strategies that avoid these potential problems,

to investigate both the partial and general equilibrium effects of this highly-regarded law en-

forcement tool. Most notably, it is the first study to estimate the effects of DNA databases on

crime rates.

3 DNA Databases

The United Kingdom led the way in using DNA as a law enforcement tool. The first national DNA

database was established there in 1985, and two years later police used DNA evidence to solve

two rape-murders in Narborough, England. Across the Atlantic, prosecutors in Orlando, Florida,

read about the Narborough case and three months later used DNA testing to convict Tommy

Lee Andrews of rape. In 1988, Colorado began collecting some convicted sex offenders’ DNA;

Virginia followed suit in 1989, collecting blood samples from sex and violent offenders, then

expanded its law to include all convicted felons in 1990. By 1999, with the urging and financial

support of the US Department of Justice, every state had established an offender DNA database.

The state databases are currently linked by the FBI to form a national database called CODIS.

Each state has its own list of qualifying offenses, and these lists have expanded over time. Most

started with sex offenses, added violent offenses, then burglary, then all felonies. Legislation

that expanded the databases sometimes applied only to new convicts, but usually included

anyone currently incarcerated for a qualifying offense. The goal of these databases was not to be

tougher on criminals, per se, but to increase accuracy and hold the right people accountable for
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their crimes. They appealed to legislators and voters as much for their potential to exonerate

wrongly-convicted offenders (and prevent new mistakes) as they did for their ability to lock up

career criminals.8 For this reason, liberal states were as likely as conservative states to quickly

add new qualifying offenses.

States tended to expand their databases to include new qualifying offenses in response to

widely-publicized "if only" cases: Cases in which terrible crimes could have been prevented, or a

wrongful conviction and incarceration avoided, if only the database had included a particular

type of criminal offender sooner. For example, Maine established a database including sex

and violent offenders in 1996, after it was discovered that a brutal rape and attempted murder

was committed by a man who would have been caught years earlier after committing a similar

crime, if the database had been in place then. Georgia added all convicted felons to its database

in 2000, after the indictment of a serial rapist. His lengthy criminal record would have made

him traceable after the first attack, if only the database had been expanded earlier. Louisiana

added all convicted felons to its database after a serial murderer with a history of simple burglary

was identified; law enforcement claimed that several homicides could have been prevented if

only he had been in the database. Similarly, California voters approved Proposition 69 in 2004,

expanding the state database to include incarcerated felons, after it was revealed that a man

who was recently convicted of raping fourteen women had served time for felony burglary years

earlier. Voters were convinced that most of those rapes — and the terrorizing of a neighborhood

for several years — could have been prevented if only the database had been expanded sooner.9

The timing of these "if only" cases produced idiosyncratic variation in the timing of state

database expansions, with the result that expansion timing was not driven by underlying crime

trends or state characteristics that might independently affect such trends. (To verify this, I

regress expansion timing on pre-period crime rates, and find no significant relationship; these

results are in Table 1.)

8Showing that DNA evidence does not match a convicted offender is often not enough to exonerate him in practice.
In an interview with the Council for Responsible Genetics, Peter Neufeld, co-founder of the Innocence Project,
described how DNA databases help exonerate wrongly-convicted individuals: "There are occasions where we
get a DNA test result on a material piece of evidence from a crime scene which would exclude our client, but
prosecutors still resist motions to vacate the conviction. In some of those cases, what then tipped the balance
in our favor was that the profile of the unknown individual [whose DNA was found at the crime scene] was run
through a convicted offender database and a hit was secured. Once we were able to identify the source of the
semen or blood... we were then able to secure the vacation of the conviction for our client." He went on to add,
"There’s no question that there would be fewer wrongful convictions if there was a universal DNA databank."
(CRG Staff, 2011) In 2007, Barry Scheck, the other co-founder of the Innocence Project, told the New York Times
that "many of the people his organization had helped exonerate would have been freed much sooner, or would
not have been convicted at all" if state databases included profiles from all convicted offenders. (McGeehan, 2007)

9More details on these and similar cases are in the Appendix.
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Once laws were effective, states varied in their ability to promptly collect and analyze DNA

samples from qualifying offenders. Collection was relatively quick and inexpensive so tended

to begin on time, but the rate at which these samples were converted into searchable profiles

(that is, analyzed in a laboratory and uploaded to the database) varied by state. The result was

often large backlogs of samples waiting for analysis. This imperfect implementation is important

for two reasons: First, any delays or mistakes in collecting DNA samples will result in a fuzzy

regression discontinuity in the partial equilibrium analysis. (I will be unable to account for

this, so it will bias my results toward zero.) Second, database size is likely a function of states’

adeptness and motivation in analyzing DNA profiles, and these characteristics might impact

crime through other channels. I use an instrumental variable strategy in the general equilibrium

analysis to correct for any omitted variable bias.

Collection of a blood or saliva sample is quite salient to offenders, and it appears that most

were well aware of the purpose of DNA collection.10 It was clear at the time of collection that

their DNA would soon be in the state database and that the probability of getting caught for any

future (or even past) crimes committed was suddenly higher than before.11 Thus, the deterrent

effect of DNA profiling should begin upon collection.12 However, a DNA profile can only help

law enforcement identify a suspect once it has been analyzed and added to the database. Thus,

the probative effect begins only at the upload date. If the probative effect was delayed for some

offenders, this will bias my results downward.

There was substantial variation in the timing of database expansions, with similar states often

adding a particular offense years apart. (Full lists of database expansion dates are in Tables 2–4.)

For example, the case of felony rape: Colorado began collecting DNA samples from new rape

convicts on May 29, 1988, but did not add incarcerated rapists until 2000. The nearby state of

Wyoming did not establish a database until 1997, though it added both newly-convicted and

incarcerated rapists at that point. Virginia began collecting DNA from newly-convicted and incar-

cerated rapists on July 1, 1989, but Maryland waited until 1994 to establish a database (including

newly-convicted rapists only), while West Virginia added convicted and incarcerated rapists in

1995. In 1990, Florida began collecting DNA from newly-convicted and incarcerated rapists. The

bordering state of Alabama did the same in 1994, while Georgia added newly-convicted rapists

10There is anecdotal evidence that law enforcement emphasized the purpose of DNA databases at the time of
collection. Many offenders tried to avoid providing samples, suggesting they knew the probative power of DNA
profiling. (Resulting legal challenges were defeated in every state.)

11It is extremely unlikely that offenders were aware of the size of sample backlogs; even policymakers were unaware
of this problem for years. If they were aware of the delays in analyzing DNA samples, this would decrease the
deterrent effect and bias my results toward zero.

12It is possible that this deterrent effect changes over time as offenders learn from personal or peers’ experience
how well DNA databases work.
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in 1992 but did not include those incarcerated for the crime until 2000. Washington was one of

the first states to collect DNA convicted rapists (it established its database in 1990), but did not

expand its database to include those incarcerated for the crime until 2008. Nearby Oregon added

both groups in 1991; Idaho waited until 1996.

The varied timing of expansions to include the non-violent felony offense of burglary is

similarly unsystematic. Virginia was the first to add burglary, including both new convicts and

inmates, beginning on July 1, 1990. Alabama went next, on May 6, 1994. However, the nearby

state of Florida waited until 2000, and Mississippi did not follow suit until 2003. New York added

new burglary convicts on December 1, 1999, but did not add incarcerated burglars until 2006. In

contrast, nearby New Jersey added both convicted and incarcerated burglars in 2003. Oregon

added newly-convicted burglars on October 23, 1999, but it took Washington until 2002 to do the

same, and until June 12, 2008, to add incarcerated burglars to its list. In contrast, California added

both groups in 2004. South Dakota added newly-convicted burglars in 2000, but North Dakota

waited until 2009 to do the same. Nebraska began collecting DNA from newly-convicted and

incarcerated burglars in 2006, while Wyoming had been doing so since 1997. In New England,

Maine added newly-convicted burglars in 1996, but New Hampshire waited until 2003 to follow

suit.

