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Abstract

This paper considers three challenge areas for mechanism design and describes the
role approximation plays in resolving them. Challenge 1: optimal mechanisms are
finely tuned to precise details of the distribution on agent preferences. Challenge 2: in
environments with multi-dimensional agent preferences economic analysis has failed to
provide generic characterizations optimal mechanisms. Challenge 3: optimal mecha-
nisms are parameterized by unrealistic knowledge of the distribution of agents’ private
preferences. The theory of approximation is well suited to address these challenges.
While the optimal mechanism may require precise distributional assumptions, there
may be approximately optimal mechanism that depends only on natural characteris-
tics of the distribution. While the multi-dimensional optimal mechanism may resist
precise economic characterization, there may be simple description of approximately
optimal mechanisms. While the optimal mechanism may be parameterized by the
distribution of the agents’ private preferences, there may be a single mechanism that
approximates the optimal mechanism for any distribution. Finally, these approximately
optimal mechanisms, because of their simplicity and tractability, may be more likely
to arise in practice, thus making the theory of approximately optimal mechanism more
descriptive than that of (precisely) optimal mechanisms. This paper surveys positive
resolutions to these challenges with emphasis on basic techniques, relevance to practice,
and future research directions for approximation in mechanism design.
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1 Introduction

A mechanism gives the a mapping between the actions of strategic agents and outcomes
of the system. Equilibrium theory describes what outcomes will arise in the equilibrium
of selfish agent play. Mechanism design then considers the optimization question of what
mechanisms have good outcomes in equilibrium.

Optimal mechanism design searches for the best of these mechanisms. The space of all
mechanisms is rich and positive results for optimal mechanism design (a) identify a subclass
of mechanisms from which an optimal mechanism can be drawn, (b) interpret the salient
characteristics of this subclass, and (c) predict the mechanisms that arise in practice. This
agenda has a rich and elegant history in the economic literature with many success stories.

But what can a theory of mechanism design say (a) when the only subclass of mechanisms
that contains all optimal mechanisms is the full class, (b) when analytical approaches fail
to identify salient characteristics of optimal mechanisms, or (c) when the mechanisms in
practice are not the ones predicted by optimal mechanism design? To address these and
other issues we propose a theory of approximation for mechanism design.

A mechanism is a β-approximation in some setting if its objective performance is within
a multiplicative factor of β of that of the optimal mechanism for the same setting. For
example, a 2-approximation always obtains 50% of the optimal performance. A subclass of
mechanisms is a β-approximation if for every setting there is a mechanism in the subclass
that is a β-approximation.

As discussed, the class of all mechanisms is incredibly rich, nonetheless, there are en-
vironments, see, e.g., Vincent and Manelli (2007), where any undominated mechanism is
optimal for some setting. We face a tradeoff: if we consider only optimal mechanisms we
are stuck with the full class from which we can make no observations about what makes a
mechanism good; on the other hand, if we relax optimality, we may be able to identify a
small subclass of mechanisms that are approximately optimal, i.e., for any setting there is
a mechanism in the subclass that approximates the optimal mechanism. This subclass is
important in theory as we can potentially observe salient characteristics of it. It is important
in practice because, while it is unlikely for a real mechanism designer to be able to optimize
over all mechanisms, optimizing over a small class of, hopefully, natural mechanisms may
be possible. For instance, a conclusion of this paper is that reserve-price-based mechanisms
and posted pricings are approximately optimal in a wide range of settings including those
with multi-dimensional agent preferences.

Approximation also provides a lens with which to explore the salient features of an
environment or mechanism. Suppose we wish to determine whether a particular feature of
a mechanism is important. If there exists an subclass of mechanisms without that feature
that gives a good approximation to the optimal mechanism, then the feature is perhaps not
that important. If, on the other hand, there is no such subclass then the feature is quite
important. For instance, an analysis of this sort easily concludes that transfers are very
important for surplus maximization; where as one of the conclusions of this paper is that
competition between agents is not that important. Essentially, approximation provides a
means to determine which aspect of a setting are details and which are not details. The
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approximation factor quantifies the relative importance on the spectra between unimportant
details to salient characteristics. Approximation, then allows for design of mechanisms that
are not so dependent on details of the setting and therefore more robust (e.g., as in the Wilson
(1987) doctrine). In particular, often mechanisms based on the monopoly price are sufficient
to approximate ones parameterized by the full distribution, moreover, some environments
permit a single (prior-independent) mechanism to approximate the optimal mechanism in
every setting.

While it is no doubt a compelling success of mechanism design that its mechanisms are
so prevalent in practice, optimal mechanism design cannot claim the entirety of the credit.
These mechanisms are employed by practitioners well beyond the settings for which they
are optimal. Approximation can explain why: the mechanisms that are optimal in ideal
settings may continue to be approximately optimal much more broadly. It is important
for the theory to describe how broadly these mechanisms are approximately optimal and
how close to optimal they are. Thus, the theory of approximation can complement the
theory of optimality and justify the wide prevalence of certain mechanisms. For instance,
the wide prevalence reserve-price-based mechanisms and posted pricings is corroborated by
their approximate optimality.

The primary focus of this paper is to compare and contrast simple approximately optimal
mechanisms with optimal ones. We focus on environments where the designer’s objective is to
maximize profit, though similar results hold for the objective of social surplus. As examples
for such an analysis we discuss in detail three distinct environments: single-dimensional agent
environments such as a single-item auctions, multi-dimensional agent environments such as
multi-item auctions, and prior-independent environments such as multi-unit auctions with
“unknown demand”. For each environment we describe the optimal mechanism, contrast it
to a simple approximately optimal mechanism, and discuss generalizations.

Results and Organization. We start with an example of approximation for a stochastic
optimization problem that comes from optimal stopping theory (Section 2). This example
allows us to discuss many of the benefits of approximation and also provides a basis for
many of the subsequent results. In Section 3 we further define and motivate approximation.
Section 4 describes the abstract model for mechanism design that we consider. In Section 5 we
describe the role of approximation in single-dimensional environments; the focus is on single-
item auctions. In particular, we show that the Vickrey auction (and the VCG generalization)
with reserve prices is approximately optimal in many settings. In Section 6 we consider
approximation in multi-dimensional environments; the focus is on multi-item item-pricing
for a single unit-demand agent. We give a simple approach for identifying approximately
optimal item-pricings, and we discuss generalizations of this result to multiple agents where
posted pricings continues to give a good approximations. In Section 7 we discuss the design
of mechanisms that are less reliant on prior-information. The focus is on multi-unit auctions
for a single item. Under standard distributional assumptions, a single random sample is
enough to approximate the optimal mechanism; furthermore, this implies that completely
prior-independent mechanisms can be good approximations. Concluding remarks will be
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provided at the end of each section.

Brief literature review. Optimal mechanisms for single-dimensional agent environments
can be derived from Myerson (1981), Riley and Samuelson (1981), and Bulow and Roberts
(1989). The economics work in multi-dimensional environments that is most relevant to
ours is for the setting of additive valuations, i.e., when the value of a bundle of resources
is the sum of the value for each individual resource. For environments with independent
additive valuations, Armstrong (1996) shows that pricing the grand bundle is optimal in the
limit; while Vincent and Manelli (2007) show that any undominated mechanism is optimal
in some setting. This latter result can be viewed as an impossibility result for optimal
mechanism design as good kinds of mechanisms cannot be distinguished from bad kinds of
mechanisms. Unlike the case of single-dimensional environments, optimal mechanisms in
multi-dimensional environments may require randomization, see, e.g., Thanassoulis (2004)
and Vincent and Manelli (2007), and the resulting mechanisms can be quite complex.

Implementation theory considers design of mechanisms that have desirable equilibria,
e.g., see the Maskin and Sjöström (2002) survey. In this context, our question of prior-
independent mechanism design would be referred to as non-parametric virtual Bayes-Nash
implementation. Non-parametric Bayes-Nash implementations are not parameterized by
knowledge of the prior distribution; virtual implementations are allowed to not implement
the desired outcome with probability that can be made arbitrarily small. In this context,
Choi and Kim (1999) gives a non-parametric Bayes-Nash implementation of ex post effi-
cient and budget balanced mechanisms for public projects; the mechanism requires agents
to cross-report their beliefs. This sort of mechanism can also give non-parametric virtual
implementation of the (revenue) optimal mechanism. This approach is regarded as being
“consequentialist” as the mechanisms suggested are not descriptive of mechanisms in practice
(e.g., the Baliga and Sjöström (2008) survey).

