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Abstract

This paper studies how a lender’s credit insurance activities affect a sovereign bor-

rower in an environment with moral hazard and debt renegotiation. The moral hazard

problem arises from the assumption of private information where the lender cannot

observe if the sovereign invested or consumed the borrowed funds. We show that in-

surance serves as a commitment device for the lender. An insured lender has more

bargaining power during debt reduction renegotiations and this enables him to extract

more from the borrower. Thus, the existence of an insurance market alleviates the

moral hazard problem by better aligning the incentives of the lender and the borrower.

We also analyze the effect of naked buyers who do not lend directly to the sovereign.

Our analysis shows that the market structure of the insurance market matters: if

the market is imperfectly competitive, the existence of naked buyers can impede the

alleviation of moral hazard.
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1 Introduction

With the recent European debt crises, sovereign credit default swaps (CDSs) have been

blamed by politicians and regulators for increasing borrowing costs and exacerbating the

debt crisis.1 In May 2010, regulators in Germany temporarily banned the purchase of CDSs

on euro zone government bonds by those who do not own the underlying bond, and in

October 2011 the ban was made permanent and applicable across the European Union. An

implicit argument in these criticisms and policy actions is that CDSs can somehow affect the

underlying borrower. Most of the existing literature on credit derivatives, however, focuses

on incentive problems between the lender and the insurer while abstracting from the effect

on the borrower. But why might CDSs matter for the borrower? How might the lender’s

insurance activity affect the incentives and the welfare of the sovereign borrower?

This paper’s answer is straightforward. The existence of CDSs can give lenders more

leverage in ex-post renegotiation. This then alleviates ex-ante borrowing constraints, pro-

vides more external capital to the debtor country, increases investment and, therefore, wel-

fare. CDSs can be beneficial for the borrower.

We derive this result using a framework with an agency problem between the lender and

the sovereign borrower. The types of frictions we consider are motivated by two character-

istics of sovereign debt. First, due to the lack of international law for sovereign bankruptcy,

sovereign governments often manage to get away without fully repaying their debt2 and this

debt reduction is achieved through renegotiations with lenders. Second, due to asymmetric

information about the sovereign’s actions - such as investment - which in turn affect the

repayment ability of the sovereign, the incentives of the borrower and the lender are mis-

1Credit default swaps are over-the-counter derivative contracts where the seller of the contract pays the
buyer of the contract a pre-specified amount (called notional) when a credit event occurs (such as default
by a firm or a government). In return, the buyer of the contract pays a periodic fee until either the contract
matures or a credit event occurs. The contract specifies, among other things, the reference entity, the
contract maturity date, the notional amount, and the events that constitute as a credit event.

2Benjamin and Wright (2009) constructed a database covering 90 defaults and renegotiations by 73
countries that occurred over the period of 1989-2006. Argentina, for example, defaulted in 2001 on its $94
billion international bonds, which, according to Benjamin and Wright (2009) estimates, led to creditor losses
of 63% of the value of the debt.
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aligned.3 The asymmetric information, together with the inability of the lender to credibly

deny any debt reduction, gives rise to a moral hazard problem on the part of the borrower:

knowing that in a low-output state a debt reduction will be reached, the borrower does not

invest enough to avoid a low future output. We model the asymmetric information fric-

tion similar to Atkeson (1991) and Gertler and Rogoff (1990), while the debt renegotiation

framework is similar to Yue (2010).

In this setting, we find that insurance serves as a commitment device for the lender. It

improves the lender’s bargaining power during debt renegotiations enabling him to make the

borrower pay more in the bad states of the world. The increase in the lender’s bargaining

power is due to insurance giving credibility to the lender’s threat to deny a debt reduction.

Because an insured lender is able to extract more repayment from the borrower, an insured

lender can ex-ante offer better loan contracts (e.g. with a lower borrowing cost) than an

uninsured lender. As the bad state is even less attractive to the borrower, the incentives

of the borrower are better aligned with that of the lender, inducing the borrower to invest

more efficiently. Thus, insurance has a disciplining effect on the borrower. The increased

investment lowers the probability of default and the cost of borrowing. CDSs, in the end,

are welfare improving as they alleviate the moral hazard problem.

These results are based on the assumption that lenders are the only agents purchasing

insurance. In reality, there are investors, so called ’naked buyers’, who purchase insurance

but do not own the underlying bond. How robust are our findings if we allow for investors

that purchase insurance but do not lend to the sovereign? We find that the existence of

naked buyers impacts the debtor country only if the CDS market is concentrated (e.g. a

monopoly) but not if it is perfectly competitive as we had assumed up to this point. If

the insurer is a monopolist, he can indirectly affect the borrower’s investment through the

insurance contract offered to the lender. The insurer not only earns a profit from insuring

3If the borrower’s investment and consumption are unobservable by the lender, then the borrower - who
has secured a loan for an investment - can cheat and consume a part of what he was supposed to invest.
This comes at a cost for the lender as less investment translates into a lower repayment ability.
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the lender but also from insuring the naked buyer where, by assumption, the latter is affected

by the borrower’s investment.4 The insurer designs the insurance contracts so as to induce

the level of investment that maximizes his total profit. Thus, if there are naked buyers,

the sovereign’s investment is necessarily not the same as without the naked buyers: it is

either lower or higher depending on the parameter values. Although these findings are based

on assumptions that result in the insurer’s ability to affect the borrower’s investment, our

analysis points to the importance of the market structure of the insurance market for whether

the existence of naked buyers matters for the borrower.

What are the testable implications of our model? The model suggests that any mecha-

nism that increases a lender’s bargaining power during a debt restructuring process should

discipline the borrower and result in a better macroeconomic performance and a lower prob-

ability of default. These predictions of our model shed light on the effects of a particular

sovereign debt event: the 1989 Brady plan that ended the 1980’s emerging markets debt

crises. In the 1980’s, emerging market economies, mostly in Latin America, repeatedly faced

an inability to meet their debt obligations despite multiple rounds of debt reschedulings.5

However, under the Brady plan, bank loans to these countries were converted into tradable

bonds. A key feature of Brady bonds was that, to attract investors, they were collateralized

by U.S. treasuries. Thus, if a sovereign defaulted on its Brady bonds, the bondholders would

become owners of U.S. Treasuries instead.6 The collateralization of Brady bonds is similar

in spirit to the insurance contracts in our model. While the success of the Brady plan could

be due to various factors, from the perspective of our model, one possible explanation for the

improved macroeconomic performance and the low level of default that was observed after

4The naked buyer, we assume, has cash flows positively correlated to that of the sovereign’s: his cash
flow is high in the state where the sovereign’s output is high and low in the sovereign’s low output state.
Then, by assumption, the probability that the naked buyer has a high cash flow increases with the borrower’s
investment; in other words, the borrower’s investment affects the utility of the naked buyer. Thus, the naked
buyer’s utility (and hence the profit extracted by the insurer) depends not only on the naked buyer’s own
insurance but also on the insurance purchased by the lender since the latter affects the borrower’s investment.

5One between 1982-1985 and one in 1985.
6The U.S. Treasuries were purchased with funding from official agencies (IMF, the World Bank), the

Japanese government, and the debtor countries’ own foreign reserves.
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the Brady plan is the collateralization of Brady bonds: it might have changed the incentives

of the sovereign.7

The framework of our model is similar to the standard moral hazard model in corporate

finance with a lender and an entrepreneur who needs financing for a project (see, for exam-

ple, Repullo and Suarez (1998), Tirole (2006)).8 If the entrepreneur exerts effort, the project

is more likely to succeed, but the entrepreneur’s effort is noncontractible. There is an inter-

mediate date at which the lender can choose to either liquidate the project, if he suspects

that the entrepreneur shirked, or continue the project. If the lender can credibly commit

to liquidate the project, the entrepreneur will exert more effort. But the lender’s threat to

liquidate is not credible ex-post, thus creating a moral hazard. Various mechanisms have

been suggested that can make the lender’s threat credible and discipline the borrower. Hart

and Moore (1995), for example, suggest making the original lenders senior to new lenders

who might come in and provide funding to continue the project. Dewatripont and Tirole

(1994) argue for a diversity of tough and soft claimholders and Berglof and von Thadden

(1994) show that short term lending can have a disciplining effect. Our paper suggests that

insurance against default is another form of a such disciplining mechanism.