The expansion of databases to include all felonies was in some ways more controversial,

because it included so many non-violent and white collar offenses. However, there remains

substantial variation in the timing of all-felony expansions, with similar states often making this

move years apart. New Mexico added convicted and incarcerated felons in 1998, while Arizona

waited until 2004. Wyoming did so in 1997, but Colorado waited until 2002, and Idaho is not

scheduled to add all felons until 2013. Alabama added these offenders in 1994, but Mississippi

waited until 2003. Maine added all convicted felons to its database in 2001, and Massachusetts

did so in 2004, but New Hampshire did not take this step until 2010. In 1990, Virginia became

the first state to add all felons to its database, but Maryland did not do so until 2002, and West

Virginia still has not added all felony convicts.

While this paper only examines the impact of profiling convicted offenders, it is important to

note that the expansion of DNA databases is an ongoing policy issue. States continue to add new

groups of potential offenders, particularly arrestees for various crimes. Some states have also

begun conducting "familial searches" of existing profiles, with the hope that a partial DNA match

will identify a close relative of the offender if he isn’t in the database himself. This effectively

expands the number of "profiled" offenders beyond those who are actually in the database.

As anecdotal successes accumulate, DNA profiling has won widespread praise from law
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enforcement officials and political leaders as a valuable crime-prevention tool.13 However, the

only outcome that is consistently tracked is "investigations aided" – the number of computer

matches made between an offender profile and crime scene evidence, or linking two crime

scenes. This is not a good measure of the value added by the technology, as it does not tell us

how many of those matches would not have been made using traditional methods alone. Given

the resources that state and federal government agencies continue to invest in DNA profiling, as

well as the privacy concerns of civil libertarians, it is important to have an accurate estimate of

the program’s cost-effectiveness relative to other law enforcement tools.

4 Partial Equilibrium Effects on Recidivism

4.1 Data

In the partial equilibrium analysis, I test the effect of DNA profiling on aggravated assault convicts’

subsequent criminal behavior. (The identification strategy is described below.) To do this, I need

information on each state’s database expansions and detailed criminal histories for all relevant

offenders.

Information on the timing and details of state DNA database expansions comes directly from

state legislative histories: I researched the relevant bills passed in each state, coding which

crimes were added and which types of offenders were included (adults and/or juveniles, newly

convicted offenders and/or current inmates, etc.) at each date.

Criminal history data were collected from the Departments of Correction (DOCs) in seven

states: Florida, Georgia, Missouri, Montana, New York, North Carolina, and Pennsylvania. These

are longitudinal, individual-level data that include each offender’s dates of incarceration (in-

cluding conviction and release dates), offense type(s), birthdate or current age, sex, and race.

Female offenders, as well as anyone released before age 18 or after age 50, are excluded from my

analysis.14

13On March 4, 2002, Attorney General John Ashcroft told reporters that "DNA technology has proven it-
self to be the truth machine of law enforcement, ensuring justice by identifying the guilty and exon-
erating the innocent.... Experience has taught law enforcement that the more offenders that are in-
cluded in the database, the more crimes will be solved."(DOJ News Conference transcript, available at
http://www.justice.gov/archive/ag/speeches/2002/030402newsconferncednainitiative.htm)

14The vast majority of felons are men; 6.8% of offenders in my sample are women. Criminal offenses might be
expunged if the offender is under age 18, so I restrict my attention to offenders who are adults during the entire
post-release period. Recidivism risk decreases rapidly as offenders age, so the oldest releasees will not have a large
impact on crime rates. More importantly, the effects of various demographic and other characteristics appears
to be heterogeneous with age, so including these offenders does not help me precisely estimate more relevant
(younger) releasees’ behavior. My results are not sensitive to the arbitrary cutoff at age 50.
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4 Partial Equilibrium Effects on Recidivism

I use the details of each offender’s criminal history to determine upon which release date (if

ever) his DNA should have been collected, based on state DNA database laws. This required

matching offenses as coded in DOC datasets to those listed in state statutes. In addition to the

offenses committed, I take into account whether juveniles were excluded from DNA collection,

and whether incarcerated inmates were included in addition to newly convicted offenders. To

ease comparison across states, I also determine which offenses count as FBI Index I crimes

(felony murder, forcible rape, aggravated assault, robbery, burglary, larceny, and vehicle theft),

which have standard definitions.

Summary statistics are shown in Table 5.

4.2 Empirical Strategy

A direct comparison of the behavior of DNA-profiled and -unprofiled offenders is potentially

problematic because, on average, these two groups have very different criminal histories, and

it would be difficult to convincingly isolate the treatment effect from the effect of criminal

predispositions. (If all violent criminals are in the DNA database while all non-violent criminals

are not, we would not be surprised if DNA profiling were positively correlated with future

violent behavior. However, we would be uncomfortable saying that DNA profiling caused that

behavior.) To cleanly identify the effect of DNA profiling on individual behavior, we need

exogenous variation in who must provide a DNA sample.

Conveniently, DNA database expansions created a series of natural experiments that provide

just such variation. If two very similar offenders were released from prison just one day apart

— one on the effective date of the expansion and the other the day before — one would be

added to the database while the other would not. The effective date of each expansion thus

introduced a sharp discontinuity in the probability of treatment for newly-qualifying offenders,

but — crucially — not in any other characteristics that might affect recidivism risk. For offenders

released within a sufficiently small window around this threshold, any subsequent differences

between the two groups can be attributed to the effect of DNA profiling.

A crucial assumption is that offenders’ releases were not intentionally timed to occur before

or after the database expansions. There is no evidence that this occurred, and the histogram of

release dates in Figure 1 shows no unusual heaping around the expansion date.

The treatment effect is estimated by the coefficient b in the following Regression Discontinuity

specification:

Pr(Reoffend and Convicted within 3 years) j = a +b ∗PostExpansion j +c ∗X j , (2)

13



4 Partial Equilibrium Effects on Recidivism

where X j is a vector of demographic and criminal history information, a quadratic time trend,

and state fixed effects; and j indexes offenders. Standard errors are clustered by person. This

OLS regression is run separately for three reoffense outcomes: commission of any offense,

commission of a serious violent offense, and commission of a serious property offense.

The deterrent effect of DNA profiling depends on both the perceived size of the probative

effect of DNA, and how close individuals are to the E(Cost) = E(Benefit) threshold. These could

depend on both the age and criminal experience of an offender. I test for heterogeneous effects

for two types of offenders: Those who were under age 25 at release, and those finishing sentences

for their first incarceration.

There are three points to keep in mind when interpreting b:

First, as described in the previous section, I do not observe actual DNA collection, but impute

this based on individuals’ criminal histories and incarceration spells. The coefficient b therefore

measures the effect of the intention to treat. This might not be the same as the treatment effect if

states were slow to implement the new laws and/or if some offenders were mistakenly released

before providing a DNA sample.15 To the extent that this occurred, b will be biased toward zero.

Second, measuring recidivism accurately is difficult because offenses are only observed if

the offender gets caught. That is, instead of the ideal outcome variable, Pr(Reoffend), I observe

Pr(Reoffend and Convicted), where

Pr(Reoffend and Convicted) = Pr(Reoffend)∗Pr(Convicted |Reoffend) (3)

DNA profiling is expected to affect both factors on the right-hand side in equation 3, in

opposite directions. If DNA profiling helps law enforcement identify a crime’s perpetrator,

as designed, it increases Pr(Convicted | Reoffend); this is the probative effect. This increases

E(Cost) in equation 1 and should therefore reduce Pr(Reoffend); this is the deterrent effect. The

coefficient b estimates the net effect of DNA profiling. My data and identification strategy will

not allow me to separate these two effects. Because the probative and deterrent effects cancel

each other out to some extent, a significant positive estimate should be interpreted as a lower

bound on the true probative effect, and a significant negative effect should be interpreted as

a lower bound on the true deterrent effect. (Note that a zero net effect could mean that DNA

15Statistics on the frequency of such mistakes are unavailable for the states in my sample during the time period of
interest, and it is difficult to estimate how large an effect this might have on my results. Even in more recent years,
despite much more experience, states have a difficult time implementing their policies perfectly: New York State re-
quires DNA collection upon intake to the Corrections system, and estimated a 92% collection rate within 2 months
of an eligible sentence to a jail or prison in 2009. [http://criminaljustice.state.ny.us/pio/annualreport/2009-
crimestat-report.pdf, page 20]
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4 Partial Equilibrium Effects on Recidivism

databases have no effect on offenders, or that the deterrent and probative effects cancel each

other out completely.)