In this paper we provide economic context and discussion for a number of technical results
from the recent literature on approximation in mechanism design. The single-dimensional ap-
proximations that we present come from Hartline and Roughgarden (2009) and Chawla et al.
(2010a). Our approximations for multi-dimensional agent environments come from Chawla
et al. (2010a). In both environments posted pricings and reserve-price-based mechanisms
are approximately optimal. The relationship between mechanism design and prophet in-
equalities, a technical tool discussed in Section 2 is from Chawla et al. (2010a). Our dis-
cussion of prior-independent mechanism design is motivated by the Bulow and Klemperer
(1996) theorem. We describe a “single sample mechanism” which was suggested and studied
by Dhangwatnotai et al. (2010). Early work on prior-independent mechanism design in-
cludes Goldberg et al. (2001); Segal (2003); Baliga and Vohra (2003); Goldberg et al. (2006);
Hartline and Roughgarden (2008).
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2 Example: A Stopping Game

Consider the following scenario. A gambler faces a series of n games on each of n days.
Game i has prize distributed according to Fi. The order of the games and distribution of
the game prizes is fully known in advance to the gambler. On day i the gambler realizes the
value vi ∼ Fi of game i and must decide whether to keep this prize and stop or to return the
prize and continue playing. In other words, the gambler is only allowed to keep one prize
and must decide which prize to keep immediately on realizing the prize and before any other
prizes are realized.

The gambler’s optimal strategy can be calculated by backwards induction. On day n the
gambler should stop with whatever prize is realized. This results in some expected value.
On day n−1 the gambler should set a threshold tn−1 equal to the expected prize for the last
day and stop with any prize bigger than the threshold. On day n−2 the gambler should stop
with any prize with greater value than the expected value of the strategy thus-far calculated.
Proceeding in this manner the gambler can calculate a threshold ti for each day where the
optimal strategy is to stop with prize i if and only if vi ≥ ti.

Of course, this optimal strategy suffers from many drawbacks. It is complicated: it takes
n numbers to describe it. It is not robust to small changes in the game, e.g., changing of the
order of the games or making small changes to distribution Fi strictly above ti or below ti.
It does not allow for intuitive understanding of the properties of good strategies. Finally, it
does not generalize well to give solutions to other similar kinds of games.

We turn to approximation to give a crisper picture. A threshold strategy is given by a
single threshold t and requires the gambler to accept the first prize i with vi ≥ t. Threshold
strategies are clearly suboptimal as even on day n if prize vn < t the gambler will not stop
and will, therefore, receive no prize.

Theorem 2.1 (Prophet Inequality; Samuel-Cahn, 1984) There exists a threshold strat-
egy such that the expected prize of the gambler is at least half the expected value of the max-
imum prize. Moreover, one such threshold strategy is the one where the probability that the
gambler receives no prize is exactly 1/2; moreover, the bound is invariant on the tie-breaking
rule, i.e., which prize the gambler obtains when multiple prizes are above the threshold.

Unlike our the optimal (backwards induction) strategy the profit inequality theorem
provides substantive conclusions. The result is driven by trading off the probability of not
stopping and receiving no prize with the probability of stopping early with a suboptimal
prize; a good tradeoff point is at a half probability of each event. The suggested threshold
strategy is also robust to the order of the games and the precise distribution functions. Notice
that the order of the games makes no difference in the determination of the threshold, and
if the distribution above or below the threshold changes, nothing on the bound or suggested
strategy is affected.

We will refer to the setting where there are more than one prize above the threshold as
a tie. There is an implicit tie-breaking strategy given by the definition of the game: ties
are broken in favor of the earliest game. The aforementioned invariance of the performance
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bound to the order of the games suggests that the bound might invariant on the tie-breaking
rule entirely; the theorem explicitly states this conclusion. The invariance with respect to
the tie-breaking rule means that the prophet inequality theorem has broad implications to
other similar settings and in particular to auction design and posted pricing, as we will see
in subsequent sections.

The prophet inequality is suggesting something quite strong: it is saying that even though
the gambler does not know the realizations of the prizes in advance, he can still do as well
as a “prophet” who does. While it is nice to know that a simple strategy does as well as
the prophet, the comparison is intuitively the wrong one to make. What we should instead
care about is our performance relative to the performance of the optimal (i.e., backwards
induction) strategy. Such a direct analysis, however, is difficult to make. Just as the optimal
strategy did not provide much conceptual understanding, it also does not permit analytically
tractable direct comparison. As the prophet’s performance, i.e., the maximum of the realized
values, is always an upper bound on the optimal strategy’s performance, comparison to it
implies as a corollary the result that we should have been after in the first place: a bound
on the approximation factor of threshold strategies.

Corollary 2.2 There exists a threshold strategy that is a 2-approximation to the optimal
(backwards induction) strategy.

One should immediately be concerned that the indirect route by which we came to this
corollary may have been lossy. In fact, it is often the case in the theory of approximation
that with the “right” upper bound, the indirect approach is not lossy. In this respect the
prophet’s performance is the right upper bound. For threshold strategies it is easy to see
by example that the bound of the corollary is tight. Imagine a setting with n = 2 days: on
day 1, the prize is a high value h ≫ 1 with probability 1/h and otherwise zero, on day 2
the prize is deterministicly v2 = 1. There are only two reasonable threshold strategies t = 1
or t = h; both give the gambler an expected payoff of 1. Of course, the optimal strategy is
to take the first prize if it is high and otherwise the second prize. This has expected payoff
1 + (1 − 1/h) which is 2 in the limit as h → ∞.

We conclude with a simple proof of the prophet inequality theorem.

Proof: (of theorem) Define qi = 1−Fi(t) as the probability that vi ≥ t. Let χ =
∏

i(1−qi)
be the probability that the gambler receives no prize. The proof follows in three steps. In
terms of t and χ, we get an upper bound on the expected maximum prize. Likewise, we
get a lower bound on the algorithm performance. Finally, we plug in χ = 1/2 to obtain the
bound. If there is no t with χ = 1/2, which is possible if the Fi are not continuous, one of
the t that corresponds to the smallest χ > 1/2 or largest χ < 1/2 suffices.

In the analysis below the notation (vi − t)+ is short-hand for max(vi − t, 0).

1. An upper bound on OPT = E[maxi vi].

Notice that regardless of whether there exists a vi ≥ t or not, OPT is at most t +
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maxi(vi − t)+. Therefore,

OPT ≤ t + E
[

maxi(vi − t)+
]

≤ t +
∑

i
E

[

(vi − t)+
]

.

2. A lower bound on A = E[prize of gambler with threshold t].

Clearly, we get t with probability 1 − χ. Depending on which prize i is the earliest
one that is greater than t we also get an additional vi − t. It is easy to reason about
the expectation of this quantity when there is exactly one such prize and much more
difficult to do so when there are more than one. We will ignore the additional prize we
get from the latter case and get a lower bound.

A ≥ (1 − χ)t +
∑

i
E

[

(vi − t)+ | other vj < t
]

Pr[other vj < t]

≥ (1 − χ)t + χ
∑

i
E

[

(vi − t)+ | other vj < t
]

= (1 − χ)t + χ
∑

i
E

[

(vi − t)+
]

The second inequality follows because Pr[other vj < t] =
∏

j 6=i(1 − qi) ≥ χ. The final
equality follows because the random variable vi is independent of random variables vj

for j 6= i.

3. Plug in χ = 1/2.

From the upper and lower bounds calculated, if we can find a t such that χ = 1/2 then
A ≥ OPT /2.

For discontinuous distributions, e.g., ones with point-masses, χ may be a discontinuous
function of t. There may be no t with χ = 1/2. Let χ1 = sup{χ < 1/2} and
χ2 = inf{χ > 1/2}. Notice that an arbitrarily small increase in threshold causes the
jump from χ1 to χ2; let t be the limiting threshold for both these χs. Therefore, as
a function of χ, t is constant and we get the same lower bound formula LB(χ) =
(1 − χ)t + χ

∑

i E[(vi − t)+] which is linear in χ.

We know that this function evaluated at χ = 1/2 (which is not possible to implement)
satisfies LB(1/2) ≥ OPT /2. Of course this is a linear function so it is maximized on
the end-points on which it is valid, namely χ1 or χ2. Therefore, one of χ ∈ {χ1, χ2}
satisfies LB(χ) ≥ OPT /2. We conclude that either the threshold that corresponds to
χ1 or χ2 is a 2-approximation.

2

3 The Philosophy of Approximation

The preceding discussion of the gambler’s stopping game and prophet inequalities exemplifies
a setting where there is little to learn from an optimal strategy and much to learn from a
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simple, approximately-optimal strategy. In this section we expand on the philosophy of
approximation as is relevant for mechanism design.

Our goal is a good theory of mechanism design. Such a theory would ideally satisfy the
following three criteria:

Prescriptive: It gives concrete suggestions for how a good mechanism should be designed.

Predictive: It describes how mechanisms are designed.

Conclusive: It identifies the essence of the problem and allows for broad conclusions.

Notice that optimality is not one of the criteria, nor is exactly suggesting a mechanism to
a practitioner. Instead, intuition from the theory of mechanism design should help guide
the design of good mechanisms in practice. Such guidance is possible through conclusive
observations about what good mechanisms do. Observations that are robust to modeling
details are especially important.