To summarize the literature on CDSs, most of the corporate CDS literature addresses

asymmetric information between lenders and insurers about the loans on which the lenders

purchase insurance.9 However, sovereign debt is less prone to this type of asymmetric infor-

mation since if information about a country is available to international lenders, then it is

likely to be available to insurers. In contrast, our paper focuses on the effect of CDSs on the

borrower-lender relationship. As our paper sheds light on CDS’s effect on the probability

7Compared to the previous attempts at resolving debt crises where countries repeatedly defaulted, there
was only one default on Brady bonds (by Ecuador). In our model, investment plays the same role as effort
in standard principal agent models. Thus, an increase in investment would be analogous to an increase in
policy effort by the sovereign which would lead to improved macroeconomic performance.

8See the discussion in Tirole (2006), section 5.5.
9See, for example, Duffee and Zhou (2001), Morrison (2005), Thompson (2007), Parlour and Winton

(2008). See Acharya and Johnson (2007) for empirical support for asymmetric information problems between
lenders and insurers. For an overview of the CDS market, see Stulz (2009) and Weistroffer (2009); and for
an overview more specific to sovereign CDS, see Ranciere (2001), Packer and Suthiphongchai (2003) and
Verdier (2004).
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of default, it is also related to papers that study its effect on financial stability. Instefjord

(2005) finds that CDSs can lead to banks taking on more risk. Allen and Carletti (2006)

show that if banks face the same liquidity demand, credit risk transfer is beneficial, but if

banks face an idiosyncratic risk, then credit risk transfer can increase the risk of financial

crises. This paper, however, is most closely related to Arping (2004) and Bolton and Oehmke

(2010) who both show the disciplining effect of CDSs in a framework with firm agency prob-

lems. However, these models are not applicable to sovereign debt as they are specific to

corporate debt and bankruptcy and, hence, cannot capture the features of sovereign debt

that distinguish it from corporate debt.

The next section lays out, first, the frictionless benchmark economy, followed by private

information environment where we characterize the moral hazard problem. Then we intro-

duce the insurance market and give our main result that demonstrates CDS’s disciplining

role. In appendix A.1, we show that insurance is inconsequential unless both private infor-

mation and bargaining are present. Section 3 relaxes the perfectly competitive environment

by considering a monopolistic insurer and looks at how the existence of naked buyers affects

the debtor country. The last section concludes while the proofs of the results are relegated

to the appendix.

2 The Model

Consider a small open economy representing the debtor country. There are two dates:

t={0,1}. The borrower is risk neutral and does not discount, U(c0, c1) = c0 + E0c1, and

can invest I at date 0 to earn a random output at date 1. The distribution of the output

depends on the amount invested at date 0: output is high, y1 = yh, with probability π(I)

and low, y1 = yl, with probability (1 − π(I)) where π′(I) > 0, π′′(I) < 0, π(0) = 0, and

π′(0)(yh− yl) > 1.10 Thus, the probability of the high state is increasing in investment. The

borrower has zero endowment at date 0, but can borrow by trading one-period zero-coupon

10The last condition implies that positive investment is efficient.
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bonds with risk neutral competitive foreign lenders. We denote the face value and the price

of the bond as B and q respectively. B > 0 means the sovereign country is a net borrower:

he receives qB ≥ 0 consumption goods at date 0 and has to repay B at date 1 regardless of

the state realized. The raised funds, qB, can be used for either consumption or investment,

thus his date 0 consumption is: c0 = qB − I.

The borrower has an incentive to repay at date 1 because if he defaults in full, he loses

a fraction of his output, pyl. This cost of default can be interpreted as a reduced form for

costs associated with temporary exclusion from credit markets, trade disruptions, or foreign

investors’ lack of confidence. If the borrower repays the loan, his consumption is:

cnd1 = y1 − B

While if he defaults in full, his consumption is:

cd1 = y1(1− p)

We assume that the cost of default in the good output state is high enough to deter any

default, while too low in the bad state. Thus a default can occur only in the bad state,

which is an assumption consistent with the sovereign debt stylized fact that debtor countries

typically default when they are in a recession.11 In particular, the borrower defaults in

the bad state by negotiating a debt reduction with the lender. If such a debt reduction

agreement is reached, the borrower is able to avert the default cost. An interpretation of

this assumption is that the ability of the sovereign to reach an agreement with the lenders

is perceived positively by the market and prevents further loss of confidence by investors

11This fact can be reproduced in a dynamic model with a risk averse borrower. For a risk averse borrower,
when output is already low, it hurts more to further lower consumption by paying off his debt. As our model
is a two-period model with a risk neutral borrower, we resort to assuming this result. Nevertheless, we show
in appendix A.4 that the results of this section hold in a more general setting where the borrower defaults
and bargains both in the high and low states.
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or trade partners.12 From here on, we refer to defaults to mean partial defaults that occur

through debt renegotiation when yl is realized and the ex-ante probability of default is

1− π(I). If an agreement is reached, 1− α and α are the shares of yl going to the borrower

and the lender respectively.13

Figure 1 shows the timeline of the model as well as the subgame that gets played out

at date 1 once the borrower has borrowed and invested at date 0. When yl is realized, a

debt reduction agreement will be reached (as pointed out by the arrow) since the lender will

prefer getting αyl over nothing and for the borrower the bargaining outcome will be at least

better than suffering the output loss pyl. While, if yh is realized, the borrower will repay in

full as indicated by the arrow.

lend (B, q) invest I

�
�
�
��

yh

π(I)

❅
❅
❅
❅❅ yl

1− π(I)

borrower lender

✲ yh − B B
does not attempt
debt reduction

✟✟✟✟✟✟✯bargaining
succeeds

❍❍❍❍❍❍bargaining
fails

yl(1− α) αyl

yl(1− p) 0

date 0 date 1

Figure 1: Model timeline

The loan contract signed by the borrower and the lender at date 0 will take into account

the bargaining outcome of the subgame when yl is realized at date 1. The borrower’s expected

12A more general approach would be to have two types of default costs: one for partial default and a more
costly one for full default, but for our purposes only the relative difference in default costs matters. Thus,
we can assume the cost of partial default (i.e. for reaching a renegotiation agreement) is zero.

13This assumption is made for simplicity since usually debt renegotiations are over reductions of the actual
debt, i.e. the borrower pays back α share of the original debt, B. Thus, more general approach would be for
them to bargain over min(B, yl).
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utility is:

c0 + βE0c1 = (qB − I) + π(I)(yh −B) + (1− π(I))yl(1− α)

And the lender’s zero-profit condition is:

π(I)B + (1− π(I))αyl = qB

Next, we proceed by characterizing the outcome of the ex-post bargaining problem which

will then be used to solve for the equilibrium loan contract and investment.

2.0.1 The Nash Bargaining Problem

Following the general approach of Yue (2010), we model the partial default (i.e. debt renego-

tiation or restructuring) that occurs when yl is realized as an outcome from a Nash bargaining

problem. We assume that the lender and the borrower have an equal bargaining power. If

they fail to reach an agreement, the threat point for the borrower is being penalized by pyl

and for the lender it is getting nothing. Thus, their respective surpluses from bargaining are:

∆B(a) = (1− a)yl − (1− p)yl

∆L(a) = ayl

The Nash bargaining solution is given by:

α =argmax
a∈[0,1]

∆B(a)∆L(a)

s.t. ∆B(a) ≥ 0 i.e. ayl ≤ pyl

∆L(a) ≥ 0 i.e. ayl ≥ 0
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Solving the above problem we get:

α =
1

2
p

To interpret this result, since the lender’s threat to the borrower is that the borrower’s

endowment will decrease by pyl, they are really bargaining over how to split pyl. Hence the

outcome from bargaining is to split pyl in half because we have assumed that they have an

equal bargaining power.

Now let us characterize the equilibrium debt level, bond price, and investment under

the full information setting which we call the first best allocation. Because the lenders are

competitive they compete to maximize the borrower’s utility.