Examples of how to interpret this net effect are in the Appendix. A net probative effect implies

that many offenders continue to reoffend but are caught more easily, so DNA databases increase

the incarceration rate among profiled offenders and we should expect the incapacitation effect

on crime to be particularly important. A net deterrent effect implies that enough profiled

offenders change their behavior that DNA databases decrease the incarceration rate among

profiled offenders and we should expect the deterrent effect on crime to be particularly important.

In both cases, the net effect tells us something about how the databases are working, though we

would need more information to determine the precise magnitudes of each underlying effect.16

The third point regarding b has to do with generalizability. This identification strategy depends

on testing the effects of DNA databases immediately after they were expanded. It is quite possible,

even likely, that the effectiveness of this law enforcement tool grows over time as police learn

how to use it and offenders learn (perhaps via personal experience) of its probative effect. It is

also possible that offenders gradually learn how to avoid detection by DNA analysis. Therefore, it

is not clear whether the short-term effects found in this part of the paper should be thought of

as upper or lower bounds on the longer-term effects. For this reason, the general equilibrium

effects of DNA profiling on crime over the longer term will be an important supplement to this

analysis.

4.3 Results

Graphs of the relationship between observed recidivism and release date are shown in Figures 2–

6, controlling only for state fixed effects. There appears to be a discontinuity in the outcome at

the date of database expansion in several cases, particularly for young offenders.

Table 7 presents OLS (linear probability) results for the effect of DNA profiling on aggravated

assault convicts.17 Coefficients show the percentage point change in the probability of observed

recidivism.

Recall that the probative and deterrent effects go in opposite directions, so each will at least

slightly counteract the other in determining whether an individual returns to prison. A positive

coefficient should be interpreted as the lower bound on the probative effect, and a negative

16The lag between collection and analysis of DNA samples provides an opportunity to separate the deterrent and
probative effects: only the deterrent effect is operative until the DNA profile is actually in the database. Exploiting
this fact using data on the dates that DNA profiles were uploaded to the database is the focus of ongoing work.

17Using a linear probability model allows me to estimate marginal effects while minimizing assumptions about the
functional form. Probit results are qualitatively similar and available upon request.
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4 Partial Equilibrium Effects on Recidivism

coefficient as the lower bound on the deterrent effect.

Results are shown separately by type of reoffense. The first three columns show results for the

probability of a new conviction for any offense within three years, the second three columns for

a serious violent offense (murder, forcible rape, aggravated assault), and the last three columns

for a serious property offense (burglary, larceny, vehicle theft). The treatment variable is whether

an individual’s DNA was collected (i.e., whether he was released post-expansion).

On average, DNA collection has a net probative effect: The probability of reoffending and

being convicted for any offense is 3.7 percentage points (23.4%) higher for those with a profile in

the DNA database than those without. This effect is statistically significant at the p < 0.10 level.

As columns (2) and (3) show, the effect of DNA profiling varies with offenders’ age and criminal

history. If the current incarceration was an offender’s first, the net effect of DNA profiling

was significantly lower, while if the offender was under age 25 at release, the net effect was

significantly larger. The result is that DNA profiling has the largest net probative effect on young

offenders with multiple convictions: they are 30.2 percentage points (85.6%) more likely to be

convicted of a crime within three years of release than their unprofiled counterparts. The effect

is a bit smaller for young offenders with only one conviction (10.4 percentage points, or 35.6%),

and smaller again for older offenders with multiple convictions (6.7 percentage points, or 27.2%).

DNA profiling has no net effect on older offenders with only one conviction.

It is unclear whether these heterogeneous effects stem from differences in the deterrent effect

or the probative effect (or both). It is possible that first-time offenders are more likely to commit

types of crimes where DNA evidence is less available or infrequently analyzed (e.g. property

crimes), so that the (net) probative effect is smaller for this group than for career offenders.

Similarly, it is possible that young offenders commit types of crimes where DNA evidence is more

available and frequently analyzed (e.g. violent crimes), so that the (net) probative effect is larger

for this group.

To see if offenders’ sorting into different types of offenses is driving the results, I consider

the probability of a subsequent conviction for serious violent and property crimes separately,

in columns (4)–(9). The same pattern emerges, though statistical power is limited due to the

relatively rarity of these offenses. The effect of DNA profiling on young offenders is significantly

more positive than for older offenders, even when attention is restricted to serious violent crimes.

Similarly, the effect of DNA profiling on first-time offenders is significantly smaller than for career

offenders, even when restricting attention to the commission of serious property crimes. These

results suggest that differences in the probative effect of DNA profiling are probably not driving

the heterogeneous effects.

Another possible explanation for the heterogeneity by criminal history is that the number
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of times someone has been convicted is a function of how easy he is to catch. DNA profiling

might have a smaller probative effect on (apparent) first-time offenders because those offenders

are more elusive, less sloppy when they commit crimes, and better able to avoid detection by

DNA analysis. In other words, "first incarceration" might be proxying for "difficult to catch"

while "career criminal" might be proxying for "easy to catch". However, while observed criminal

history is endogenous, age is not. The large differences in the net probative effect of DNA

profiling between older and younger offenders, even within specific types of crimes, is less likely

to stem from differences in the probative effect alone. While far from conclusive, this suggests

that deterrence is playing a role.

The effects presented in Table 7 are consistent for other bandwidths around the effective date

of the laws, and for different time trend polynomials. Tables 11- 13 in the Appendix provide these

results.

4.4 Robustness Check: Placebo Test

If differences between offenders released before and after the effective date are driven by un-

derlying trends, and not the discontinuity in treatment at the effective date, I would see similar

effects using a "placebo date" — an incorrect treatment threshold. Table 14 shows results using

a placebo date of 500 days before the true effective date of state database expansions. Results

are not significant, supporting the claim that DNA profiling is indeed causing the observed

differences between profiled and unprofiled offenders.

5 General Equilibrium Effects

5.1 Data

For the general equilibrium analysis, I test the effect of DNA database size on crime rates and

probability of arrest, using the simulated stock and flow of qualifying offenses—based on the

timing of database expansions and pre-period crime rates—as instruments. (This identification

strategy is described below.)

Data on state DNA database size over time did not previously exist, and so I have constructed

a dataset using a variety of sources. I used state statistics whenever possible, and filled remaining

holes with statistics reported by the media and estimates based on the number of profiles

uploaded to CODIS. The resulting data on database size are likely measured with error, but

instrumenting for them will remove any attenuation bias.
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The instrumental variables required information on the timing and details of each state’s

DNA database expansions, as well as data on the number of reported offenses, by type, and the

number of prison inmates, by type, in each state in 1999.

Information on database expansion timing comes directly from state legislative histories: I

studied the relevant bills passed in each state, and coded which crimes were added and which

types of offenders were included at each date. I denote each expansion as including convicted

sex offenders, violent offenders, burglars, or all felons; and distinguish between expansions that

included only new convicts from those that included incarcerated offenders.

Data on reported offenses come from the FBI’s Uniform Crime Reports (UCR), and are available

for murder, forcible rape, aggravated assault, robbery, burglary, larceny, and vehicle theft. Data on

prison inmate populations by state come from the Bureau of Justice Statistics (BJS). I estimated

the share in prison for each type of offense based on national data, also from the BJS. Data on

the share of sentenced prisoners include the following offenses: murder, manslaughter, rape,

other sex offenses, robbery, assault, other violent offenses, burglary, larceny, vehicle theft, fraud,

other property offenses, drug offenses, other offenses. Population statistics used to calculate the

number of offender profiles per 10,000 residents come from the United States census population

estimates for each year.