The question of designing an optimal mechanism for a given setting and objective can be
viewed as a standard optimization problem. Given incentive constraints, imposed by game
theoretic strategizing, and feasibility constraints, imposed by the environment, optimize the
designer’s given objective. I.e., put all the constraints into a solver and out will come a
solution. It is immediately clear that this approach, absent further analysis, is inconclusive.
What have learned about the optimal mechanism? Furthermore, the optimization suggested
is often computationally intractable. The resulting mechanism is likely to be complex and
impractical making the approach neither predictive or prescriptive. Much of the work in
economics has focused on environments where the constraints simplify and, for instance,
the mechanism design problem can be reduced to a natural optimization question without
incentive constraints. E.g., the VCG mechanism for maximizing social surplus, and Myer-
son’s mechanism for maximizing profit in single-dimensional environments. Unfortunately,
there are many environments where analysis has failed to simplify the problem and these
environments are considered “unsolved”.

In environments where optimality is impossible (by any of the above critiques) one should
instead try to approximate. The formal definition of an approximation is given below. Notice
that approximation factors are always at least one as it is impossible to perform better than
optimal; small approximation ratios are good and a large approximation ratios are bad.

Definition 3.1 A mechanism is a β-approximation in a given setting if the ratio of the
optimal mechanism’s expected performance to its expected performance is at most β. A
class of mechanisms is a β-approximation in a given environment, if for any setting in the
environment there is a mechanism in the class that is a β-approximation.

Depending on the problem and the approximation mechanism, approximation factors can
range from (1 + ǫ), or arbitrarily close approximations, to linear factor approximations (or
sometimes even worse). Notice a linear factor approximation is one where as some parameter
in the environment grows, i.e., more agents or more resources, the approximation factor gets
worse.
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Compare and contrast an approximation schema which allows for a (1+ǫ)-approximation
for any given ǫ > 0 with a 2-approximation. Obviously a practitioner would be happier
obtaining 99% of the optimal revenue than 50%. On the other hand, (1+ ǫ)-approximations
usually arise from brute-force searches over restricted search spaces therefor they provide as
little conceptual insight as the optimal mechanisms. On the other hand a simple approach
that gives a 2-approximation is usually made possible by some fundamental properties of
good mechanisms.

In this paper we will not view super-constant approximation factors as positive results. It
has been our experience in mechanism design that super-constant approximation factors are
indicative of (a) a bad mechanism, (b) failure to appropriately characterize optimal mecha-
nisms, or (c) an imposition of incompatible modeling assumptions or constraints. However,
super-constant lower-bounds for approximation are, as mentioned before, useful for identi-
fying modeling parameters that are not details.

Our conclusion form the above discussion is that constant approximations, e.g., two,
are the “sweet spot” where mechanisms are performing fairly well and giving good insight.
Nonetheless, if you were approached by a seller (henceforth: principal) to design a mech-
anism and you returned to triumphantly reveal an elegant mechanism that gives them a
2-approximation to their profit, you would probably find them a bit discouraged. After all,
your mechanism leaves have of their profit on the table.

In light of this critique we review the main points of constant, e.g., two, approximations.
First, a 2-approximation provides informative conclusions that can guide the design of better
mechanisms for specific settings. Second, the approximation factor of two is a theoretical
result that holds in a large set of settings, in specific settings the mechanism may perform
better. It is easy, via simulation to evaluate the mechanism performance on specific settings
to see how close to optimal it actually is. Third, in many environments the optimal mech-
anism is not understood at all, meaning the principals alternative to your 2-approximation
is an ad hoc mechanism with no performance guarantee. This principal is of course free to
simulate your mechanism and their mechanism in their given setting and decide to use the
better of the two. In this fashion the principal’s ad hoc mechanism, if used, is provably a
2-approximation as well. Fourth, mechanisms that are 2-approximations in theory arise in
practice. In fact, that it is a 2-approximation explains why the mechanism arises. Even
though it is not optimal, it is close enough. If was far from being optimal the principal
(hopefully) would have figured this out and adopted a different approach.

Finally, suppose the principal was worried about collusion, risk attitudes, after-market
effects, or other economic phenomena that are usually not included in standard ideal mod-
els for mechanism design. One option would be to explicitly model these effects and study
optimal mechanisms in the augmented model. These complicated models are difficult to an-
alyze and optimal mechanisms may be overly influenced by insignificant-seeming modeling
choices. Optimal mechanisms are precisely tuned to details in the model and these details
may drive the form of the optimal mechanism. On the other hand, we can consider constant
approximations that are robust to various out-of-model phenomena. In such an environment
the comparison between the approximation and the optimal mechanism is unfair because the
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optimal mechanism may suffer from out-of-model phenomena that the approximation is ro-
bust to. In fact, this “optimal mechanism” may perform much worse than our approximation
when the phenomena are explicitly modeled. For example, the posted pricings that we show
are approximately optimal are robust to timing effects and for this reason an online auction
house such eBay may want to sellers to switch from auctions to “buy it now” pricings, see,
e.g., Wang et al. (2008) and Reynolds and Wooders (2009).

Finally, there is an issue of non-robustness that is inherent in any optimization over a
complex set of objects, such as mechanisms. Suppose the designer does not know the setting
exactly but can learn about it through, e.g., market analysis. Such a market analysis is
certainly going to be noisy and then exactly optimizing a mechanism to it may “over fit” to
this noise. Both statistics and machine learning theory have techniques for addressing this
sort of overfitting. Approximation mechanisms also provide such a robustness. Since the
class of approximation mechanisms is restricted from the full set, for these mechanisms to
be good, they must pay less attention to details such as sampling noise.

In our study of mechanism design, we will search for positive results, a.k.a., upper-bounds,
which will be in the form of a constant approximation. Where we fail to find positive results,
we will search for negative results, a.k.a., lower bounds, in the form of an impossibility of
constant approximation.

4 General Environments for Mechanism Design

We will be considering mechanism design questions in independent private value environ-
ments with quasi-linear agent preferences. In these environments an agent’s preference is
given by a valuation function over outcomes and their objective is to maximize their utility
which is defined to be the difference between the expected value they derive for the outcome
of the mechanism and the expected price they are charged.

It is assumed that the distribution over agent preferences is common knowledge; however,
all of the mechanisms we discuss are ex post incentive compatible, i.e., truthful reporting is a
(weakly) dominant strategy. Nonetheless, the mechanisms we give achieve their guarantees
relative to optimal mechanisms in Bayes-Nash equilibrium.

One of the most interesting and important distinctions between environments for mech-
anism design is between ones with single-dimensional preferences and multi-dimensional
preferences. We will consider single-dimensional environments where each agent’s private
preference is given by a single numeric value for an abstract service. The agent obtains this
value from all outcomes in which they receive the service and they have value zero for all
other outcomes. Multi-dimensional environments are more general. In the multi-dimensional
environments we consider, an agent has distinct private value for any of several abstract ser-
vices. Much of our focus will be on unit-demand environments, i.e., where each agent desires
at most one of these services.

The agents’ preferences will drawn from a distribution. We will consider both i.i.d. en-
vironments and non-identical environments, but not general correlated environments. We
also allow the environment to impose constraints on the distribution as, e.g., the monotone
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hazard rate condition, or Myerson’s (1981) regularity condition. Within any environment
we will refer to the specific distribution as the setting.

The environment also specifies any feasibility constraints that the designer may face. For
instance, in single-item environments at most one agent can be served, in k-unit environments
at most k agents can be served, in digital good environments any subset of agents can be
served.

In general we can talk about environments where the designer incurs a cost for serving
the agents that is an arbitrary function of the set of agents served. We refer to these
environments as general cost environments. A special case are those where the costs are
zero or infinity denoting feasible and infeasible outcomes, respectively. We refer to these as
general feasibility environments.

An important subclass of general feasibility environments are those with a natural downward-
closure property, i.e., where subset of a feasible set is feasible. An example of a downward-
closed environment is that of combinatorial auctions: given any feasible allocation of items
any subset of this allocation is feasible. An example of a non-downward-closed environment
is that of (non-excludable) public good provisioning, where either no agents are served or all
agents are served.

A important special case of downward-closed environments has the feasible sets given by
the independent sets of a matroid set system. These matroid environments generalize multi-
unit auction environments and include some relevant matching problems. Many mechanism
design results for multi-unit environments extend to matroid environments, and further-
more matroid environments are often the extent of their generality. For the purpose of our
discussion: matroid environments are ones where ordinal optimization suffices, i.e., exact
magnitudes of values are unnecessary for optimization.

In all of the environments above, for the objective of social surplus maximization, i.e.,
maximizing the sum of the values of agents served (less any service cost), the Vickrey-
Clarke-Groves (VCG) mechanism is optimal and ex post incentive compatible (Vickrey,
1961; Clarke, 1971; Groves, 1973). In single-item environments VCG is precisely the Vickrey
(a.k.a. second-price) auction and we will refer to it as such. In k-unit environments VCG is
the k-Vickrey auction, i.e., it sells to the highest k bidders at the k + 1st highest bid value.