Definition: The first best contract (qFB, BFB, IFB) is the optimal contract achieved under

full information, bargaining setting. It maximizes the borrower’s payoff subject to the

lender’s zero-profit condition:

Program PFB:

max
I,q,B

(qB − I) + π(I)(yh − B) + (1− π(I))yl(1− α) (PFB)

s.t. π(I)(B) + (1− π(I))αyl = qB (1)

qB − I ≥ 0

where α = 1
2
p. Solving this, IFB and BFB are given by:

π′(IFB)(yh − yl) = 1 (2)

BFB =
IFB − (1− π(IFB))αyl

π(IFB)

c0 = qFBBFB − IFB = 0

Equation (2) says that the borrower invests such that the marginal benefit of increasing

investment (an increase in date 1 consumption) equals the marginal cost (decrease in date
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0 consumption). If I was lower than IFB, additional investment would yield extra date 1

consumption that more than compensates for the decrease in date 0 consumption.1415 Next

let us introduce private information and characterize the moral hazard problem it creates.

2.1 Private Information

Under private information, the borrower’s output is observable, but not his investment or

consumption decision, and hence investment or consumption cannot be contracted upon. In

this case, if the borrower is offered the first best loan contract (BFB, qFB), the borrower will

not invest IFB since his optimization problem is:

max
I

(qFBBFB − I) + π(I)(yh −BFB) + (1− π(I))yl(1− α)

where FOC with respect to I gives:

π′(I)(yh − yl − (BFB − αyl)) = 1 (3)

Comparing (3) with (2), we see that as long as BFB ≥ αyl, due to the concavity of π(I), the

borrower will invest less than IFB and consume the rest.

Intuition. With the loan contract (qFB, BFB) the borrower has secured himself the con-

sumption profile of yh − BFB in the good state and yl(1 − α) in the bad state regardless

of his investment, thus he can cheat and consume, unobserved by the lender, some of the

14In this setup, there is no point in borrowing more than IFB, investing IFB, and consuming the rest,
qB − IFB, since the borrower will have to repay this amount back in full in the high state. Thus, we can
safely restrict our attention to the case where he will borrow qB = IFB and invest all of it without consuming
any.

15Note that the lender is ex-ante competitive but ex-post non-competitive and hence bargain with the
borrower. This is a feature common in sovereign debt bargaining models. A motivation for this is that
potential new lenders, afraid that a troubled borrower is going to default on somebody (including themselves),
do not lend until they see the borrower repay the incumbent lender. Thus, until some repayment is made
to the incumbent lender, the borrower cannot access the competitive loan market and the incumbent lender
has some market power over the borrower. Kovrijnykh and Szentes (2007) show formally how this lender’s
switch from competitive in the pre-default stage to noncompetitive ex-post can arise endogenously when old
debt is senior to new debt. Nevertheless, we have checked that the main intuition of our model that CDS
can alleviate moral hazard would still hold if the lender have as much bargaining power ex-ante as ex-post.

11



qFBBFB that he was supposed to invest. This is the moral hazard problem.

Before characterizing the second best contract, let us first specify the particular functional

form that we assumed for π(I):

Assumption 1. π(I) =
√
I where I is investment as a fraction of the steady state output.16

17

Using assumption 1, we can express the condition under which the borrower has an

incentive to invest less than the first best, BFB ≥ αyl, in terms of the model parameters:18

(yh − yl)
2 ≥ 2pyl (4)

We assume that condition (4) holds, hence, the borrower has an incentive to cheat and there

is a moral hazard problem. Since the lender will not break even with the first best contract,

the lender has to offer a contract that accounts for such behavior of the borrower (i.e. it has

to be incentive compatible) while still maximizing the borrower’s utility and earning a zero

profit for the lender.

Definition: The second best (SB) loan contract (qSB, BSB) and investment, ISB, under

private information and bargaining is an incentive compatible contract given by the

solution to Program PSB.19

16All the other variables are in steady state output units as well.
17For general π(I) = Iγ , where γ < 1, there is no analytical solution, but we have computationally checked

that the main results of our paper still hold. For example, figure 4 looks qualitatively the same for γ 6= 1

2
.

18

B
FB

≥ αyl ⇔
IFB − (1 − π(IFB)αyl

π(IFB)
≥ αyl ⇔ I

FB
− αyl + π(I

FB
)αyl ≥ π(I

FB
)αyl

⇔ I
FB

≥ αyl. For π(I) = I
γ

and γ = 0.5
√

IFB =
1

2
(yh − yl) ⇒ (yh − yl)

2
≥ 2pyl

19The appendix shows that the constraint c0 ≥ 0 will hold with equality.
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Program PSB:

max
q,B,I

qB − I + π(I)(yh −B) + (1− π(I))(yl − αyl) (PSB)

s.t. π′(I)(yh − B − (1− α)yl) = 1 (ICB)

π(I)B + (1− π(I))αyl = qB (IRL)

c0 = qB − I ≥ 0

where, as before, α = 1
2
p. (IRL) is the lender’s zero profit condition and (ICB) is the

incentive compatibility constraint. Comparing (2) with (ICB), we see that since π(I) is

concave, the second best investment will be less than the first best as long as: BSB ≥ 1
2
pyl.

Thus, the moral hazard problem constrains borrowing and results in an investment less than

the first best. Also, the utility achieved under private information will always be less than

under full information because of the extra (IC) constraint.

2.2 Credit insurance

Up to now, the results on moral hazard are standard.20 Now let us introduce an insurance

market where the lender can buy a protection against default from risk neutral competitive

insurers. An insurance contract with notional, i, insures the lender up to the amount i in

case of a credit event. A credit event here is defined as a full default by the borrower, in other

words the lender has not agreed to any debt reduction. We assume the lender’s insurance

activity is observable by the borrower.21

When negotiations fail, the lender now receives i instead of getting nothing; thus, an

20See, for instance, Atkeson (1991) and Gertler and Rogoff (1990).
21We implicitly rule out the lender and the borrower together falsifying the credit event so that the lender

still gets paid by the borrower some amount while lying to the insurer about the credit event and getting
an insurance payment. Thus, we assume a credit event is contractible. A similar situation that we rule out
is the lender and the insurer negotiating ex-post so that the insurer pays less than what was contracted; in
return, the lender does not reject debt restructuring and gets paid by the borrower also.
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insurance improves his outside option and the lender’s surplus from bargaining is now:

∆L(a) = ayl − i

Figure 2 reflects this change.

�
�
�
��

yh

π(I)

❅
❅
❅
❅❅ yl

1− π(I)

borrower lender

✲ yh −B B
does not attempt
debt reduction

✟✟✟✟✟✟✯bargaining
succeeds

❍❍❍❍❍❍bargaining
fails

yl(1− α(i)) α(i)yl

yl(1− p) i

Figure 2: Date 1 subgame with insurance

Now the bargaining outcome when yl is realized depends on i. Specifically, solving the

bargaining problem as before, the share the lender gets from the borrower is:

α(i) =
1

2
p+

1

2yl
i if i ≤ pyl (5)

Figure 3 shows the solution graphically. If i = 0, we are back to the no insurance case.

On the interval [0, pyl), as the amount of insurance purchased increases, the lender’s share

paid by the borrower increases and will be strictly larger than the insurance itself i (i.e.

the 45 ◦ line). The lender will strictly prefer restructuring over insurance. When i = pyl,

α(i)yl crosses the 45 ◦ line and the payment from the borrower (in case of restructuring)

will exactly equal the insurance (in case of default). Thus, the lender will be indifferent

between receiving the pyl from the borrower (by accepting restructuring) or from the insurer

(by rejecting restructuring) and we model the lender’s decision as choosing the best mixed
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strategy. Whether the lender accepts or rejects, the borrower’s endowment decreases by the

same amount (because the borrower either has repaid pyl or defaulted and was penalized by

pyl). If i > pyl, the most the lender can get from the borrower is pyl, thus the lender will

reject any restructuring and trigger insurance, and the borrower will suffer output loss of

pyl.