This combination of sources yields 252 state-by-year observations where both database size

and simulated instruments are available.

Crime rates are calculated using UCR data. I use the number of reported offenses in each

category, divided by the total population of reporting jurisdictions in each state, and multiplied

by 10,000. (This is the number of crimes per 10,000 residents.)

Data for the probability of making an arrest in new crimes comes from the FBI’s National

Incident-Based Reporting System (NIBRS), which the agency is phasing in to replace the UCR.

The NIBRS provides much richer data on each reported crime in a jurisdiction — including, most

crucially, whether an arrest was made in each case — but is not available for all states in all years.

Summary statistics are shown in Table 15.

5.2 Empirical Strategy

The impact on profiled offenders is not the only determinant of DNA databases’ effects on crime.

Factors such as the reactions of unprofiled and never-offenders, the use of forensic evidence by

law enforcement, the response to such evidence from jurors and judges18, and changes in the

18In particular, there is anecdotal evidence that jurors have come to expect high-quality forensic evidence in all
types of cases. This is commonly referred to as the "CSI effect"; see Owens (2010) for a review of the available
evidence on the existence of this effect.
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behavior of crime victims and the general public all contribute to the general equilibrium effects

of this new law enforcement tool.

I want to measure the effect of DNA databases on crime rates. DNA databases are designed

to affect crime by increasing the probability that a known offender gets caught if he reoffends.

Thus, the effectiveness of a state’s DNA database increases with the probability that a potential

offender is in the database; this probability is the intensity of treatment. In the years just after

each database expansion, this probability is highly correlated with the size of the database

relative to the state population. This is because most profiles are from offenders who are still

active. However, as those profiled offenders get older, die, or move out of state, their profiles are

not deleted, so databases continue to grow. The number of profiles per capita in the database

therefore becomes a less useful proxy over time for the probability than an active offender will

get caught. This paper examines the effect of DNA databases during the years 2000-2008, which

is relatively early in their development, so database size should be highly correlated with the

intensity of treatment.

The problem with this treatment variable is that database size is endogenous. The number

of criminal offenders and offender DNA profiles in a state are simultaneously determined and

positively correlated, so OLS estimates of the effect of database size on crime rates will be biased

upwards. At the same time, states’ adeptness and motivation with regard to implementing

database laws will also affect database size. Because these state characteristics might affect crime

and arrest rates through other channels, OLS estimates could suffer from omitted variable bias. I

thus need an instrument for database size.

Within-state variation in database size comes largely from legislation adding new types of

offenders. As described above, “if only" cases produced idiosyncratic variation in the timing

of these expansions, so they are not a function of states’ characteristics. I construct a set of

instrumental variables that quantify the effects of the law changes by "simulating" the number

of offenders who should qualify for inclusion in the database in each year, based on legislated

qualifying offenses and pre-period (1999) crime rates and prison populations. By estimating both

the stock and flow of qualifying offenders, I produce instruments that are strongly correlated

with the actual number of profiles (F-statistic = 23), but uncorrelated with crime and arrest rates

through any other channel: Using pre-period statistics eliminates the simultaneity problem,

and using the number of qualifying offenders — rather than the number of uploaded profiles —

corrects the omitted variable bias. This IV approach drastically reduces any biases that affect the

OLS estimates. My instrumental first stage is specified in equation 4, and results are shown in
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Table 6 in the Appendix.

ProfileRates,t = a j ∗
∑

j
[1999OffenseRates, j ∗YearsIncludeds,t , j

+b j ∗
∑

j
[1999InmateRates, j ∗ I(InmatesIncludeds,t , j )]+ c j ∗Xs,t , (4)

where s indexes states, t indexes years, and j indexes offenses; and Xs,t is a vector of state fixed

effects and a linear time trend. In words, the estimated number of profiles per 10,000 residents is

a function of what the flow of new qualifying offenders would have been if crime rates remained

at 1999 levels, multiplied by the number of years the law was in effect, plus what the stock of

qualifying inmates would have been if prison populations remained at 1999 levels.19 Within each

state, these numbers are a function only of (exogenous) variation in law timing. Subject to the

identifying assumption that legislation timing does not depend on pre-period crime trends, they

are thus valid instruments for the actual number of profiles.

5.2.1 Effects on Crime Rates

I expect that a larger DNA database will decrease aggregate crime rates. This effect should be

largest for crimes where DNA evidence from crime scenes is most frequently collected and

analyzed (e.g., violent crimes). The effect could be diminished if the replacement rate for

offenders is high – that is, if new (unprofiled) offenders quickly enter the crime "market" to

replace those who are deterred or incarcerated. The replacement rate might vary with the type of

offense; in particular, it is probably higher for economically-motivated crimes like burglary than

for emotionally-motivated violent crimes like murder. The effect of DNA databases on crime

rates could also decrease over time if offenders learn to avoid detection by DNA analysis.

To estimate the effect of DNA profiling on crime rates, I run a 2SLS instrumental variable

regression of crime rates on database size, using data from the UCR and the first stage specified

in equation 4. The results will be far more accurate that those produced by OLS. The second

stage is specified in equation 5. Standard errors are clustered by state.

CrimeRates,t , j = u j ∗ProfileRates,t + v j ∗Xs,t , (5)

19For instance, consider a state that adds convicted and incarcerated burglars to its database in 2002, and in 1999
had 50 burglaries per 10,000 residents and 200 incarcerated burglars per 10,000 residents. The simulated profile
rate would be 0 in 2001, 50a + 200b in 2002 (50 offenses * 1 year and 200 inmates), 100a + 200b in 2003 (50 offenses
* 2 years and 200 inmates); 150a + 200b in 2004 (50 offenses * 3 years and 200 inmates), and so on. However, the
simulated instrument would predict no change in database size for a state that had no burglaries or incarcerated
burglars in 1999. The intensity of treatment would, appropriately, be higher for the first state than the second.

20



5 General Equilibrium Effects

where s indexes states, t indexes years, and j indexes offenses; and Xs,t is a vector of state fixed

effects and a linear time trend.

5.2.2 Effects on Arrest Probability

DNA profiling should increase the probability of arresting a suspect in a new crime, for any given

offender. However, the decisions both to offend and to make an arrest are endogenous, and the

general equilibrium effect of database size on the probability of arresting a suspect is ambiguous

due to selection effects.

On the arrest side, widespread use of DNA evidence meant law enforcement officers began

seeing examples of cases in which traditional methods (e.g., eyewitness testimony) led them to

the wrong suspect. Indeed, one of the primary arguments for this technology was that it would

increase the accuracy of arrests and convictions. Because of this, an increase in the size of DNA

databases might result in police officers’ becoming more selective when making arrests, and the

probability of arresting a suspect in new offenses might fall. However, if DNA database matches

provide great enough certainty in a large enough number of cases, the probability of making an

arrest could rise.

On the offender side, if DNA profiling has no deterrent or incapacitation effects, the probability

of arresting a suspect increases as the probability that an offender’s DNA has been collected

increases. With deterrent and/or incapacitation effects, Pr(Offend | DNA Collected) is less

than Pr(Offend | DNA Not Collected). That is, profiled offenders are less likely than unprofiled

offenders to commit new crimes. In an extreme case, Pr(Offend | DNA Collected) goes to zero, so

all new crimes are committed by unprofiled offenders, and the probability of arresting a suspect

in new crimes does not change as the database grows.

Now consider a scenario in which there are two types of offenders: skilled and unskilled.

Unskilled offenders are always easier to catch than skilled offenders, but DNA profiling would

likely have different effects on the two groups. In an extreme case, unskilled offenders in the

database are convicted with near certainty, while skilled offenders adapt their behavior to avoid

detection by DNA analysis and their probability of conviction is unchanged. In this scenario,

Pr(Offend | Unskilled, DNA Collected) goes to zero, and all new crimes are committed by skilled

(i.e., difficult to catch) offenders. The probability of arresting a suspect would then be lower than

it was before DNA profiling began.