Throughout the rest of the paper we will consider the objective of maximizing the de-
signers profit, i.e., the sum of the agent payments less any service costs.

5 Single-dimensional Environments

We start our exploration of approximation in mechanism design with environments where
each agent’s private preference is single dimensional, i.e., the agent has a single private value
for an abstract service. The most fundamental example of such environment is that of a
single-item auction.
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5.1 Optimal Mechanisms

We briefly review optimal mechanism design in single-dimensional environments as developed
by Myerson (1981) and Riley and Samuelson (1981), and further refined by Bulow and
Roberts (1989).

Each agent i is a risk-neutral quasi-linear utility maximizers with value vi for service
drawn independently from distribution Fi. Considering just this single agent, an important
quantity is the revenue curve, Ri(q), which is the revenue one can obtain from the agent as
a function of the ex ante probability with which the agent is served. Notice, if we offered
the agent a price p they should accept with probability 1 − Fi(p) and our expected revenue
is p × (1 − Fi(p)). Expressing this revenue as a function of probability instead of price, we
get Ri(q) = F−1

i (1 − q) × q.
Economic intuition suggests that maximizing profit is equivalent to maximizing marginal

revenue. Indeed, for mechanism design this result can be derived. Given a revenue curve
R(q) denote its derivative with respect to q as R′(q). We summarize with a definition and a
theorem.

Definition 5.1 The virtual valuation of agent i is φi(vi) = R′
i(1 − Fi(vi)).

1 The virtual
surplus of a mechanism is the sum of the virtual values of the agents served less any service
costs.

Theorem 5.1 (e.g., Myerson, 1981) In Bayes-Nash equilibrium, the expected profit of
any mechanism in is equal to its expected virtual surplus.

Simple intuition suggests that in single-dimensional environments the interim probability
to which any agent is served must be monotone non-decreasing in the value of the agent.
Otherwise, an agent with a high value could improve their payoff by simulating the strategy
of a lower-valued agent. Such monotonicity is in fact a well known characterization.

Theorem 5.2 (e.g., Myerson, 1981) An interim allocation rule can be (weakly) imple-
mented in Bayes-Nash equilibrium (i.e., with an appropriate payment rule) if and only if it
is monotone non-decreasing.

The two theorems above narrow the question of optimal mechanism design to finding one
that maximizes virtual surplus subject to monotonicity. A standard approach to this sort
of questions is to ignore monotonicity and optimize the objective virtual surplus and hope
that the resultant allocation rule satisfies monotonicity anyway.

Consider a single-item auction. Maximizing virtual surplus is identical to serving the
agent with the highest positive virtual value. If the virtual valuation functions are monotone
non-decreasing then such an allocation rule monotone: as an agent increases their value,
their virtual value does not decrease and therefore, if they were being served with the lower
value, they are certainly also served with the higher value. Virtual valuation functions are

1This is identical to the more typical formulation, e.g., by Myerson (1981), of φi(vi) = vi −
1−Fi(vi)

fi(vi)
.

11



monotone if and only if the revenue curve is concave, and, thus, the optimal mechanism is
identified.

Definition 5.2 A distribution F is regular if its associated revenue curve R(·) is concave.
An environment is regular if all distributions are regular.

Theorem 5.3 (e.g., Myerson, 1981) For regular, single-item environments, the optimal
auction allocates the item to the agent with the highest positive virtual value.

In the special case where the values of the agents are identically distributed, i.e., according
to F ; the virtual valuation functions are identical, i.e., φ(·); and the agent with the highest
virtual value is simply the agent with the highest value. This agent has a positive virtual value
if their value is at least the inverse virtual value of zero, i.e., φ−1(0). The Vickrey auction
with reserve price φ−1(0) obtains this outcome in equilibrium and therefore it is optimal.
Also notice that φ−1(0) is exactly the value for which the revenue curve is maximized, i.e.,
the price a monopolist would charge a single agent with value drawn from the distribution.

Definition 5.3 The monopoly price for a distribution F is φ−1(0).

Corollary 5.4 (e.g., Myerson, 1981) For i.i.d., regular, and single-item environments,
the Vickrey auction with monopoly reserve price φ−1(0) is optimal.

For irregular environments optimizing virtual surplus does not lead to a monotone allo-
cation rule. We skip a detailed derivation of the optimal mechanism in this case and just
state it.

Definition 5.4 The ironed revenue curve, R̄(·), is the concave hull of the revenue curve,
R(·). The ironed virtual valuation function φ̄(v) = R̄′(1 − F (v)) is the derivative of the
ironed revenue curve. The ironed virtual surplus is the virtual surplus of the agents served
less any service cost.

Ironed virtual values are monotone non-decreasing. Therefore optimizing ironed virtual
surplus results in a monotone allocation rule.

Theorem 5.5 (e.g., Myerson, 1981) In (possibly non-identical and irregular) single-item
environments, the optimal mechanism serves the agent with the highest positive virtual value.

5.2 Conclusions and Extensions

The characterization of optimal mechanisms in single-dimensional environments as ironed
virtual surplus optimizers is quite general.

Theorem 5.6 In any single-dimensional, general costs environment, the optimal mechanism
serves the agents with the maximum ironed virtual surplus.
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Maximizing ironed virtual surplus leads to a reserve pricing mechanism for independent,
regular, matroid environments. Recall that matroid environments are ones were optimization
is ordinal, i.e., based on the relative order of values and not their exact magnitudes. For
regular distributions virtual values are in the same order as values, so the optimal mechanism
is VCG with the monopoly reserve price.

Corollary 5.7 For i.i.d., regular, and matroid environments, the VCG mechanism with
monopoly reserve price φ−1(0) is optimal.

When the distributions of the agents are not identically distributed or irregular, or the set
system is not a matroid (e.g., combinatorial auctions), then reserve-price based mechanisms
are not optimal. Instead the optimal auction depends on the exact form of the distributions.
While many standard distributions are regular, e.g., uniform, normal, and exponential; many
realistic environments are not, e.g., bimodal. Many realistic distributions are non-identical,
for instance in eBay buyers have distinct user feedback ratings, and a seller could potentially
use these ratings to discriminate. Finally, many important environments for mechanism
design are not matroids. Therefore, we should expect the reserve price based mechanisms to
be relatively rare.

On the contrary, reserve-price-based mechanism are widely prevalent; eBay, for instance,
is a reserve-price based mechanism. The above theory of optimal auctions does not in itself
justify such a wide prevalence; importantly, it does not justify their usage in environments
where distributions are irregular or non-identical, or in non-matroid environments. Certainly
there are numerous reasons these optimal mechanisms are not used. One reason may be that
they are too complicated to be practical.

5.3 Approximation

One of the most intriguing conclusions from the preceding subsection is that for i.i.d. regular
distributions the optimal single-item auction is the second-price auction with a reservation
price. This result is compelling as the solution it proposes is quite simple; therefore, making
it easy to prescribe. Furthermore, reserve-price-based auctions are often employed in practice
so this theory of optimal auctions is also descriptive. Unfortunately, i.i.d., regular, single-
item (or more generally: matroid) environments are hardly representative of the scenarios
in which we would like to design good mechanisms. Furthermore, if any of the assumptions
are relaxed, reserve-price-based mechanisms are not optimal.

In this section we address this deficiency by showing that while reserve-price-based mech-
anisms are not optimal, they are approximately optimal in a wide range of environments.
These approximately optimal mechanisms are more robust, less dependent on the details
of the setting, and provide conceptual understanding that their optimal counterparts do
not. They are 2-approximations under worst-case distributional settings. Of course, in any
particular setting they may perform better than their worst-case guarantee.
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5.3.1 Single-item Auctions

We start with single-item auctions and show that the second-price auction with suitably cho-
sen reserve prices is always a good approximation to the optimal mechanism. The mechanism
is the following and is parameterized by agent-specific reserve prices r = (r1, . . . , rn).

Definition 5.5 The Vickrey auction with reserves r, Vicr is:

1. reject each agent i with vi < ri,

2. allocate the item to the highest valued agent remaining (or none if none exists), and

3. charge the winner their “critical price”.

Our goal in single-item auctions is to select the winner with the highest (positive) ironed
virtual value. To do this we draw a connection between the auction problem and the gam-
bler’s problem in Section 2. Note that the gambler’s problem in prize space is similar to the
auctioneer’s problem in ironed-virtual-value space. The gambler aims to maximize expected
prize while the auctioneer aims to maximize expected virtual value. A constant threshold in
the gambler in prize space corresponds to a constant ironed virtual price in ironed-virtual-
value space. This suggests strongly that constant ironed virtual prices would make good
reserve prices in the second-price auction.

Definition 5.6 A constant ironed virtual price is p = (p1, . . . , pn) such that φ̄i(pi) = φ̄i′(pi′)
for all i and i′.