To characterize the zero-profit conditions of the lender and the insurer, we first subdivide

i into three intervals based on what the lender will do on each interval as discussed above: 1)

i ≤ pyl, the lender always accepts restructuring, 2) i = pyl, the lender is indifferent between

accepting or rejecting and getting insurance, and 3) i > pyl, the lender claims insurance.

The lender’s zero-profit condition when he purchases insurance is:

π(I)B + (1− π(I))cL = qB +m (6)

where cL is the lender’s consumption in the low state. On the first interval, since the lender

restructures and does not claim insurance, the payment from the insurer is zero. Thus,

m = (1 − π(I))0 = 0, cL = α(i)yl, and cB = (1 − α(i))yl where cB is the borrower’s

consumption in the low output state.22 When indifferent, the lender uses a mixed strategy

(ω, (1 − ω)) where ω is the probability he will accept restructuring and (1 − ω) is the

probability he will claim insurance. Insurance premium then is m = (1−π(I))(1−ω)i while
22See the end of section 2.1 for more discussion about insurance premium equalling zero.
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cL = ωα(i)yl + (1 − ω)i and cB =
(

ω(1 − α(i)) + (1 − ω)(1 − p)
)

yl = (1 − p)yl. On the

third interval, since the borrower defaults the insurer pays the lender the full i (cL = i) and

m = (1− π(I))i while cB = (1− p)yl.

We are now ready to characterize the equilibrium when an insurance market exits.

Definition: The optimal loan contract (q, B), I, and i when there exists an insurance market

is such that it is incentive compatible for the borrower and maximizes the borrower’s

utility subject to the zero profit conditions of the lender and the insurer.

Program PSB,ins:

max
q,B,I,i,ω

(qB − I) + π(I)(yh −B) + (1− π(I))cB (PSB,ins)

s.t. π′(I)(yh − B − cB) = 1

π(I)B + (1− π(I))cL = qB +m

c0 = qB − I ≥ 0

where m, cB, and cL in each of the three intervals of i are:

m =























(1− π(I))0 = 0

(1− π(I))(1− ω)i

(1− π(I))i

cB =























(1− α(i))yl

(1− p)yl

(1− p)yl

cL =























α(i)yl if i < pyl

ωα(i)yl + (1− ω)i if i = pyl

i if i > pyl

and α(i) is given by (5). From solving the above problem, we arrive at the main result of

our paper, which compares the effects of insurance to the second best with no insurance:

Proposition 1.

(i) The optimal insurance is: i∗ = min{1
2
(yh − yl)

2 − pyl, pyl}. Specifically:

if (yh − yl)
2 < 4pyl, then it’s an ’interior’ solution: i∗ =

1

2
(yh − yl)

2 − pyl (7)

if (yh − yl)
2 ≥ 4pyl, then it’s a ’corner’ solution: i∗ = pyl (8)
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(ii) The borrower is better off: U ins ≥ USB.

(iii) Investment increases: I ins ≥ ISB, and the probability of default (1− π(I)) decreases.

(iv) The borrower is more indebted: Bins ≥ BSB.

(v) The bond price increases: qins ≥ qSB, or equivalently, the borrowing cost decreases.

Proof. See appendix

Figure 4 demonstrates the result by showing the borrower’s utility as a function of i. In

figure 4(a), condition (7) holds, in which case i∗ is given by an ”interior” solution on the

interval [0, pyl]. In this case, the constraint il ≤ plyl does not bind, allowing il to be as high

as it needs to be, and there is a complete alleviation of moral hazard: I ins = IFB. Whereas

in figure 4(b), condition (8) holds and the borrower’s utility is strictly increasing in i on

the interval [0, pyl]; thus, the optimal insurance is given by the corner solution i∗ = pyl,

in which case moral hazard is only partially alleviated. When i = pyl, the lender plays a

mixed strategy, but borrower’s utility is increasing in ω, hence the best mixed strategy is

the degenerate one: ω = 1. When i > pyl, the borrower would be worse off than the second

best. This is because pyl - the amount the borrower gets penalized by - is a deadweight cost

that no one benefits from; it is better if it instead gets used to repay the loan.

✻

i✲

U(i)

pyl

✘✘✾ ω = 1

✘✘✾ ω = 0

i∗

USB

B
o
rr
ow

er
’s
u
ti
li
ty

4(a): ’interior’ solution
(yh − yl)

2 < 4pyl

✻

i✲

U(i)

✛ ω = 1

✘✘✾ ω = 0

i∗ = pyl

USB

4(b): ’corner’ solution
(yh − yl)

2 ≥ 4pyl

Figure 4
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Remark on Proposition 1(ii): As long as there is the moral hazard problem given by

condition (4), the existence of insurance improves the borrower’s welfare. This is because it

turns out that (4) is also the condition for U ′(i = 0) > 0, i.e. positive insurance is pareto

optimal. Condition (4) is satisfied if, for instance, yl is small compared to yh or the volatility

of output is high.

Remark on Proposition 1(iii): The lender’s insurance activity disciplines the borrower. In

the bad state, if the borrower’s offer is not high enough compared to lender’s insurance, debt

reduction negotiation will fail and the borrower will be penalized. To avoid being penalized,

the borrower will have to pay more than when insurance did not exist. Consequently, the

low output state looks less attractive to the borrower, thus he will invest more (i.e. closer

to the first best amount) to avoid it.

Remark on Proposition 1(iv): The borrower finds it optimal to invest more to avoid the

bad outcome and that requires an increase in the face value of the bond (i.e. he has to pay

back more).

Remark on Proposition 1(v): When investment increases due to CDS’s disciplining effect,

probability of the high state (hence full repayment) increases. Also the borrower pays more

in the low state. These two effects lead to a higher bond price or, equivalently, to a lower

borrowing cost.

Discussion of the corner solution. When i∗ = pyl (figure 4(b)), the lender buys just

enough insurance to make him indifferent between accepting the debt restructuring α(i∗) =

pyl and rejecting it and triggering an insurance payment. This amount of insurance lets

him extract the maximum possible amount from the borrower. Although ex-post he will

be indifferent between accepting or rejecting the debt restructuring, ex-ante it is optimal

to always get repaid by the borrower and not file a claim with the insurer (i.e. play the

degenerate mixed strategy: ω = 1). That way the insurance premium is the cheapest

possible (zero, to be specific), hence the borrowing cost is the lowest possible. In figure 4(b),

we can see that any ω < 1 would not be an equilibrium since for such ω, there is an ǫ such that
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U(i∗ − ǫ) > U(ω|i = pyl). Thus, we implicitly assume that the lender can credibly commit

to, ex-post, always accept the payment from the borrower and not the insurer although he

is indifferent.23 In the end, the reason an insurance makes a difference is that, before with

no insurance as an outside option, the lender could not credibly reject a partial repayment

and punish the borrower. But now he can credibly reject any restructuring offer less than

the insurance purchased.

Remark on insurance premium. Insurance in this context becomes a costless mechanism

to extract the maximum repayment possible from the borrower. The reason for the zero

price for an insurance contract is due to the assumptions that the only credit event is a full

default and that there are only two output realizations where in the low output state the

borrower ends up, in equilibrium, paying partially. Thus, in equilibrium, there is never a

full default and the insurer never has to make any payment. But the zero cost of insurance

does not have to be taken literally. As shown in figure 5, if, for example, the support of

the output has a state where output realized is zero and the sovereign does not have any

means to pay, then there is an automatic default in that state. Thus, there is always a state

in which insurance will be paid out to the lender so that the insurance premium will be

positive. Although this kind of general setting may be desirable, the main results are likely

to be the same.