To estimate the effect of DNA profiling on the probability of arresting a suspect in new crimes,

I run a 2SLS IV regression of the probability of arresting a suspect on database size, using data

from the NIBRS and the same first stage as above (specified in equation 4). The second stage
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(linear probability model) is specified in equation 6. Standard errors are clustered by state.

Pr(Arrest Suspect) j = w j ∗ProfileRates,t + z j ∗Xi ,t , (6)

where s indexes states, t indexes years, j indexes type of offense, and i indexes reporting jurisdic-

tions (e.g. county); and Xi ,t is a vector of jurisdiction fixed effects and a linear time trend. Each

observation is a unique reported crime incident.

5.3 Results

5.3.1 Effects on Crime Rates

The estimated effects of database size on crime rates are presented in Table 16, and are presented

as standardized beta coefficients. This means that a one standard deviation (SD) increase in the

size of the DNA database results in a 0.26 SD decrease in the murder rate, a 0.66 SD decrease

in the rape rate, a 0.30 SD decrease in the aggravated assault rate, and so on. (As expected,

OLS estimates are biased upwards.) To ease interpretation of the magnitudes of these effects,

I consider the implied impact of a common policy proposal: Back-of-the envelope estimates

suggest that the addition of individuals arrested (but not convicted) for serious felony offenses

would result in a 12% increase in the size of an average database, per year.20 Assuming a linear

effect on crime, such an expansion would result in a 3.2% decrease in murders, a 6.6% decrease

in rapes, a 2.9% decrease in aggravated assaults, and a 5.4% decrease in vehicle thefts.

Robbery and burglary rates are not significantly changed, despite the significant effect of

DNA profiling on property crimes seen in the previous section. This suggests the following: (i)

criminals have learned how to avoid leaving DNA evidence at property crime scenes, (ii) they

have realized law enforcement does not generally analyze the DNA evidence they do leave (i.e.,

that the probative effect is relatively small), and/or (iii) there may be a higher replacement rate

for these types of offenses – new offenders entering the crime "market" when profiled offenders

are incapacitated or deterred.

The large negative effect on vehicle theft rates is likely due to clearing "volume" crimes, where

a small number of offenders commit a large number of crimes. Vehicle theft is a relatively high-

skill crime often connected to chop shops, and most of these crimes are committed by vehicle

20States reported 76.3 arrests per 10,000 residents for Index I violent and property offenses in 2008. (UCR 2008)
Based on 2006 estimates, 61% of those charged with a serious felony have no prior felony conviction (so are
probably not yet in the database), and approximately 46% are not ultimately convicted of a felony in that case
(so would in most cases not need to submit DNA under current law). (State Court Processing Statistics, 2006)
This suggests that adding Index I felony arrestees to state databases would increase profiles collected by 21.4 per
10,000 residents per year (76.3 * 61% * 46%), which was 12% of the average database size in 2008.
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theft "rings." (Emily, 2010) If DNA databases lead law enforcement to a few key individuals, they

will prevent many future crimes.

5.3.2 Effects on Arrest Probability

The estimated effects of database size on the (linear) probability of arresting a suspect for new

offenses. The results are presented in Table 17. I find that the probability of arrest falls as DNA

databases grow, in almost all cases. A 50% (approximately 1 SD) expansion of an average database

would imply that the probability of arresting a suspect falls by 42.9% in murder cases, 9.9% in

aggravated assaults, 12.6% in robberies, 7.7% in burglaries, 2.4% in larcenies, and 6.1% in vehicle

thefts. Rape is the exception: the probability of arresting a suspect is not significantly different

for this crime. This suggests that the probative effect of DNA evidence counterbalances any

effects on the composition of offenders and police officers’ behavior in rape cases.

Assuming a linear effect, expanding DNA databases to include individuals arrested for serious

felony offenses (i.e., by 12%) would decrease the probability of making an arrest in new cases

by 10.3% for murder, 2.4% for aggravated assault, 3.0% for robbery, 1.9% for burglary, 0.6% for

larceny, and 1.5% for vehicle theft.

These results are consistent with the following hypotheses: (i) police become more selective in

arresting suspects, implying that arrests are fewer but more accurate; and/or (ii) "easy to catch"

offenders are deterred or incapacitated most quickly, implying that new cases — though fewer in

number — are more difficult to solve.

5.4 Robustness Check: Alternative IV Specifications

One might be concerned that variation in the states’ pre-period crime and prison statistics

could be correlated with future crime trends, due to regression to the mean. I test the effect of

two alternative IV specifications on the general equilibrium results: (1) using simple indicator

variables for whether a particular type of offender qualifies for inclusion in the state database

in each year, and (2) using national (instead of state) crime and prison statistics to estimate

the stock and flow of qualifying offenders. Table 18 shows first stage results for these alternate

specifications, along with the results for my preferred specification (using state statistics to

estimate the stock and flow of qualifying offenders).

Table 19 shows results using each of these three IVs. Results are qualitatively similar, though the

effect of DNA databases on larceny rates is no longer significant in the alternative specifications.
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5.5 Robustness Check: Controlling for Other Law Enforcement

Policies

Even if "if only" cases were uncorrelated with underlying crime trends in each state, it is possible

they prompted state legislatures to do more than just expand DNA databases. The estimated

effects of DNA databases would suffer from omitted variable bias if these simultaneous policy

changes themselves affected crime rates. The most likely (and potentially worrisome) policy

change is an increase in police hiring. I use FBI data on the number of police officers in each

state to proxy for this and similar law enforcement efforts. Controlling for police officers per

capita has very little effect on the estimates; see Table 20 for these results.

6 Cost Effectiveness of DNA Databases

The value of CODIS (and the state DNA databases it links) depends on (1) whether the bene-

fits of the program exceed its costs, and (2) its cost-effectiveness relative to that of other law

enforcement tools such as hiring more police officers or lengthening prison sentences.

The cost of collecting and analyzing each DNA sample is currently less than $40, according

to a U.S. Department of Justice estimate, and less than $20 in several states.21 The marginal

cost of analyzing new DNA samples continues to fall as technology improves, and, unlike law

enforcement tools such as prisons and police officers, DNA databases exhibit tremendous returns

to scale: There were large initial fixed costs in terms of crime lab equipment and computer

databases, but the cost of expanding the program is relatively small.

A back-of-the-envelope calculation based on the estimated social costs of crime in McCollister,

et al. (2010), is shown in Table 21 and suggests that DNA databases have resulted in dramatic

savings. Based on my estimates in section 6, each profile resulted in 0.57 fewer serious offenses,

for a social cost savings of approximately $27,600. In 2010, 761,609 offender profiles were

uploaded to CODIS. At $40 apiece, this cost the state and federal governments approximately

$30.5 million, but saved $21 billion by preventing new crimes.

Owens (2009) estimates that a marginal year of incarceration results in 1.5 fewer serious

offenses and costs $11,350 in Maryland. This implies that preventing a marginal crime via longer

sentences costs $7,600. Estimates of the effect of police on crime rates range from 0.8 to 1.9 fewer

serious offenses per officer, per year.(Levitt, 2002) Salary.com reports that the median salary for

a police officer in the United States is about $50,000. This implies that preventing a marginal

crime by hiring more police costs between $26,300 and $62,500, not including benefits. Both of

21See estimates at https://ncjrs.gov/pdffiles1/nij/sl000948.pdf.
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these law enforcement tools are likely to become more expensive in the future, as health care

costs rise.

In contrast, my estimates suggest that each additional DNA profile prevents 0.57 crimes, imply-

ing that the cost of preventing a marginal crime is $70, and falling. Even using a very conservative

estimate of the number of crimes prevented – the lower bound of the 95% confidence interval –

each DNA profile prevents 0.11 crimes, at an implied cost of $364 per crime.

