High-Earner Lemons

Martin Karlsson, Technische Universität Darmstadt Nicolas Ziebarth, Cornell University Chicago, 5 January 2012

TECHNISCHE UNIVERSITÄT DARMSTADT

Outline

Outline

Motivation

- Adverse selection is potentially a serious problem in markets for health insurance.
- The theoretical literature suggests severe welfare losses might occur as a result (Rotschild & Stiglitz, 1976).
- The empirical literature has mainly been concerned with the identification of adverse selection:
 - A positive correlation between coverage and risk may be due to moral hazard, or adverse selection, or both.
 - Risk is not the only source of heterogeneity: other dimensions might give rise to advantageous selection.
 - Methods are typically simple and results not necessarily useful for policy purposes.
- Recent contributions use structural estimation to identify underlying preference and risk parameters (Einav et al, 2009).
- > The identification problem remains, but estimates more useful and informative.

Aim of this paper

Aim of the paper: To estimate the distribution of risk and preference parameters among German holders of PHI.

- ▶ The German system is dual: 20 % of population can opt out of public system.
- Insured individuals may choose coinsurance rate, monetary deductible, and service package.
- The choice of parameters reveals information on individual risk and preferences.
- We consider two stages of the decision:
 - 1. Ex ante: The choice of coinsurance reveals information.
 - 2. Ex post: These coinsurance parameters rule out some 'corner solutions'.
- Theoretical model: Additive CARA utility function.
- We do not achieve point identification, but the distribution of parameters is identified already from ex ante information – thus not contaminated by moral hazard.

The utility function

We use a simple additive CARA utility function:

$$U(c, m \mid n) = -\exp(-\gamma c) - \beta \exp(-\gamma (m - n))$$
(1)

where

- ▶ *m* is the consumption of medical care services.
- ► *c* is the consumption of other goods and services: $c = y p z (m \mid \alpha, D)$
- ► $z(m \mid \alpha, D)$ is the out-of-pocket payment for someone with coinsurance rate α and deductible *D*.
- γ is the relative risk aversion.
- > β is the preference for consumption of health care.
- *n* is the severity of illness (exponentially distributed with parameter θ).
- *p* is the insurance premium.

Optimal Consumption of health care

Inserting the budget constraint and solving, we get

$$m_{-}^{*}(n) = \frac{y - p + n - \frac{1}{\gamma} \ln\left(\frac{1+\delta}{\beta}\right)}{2+\delta}$$
$$m_{+}^{*}(n) = \frac{y - p - \alpha D + n - \frac{1}{\gamma} \ln\left(\frac{1-\alpha+\delta}{\beta}\right)}{2-\alpha+\delta}$$

... from which we get two 'corner solutions':

1. At \tilde{n} , $m_{-}^{*}(n) = 0$.

2. At \bar{n} , consumer is indifferent between $m_{-}^{*}(n)$ and $m_{+}^{*}(n)$. Identifying information:

- If 0 < m < D, then $m < m_{-}^{*}(\bar{n})$.
- If m = 0, then $\tilde{n} \ge 0$.
- If m > D, then $m \ge m_+^*(\bar{n})$

The first stage decision

Assuming individuals know their risk parameter θ , we consider first order conditions for the choice of α and *D*.

The ex ante expected utility equals

$$V = -\int_{0}^{\infty} f_n(n) \left[\exp\left(-\gamma c^*(n)\right) - \beta \exp\left(-\gamma (m^*(n) - n)\right) \right] dn.$$
 (2)

Necessary conditions for an optimum are

$$\frac{\partial V}{\partial \alpha} \ge 0, \frac{\partial V}{\partial D} \ge 0 \tag{3}$$

From these FOC:s, we get partial identification of parameters:

- 1. **Case 1** ($\alpha < 1, D > 0$): Interval identification of γ , point identification of (θ, β).
- 2. **Case 2** ($\alpha = 1, D > 0$): Interval identification of θ , point identification of β .
- 3. **Case 3** ($\alpha < 1, D = 0$): Interval identification of θ , point identification of β .
- 4. **Case 4** ($\alpha = 1, D = 0$): Interval identification of β .

December 31, 2011 | Applied Econometrics TUD | Karlsson and Ziebarth | 8

Distributional Assumptions

If we are willing to make assumptions concerning the distribution of γ , θ and β , we may estimate the parameters of this distribution.

Assumptions

- The parameters $\psi = (\gamma, \theta, \beta)'$ take on a log-normal distribution.
- The logarithm vector ln (ψ) has mean vector μ = (μ_γ, μ_θ, μ_β)' and covariance matrix Σ: ln (ψ) ∽ N (μ, Σ)
- The parameter δ, reflecting the shadow cost of health care consumption, is the same for everyone.

We model the means $\mu = (\mu_{\gamma}, \mu_{\theta}, \mu_{\beta})'$ as linear functions of characteristics *X*. These characteristics should include any information available to the insurer. In that case, the covariance matrix Σ captures the degree of asymmetric information.

Specifications

Estimation is done using maximum likelihood, with numerical integration over intervals.

We (will) consider three specifications:

1. Using ex ante information only:

$$L_{i}^{1}\left(\mu, \Sigma, \delta | \alpha_{i}, D_{i}, X_{i}\right) = \Pr\left(\alpha_{i}, D_{i} | \mu, \Sigma, \delta, X_{i}\right).$$

These estimates cannot possibly be affected by moral hazard, but identifying information is weak.