2.3 Restructuring - a Credit Event

So far we have assumed that only a full default is a credit event. In this section, we consider

what happens if a debt restructuring is also a credit event.24

23If the lender’s credibility is an issue, a policy implication could be to limit i ≤ pyl − ǫ where ǫ is a small
number. Then, the insurance purchased would be i = pyl − ǫ, which would be slightly less than the share
achieved in negotiations with that amount of insurance as the outside option: α(i) = pyl − ǫ

2
. The outcome

in this case will still be better than the second best.
24Market participants follow credit event definitions developed by the International Swaps and Derivative

Association (ISDA) as a legal framework. In ISDA definitions, restructuring is included as a credit event
in sovereign CDSs as long as it was due to a deterioration in the creditworthiness of the sovereign. But a
voluntary restructuring is not included and there is an ambiguity in terms of what constitutes as a voluntary.
It is common now for sovereigns to offer voluntary exchange offers as a way to reduce debt payments. Even
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Borrower:
Lender:

Y1✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭
0

❄

automatic
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0
i

yl

bargaining
succeeds

�
�

�
��✠

(1− α(i))yl
α(i)yl
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fails

❅
❅
❅
❅❅
(1− p)yl
i

❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤
yh

does not attempt
debt reduction
❄

yh − B
B

Figure 5: Date 1 subgame with insurance

If there is a debt restructuring and the lender files a claim with the insurer, the payment

made from the insurer is the incured loss up to i which is the difference between i and the

recovery value. In particular, if αyl is the recovery value (what the lender receives from

the borrower through debt restructuring), then the insurer pays the remaining i − αyl.
25

Thus, when a debt restructuring is a credit event, the lender is always indifferent between

accepting the partial repayment αyl and getting the remaining i−αyl from the insurer versus

completely rejecting a debt reduction (and having the borrower default in full) and getting

the insured amount, i, in full from the insurer:

cL =











αyl + (i− αyl) = i if accepts restructuring

i if rejects restructuring

Thus, α cannot be determined from the bargaining problem because the lender’s surplus

though the lender often has no other option but to accept the offer and the exchange entails a deterioration
in the creditworthiness of the sovereign (e.g. an extension in the maturity or a reduction in the interest
payments), the creditor could be considered to have agreed to the restructuring. There have not been many
cases of restructuring and subsequent CDS payment triggers to help us draw conclusions. One exception
is the New York court case, Eternity Global Master Fund vs. Morgan Guaranty, regarding Argentina’s
debt restructuring in November of 2001 before its actual default in December of 2001. The november debt
exchange entailed both lower yields and longer maturity. Following the debt exchange, Eternity demanded
payments from Morgan Guaranty, the protection seller, arguing that there was a debt restructuring but
Morgan Guaranty argued that it was not a credit event because it was voluntary. Eventually, the court ruled
on Morgan’s side. See Verdier (2004) for more discussion.

25This is analogous to cash settlement.
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from bargaining is always zero.

One way to go about this is to find the borrower’s optimal repayment in the bad state

from the perspective of date 0. Let us denote the repayment in the bad state as α̃, where

the tilde is to notationally distinguish it from α, which was determined from the bargaining

problem. Since the lender is always indifferent, suppose he accepts restructuring with a

probability ω and rejects it with a probability 1 − ω. Then we can solve solve α̃ along

with the optimal loan contract, investment, ω, and insurance that maximizes the borrower’s

utility subject to the incentive compatibility constraint and the zero-profit conditions of the

lender and the insurer:

max
q,B,I,α̃,ω,i

(qB − I) + π(I)(yh −B) + (1− π(I)){ω(1− α̃)yl + (1− ω)(1− p)yl}

s.t. π′(I)
(

yh − B − {ω(1− α̃)yl + (1− ω)(1− p)yl}
)

= 1

π(I)B + (1− π(I))
(

ω(αyl + (i− α̃yl)) + (1− ω)i
)

= qB +m

m = (1− π(I))
(

ω(i− α̃yl) + (1− ω)i
)

c0 = qB − I ≥ 0

i ≥ α̃yl

Solving this problem, the optimal α̃ and ω are:

ω∗ = 1 and α̃∗ = min

(

(yh − yl)
2

4yl
, p

)

Remember that when restructuring was not a credit event, the optimal insurance was i∗ =

min{1
2
(yh − yl)

2 − pyl, pyl}, so that α(i∗) = 1
2
p + i∗

2y
= min

( (yh−yl)
2

4yl
, p
)

. Thus, the optimal

repayment when yl is realized is exactly the same as when restructuring was not a credit event

and there is as much alleviation of moral hazard as before. Thus, the optimal investment

and utility achieved does not depend on whether restructuring is a credit event or not.

Although ex-post, at date 1, the lender would be indifferent between accepting any
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restructuring α̃ ≤ α̃∗ (since he will be compensated by the insurer up to i on the remaining

(i− α̃yl)), ex-ante it is optimal to not accept any α̃ < α̃∗ so that there is as much alleviation

of moral hazard as possible. This outcome hinges upon the lender’s credibility to ex-post do

what was ex-ante optimal. Nevertheless, how does insurance make a difference in this case?

Before, a lender’s threat that he will reject any α̃ < α̃∗ was not credible because without

insurance he strictly prefered accepting restructuring over rejecting it. But now, insurance

makes the lender’s threat credible precisely because the lender is now indifferent.

The only difference in results from allowing restructuring to be a credit event is that

there is no unique equilibrium insurance level as long as i ≥ α̃∗y. Suppose i > α̃∗y and

consider the zero-profit conditions of the lender and the insurer after substituting in ω∗ = 1:

π(I)B + (1− π(I))(α̃∗yl + (i− α̃∗yl)) = qB +m (9)

m = (1− π(I))(i− α̃∗yl) (10)

From (10), the higher the payment from the insurer, i− α̃∗y, the higher the insurance price,

m. But, from (9), the increase in the insurance price gets exactly offset by the increase in the

lender’s consumption when yl is realized. So there would be no point in purchasing i > α̃∗y.

3 Monopolist Insurer and Naked Buyers

We have assumed so far that the lenders are the only ones that purchase insurance when

in reality there are ’naked buyers’ who purchase insurance but do not own the underlying

bond. In this section we consider how the results of the previous section change with the

existence of naked buyers.

We assume that the naked buyer has cash flows correlated to the output of the sovereign:

endowment is high in state H and low in state L. He is risk averse and buys sovereign CDS

to insure against the low output state. These assumptions are motivated by the following

example: suppose that an investor has an investment in a Greek firm but CDSs on the firm
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itself do not exist or are relatively illiquid. He could instead purchase CDS on a Greek

government bond because during the states of the world where the government is struggling,

the private sector is likely to be struggling as well.26

If the insurer’s market is perfectly competitive, as in the previous section, then the

existence of naked buyers does not have any impact on the lender-borrower contract. Also

even if the insurer is a monopolist but the naked buyer is risk neutral, then again the

existence of naked buyers does not make any difference. Thus, we assume that the insurer’s

market is imperfectly competitive (the insurer is a monopolist, to be specific) and that the

naked buyer is risk averse. We first show how the problem changes when the insurer is a

monopolist instead of perfectly competitive and this will be our new ”benchmark.” Then we

introduce naked buyers and compare the result with that of the benchmark scenario without

the naked buyers.

3.1 Benchmark: Monopolist Insurer

The lender’s problem is the same as before: he is choosing a loan contract that maximizes

the borrower’s utility and is incentive compatible for the borrower. But now the monopolist

insurer makes the lender take-it-or-leave-it offer for insurance contract so that the lender

takes the price and the quantity of insurance as given. Let (il, ml) denote the insurance

contract bought by the lender. Then, the lender’s problem is:

26There could be other reasons for naked buying. One reason could be due to heterogenous beliefs about
the likelihood of default: an investor might think that a particular government or company is more or less
likely to default than is suggested by CDS prices. Another reason could be due to the fact that CDS trading
is often done through dealers who buy and sell CDS without holding the underlying security. For example,
suppose bank X with Greek government bonds wants to decrease its exposure to default risk and purchases
CDS from bank A. Bank A wants to hedge its increased exposure so it purchases CDS on Greek government
bond from another party, Bank B. Bank B does the same as Bank A and purchases CDS from Bank Y. Bank
Y, on the other hand, is willing to bear the risk of Greek default and hence does not purchase CDS. In this
example, banks X and Y were the end users of CDS while banks A and B acted as the dealers and would be
considered ’naked buyers’ as they purchased CDS without actually holding the underlying security. Dealers
contribute to the liquidity of CDS market as they eliminate the need for Bank X, in our example, to directly
find the end user, Bank Y, who is willing to take the opposite position of Bank X.
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U(il, ml) ≡ max
q,B,I

(qB − I) + π(I)(yh − B) + (1− π(I))(1− α(il))yl

s.t. π′(I)(yh − B − (1− α(il))yl) = 1

π(I)B + (1− π(I))α(il)yl = qB +ml

c0 = qB − I ≥ 0

il ≤ pyl

Note that the resulting investment, debt level, and bond price will be functions of insurance

level il and price ml: I(il, ml), B(il, ml), q(il, ml).