Now compare the second-price auction with a constant ironed virtual reserve price with
the gambler’s threshold strategy. The difference is the tie-breaking rule. The second-price
auction breaks ties by value whereas the gambler’s threshold strategy breaks ties by the or-
dering assumption on the games (i.e., lexicographically). Recall though that the tie-breaking
rule was irrelevant for our analysis of the prophet inequality. We conclude the following the-
orem and corollary where, as in the prophet inequality, the constant virtual price is selected
so that the probability that the item remains unsold is about 1/2.

Theorem 5.8 (Chawla et al., 2010a) In (possibly non-identical and irregular) single-item
environments, the Vickrey auction with a constant ironed virtual reserve price is a 2-approximation
to the optimal revenue.

Corollary 5.9 In (possibly irregular) i.i.d. single-item environments, the Vickrey auction
with an anonymous reserve is a 2-approximation to the optimal revenue.

It should be clear that what is driving this result is the specific choice of reserve prices and
not explicit competition in the auction. So instead of running an auction imagine the agents
arrived in any, perhaps worst-case, order and we made each in turn a take-it-or-leave-it offer
of their reserve price? Such a posted pricing mechanism is certainly also a 2-approximation.
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Theorem 5.10 (Chawla et al., 2010a) In (possibly non-identical and irregular) single-
item environments, a posted pricing with constant ironed virtual prices is a 2-approximation
to the optimal revenue.

5.3.2 Anonymous Reserves

The reserve prices discussed thus far, except for the i.i.d. regular case where the monopoly
reserve price is optimal and the i.i.d. irregular case where an anonymous reserve price is a
2-approximation, have been non-anonymous. Different agents face different reserve prices.
The question of whether anonymous reserve prices with the Vickrey auction are good approx-
imations in non-identical environments is natural and important. Specifically, anonymous
reserve prices are often used in asymmetric environments; can we justify this observation
with approximation.

For instance, the eBay auction is essentially a second-price auction with an anonymous
reserve. Of course, the buyers are not identical. Some buyers have higher ratings and these
ratings are public knowledge. The distributions values of agents with different ratings may
generally be distinct. Therefore, the eBay auction may be suboptimal. Surely though, if the
eBay auction was very far from optimal, eBay may have switched to a better auction. The
theorem below justifies eBay sticking with the second-price auction with anonymous reserve.

Theorem 5.11 (Hartline and Roughgarden, 2009) In (possibly non-identical) regular
single-item environments, the second price auction with an anonymous reserve is a 4-approximation
to the optimal revenue.

The proof of this theorem is a non-trivial extension of basic prophet inequality proof that
we do not give here. It should be noted that the proof does not make use of competition
between agents, i.e., the tie-breaking rule. Therefore, an anonymous price that satisfies the
conditions of the theorem is the monopoly price for the distribution of the maximum value.
Finally, the bound given in this theorem is not known to be tight. The two agent example
with F1, a point mass at 1, and F2, the equal-revenue distribution (i.e., F2(z) = 1 − 1/z),
shows that the worst-case distributional setting has approximation factor at least 2.

5.3.3 Regular Distributions

Recall that for i.i.d. regular distributions the optimal reserve price is the monopoly price.
This reserve price is fairly easy to determine. For the environments considered thus far
the suggested reserve prices were not the monopoly price. Furthermore, the calculation
of reserve prices were interdependent. They depended on the number of agents and the
specific distributions of all agents. It turns out that for (non-identical) regular environments
monopoly reserve prices also give a 2-approximation.

Recall that in non-identical environments the optimal auction is not a reserve-price-based
mechanism. The optimal auction carefully optimizes agents’ virtual values at all points of
their respective distributions, whereas the Vickrey auction with reserves monopoly only
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considers the inverse virtual values of zero. While the reserve-pricing revenue is suboptimal,
the following theorem shows that its expected revenue is never too far from the optimal.

Theorem 5.12 (Hartline and Roughgarden, 2009) In (non-identical) regular single-item
environments, the second-price auction with monopoly reserves gives a 2-approximation to
the optimal revenue.

Before giving the proof of this theorem consider the following intuition. The optimal
auction, OPT, and Vickrey with monopoly reserves, Vicm, either have the same winner or
different winners. If they have the same winner then they have the same virtual surplus.
If they have different winners then winner in OPT is not the agent with the highest value.
Of course OPT’s winner can pay at most their value, but Vicm’s winner pays at least the
second highest value which is at least the value of OPT’s winner. Therefore, in this case
the payment in Vicm is higher than the payment of OPT. An important observation that
is glossed over in this informal argument but necessary for a formal proof is that for regular
distributions Vicm never sells to an agent with negative virtual value.

Proof: (of theorem) Let I be the winner of OPT and J be the winner of Vicm. I and J are
random variables. Notice OPT and Vicm both do not sell the item if and only if all virtual
values are negative. In this situation define I = J = 0.

We start by simply writing out the expected revenue of OPT as its expected virtual
surplus conditioned on I = J and I 6= J .

E[OPT] = E[φI(vI) | I = J ]Pr[I = J ] + E[φI(vI) | I 6= J ]Pr[I 6= J ] .

We will prove the theorem by showing that both the terms on the right-hand side are bounded
from above by E[Vicm].

E[φI(vI) | I = J ]Pr[I = J ] = E[φJ(vJ) | I = J ]Pr[I = J ]

≤ E[φJ(vJ) | I = J ]Pr[I = J ] + E[φJ(vJ) | I 6= J ]Pr[I 6= J ]

= E[Vicm]

The inequality in the above calculation follows because regularity of the distribution implies
that the virtual value of the winner of Vicm is always non-negative. Therefore, this added
term is non-negative.

E[φI(vI) | I 6= J ]Pr[I 6= J ] ≤ E[vI | I 6= J ]Pr[I 6= J ]

≤ E[pJ | I 6= J ]Pr[I 6= J ]

≤ E[pJ | I 6= J ]Pr[I 6= J ] + E[pJ | I = J ]Pr[I = J ]

= E[Vicm]

The first inequality in the above calculation follows because φi(vi) = vi −
1−Fi(vi)

fi(vi)
≤ vi (since

1−Fi(vi)
fi(vi)

is always non-negative). The second inequality follows because J is the highest valued
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agent and I is a lower valued agent and therefore, J ’s price is at least I’s value. The third
inequality follows because payments are non-negative so the term added is non-negative. 2

This 2-approximation theorem is tight in two senses. First, there is a non-identical regular
distribution such that the Vickrey auction with monopoly reserves is a 2-approximation.
Second, Vickrey with monopoly reserves is not a 2-approximation for irregular distributions,
even i.i.d. irregular distributions. See Hartline and Roughgarden (2009) for these examples.

5.4 Extensions and Conclusions

Monopoly reserve prices provide good approximations more generally than single-item envi-
ronments. In particular Hartline and Roughgarden (2009) show that the VCG mechanism
with monopoly reserves gives a 2-approximation for (a) regular, non-identical, matroid envi-
ronments and (b) monotone-hazard-rate, non-identical, downward-closed environments. A
downward-closed environment is one where any subset of a feasible set is also feasible. Ex-
amples include single-minded combinatorial auctions, e.g., from Lehmann et al. (1999); and
do not include (non-excludable) public good environments.

In irregular, matroid environments (and some generalizations), posted pricings provide
good approximations to the optimal mechanism (Chawla et al., 2010a). Furthermore, posted
pricing mechanisms are not susceptible to collusion. This makes posted pricing mechanisms
incredibly robust. This robustness may compensate for their non-optimality and justify their
wide prevalence in practice. Most resource allocation is done via posted prices. Even eBay,
the popular online auction site, is shifting from an auction-based platform a posted-price
platform. Part of the reason for this shift is posted pricings do not require all agents to be
present at once; instead, agents can arrive and depart as they wish. The revenue guarantees
of posted pricings are robust to any exogenous or endogenous ordering on the agents.

These results on approximating optimal mechanisms with reserve prices all rely on the
precise understanding we have from optimal mechanism design that shows that optimal
mechanisms are virtual surplus maximizers. Essentially all that needs to be done is show
that a reserve-price-based mechanism is a virtual surplus approximator. For all of the positive
results we have described, this task is greatly simplified by the downward-closure property.
In particular, in a downward-closed environment there is never need to serve an agent with
negative virtual value. As any subset of a feasible set is feasible, these agents can be ignored;
i.e., reserve prices can always be at least the monopoly price. One of the biggest challenges
in extending this work to non-downward-closed environments like public good problems is
that in these environments optimal mechanisms do serve agents with negative virtual values.
Approximation in environments were the objective contains sums of positive and negative
numbers is analytically challenging when not impossible.

6 Multi-dimensional Environments

We now turn to environments where the agents’ preferences are multi-dimensional. E.g., in
a home buyer may have a distinct value for different houses on the market; an Internet user
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may have distinct values for various qualities of service; an advertiser on an Internet search
engine may value traffic for search phrase “mortgage” higher than that for “loan”, etc.