2. Combining ex ante and ex post information:

$$L_{i}^{2}\left(\mu,\Sigma,\delta|\textit{m}_{i},\alpha_{i},\textit{D}_{i},\textit{X}_{i}\right) = \mathsf{Pr}\left(\textit{m}_{i}|\alpha_{i},\textit{D}_{i},\mu,\Sigma,\delta,\textit{X}_{i}\right)\mathsf{Pr}\left(\alpha_{i},\textit{D}_{i}|\mu,\Sigma,\delta,\textit{X}_{i}\right).$$

This approach allows for much more precise estimates, but weaker identification.

3. Using only *ex post* information:

$$L_{i}^{3}\left(\mu, \Sigma, \delta | \mathbf{m}_{i}, \alpha_{i}, \mathbf{D}_{i}, \mathbf{X}_{i}\right) = \mathsf{Pr}\left(\mathbf{m}_{i} | \alpha_{i}, \mathbf{D}_{i}, \mu, \Sigma, \delta, \mathbf{X}_{i}\right).$$

May serve as a test whether standard correlation tests deliver biased estimates.

Data

We use the German Socio-Economic Panel for estimation: it is a household survey that is representative for Germany.

The waves 2007 and 2008 contains information on (almost) everything we need:

- lnsurance parameters (p, α, D),
- Income, age, gender, location.
- Consumption of medical care: tricky
 - We have (annual) days spent in hospital and (quarterly) visits to doctors.
 - Amounts spent had to be imputed using national averages.
- All information is self-reported.
- > *p* assumed to be log-linear function of α and *D*.

After deleting individuals with item nonresponse, we were left with a sample of 2, 363 individuals.

Descriptive Statistics 1

Variable	Mean	Std. Dev.	Ν
т	1,526.146	3,834.939	2,363
α	0.977	0.071	2,363
D	283.667	601.5	2,363
р	4,932.711	2,126.193	2,363
у	31,913	21,507	2,363
year	0.485	0.5	2,363
age	47.058	10.802	2,363
sex	0.34	0.474	2,363
East	0.163	0.369	2,363

Descriptive Statistics 2

Table: Summary statistics of cost-sharing parameters

	D = 0			D > 0		
	N = 1902 (56 per cent)			N = 1037 (31 per cent)		
		D	alpha		D	alpha
α = 1	Min	0	1	Min	10	1
	Mean	0	1	Mean	798	1
	Max	0	1	Max	6000	1
	SD	0	0	SD	808	0
	N = 397 (12 per cent)			N = 31 (1 per cent)		
		D	alpha		D	alpha
α < 1	Min	0	0.50	Min	40	0.60
u < 1	Mean	0	0.79	Mean	668	0.83
	Max	0	0.99	Max	2500	0.95
	SD	0	0.11	SD	663	0.08

Determinants of insurance premium

(1)	
. ,	(2)
In <i>p</i> ₂₀₀₇	In p ₂₀₀₈
0.124	0.153
(1.01)	(1.17)
-0.000153***	-0.000138***
(-8.45)	(-8.04)
0.0602***	0.0795***
(12.29)	(16.38)
-0.000452***	-0.000627***
(-9.85)	(-13.74)
0.135***	0.144***
(6.21)	(6.74)
-0.164***	-0.127***
(-5.29)	(-4.09)
4.007***	3.467***
(22.26)	(19.38)
1,592	1,561
	0.124 (1.01) -0.000153*** (-8.45) 0.0602*** (12.29) -0.00452*** (-9.85) 0.135*** (6.21) -0.164*** (-5.29) 4.007*** (22.26)

* *p* < 0.1, ** *p* < 0.05, *** *p* < 0.01

December 31, 2011 | Applied Econometrics TUD | Karlsson and Ziebarth | 14

Influence of Observable Characteristics

	(1)	(2)	(3)
	$\ln \gamma$	$\ln \theta$	$\ln eta$
δ	30.799***		
	(0.516)		
constant	-12.6114***	-10.4343***	2.9244***
	(0.069)	(0.072)	(0.038)
year	-0.4015***	-0.4003***	0.0216*
	(0.022)	(0.027)	(0.012)
age	0.0384	0.013	0.1549***
	(0.118)	(0.128)	(0.054)
female	0.0601**	0.1589***	0.109***
	(0.024)	(0.027)	(0.013)
east	0.0773*	0.0839*	-0.0074
	(0.046)	(0.051)	(0.024)

Standard errors in parentheses

* *p* < 0.1, ** *p* < 0.05, *** *p* < 0.01

Covariance Matrix

	(1)	(2)	(3)
	$\ln\gamma$	$\ln \theta$	$\ln eta$
$\ln \gamma$	0.1834***		
	(0.01)		
$\ln \theta$	-0.1117***	0.4622***	
	(0.01)	(0.013)	
$\ln eta$	-0.1143***	0.1877***	0.1191***
	(0.005)	(0.005)	(0.001)

Standard errors in parentheses

*
$$ho <$$
 0.1, ** $ho <$ 0.05, *** $ho <$ 0.01

Conclusions

- The distribution of unobservables amongst privately insured may be detected from choice of coinsurance parameters.
- Further, these coinsurance parameters introduce non-convexities in the budget set, which also carry identifying information.
- Based on a simple CARA utility function, we estimated the distribution of unobservables, and their determinants.
- Combining ex ante and ex post information gives relatively precise information on unobservables, but point identification not achieved.
- Our estimates suggest there is considerable scope for selection, but the direction not yet clear.
- Clearly, the quality of the data is one main limitation of this study.