If DNA databases reduce crime in part by increasing incarceration rates, the cost of the

additional incarcerations should be included in the total cost of using this technology. (In that

case, the number above is most comparable to that of hiring police officers, which should also

have both probative and incapacitation effects on crime. If incarcerations increase due to more

police activity, those costs are not included here.) However, it is possible that DNA profiling

simply changes the timing of prison sentences: For instance, instead of catching someone for a

violent crime and putting him in prison for 30 years when he’s 35, DNA databases might catch

him for a more minor offense that puts him in prison for 5 years when he’s 25. Because of the

sharp decrease in criminal behavior with age, moving the sentence up in this way could be a

much more cost-effective use of incarceration dollars. Results from a preliminary analysis of

DNA database size on state incarceration rates, using the same IV strategy as in Section 5.2, are

presented in Table 22. While imprecise, they do not suggest that the number of inmates increases

as DNA databases grow. (I am exploring these effects further in ongoing work.)

Based on this evidence, DNA databases appear much more cost effective than the most

common alternatives.

7 Discussion

Though DNA databases have great potential – and, anecdotally, much success – there has been

little rigorous analysis of their impact on criminal behavior or crime rates. I present evidence that

DNA profiling has a large net probative effect, particularly for young offenders. This results in an

incapacitation effect, as those offenders continue to commit new crimes but are caught more

frequently (or at least more quickly) when they do. I also present evidence that DNA profiling

has a much smaller net probative effect on first-time offenders, suggesting that increasing the

(expected) cost of criminal behavior might deter this group from reoffending. More research is

needed to better understand the magnitudes of these effects.

DNA databases appears to have a particularly large effect on young offenders. To the extent

that incarceration has a criminogenic effect — that is, that it increases one’s propensity to commit

crime — catching these offenders more quickly or more often when they commit new crimes
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could produce a cohort of more hardened criminals. Because this happens when they are still

relatively young, they will have little (non-criminal) human capital in the form of education,

employment experience, or ties to friends and family to rely on when they are released. This

could have large unintended consequences for the cohort that came of age during this period,

and possibly for their families. This is a topic that is worth further study.

The combination of incapacitation and deterrent effects has a significant and negative impact

on many crime rates, though there is some suggestion that this effect is mitigated for many

property offenses. It is unclear to what extent this will change as DNA technology advances. If

law enforcement is not using DNA evidence from property crime scenes to its full potential, the

probative (and, in turn, deterrent) effects of DNA profiling could eventually increase for those

offenders. If there is a high replacement rate for these economically-motivated crimes, DNA

databases might have little effect unless they eventually contain profiles of individuals before

they offend.

The other component of DNA databases is crime scene evidence. This is often more com-

plicated and costly to analyze, and many governments are focusing on expanding the number

of qualifying offenders rather than clearing backlogs of unanalyzed evidence. While this paper

shows a significant effect of collecting serious felons’ DNA profiles, it is unlikely that this effect

will be linear as governments add more minor offenders (or non-offenders) to the database.

While the marginal cost of adding more (potential) offenders’ profiles is small, at some point it

will be more cost-effective to channel legislative energy and funding into analyzing evidence and

finding matches with the profiles that already exist. This is particularly true if perceived privacy

costs are large.
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8 Appendix

8.1 Examples of “if only" cases that prompted database expansions

Maryland, 1994: The brutal rape of a 64-year-old woman in Daly City, Virginia, (a suburb of

Washington, D.C.) and the quick identification of her attacker using the Virginia DNA database

led quickly to nearby Maryland’s establishment of a DNA database for sex offenders.(Sanchez,

1993; Coia, 1994)

Maine, 1996: "If Maine had had a DNA database when 18-year-old Lisa Garland’s body was

discovered in an Alton gravel pit, her murder might have been solved immediately and a 15-year-

old York girl might have escaped the horror of being raped, stabbed and left for dead by Garland’s

killer." (Ordway, 1996)

Georgia, 2000: State lawmakers moved a step closer to ... approval of a system to begin col-

lecting DNA samples from Georgia’s 42,000 prisoners. ... Such a database, [GBI Director Milton

"Buddy" Nix Jr.] said, could have helped officials stop the suspect in the Athens serial rapes in

1996 after the first attack. A man indicted in January on four counts of rape already had a number

of convictions that would have put him in the database, therefore making him traceable after the

first attack. (Pruitt, 2000)

Illinois, 2002: 1993 Brown’s Chicken murders were solved because of the state database. DNA

from saliva on a chicken wing found at the scene was profiled and a match was found. One of the

two men charged gave a videotaped confession when confronted with the evidence; this event

prompted quick passage of expansion of the database to include all felons. (Patterson, 2002)

Louisiana, 2003: "If a proposed DNA database had been in place, the search to identify a sus-

pect in the serial killings [of 5 women since Sept. 2001] could have ended before Monday....

Lee has a criminal record, including a conviction for simple burglary that landed him on pro-

bation. ... ’This is why it is so important to extend the database to arrestees.’" (Barrouquere, 2003)

California, 2004: "Mark Wayne Rathbun raped 14 women around Long Beach, Calif., from 1997 to

2002, including an elderly widow recovering from cancer surgery. In September, the 34-year-old

drifter was sentenced to 1,030 years plus 10 life terms. But many of those rapes might have been

prevented, law enforcement officials say, had California’s new DNA law been in place years ago.
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... Rathbun had served time for felony burglary years before." (Cannon, 2004)

8.2 Interpreting the Net Effect of DNA Profiling

Consider an example:

Suppose there are one hundred offenders in a DNA database, and that Pr(Reoffend | No DNA

profile) = 0.5 and Pr(Convicted | Reoffend, No DNA profile) = 0.5. (That is, without DNA profiling,

fifty of the offenders would have reoffended, and twenty-five of those would have been caught.)

Note that observed recidivism is lower than the true recidivism rate: Pr(Reoffend and Convicted |

No DNA profile) = 0.25 (.5*.5) < 0.5.

Suppose that DNA profiling increases the probability of getting caught to 0.8. If there is no

deterrent effect — perhaps the offenders haven’t learned how DNA works yet — the same number

of people (fifty) reoffend, but the number who get caught increases from twenty-five to forty

(50*0.8). We conclude that DNA databases have a probative effect: Pr(Reoffend and Convicted

| DNA profile) = 0.4 > Pr(Reoffend and Convicted | No DNA profile) = 0.25 — a 60% increase.

Because there is no deterrent effect going in the opposite direction, this is the same as the true

probative effect: (0.8 - 0.5)/(0.5) = 60%.

Now consider the other extreme: DNA profiling has no probative effect — perhaps DNA

evidence from crime scenes is not analyzed — but offenders think it does. The perceived

probative effect increases E(Cost) so that it exceeds E(Benefit) for some offenders, and only forty

of them reoffend. With no change in Pr(Convicted | Reoffend), twenty of those are caught (40*0.5),

five fewer than without DNA profiling. We conclude that DNA databases have a deterrent effect:

Pr(Reoffend and Convicted | DNA profile) = 0.2 < Pr(Reoffend and Convicted | No DNA profile) =

0.25 — a 20% decrease. Because there is no probative effect going in the opposite direction, this

is the same as the true deterrent effect: (0.5 - 0.4)/(0.5) = 20%.

The true impact of DNA databases likely lies between these two extremes, where both deterrent

and probative effects are operative, and b will measure their net effect. If after DNA profiling

Pr(Convicted | Reoffend, DNA profile) is 0.8, and Pr(Reoffend | DNA profile) = 0.4, forty people

reoffend and 32 (40*0.8) of them are caught. This is more than the twenty-five who would have

been caught without DNA profiling, so the net effect of the treatment is positive and we say that

DNA databases have a net probative effect: Pr(Convicted and Reoffend | DNA profile) = 0.32 >

Pr(Convicted and Reoffend | No DNA profile) = 0.25 — a 28% increase in observed recidivism.