The equilibrium insurance level and insurance price will be determined by the monopo-

list’s profit maximization problem. The insurer maximizes his profit subject to the lender’s

individual rationality constraint: if the lender purchases insurance, it has to make him (and

hence the borrower) at least better off than without the insurance. The insurer’s profit is

just the price charged for the insurance as we have previously explained at the end of section

??.

Definition: The equilibrium insurance bought, imon
l , and premium charged, mmon

l , when

the insurer is a monopolist will be the solution to Program PBenchmark.

Program PBenchmark:

{imon
l , mmon

l } ≡ argmax
il,ml

ml (PBenchmark)

s.t. U(il, ml) ≥ USB

where USB is the borrower’s utility achieved when the lender does not purchase any insurance,

USB = U(il = 0, ml = 0), and is the same as the second best of the previous section.

From the equilibrium insurance level and insurance price we can derive the equilibrium
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investment level Imon ≡ I(imon
l , mmon

l ). Proposition 2 compares the equilibrium investment

level when the insurer is a monopolist, Imon, with the equilibrium investment level when the

insurer is perfectly competitive, I ins:

Proposition 2.

ISB ≤ Imon = I ins = IFB if ’interior’ solution: 2plyl ≤ (yh − yl)
2 ≤ 4plyl

ISB ≤ Imon = I ins < IFB if ’corner’ solution: (yh − yl)
2 > 4plyl

Proof. See Appendix

Thus the equilibrium investment level is exactly the same as when the insurer was com-

petitive (Imon = I ins). Consequently, Imon ≥ ISB which means insurance still alleviates

the moral hazard problem and increases the social welfare. The increase in social welfare is

exactly the same as before but, in contrast to the previous section, the increased welfare only

goes to the insurer and none to the borrower. The insurer achieves this through a higher

insurance price while keeping the borrower’s payoff the same as the second best. Because

the lender is now paying a higher price for the insurance, the lender accounts for this in

the bond price he charges the borrower; thus compared to the last section borrowing cost is

higher when the insurer is a monopolist.

3.2 Naked Buyers

We now introduce naked buyers who are risk averse and have cash flows that are correlated

with that of the sovereign’s: its cash flow is likely to be high when the sovereign has a high

output state realization and vice versa. The naked buyer’s cash flow is ch with probability

π(I) and cl with probability 1−π(I). Thus, implicit in this assumption is that the sovereign’s

action (i.e. investment) affects the naked buyer’s cash flow: the probability of the high cash

flow state is increasing in the sovereign’s investment. We assume the naked buyer buys a

type of CDS where a restructuring is considered a credit event. If the naked buyer buys a
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CDS where only full default is a credit event, then it will not provide him with any insurance

since a full default never occurs in equilibrium. Let (in, mn) denote the insurance contract

sold to the naked buyer. Thus, when yl is realized and there is a debt restructuring, the

insurance pays in minus the recovery value α(il)yl to the naked buyer. When yh is realized

there is no credit event and hence no payments from the insurer. The insurance premium,

mn, is paid in both states. The naked buyer’s consumption is:

c =











ch −mn if yh is realized which occurs with probability π(I)

cl + in − α(il)yl −mn if yl is realized which occurs with probability 1− π(I)

Therefore, the naked buyer has the following expected utility:

UN (in, mn) = π(I)u(ch −mn) + (1− π(I))u(cl + in − α(il)yl −mn)

The insurer now maximizes his profit over two sets of insurance contracts: one for the

lender (il, ml) and one for the naked buyer (in, mn). Each insurance contract has to be

individually rational: the lender is at least better off with (il, ml) than without it, and the

naked buyer is also at least better off with insurance (in, mn) than without it. We assume

that the insurer can tell apart between the lender and the naked buyer such that incentive

compatibility constraints (that the naked buyer will prefer the contract designed for him

rather than the one for the lender and vice versa) are not imposed.27

Definition: The equilibrium insurance contracts (i∗l , m
∗
l ) and (i∗n, m

∗
n) and hence the equi-

librium investment level when there is a naked buyer who buys insurance are given by

the solution to Program Pspec.

27This is because the problem becomes analytically intractable with the lender’s incentive compatibility
constraint. By design the naked buyers insurance contract is incentive compatible: the naked buyer will
prefer the contract designed for him rather than the one for the lender. In equilibrium there is only a debt
restructuring and never a full default and the naked buyers insurance contract includes restructuring as
a credit event while the lenders does not. We have checked numerically that imposing lender’s incentive
compatibility constraints do not qualitatively change our results.
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Program Pspec:

max
il,ml,in,mn

ml +mn − (1− π(I))(in − α(il)yl) (Pspec)

s.t. U(il, ml) ≥ USB (IRL)

UN (in, mn) ≥ UN (0, 0) (IRN)

The main result of this section is given next.

Proposition 3. Depending on the parameter conditions, in equilibrium, there is either an

over-investment, (I∗ ≥ Imon) or an under-investment (I∗ ≤ Imon) compared to the bench-

mark case (PBenchmark) without the naked buyers. When there is an over-investment, the

cost of borrowing is lower (q∗ ≥ qmon), while if there is an under-investment, the cost of

borrowing is higher q∗ ≤ qmon than without the naked buyers.

Proof. See appendix.

Intuition:

Let us first simplify Program Pspec. The appendix shows that both of the individual rational-

ity constraints of Program Pspec bind. Moreover, in − α(il)yl = ch − cl. Denote σc ≡ ch − cl.

Then after some algebra, Program Pspec becomes:

max
il,mn

ml(il) +mn − (1− π(I(il)))σc

s.t. u(ch −mn) = π(I(il))u(ch) + (1− π(I(il)))u(cl) (11)

We can further simplify by solving formn from eq. (11) and substituting it into the objective

function. Program Pspec boils down to maximizing over only one variable which is the lender’s

insurance level:

max
il

ml(il) +mn(il)− (1− π(I(il)))σc
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Figure 6

The objective function of the insurer (i.e. his total profit) is comprised of profits from

insuring both the lender, ml(il), and the naked buyer, mn(il) − (1 − π(I(il)))σc. Figure 6

shows a stylized representation of the insurer’s problem: it plots the insurer’s profit as a

function of the insurance sold to the lender (il). In panel (a), the parameter conditions are

such that the profit function from insuring the naked buyer is to the left of the lender’s

meaning that the maximum profit received from the naked buyer occurs at a lower il than

the profit from the lender. To determine the optimal insurance level for the lender, i∗l , we

know from looking at the graph that i∗l will not be less than the level that maximizes the

profit from insuring the naked buyer (denoted by ia) because if it is, then by increasing il

the insurer can increase the profit he receives both from the naked buyer and the lender.

Similarly, i∗l cannot be greater than i
mon
l , the level that maximizes the profit from the lender.

Thus, i∗l will be between ia and imon
l . In fact, i∗l will be where the marginal benefit of an

extra il (increase in profit received from the lender) equals the marginal cost (decrease in

profit from the naked buyer). More importantly, i∗l will be less than imon
l which was the

equilibrium insurance in the no-naked-buyers case: m′
l(i

mon
l ) = 0. Since investment is an

increasing function of il, the equilibrium investment is lower than without the naked buyer:

I∗ < Imon . The equilibrium investment of the no-naked-buyers case resulted in as much

alleviation of moral hazard as possible (e.g. Imon = IFB if corner solution); thus when

28



I∗ < Imon the existence of a naked buyer impedes the alleviation of moral hazard. In panel

(b), the parameter conditions are the opposite of panel (a). By the same arguments, we have

that i∗l ≥ imon
l and hence an over-investment.