For the objective of profit, there are no general descriptions of optimal mechanisms for
environments with multi-dimensional agents. Essentially, mechanisms for multi-dimensional
environments are complex and optimizing over them does not yield concise or intuitive
descriptions, nor does it yield practical mechanisms. In this section we will explore approxi-
mation for the objective of profit maximization. In particular, we will show that both VCG
with reserve prices and posted-pricing mechanisms can approximate the optimal mechanism.
Furthermore, the prices in these mechanisms can be easily calculated.

We will use as a running example in this chapter the multi-item environments. In a
multi-item environment there are n agents and m items (e.g., houses). Each agent i has a
value vij for house j. The agents are unit-demand, i.e., each wants at most one house, and
the houses are unit-supply, i.e., each can be sold to at most one agents. Agent values are
drawn independently at random, e.g., with vij ∼ Fij .

6.1 Item Pricing

We start with the special case of the matching markets where there is only one agent, i.e.,
n = 1. In this environment an important optimization question is in identifying revenue
optimal pricings. I.e., a pricing p = (p1, . . . , pm) such that when the agent buys the item
that generates the highest positive utility, i.e., the j that maximizes vj − pj, the revenue of
the seller is maximized.

Unfortunately, there is no concise understanding of optimal pricings and their revenue.
Therefore, in pursuit of goal approximately optimal pricings, the first hurdle is in finding
concise understanding of an upper bound on the revenue of an optimal pricing. Then, if a
pricing approximates this upper bound, it also approximates the optimal pricing.

The main idea in obtaining an upper bound is from the thought experiment where we
imagine that instead of one agent with unit-demand preferences over the m items that we
have m (single-dimensional) agents who each want their specific item, but with the constraint
that at most one can be served. In this latter environment the optimal selling mechanism
would be the optimal single-item auction discussed in Section 5. Notice that where in
the pricing problem the seller can only post a price on each item, in the auction problem,
competition between agents can drive the price up. Therefore, intuition suggests that the
revenue in the (single-dimensional) auction environment may be an upper bound on the
revenue in the (multi-dimensional) pricing environment. This is indeed the case.

Theorem 6.1 (Chawla et al., 2007) For any product distribution F = F1 ×· · ·×Fm, the
expected revenue of the optimal single-agent, m-item pricing when the agent’s values for the
items are drawn from F is at most that of the optimal single-item, m-agent auction with
each agents’ value for the item drawn from F.

Proof: Any item pricing p can be converted into a single-item auction Mp such that the
expected revenue from the item pricing is at most that of the auction. For convenience define
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v0 = p0 representing the value the seller receives for keeping the item (which is of course at
price zero). The auction Mp assigns the item to the agent j that maximizes vj −pj . For any
fixed values of the other agents, v−j , this allocation rule is monotone in agent j’s value and
therefore ex post incentive compatible. It is also deterministic, so there is a critical value tj
for agent j which is the infimum of values for which the agent wins the auction; the agent
pays exactly this critical value on winning. Of course tj ≥ pj .

Now notice that the allocation rule of the auction Mp is identical to the allocation rule
of the pricing p. For the pricing the agent chooses the item that maximizes vj − pj; for the
auction the winner is selected to maximize vj − pj . Furthermore, the revenue for the pricing
is exactly the pj that corresponds to this j whereas in the auction it is tj which, as discussed,
is at least pj . Therefore, the auction Mp obtains at least revenue of the pricing p.

Therefore, the optimal auction obtains at least the revenue of the optimal pricing. 2

With the upper bound from optimal single-item auctions in hand, our goal of approxi-
mating the optimal pricing can be refined to approximating this optimal single-item auction
revenue. We already saw how the prophet inequality theorem implied that the Vickrey auc-
tion with constant ironed virtual reserve prices (Theorem 5.8) is a 2-approximation. The
same argument applies here to show that the same constant ironed virtual pricing, used as
an item pricing, gives a 2-approximation to the optimal single-item auction revenue. The
only difference in the argument is the tie-breaking rule which in item-pricing is by “vi − pi”
instead of by “vi” as in Theorem 5.8; of course the profit inequality is invariant on the
tie-breaking rule.

Theorem 6.2 (Chawla et al., 2010a) In (possibly non-identical and irregular) multi-item
environments, an item pricing with constant ironed virtual reserve price is a 2-approximation
to the optimal revenue.

For single-agent environments item pricings are equivalent to deterministic mechanisms.
Therefore, an approximation to the optimal pricing revenue is equivalently an approximation
of the optimal deterministic mechanism.

6.2 Reduction: Unit-demand to Single-dimensional Preferences

It should be noted that the construction in the preceding section can be viewed as a reduction
from a multi-dimensional unit-demand environment to a single-dimensional environment. We
can conclude that from the perspective of approximation, the multi-dimensional unit-demand
preferences are similar enough to single-dimensional preferences that a good approach to unit-
demand environments is in simulating the outcome of the corresponding single-dimensional
environment. We now make that connection and the reduction precise. (Crucial to this
connection is the independence of the agents’ values.)

Formally, consider the following general unit-demand environment. There are n agents
and m services each agent i has value vij for service j. An outcome is a matching of agents
to service (perhaps with some agents and some services left unmatched). We will denote
this matching by the indicator x with xij = 1 if i receives service j and 0 otherwise. There
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is an arbitrary feasibility constraint over such matchings which we denote, as before, with a
cost function c(·) which is zero or infinity for feasibility problems. We assume, without loss
of generality, the implicit feasibility constraint that each agent can only receive one service,
i.e., x such that xij = xi′j = 1 for i 6= i′ have c(x) = ∞.

A unit-demand environment is thus specified by the product distribution F indexed by
agent-service pairs and the cost function c(·) over outcomes x, also indexed by agent-item
pairs.

6.2.1 Single-dimensional Analogy

As in the pricing environment we can define the single-dimensional analog to any unit-
demand environment where each unit-demand agent is replaced with single-dimensional rep-
resentatives. Notice that in the single-dimensional analog the implicit feasibility constraint
that a unit-demand agent can receive at most one service is translated to the constraint that
only one of its representatives can be served at once.

Definition 6.1 The representative environment for the n agent, m service unit-demand
environment given by F and c(·) is the nm agent single-dimensional environment given by
F, c(·), and single-dimensional agents indexed by coordinates ij.

6.2.2 Upper bound

The restriction that only one representative of each unit-demand can be served at once
induces competition between representatives. Intuitively this competition should result in
an increased revenue in the optimal mechanism for the representative environment over the
original unit-demand environment. In fact it is almost the case. The optimal mechanism for
the representative environment (which is deterministic) is an upper bound on the optimal
deterministic mechanism for the original (unit-demand) environment.

Theorem 6.3 (Chawla et al., 2010a) In any unit-demand environment the optimal de-
terministic mechanism’s revenue is at most that of the optimal mechanism for the single-
dimensional representative environment.

The proof of the above theorem follows from similar principles to the proof of Theo-
rem 6.1.

6.2.3 Reduction

We now show that multi-dimensional unit-demand approximation can be reduced to a single-
dimensional approximation problem. The techniques from Section 5 then can be applied to
solve the single-dimensional agent approximation problem.

Extend the definition of sequential posted pricings to unit-demand environments with
multiple agents (i.e., to generalize item prices). A sequential posted pricing is given by
prices p with pij the price offered to agent i for service j. After the valuations are realized,
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the agents arrive in sequence and take their utility maximizing service that is still feasible,
given the actions of preceding agents in the sequence. The revenue of such a process clearly
depends on the sequence and we pessimistically assume the worst-case.

Definition 6.2 A sequential posted pricing is an pricing of services (specialized) for each
agent with the semantics that agents arrive in any order and take their favorite service that
remains feasible. The revenue of such a pricing is given by the worst-case ordering.

Consider the sequential posted pricing problem in both the original unit-demand envi-
ronment and the representative single-dimensional environment. Suppose you had the choice
of being the seller in one of these two environments, given the same distribution and costs,
which environment would you choose? I.e., which environment gives a higher expected rev-
enue? Whereas when considering auction problems, you would prefer the representative
environment because of the increased competition, for sequential posted pricings there is
no benefit from competition. In fact, the seller in the representative environment is at a
disadvantage because the agents are in a worst case order and there are more possible or-
derings of the agents in the nm-agent representative environment than the n-agent original
environment.

Theorem 6.4 (Chawla et al., 2010a) The expected revenue of a sequential posted pricing
for unit-demand environments is at least the expected revenue of the same pricing in the
representative single-dimensional environment.

Proof: Compare sequential posted pricings for unit-demand environments (i.e., with n
unit-demand agents) with sequential posted pricings for their representative environments
(i.e., with nm single-dimensional agents). The difference between these two environments
with respect to sequential posted pricings is that in the representative environment the nm
agents can arrive in any order whereas in the original environment the an agent arrives and
considers the prices on services ordered by utility. Thus, the set of orders in which the
nm prices are considered in the representative environment contains the set of orders in
the original environment. For worst-case sequences, then, the representative environment is
worse. 2

Corollary 6.5 (Chawla et al., 2010a) If a sequential posted pricing is approximately op-
timal in the representative (single-dimensional) environment it is approximately optimal in
the original (unit-demand) environment.