Note that because the deterrent effect masks some of the improvement in conviction rates, this

estimate is a lower bound on the true probative effect: (0.8-0.5)/(0.5) = a 60% increase in the

probability of getting caught.
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Alternatively, imagine that some offenders are easily deterred by the higher probability of

conviction — perhaps they discount the future less — so that Pr(Reoffend | DNA profile) falls

to 0.2. In this case, only twenty offenders reoffend, and sixteen (20*0.8) of them are caught.

This is less than the twenty-five who would have been caught without DNA profiling, so the net

effect of the treatment is negative and we say that the DNA databases have a net deterrent effect:

Pr(Reoffend and Convicted | DNA profile) = 0.16 < Pr(Reoffend and Convicted | No DNA profile)

= 0.25 — a 36% decrease in observed recidivism. Note that because the probative effect masks

some of the effect on individuals’ behavior, this estimate is a lower bound on the true deterrent

effect: (0.5 - 0.2)/(0.5) = a 60% decrease in the probability of reoffending.
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Table 1: Effect of 1990 crime rates on timing of database expansions

Year of State DNA Database Expansion

Sex Offenses Violent Offenses Burglary All Felonies
1990 Murder Rate -0.613 -0.979 -1.769 -1.370

(1.091) (1.467) (1.256) (1.370)

1990 Rape Rate -0.241 -0.260 -0.122 -0.0469
(0.253) (0.342) (0.298) (0.313)

1990 Assault Rate -0.0122 -0.00139 0.00243 -0.00665
(0.00879) (0.0121) (0.0105) (0.0112)

1990 Robbery Rate -0.0479 -0.0222 -0.0114 0.0270
(0.0324) (0.0444) (0.0387) (0.0415)

1990 Burglary Rate -0.0176 -0.0120 -0.00845 0.00286
(0.0112) (0.0154) (0.0134) (0.0145)

1990 Larceny Rate -0.0140∗∗ -0.0122 -0.00235 -0.00678
(0.00522) (0.00733) (0.00654) (0.00707)

1990 Vehicle Theft Rate -0.0122 -0.00509 -0.00445 0.0170
(0.0154) (0.0209) (0.0182) (0.0196)

Observations 50 50 50 46

Standard errors in parentheses
∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01
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9 Tables and Figures

Table 6: First Stage: Effect of Instruments on Number of Profiles

Profiles
Sex Offense Convicts -1.370

(2.124)
Violent Offense Convicts 0.0467

(0.0458)
Burglary Convicts 0.0163

(0.0803)
All Felony Convicts 0.0427∗∗∗

(0.0150)
Sex Offense Inmates 55.00

(41.79)
Violent Offense Inmates -14.82

(11.41)
Burglary Inmates -22.08

(14.66)
All Felony Inmates 8.131∗

(4.492)
N 252
F 23.21

Standard errors in parentheses

Includes time trend and state fixed effects. SEs are clustered by state.

Convictions, incarcerations, and profiles are per 10,000 state residents.
∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01
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9 Tables and Figures

Figure 2: Pr(Reoffend and Convicted of Any Offense)

Fitted residuals from a regression of Pr(Reoffend and Convicted of Any Offense) on state fixed effects.
Release Date = 0 indicates the date of database expansion.
Shown with 95% confidence interval.
Sample includes all offenders.
Data source: Longitudinal administrative data from seven states’ Departments of Corrections.
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Figure 3: Pr(Reoffend and Convicted of Any Offense), Age 25+ and First Incarceration

Fitted residuals from a regression of Pr(Reoffend and Convicted of Any Offense) on state fixed effects.
Release Date = 0 indicates the date of database expansion.
Shown with 95% confidence interval.
Sample includes offenders age 25 or older at release, with a criminal history of one conviction.
Data source: Longitudinal administrative data from seven states’ Departments of Corrections.

46
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Figure 4: Pr(Reoffend and Convicted of Any Offense), Age 25+ and Multiple Incarcerations

Fitted residuals from a regression of Pr(Reoffend and Convicted of Any Offense) on state fixed effects.
Release Date = 0 indicates the date of database expansion.
Shown with 95% confidence interval.
Sample includes offenders age 25 or older at release, with a criminal history of multiple convictions.
Data source: Longitudinal administrative data from seven states’ Departments of Corrections.
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Figure 5: Pr(Reoffend and Convicted of Any Offense), Under 25 and First Incarceration

Fitted residuals from a regression of Pr(Reoffend and Convicted of Any Offense) on state fixed effects.
Release Date = 0 indicates the date of database expansion.
Shown with 95% confidence interval.
Sample includes offenders under age 25 at release, with a criminal history of one conviction.
Data source: Longitudinal administrative data from seven states’ Departments of Corrections.
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Figure 6: Pr(Reoffend and Convicted of Any Offense), Under 25 and Multiple Incarcerations

Fitted residuals from a regression of Pr(Reoffend and Convicted of Any Offense) on state fixed effects.
Release Date = 0 indicates the date of database expansion.
Shown with 95% confidence interval.
Sample includes offenders under age 25 at release, with a criminal history of multiple convictions.
Data source: Longitudinal administrative data from seven states’ Departments of Corrections.
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9 Tables and Figures

Table 14: PLACEBO TEST: Effect of DNA Collection on Aggravated Assault Convicts

Linear Probability of a New Conviction within 3 years

Any Offense Serious Violent Offense Serious Property Offense
DNA Collected 0.0382 -0.0117 -0.00594

(0.0334) (0.0198) (0.0179)
DNA * 1st Incarc. 0.00387 0.0153 0.0169

(0.0300) (0.0174) (0.0150)
DNA * Under 25 -0.0151 -0.0231 0.00502

(0.0327) (0.0231) (0.0162)
Observations 4230 4230 4230

Note: Standard errors in parentheses. * p<.10, ** p<.05, *** p<.01. Standard errors are clustered by person. Coefficients indicate
the percentage point change in the corresponding Pr(Reoffend and Convicted), resulting from DNA collection. Each sample
includes all men with a criminal history of felony aggravated assault released within 350 days of the placebo effective date of
the law adding that offense to the DNA database. Placebo date is 500 days before the actual effective date. Each column shows
the effect on different types of recidivism: Conviction for any new crime, a violent UCR Index offense (felony murder, rape,
or aggravated assault), and a property UCR Index offense (felony burglary, larceny, or vehicle theft), respectively, within three
years of release. Each specification includes state fixed effects; linear and quadratic time trends; and demographic and criminal
history controls. Data source: Longitudinal administrative data from seven states’ Departments of Corrections.
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9 Tables and Figures

Table 15: Summary Statistics: General Equilibrium Analysis

Variable Mean Std. Dev. Min. Max. N
Murders 0.449 0.23 0.046 1.276 252
Pr(Arrest | Murder) 0.57 0.495 0 1 12399
Rapes 3.031 1.237 0 9.106 252
Pr(Arrest | Rape) 0.207 0.405 0 1 124422
Assaults 117.53 46.915 16.665 275.618 252
Pr(Arrest | Assault) 0.484 0.500 0 1 768802
Robberies 10.143 5.652 0.659 24.923 252
Pr(Arrest | Robbery) 0.189 0.392 0 1 296372
Burglaries 61.333 24.438 18.699 116.728 252
Pr(Arrest | Burglary) 0.112 0.316 0 1 2195934
Larcenies 209.463 58.776 76.636 349.014 252
Pr(Arrest | Larceny) 0.150 0.357 0 1 8362145
Vehicle Thefts 31.298 16.072 7.431 100.349 252
Pr(Arrest | Vehicle Theft) 0.098 0.297 0 1 919947
Sex Offenses: Year Added 1994.3 2.8 1988 1999 252
Violent Offenses: Year Added 1996.7 3.6 1989 2005 252
Burglary: Year Added 2000.9 3.6 1990 2009 252
All felonies: Year Added 2002.5 3.7 1990 2009 230
Police Officers 17.279 5.472 8.714 33.314 252
DNA Profiles, 2000 25.916 38.823 0.357 190.473 22
DNA Profiles, 2001 32.976 47.119 2.194 234.962 22
DNA Profiles, 2002 50.737 53.779 5.182 256.386 23
DNA Profiles, 2003 54.86 47.244 0.094 273.335 47
DNA Profiles, 2004 68.855 64.064 2.042 305.014 25
DNA Profiles, 2005 87.38 72.303 3.756 319.962 27
DNA Profiles, 2006 137.49 95.936 8.758 335.921 21
DNA Profiles, 2007 168.433 94.962 12.055 349.375 19
DNA Profiles, 2008 177.723 85.39 21.303 377.826 46
DNA Profiles, All Years 92.795 87.836 0.094 377.826 252
Note: Crime, police and DNA profile statistics are per 10,000 residents.
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9 Tables and Figures