What is going on is that due to insuring the naked buyer, the insurer profits from insuring

not only the lender but also the naked buyer where the profit from the latter is affected by

the borrower’s investment. Since the insurer can indirectly control the borrower’s investment

through the insurance contract offered to the lender, (il, ml), the insurer chooses (il, ml) and

hence the borrower’s investment to maximize the sum of the two profits. Depending on the

naked buyer’s preferences and cash flows ch and cl, it can be more profitable to induce a

higher borrower investment as in panel (b) or a lower borrower investment as in panel (a).

For example, when the cash flow of the naked buyer in the low state (cl) is very low, the

insurer will have to pay out a larger claim, σc, to the naked buyer in the low state since the

optimal insurance for the naked buyer completely smoothes his consumption across states.

In this case, it is more profitable to the insurer to induce a higher borrower investment so

that the state in which he has to make a large net transfer occurs with a lower probability.

4 Conclusion

Motivated by the concerns raised over the use of credit default swaps during the recent Eu-

ropean sovereign debt crises, we ask: could credit default swaps be beneficial for the debtor

country, and if so, why? We find that CDSs can be beneficial for the borrower because

they can serve as a disciplining mechanism in an environment with debtor moral hazard

and debt renegotiation. Specifically, the moral hazard problem arises from the assumption

of private information about the borrower’s investment, and, as a consequence, results in

credit rationing and suboptimal investment level. In this framework, we find that insurance

serves as a commitment device for a lender to credibly reject low levels of repayment from

the borrower, thereby, increasing the lender’s bargaining power in ex-post debt renegotia-
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tions. The increased bargaining power of the lender, in turn, alleviates ex-ante borrowing

constraints, provides more external capital to the debtor country, and increases investment

and, hence, welfare. Thus, the existence of an insurance market alleviates the moral hazard

problem by better aligning the lender and borrower’s incentives.

Using this framework, we also analyze the effect of naked buyers who do not lend directly

to the sovereign. If there are naked buyers who purchase insurance, our analysis shows that

the market structure of the insurer’s market could be important. If the insurer’s market is

relatively competitive, our model suggests that the existence of naked buyers should have no

impact on the debtor country. While if the insurer’s market is concentrated, the existence

of naked buyers could either lead to an over-investment or impede the alleviation of moral

hazard. Nevertheless, this paper raises some issues in favor of CDS, thus putting a larger

onus on those who call for regulation to come up with serious analyses of the detrimental

aspects of CDSs.
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A Appendix

Claim 1. c0 = 0 in Program PSB of section 2.1.28

Proof. The Lagrangian is given by:

L = qB − I + π(I)(yh − B) + (1− π(I))(yl − αyl)

+ µ[π′(I)(yh − B − (1− α)yl)− 1]

+ ψ[π(I)B + (1− π(I))αyl − qB]

+ λ[qB − I]

First order conditions with respect to I, B, and q are:

−1+π′(I)(yh−B−(1−α)yl)+µπ′′(I)(yh−B−(1−α)yl)+ψπ′(I)(B−αyl)−λ = 0 (FOCI)

q − π(I)− µπ′(I) + ψ[π(I)− q] + λq = 0 (FOCB)

B − ψB + λB = 0 (FOCq)

λ(qB − I) = 0

Suppose λ = 0, then
(FOCq) ⇒ ψ = 1

(FOCI) ⇒ µπ′′(I)/π′(I) = −ψπ′(I)(B − αyl) < 0 ⇒ µ > 0 since π′′(I) < 0

(FOCB) ⇒ µπ′(I) = 0 which is a contradiction since π′(I) > 0 and µ > 0

A.1 Demonstrating the necessity of both bargaining and private

information

A.1.1 Bargaining but no private information

The equilibrium under full information, bargaining setting without the insurance market is
already given by Program PFB. The equilibrium when there exists an insurance maximizes
the borrower’s utility subject to the zero-profit conditions of the lender and the insurer.
Program PFB,ins:

max
q,B,I,i,ω

(qB − I) + π(I)(yh −B) + (1− π(I))cB (PFB,ins)

s.t. π(I)B + (1− π(I))cL = qB +m

c0 = qB − I ≥ 0

28The same argument holds for Program PSB,ins.
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where m, cB, and cL in each of the three intervals of i are:

m =







(1− π(I))0 = 0
(1− π(I))(1− ω)i
(1− π(I))i

cB =







(1− α(i))yl
(1− p)yl
(1− p)yl

cL =







α(i)yl if i < pyl
ωα(i)yl + (1− ω)i if i = pyl
i if i > pyl

and α(i) is given by (5).
Solving this problem, the optimal investment is given by:

π′(I)(yh − yl) = 1 (12)

which is exactly the same as when the insurance market did not exist. Moreover, the utility
of the borrower, given by U = −I +π(I)yh+(1−π(I))yl, does not depend on insurance and
is also exactly as it was before without the insurance. Thus, the lender’s credit insurance
activity does not matter.

Intuition. First, the lender will not buy insurance that is more than pyl. Since the
borrower will at most pay pyl, when i > pyl, the lender will prefer full default so that he
can get i > pyl from the insurer. However, this increases the cost of insurance and, due to
the lender’s break-even condition, the lender passes down to the borrower the insurance cost
through higher borrowing cost.29 By the same argument, ω = 1. Thus, we can narrow down
i to i ≤ pyl in which case m = 0, cL = α(i)yl, and c

B = (1 − α(i))yl. Substituting them in,
Program PFB,ins boils down to:

max
q,B,I,i

(qB − I) + π(I)(yh − B) + (1− π(I))(1− α(i))yl

s.t. π(I)B + (1− π(I))α(i)yl = qB

c0 = qB − I ≥ 0

From here, it is straight forward to see that investment is given by (12). However, B and q
will be functions of i:30

B(i) =
1

π(I)

(

I − (1− π(I))α(i)yl
)

q =
I

B(i)

For i = 0, we are back to Program PFB, while for 0 < i ≤ pyl all insurance does is make the
borrower pay more in the low-output state. Paying more in the low-output state lowers the
borrowing cost, or, equivalently, increases the bond price. So without borrowing as much
(i.e. B is lower) he is able to raise the same funds, qB, such that: qB = IFB = IFB∗

. But
the borrower’s investment and utility does not change with i and, hence, there is no unique
optimal insurance level as long as i ≤ pyl. In the end, insurance does not matter because we
still do not have a friction that constrains borrowing and results in a suboptimal investment.

29The pyl that the borrower gets penalized by is a deadweight cost that no one benets from; it is better if
it instead gets used to repay back the loan.

30We can again safely assume qB − I = 0 as before.
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A.1.2 Private information but no bargaining

What happens if we shut off bargaining and consider if an insurance market makes a difference
in a private information but full default setting? The optimal contract without the existence
of an insurance market is given by the solution to:

max
q,B,I

qB − I + π(I)(yh − B) + (1− π(I))yl(1− p)

s.t. π′(I)(yh −B − yl(1− p)) = 1

π(I)B + (1− π(I))0 = qB (13)

c0 = qB − I ≥ 0

Now with an insurance market:

max
q,B,I,i

qB − I + π(I)(yh −B) + (1− π(I))yl(1− p)

s.t. π′(I)(yh − B − yl(1− p)) = 1

π(I)B + (1− π(I))i = qB +m (14)

m = (1− π(I))i (15)

c0 = qB − I ≥ 0

Note that (14) and (15) together gives you exactly (13). Thus, the two problems are the
same and the lender’s insurance activity does not affect the borrower’s behavior. This is
because without bargaining, the lender’s credibility to penalize is no longer in question: the
borrower automatically gets penalized when yl is realized.