6.2.4 Instantiation

It remains to instantiate the reduction from sequential posted pricing approximation in unit-
demand environments to single-dimensional environments. I.e., we need to show that there
are good sequential posted pricing mechanisms for single-dimensional environments. Here
we will give such an instantiation for multi-item environments, i.e., where the services are
items, and each item has only one unit of supply.
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The representative environment for unit-demand multi-item environments is one where
there are nm agents each agent ij with value vij ∼ Fij desires item j. For any original agent
i and all j at most one representative ij can win. For any item j and all i at most one
representative ij can win. The optimal mechanism for this environment is just to choose the
matching that maximizes virtual surplus; denote this mechanism by OPT

Let qOPT
ij be the probability that OPT serves representative ij. Let pOPT

ij = F−1
ij (1−qOPT

ij )
be the corresponding price at which, if posted to representative ij, would be accepted with
probability qOPT

ij . Now consider the pricing pij = F−1
ij (1 − qij) for qij = qOPT

ij /2. These
probabilities and prices can be calculated, for instance, by simulating the optimal mechanism.

Definition 6.3 The simulation prices, p, are the pij = F−1
ij (1 − 1

2
Pr[OPT serves ij]).

We claim that sequential posted pricing with the simulation prices give an 8-approximation
to the optimal mechanism’s revenue. The theorem is proven in two steps, the first gets an
upper bound on the revenue of the optimal mechanism in terms of the above prices and
probability, the second gets a lower bound on the sequential pricing revenue in terms of the
same. These steps are given by the lemmas below.

Theorem 6.6 (Chawla et al., 2010a) For regular distributions in the representative match-
ing market environment, the sequential posted pricing with the simulation prices p is an
8-approximation to the revenue of the optimal mechanism.

This theorem instantiates of the reduction for unit-demand multi-item environments.
Similar instantiations can be proven for generalizations including in environments with fea-
sibility structure induced by matroid set systems. Sequential posted pricings are not good
approximations in more general downward-closed environments.

Lemma 6.7 For regular distributions, the expected revenue of the optimal mechanism, OPT,
is at most

∑

ij pOPT
ij qOPT

ij .

Proof: The proof of this lemma follows from a standard approach. Consider an “un-
constrained” mechanism that allocates to each representative ij with probability at most
qOPT
ij but is not constrained by the original feasibility constraints, i.e., that only one repre-

sentative ij of each agent i is served and that each item j is only allocated to at most on
representative ij. In such an unconstrained environment the agents do not interact at all.
Furthermore, by regularity and the fact that the original pOPT

ij are at least the monopoly
price, the optimal unconstrained mechanism simply posts price pOPT

ij to each representative
ij. Its expected revenue is

∑

ij pOPT
ij qOPT

ij . Finally, OPT, the optimal mechanism for the
constrained environment, is a valid solution to the unconstrained environment, therefore the
optimal unconstrained mechanism revenue gives an upper bound on its revenue. 2

Lemma 6.8 For regular distributions, the expected revenue from the sequential posted pric-
ing of the simulation prices is at least 1

8

∑

ij pOPT
ij qOPT

ij .
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Proof: If the sequential posted pricing is able to make an offer to agent ij then the
expected revenue is qijpij ≥ qOPT

ij pOPT
ij /2. This inequality follows because the qij = qOPT

ij /2
and pij ≥ pOPT

ij (since prices only increase with a lower selling probability). We now show that
the probability that the sequential posted pricing is able to make the offer to representative ij
is at least 1/4. As a consequence the expected revenue from representative ij is qOPT

ij pOPT
ij /8;

and summing over all representatives ij gives the lemma.
To show that the probability that it is feasible to offer service to representative ij is at

least 1/4, consider the worst-case ordering for this probability, i.e., where representative ij
is last. Representative ij can be served if for all j′ 6= j representatives j′i are not served, and
for all i′ 6= i representatives i′j are not served. The first event certainly happens if vi′j < pi′j

for all i′ 6= i and the second if vij′ < pij′ for all j′ 6= j. Each happens with probability at
most 1/2 because

∑

j′ qij′ ≤ 1/2 since the optimal mechanism allocates to one of these ij′

representatives with probability at most one (by the feasibility constraint). Since the above
events are independent the probability that both occur is the product of the probability that
each occurs which is, therefore, at least 1/4. 2

6.3 Extensions and Conclusions

One of the difficulties of multi-dimensional preferences over single-dimensional preferences is
that for multi-dimensional preferences optimal mechanisms are not necessarily deterministic.
I.e., it can be optimal for an agent to receive a probability distribution over outcomes. In
the single-agent case we refer to such a randomized mechanism as a lottery pricing.

An interesting question is in quantifying the relative difference between optimal ran-
domized mechanisms and optimal deterministic mechanism. Essentially, are deterministic
mechanisms good approximations to randomized mechanisms? It turns out the answer to
this question is quite different in environments when an agent’s preferences over distinct ser-
vices are independent or correlated. For general correlations, deterministic mechanisms do
not approximate randomized mechanisms to any factor (Briest et al., 2010); for product dis-
tributions in many unit-demand environments, including multi-item auctions, deterministic
mechanisms give are constant approximations (Chawla et al., 2010b). Therefore, for product
distribution environment, the results discussed above imply that posted pricing mechanisms
approximate the optimal (possibly randomized) mechanism.

The biggest direction for future study in approximation in multi-dimensional environ-
ments is in moving beyond unit-demand, product-distribution environments. The most nat-
ural next step would be to address additive valuations, e.g., where the value an agent derives
for a bundle of services is the sum of their values for each service in the bundle. For these
environments (Armstrong, 1996) shows that pricing the grand bundle is approximately op-
timal in the limit were the sum of the agents independent random values are concentrated.
The direction we pose here is to understand bundle pricings before the limiting behavior
takes effect.
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7 Prior-independent Environments

In this section we consider approximation in environments where designer does not know the
prior distribution. For reasons to be enumerated below, we will be proposing approximation
mechanisms that are ex post incentive compatible, meaning, the agents do not need to
know the prior distribution either. A good mechanism is then one that, for every possible
distribution over values, obtains a good approximation to the optimal mechanism for that
distribution.

7.1 Motivation

Consider from where the designer may have learned the prior-distribution. There are two
most logical candidates. The first is, as alluded to above, is from the designer’s history in
interacting with these or similar agents. The problem with this point of view is that the
earlier agents may strategize so that information about their preferences is not exploited by
the designer later. In fact, if a monopolist cannot commit not exploit the agents using infor-
mation from prior interaction then the socially efficient (i.e., surplus maximizing) outcome
is the only equilibrium, e.g., via the Coase Conjecture.

The second candidate is market analysis. The designer can hire a marketing firm to
survey the market and provide distributional estimates of agent preferences. This mode of
operation is quite reasonable in large markets. However, in large markets each agent will have
little impact and usually this enables asymptotically optimal mechanisms, see, e.g., Segal
(2003). Prior-independent mechanisms are most interesting in small, a.k.a., thin, markets.
Contrast the large market for automobiles to the thin market for space crafts. There may
be five organizations in the world in the market for space crafts. How would a designer
optimize a mechanism for selling space crafts? First, even if the agents’ values do come from
a distribution, the only way to sample the distribution is to interview the agents themselves.
Second, even if we did interview the agents, the most data points we could obtain is five.
This is hardly enough for statistical approaches to be able to estimate the distribution of
agent values. This strongly motivates a question related to prior-independent mechanism
design which is how many samples from a distribution are necessary to design a mechanism
that can approximate the optimal mechanism for the distribution.

There are other reasons to consider prior-independent mechanism design besides the
questionable origin of prior information. The most striking is the frequent inability of a
designer to redesign a new mechanism for each scenario they wish to run a mechanism in.
This is not just a concern, in many settings it is a principle. Consider the standard Internet
routing protocol TCP/IP. This is the protocol responsible for sending emails, browsing web
pages, steaming video, etc. Notice that the workloads for each of these tasks is quite different.
Emails are small and can be delivered with several minutes delay without issue. Web pages
are small, but must be delivered immediately. Comparably, video streaming requires a high
responsiveness and a large bandwidth. There is not the flexibility to install new protocols
in Internet routers each time a new network usage pattern arises. Instead, a good protocol,
such as TCP/IP, should work pretty well in any setting, perhaps ones well beyond the
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imaginations of the original designers of the Internet.
The final motivation we will discuss for prior-independent mechanism design is that

the solution of Bayesian optimal (or approximate) mechanisms is incomplete. It solves
the problem of what a designer should do who knows the prior-distribution, but in many
real situations a designer may not have such knowledge. Requiring the designer to acquire
distribution information from outside “the system”, therefore, does not completely solve the
designer’s problem.