Table 16: Effect of DNA Database Size on Crime Rates

Effect of 1 SD increase in DNA profiles Implied change if add

OLS Simulated IV serious felony arrestees
Murder Rate -0.00886 -0.261∗∗ -3.2%

(0.0593) (0.121)
Rape Rate -0.0846 -0.659∗∗∗ -6.6%

(0.103) (0.158)
Assault Rate -0.0494 -0.301∗∗∗ -2.9%

(0.0674) (0.108)
Robbery Rate 0.0187 0.0248 0.4%

(0.0315) (0.0736)
Burglary Rate 0.00553 -0.124 -1.2%

(0.0668) (0.120)
Larceny Rate -0.0989 -0.423∗∗ -2.9%

(0.0846) (0.212)
Vehicle Theft Rate -0.136∗ -0.436∗∗ -5.4%

(0.0696) (0.174)
Observations 252 252

Note: Standardized beta coefficients; standardized standard errors in parentheses. * p<.10, ** p<.05, *** p<.01. Each coefficient
indicates the change in the corresponding number of crimes reported (per resident), in standard deviations, resulting from
a one standard deviation increase in the number of DNA profiles (per resident) in the state database. Instrumental variables
are the simulated stock and flow of qualifying offenders. Both specifications include a time trend and state fixed effects.
Standard errors are clustered by state. Crime rate data source: FBI UCR.
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9 Tables and Figures

Table 17: Effect of DNA Profiles on the Probability of Arresting a Suspect in New Crimes

Effect of 1 SD increase in DNA profiles Implied change if add

OLS Sim IV serious felony arrestees
Murder -0.221∗∗∗ -0.493∗∗∗ -10.4%

(0.0318) (0.0711)
N 12399 12399
Rape -0.0208∗∗ -0.0219 -1.0%

(0.00834) (0.0151)
N 124422 124422
Assault -0.0873∗∗∗ -0.0954∗∗∗ -2.4%

(0.00336) (0.00577)
N 768802 768802
Robbery -0.0500∗∗∗ -0.0598∗∗∗ -3.0%

(0.00571) (0.0129)
N 296372 296372
Burglary -0.0272∗∗∗ -0.0276∗∗∗ -1.9%

(0.00209) (0.00429)
N 2195934 2195934
Larceny -0.0210∗∗∗ -0.00981∗∗∗ -0.6%

(0.00114) (0.00225)
N 8362145 8362145
Vehicle Theft -0.0184∗∗∗ -0.0201∗∗∗ -1.5%

(0.00322) (0.00614)
N 919947 919947

Note: Standardized beta coefficients; standardized standard errors in parentheses. * p<.10, ** p<.05, *** p<.01. Standard errors
are clustered by state. Each coefficient indicates the change in the corresponding Pr(Arrest Suspect), resulting from an
increase in the number of DNA profiles (per resident) in the state database. Instrumental variables are the simulated stock
and flow of qualifying offenders. Specification includes a time trend and jurisdiction fixed effects. Arrest probability data
source: FBI NIBRS.
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9 Tables and Figures
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9 Tables and Figures

Table 20: Effect of DNA Database Size on Crime Rates, Controlling for Police

Effect of 1 SD increase in DNA profiles Implied change if add

OLS Simulated IV serious felony arrestees
Murder Rate -0.00854 -0.261∗∗ -3.2%

(0.0600) (0.126)
Rape Rate -0.0813 -0.642∗∗∗ -6.4%

(0.104) (0.168)
Assault Rate -0.0457 -0.273∗∗ -2.6%

(0.0665) (0.112)
Robbery Rate 0.0181 0.0212 0.3%

(0.0319) (0.0753)
Burglary Rate 0.00754 -0.109 -1.1%

(0.0671) (0.123)
Larceny Rate -0.0965 -0.410∗∗ -2.8%

(0.0850) (0.209)
Vehicle Theft Rate -0.131∗ -0.395∗∗ -4.9%

(0.0693) (0.168)
Observations 252 252

Note: Standardized beta coefficients; standardized standard errors in parentheses. * p<.10, ** p<.05, *** p<.01. Standard
errors are clustered by state. Each coefficient indicates the change in the corresponding number of crimes reported
(per resident), in standard deviations, resulting from a one standard deviation increase in the number of DNA profiles
(per resident) in the state database. Instrumental variables are the simulated stock and flow of qualifying offenders. Specifi-
cations include a time trend, state fixed effects, and the number of police officers per capita. Crime rate data source: FBI UCR.

63



9 Tables and Figures

Ta
b

le
21

:E
ff

ec
to

fD
N

A
P

ro
fi

le
s

o
n

th
e

So
ci

al
C

o
st

o
fC

ri
m

e

R
ep

o
rt

ed
O

ff
en

se
s,

p
er

D
N

A
P

ro
fi

le
So

ci
al

C
o

st
p

er
O

ff
en

se
So

ci
al

C
o

st
,p

er
D

N
A

P
ro

fi
le

M
ea

n
95

%
C

o
n

fi
d

en
ce

In
te

rv
al

(2
00

8
$)

M
ea

n
95

%
C

o
n

fi
d

en
ce

In
te

rv
al

M
u

rd
er

-0
.0

00
68

-0
.0

01
31

-0
.0

00
06

$8
,9

82
,9

07
-$

6,
14

7
-$

11
,7

38
-$

56
5

R
ap

e
-0

.0
09

28
-0

.0
13

64
-0

.0
04

93
$2

40
,7

76
-$

2,
23

5
-$

3,
28

4
-$

1,
18

6
A

ss
au

lt
-0

.1
60

96
-0

.2
74

19
-0

.0
47

72
$1

07
,0

20
-$

17
,2

25
-$

29
,3

44
-$

5,
10

7
R

o
b

b
er

y
0.

00
16

0
-0

.0
07

69
0.

01
08

8
$4

2,
31

0
$6

8
-$

32
5

$4
60

B
u

rg
la

ry
-0

.0
34

40
-0

.0
99

56
0.

03
07

7
$6

,4
62

-$
22

2
-$

64
3

$1
99

La
rc

en
y

-0
.2

82
82

-0
.5

60
80

-0
.0

04
85

$3
,5

32
-$

99
9

-$
1,

98
1

-$
17

Ve
h

ic
le

T
h

ef
t

-0
.0

79
74

-0
.1

42
22

-0
.0

17
25

$1
0,

77
2

-$
85

9
-$

1,
53

2
-$

18
6

A
n

y
Se

ri
o

u
s

O
ff

en
se

-0
.5

66
28

-1
.0

25
9

-0
.1

06
64

-$
27

,6
19

-$
48

,8
47

-$
6,

40
2

64



9 Tables and Figures

Table 22: Effect of DNA Database Size on
Incarceration Rates

(1) (2)
OLS Sim IV

Incarceration Rate -0.0314 -0.1000
(0.0321) (0.0882)

Observations 252 252

Note: Standardized beta coefficients; standardized standard
errors in parentheses. * p<.10, ** p<.05, *** p<.01. Standard
errors are clustered by state. Each coefficient indicates the
change in the corresponding number of incarcerated in-
mates (per resident), in standard deviations, resulting from
a one standard deviation increase in the number of DNA
profiles (per resident) in the state database. Instrumental
variables are the simulated stock and flow of qualifying
offenders. Specifications include a time trend and state
fixed effects. Incarceration rate data source: BJS.
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