7.2 Optimal Mechanisms

The economics literature on Bayes-Nash implementation has studied the question of what
a designer can implement without any knowledge of the setting. For instance, a partial im-
plementation of the optimal mechanism is available by the following uninteresting solution:
as the agents to report the distribution, shoot them if they disagree, and otherwise run the
optimal mechanism for the reported distribution. More sophisticated approaches enable full
virtual implementation of the optimal mechanism, i.e., there is a mechanisms that approxi-
mates the revenue of optimal mechanism arbitrarily closely in every Bayes-Nash equilibrium.
This mechanism, in a similar fashion to the aforementioned partial implementation, relies
on agents reporting the distribution.

Allowing cross-reporting mechanisms such as the above as a solution to prior-independent
mechanism design begs the question. Furthermore, there are serious practicality and robust-
ness issues for these cross-reporting mechanisms, e.g., see Bergemann and Morris (2005).
In our discussion of prior-independent mechanisms we deliberately rule out such solutions
in attempt to explore what is possible without distributional knowledge, either a priori or
from cross-reports. Such a restriction is certainly with loss, but this makes the positive
results we discuss only stronger. Below we identify simple, ex post incentive compatible,
prior-independent approximation mechanisms.

7.3 “Resource” Augmentation

Consider the classic result of Bulow and Klemperer (1996) which states that in i.i.d., regular,
single-item environments the Vickrey auction with one more agent (from the distribution)
obtains a higher revenue than the optimal auction (without the additional agent). This result
is often interpreted as a critique on exogenous entry or a statement about competition being
better for revenue than reserve prices.2 The Bulow-Klemperer result is in fact suggesting a
prior-independent strategy for approximating the revenue of the optimal mechanism: recruit
one more agent. Dhangwatnotai et al. (2010) provide a nice discussion of this viewpoint.

Theorem 7.1 (Bulow and Klemperer, 1996) In i.i.d., regular, single-item environments,

2Recall, that in Sections 5 and 6 we came to (approximately) the opposite conclusion, i.e., that reserve-
or posted-prices, without competition, are enough to guarantee good revenue. Both viewpoints are correct
and interesting. The Bulow-Klemperer result provides useful intuition for competitive environments, where
as the Chawla et al. result provides useful intuition for environments where collusion is an issue.
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the expected revenue of the Vickrey auction on n + 1 agents is at least the expected revenue
of the optimal auction on n agents.

Unfortunately the “just add a single agent” result fails to generalize beyond single-item
auctions. When k units of an item are auctioned to n+1 agents with the k-Vickrey auction,
the revenue does not approximate that of the optimal k-unit n-agent auction. In order to
beat the optimal auction, k additional agents must be added.

Theorem 7.2 In i.i.d., regular, k-unit environments, distributions in matroid environments,
the expected revenue of k-Vickrey on n+k agents at least the expected revenue of the optimal
auction on the original n agents.

Consider the extreme case where k = n, a.k.a., that of digital goods. Notice that the
Vickrey auction in this environment obtains no revenue. All items are given away for free.
Unfortunately, the Bulow-Klemperer result in such an environment seems less actionable
as prior-independent approach to mechanism design; to obtain at least the revenue of the
optimal mechanism we would need to double the size of the market!

7.4 Single-sample Mechanisms

Dhangwatnotai et al. (2010) show that the Bulow-Klemperer result can be approximately
extended to multi-unit environments and simultaneously address the question of how large
a marketing sample must be to provide good enough statistical information for the design of
an approximately optimal mechanisms. Their answer: one. Suppose instead of recruiting an
additional agent to participate in the mechanism, we find a single agent for market analysis,
and then run a Vickrey auction with this agent’s reported value as a reserve price. In i.i.d.,
regular, multi-unit environments this auction is a 2-approximation.

Definition 7.1 The single-sample auction is the draws a single-sample from the distribution
and runs the Vickrey auction with the sampled value as a reserve price.

The following lemma can be seen as a corollary of the n = 1 agent special case of
the Bulow-Klemperer result. We give an alternative geometric proof of it that is due to
Dhangwatnotai et al. (2010).

Lemma 7.3 (Dhangwatnotai et al., 2010) For a single-agent with value drawn from
regular distribution F , the revenue from a random take-it-or-leave-it offer r ∼ F is at least
half the revenue from the (optimal) monopoly offer.

Proof: Let R(q) be the revenue curve for F . Let q∗ be the quantile corresponding to
the monopoly price, i.e., q∗ = argmaxq R(q). The expected revenue from such a price is
R(q∗). Recall that drawing a random value from the distribution F is equivalent to drawing
a uniform quantile q ∼ U [0, 1]. The revenue from such a random price is R(q). In Figure 1
the area of region A is R(q∗). The area of region B is Eq[R(q)]. Of course, the area of C is
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(a) Revenue curve R(q).
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(b) Region A (shaded) with area R(q∗).
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(c) Region B (shaded) with area E[R(q)].

0 1
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1

(d) Region C (shaded) with area A/2.

Figure 1: In the geometric proof of the that a random reserve is a 2-approximation to the
optimal reserve, the areas of the shaded regions satisfy A ≥ B ≥ C = A/2.

less than the area of B, by concavity of R(·), but at least half the area of A, by geometry.
The lemma follows. 2

It is now a simple exercise to generalize Lemma 7.3 to multi-unit auctions to give the
following theorem. Essentially, a random reserve is approximately as good as the monopoly
reserve. This theorem can also be generalizes to matroid and downward-closed environments
with a VCG-based single-sample mechanism.

Theorem 7.4 (Dhangwatnotai et al., 2010) For any i.i.d., regular, multi-unit environ-
ment, the single-sample auction is a 2-approximation to the optimal auction.

7.5 Prior-independent Mechanisms

To design approximately optimal mechanisms without any prior information, as observed by
Goldberg et al. (2001); Segal (2003); Baliga and Vohra (2003), we can use the reports of some
agents for market analysis on other agents. For example, for digital goods, the mechanism
that pairs the agents and runs a Vickrey auction on each pair is a 2-approximation. This
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result follows as each agent faces a random reserve from the distribution and Lemma 7.3
implies that such a reserve is a 2-approximation to the monopoly reserve (which is optimal).

Theorem 7.5 For i.i.d., regular, multi-unit environments, the pairing auction, i.e., that
randomly pairs the n agents in n/2 Vickrey auctions is a 2-approximation to the optimal
revenue.

This approach can be extended to the same environments as the single-sample auction
as follows. Simulate both the VCG mechanism and the pairing auction in parallel, but serve
only the winners of both mechanisms (at the higher of their prices).

7.6 Conclusions and Extensions

We have exhibited a few simple approaches for designing prior-independent mechanisms.
These approaches make strong usage of the regularity of the distribution, the symmetry of
identical distributions, and downward-closure of the feasible set system. The main conclusion
is that market analysis can be done on-the-fly by the mechanism as it is run; the resulting
mechanism is often a good approximation.

The regularity assumption can be relaxed if more samples from the distribution are avail-
able. Of course, in i.i.d. environments there for each agent there are n−1 other samples from
the distribution. The following prior-independent mechanism gives a good approximation
fairly generally. Partitioning the agents in to two parts, estimate the distribution for one
part, and run the optimal mechanism for the estimated distribution on opposite part. In
some environments this can be done symmetrically for both parts. See, e.g., Goldberg et al.
(2001); Baliga and Vohra (2003); Devanur and Hartline (2009).

The distributional symmetry (of the i.i.d. assumption) can be relaxed. If the agents are
a priori distinguishable by publicly observable attributes, and there are at least two agents
with each attribute, then agents can be paired with other agents with the same attribute.
See, e.g., Balcan et al. (2008); Dhangwatnotai et al. (2010).

One final note, the viewpoint presented here on prior-independent mechanisms is one
where there is a prior but the designer just does not know it. As the mechanisms under
discussion are ex post incentive compatible, the prior is not needed for equilibrium. It is
possible, then, to dispense with the prior completely; however, in doing so it is not clear to
what we should compare to for an approximation. Hartline and Roughgarden (2008) suggest
a prior-free benchmark that for each valuation profile is the supremum over i.i.d. distributions
of the optimal auction’s revenue on the valuation profile. This benchmark has the nice
property that a prior-free mechanism that approximates it simultaneously approximates
the optimal mechanism for any i.i.d. Bayesian environment. With some minor tweaks, the
partitioning mechanisms described above gives a good approximation to this benchmark
(Devanur and Hartline, 2009).

Returning to our viewpoint as approximation as a lens by which we can distinguish details
from the salient features of the model, the conclusion of this section is that knowledge of the
prior is a detail and good, mechanisms can be designed without it. These mechanisms can be
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more robust than their prior-dependent counter parts. The prior-free mechanisms discussed
in the preceding paragraph which obtain their performance guarantee in worst-case over all
valuation profiles are especially robust.
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