A.2 Proof of Proposition 1

Proof of Proposition 1(i): We first solve for the optimal investment and utility achieved
without insurance (i.e. the second best) which will be used to compare to the case with
insurance. Then Proposition 1(i) will follow from Lemmas 1.1 and 1.2 shown below. �

Solution of the second best contract:

{

π′(I)(yh −B − (1− αSB)yl) = 1
π(I)B + (1− π(I))αSByl = I

⇒
{

B = − 1
π′(I)

+ yh − (1− αSB)yl

B = I−(1−π(I))αSByl
π(I)

⇒
√
ISB =

yh − yl +
√

(yh − yl)2 + 12αSByl
6

USB =
(yh − yl)

2

9
+

(yh − yl)
√

(yh − yl)2 + 12αSByl
9

− αSByl
3

+ yl

Lemma 1.1: Let i1 be the optimal insurance on the interval i ≤ pyl. If (yh − yl)
2 ≥ 4pyl,

then α = p and i1 = pyl. If (yh−yl)2 < 4pyl, then α = (yh−yl)
2

4yl
, and i1 =

1
2
(yh−yl)2−pyl
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Proof. We first find the optimal investment, loan, and utility amounts for a fixed insurance
i on the interval [0, pyl] and denote them as I1(i), B1(i), U1(i) respectively. Then we find i
that maximizes U1(i) on the interval [0, pyl], i.e. i1 ≡ argmaxU1(i).

I1(i), B1(i) for specific i on [0, pyl] are given by the solution to:

{

π′(I)(yh −B − (1− α(i))yl) = 1
π(I)B + (1− π(I))α(i)yl = I

⇒
{

B = − 1
π′(I)

+ yh − (1− α(i))yl

B = I−(1−π(I))α(i)yl
π(I)

⇒
√

I1(i) =
1

6
(yh − yl +

√

(yh − yl)2 + 12α(i)yl) (16)

The utility achieved for a given i is then:

U1(i) =π(I)yh − π(I)B + (1− π(I))(yl − α(i)yl)

=
1

9
(yh − yl)

2 +
1

9
(yh − yl)

√

(yh − yl)2 + 12α(i)yl −
1

3
α(i)yl + yl

We now find i where ∂U1

∂i
= ∂U1

∂α
∂α
∂i

= 0. Since α(i) = 1
2
p + 1

2yl
i, ∂α

∂i
> 0. So we just need to

find α where ∂U1

∂α
= 0:

⇒ α =
(yh − yl)

2

4yl

Thus:

α =

{

(yh−yl)
2

4yl
if (yh − yl)

2 < 4pyl
p if (yh − yl)

2 ≥ 4pyl

i1 =

{

1
2
(yh − yl)

2 − pyl if (yh − yl)
2 < 4pyl

pyl if (yh − yl)
2 ≥ 4pyl

Lemma 1.2: Let Ū1 and Ū2 be the utilities achieved with the optimal insurance on the
intervals i ≤ pyl and i ≥ pyl respectively. Then Ū1 ≥ Ū2.

Proof. Let Ī1, B̄1, and Ū1 be the values achieved with the optimal insurance i1, i.e. Ī1 ≡
I1(i1), B̄1 ≡ B1(i1), and Ū1 ≡ U1(i1). Likewise, let Ī2, B̄2, and Ū2 be the optimal values on
i ≥ pyl. We show the proof by the following four steps: (i) solve for Ī2, (ii) show B̄1 ≤ B̄2,
(iii) show Ī1 ≥ Ī2, and then as a consequence: (iv) Ū1 ≥ Ū2.

Step (i). Solve for Ī2

We do the same as in Lemma 1.1 but constraining insurance to be at least greater than pyl.
We first solve for the optimal investment I2(i) for a fixed insurance i when i ≥ pyl:

{

π′(I)(yh −B − (1− p)yl) = 1
π(I)B = I

⇒
{

B = − 1
π′(I)

+ yh − (1− p)yl
B = I

π(I)

⇒
√

I2(i) =
yh − yl + pyl

3
=
yh − yl

3
+
pyl
3

(17)
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Note that investment in this case does not depend on i. Thus, Ī2 is given by (17).

Step (ii). Proof of B̄1 ≤ B̄2

B̄2 =
π(I)

I
=
yh − yl + pyl

3

For the interior case, where 1
4
(yh − yl)

2 ≤ pyl:

B̄1 = −2
√

I1 + yh − (yl − α(i1)yl) = αyl =
1

4
(yh − yl)

2 ≤ pyl

B̄2 ≥
(yh − yl)

2 + pyl
3

≥ 3pyl
3

= pyl

where the last inequality is due to the moral hazard condition, thus, B̄1 ≤ B̄2.
For the corner case:

B̄1 = −(yh − yl) +
√

(yh − yl)2 + 12pyl
3

+ yh − yl + pyl

⇒ B̄1 − B̄2 =
1

3
(yh − yl)−

√

(yh − yl)2 + 12pyl
3

+
2

3
pyl

Suppose B̄1 − B̄2 > 0, then:

(yh − yl) + 2pyl >
√

(yh − yl)2 + 12pyl

⇒ pyl(yh − yl) + (pyl)
2 > 3pyl

But the LHS: pyl(yh − yl) + (pyl)
2 ≤ pyl(yh − yl) + pyl = pyl(yh − yl + 1) ≤ 2pyl

which is a contradiction, thus, B̄1 ≤ B̄2. �

Step (iii). Proof of Ī1 ≥ Ī2

For the interior solution case:

α(i1)yl =
1

4
(yh − yl)

2

√

Ī1 =
√

I1(i1) =
1

6
(yh − yl +

√

4(yh − yl)2) =
yh − yl

2
=
yh − yl

3
+
yh − yl

6

From the moral hazard (yh − yl)
2 ≥ 2pyl and using the fact that yh − yl ≤ 1:

yh − yl
6

≥ pyl
3

For the corner solution case where (yh − yl)
2 ≥ 4pyl:

α(i1)yl = pyl

π′(Ī1)(yh − B̄1 − (1− p)yl) = 1
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π′(Ī2)(yh − B̄2 − (1− p)yl) = 1

Thus, due to the concavity of π(I), when B̄1 ≤ B̄2, we have Ī1 ≥ Ī2. �

Step (iv). Proof of Ū1 ≥ Ū2

Using (i), (ii), and (iii) it is straightforward to see the result from:

Ū1 = π(Ī1)(yh − B̄1) + (1− π(Ī1))(1− p)yl = π ¯(I1)(yh − B̄1 − (1− p)yl) + (1− p)yl

Ū2 = π(Ī2)(yh − B̄2) + (1− π(Ī2))(1− p)yl = π(Ī2)(yh − B̄2 − (1− p)yl) + (1− p)yl

Proof of Proposition 1(ii). U ins is the maximum utility achieved when an insurance
market exits. Thus, U ins = Ū1 since we have shown that Ū1 ≥ Ū2. But using the solution
of the second best contract we have: USB = U1(i)|i=0, but U1(i)|i=0 ≤ maxi U1(i) ≡ Ū1 and
the result follows. �

Proof of Proposition 1(iii). From the solution to the second best contract: ISB = I1(i =
0). But I1(i) is increasing in insurance on [0, pyl] from eq. (16) in Lemma 1.1. �

Proof of Proposition 1(iv).

B(i) = − 1

π′(I(i))
+ yh − (1− α(i))yl = −2

√

I(i) + yh − yl +
1

2
pyl +

1

2
i

= −1

3
(yh − yl +

√

(yh − yl)2 + 6pyl + 6i) + yh − yl +
1

2
pyl +

1

2
i

B′′(i) = 3((yh − yl)
2 + 6pyl + 6i)−

3
2 > 0 ⇒ B(i) is convex

We will that show i∗ is less than imin where B′(imin) = 0

B′(i) = − 1
√

(yh − yl)2 + 6pyl + 6i
+

1

2
= 0 ⇒ imin =

2

3
− yh − yl

6
− pyl

For the interior solution case where i∗ = yh−yl
2

− pyl:

(yh − yl)
2 ≤ 1 ⇒ yh − yl

2
≤ 2

3
− yh − yl

6

For the corner solution case: since in this case i∗ = pyl ≤ yh−yl
2

− pyl, the same argument as
for the interior solution holds. �
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Proof of Proposition 1(v). Since q = I
B
, the proof is a corollary of Propositions 1(iii)

and 1(iv). �

A.3 Proofs for the Section with Speculators

Proof of Proposition 2. First, we want to show that the lender’s IR constraint binds in
Program PBenchmark:

max
il,ml

ml

s.t. U(il, ml) ≥ USB

where USB = (yh − yl)
2/9 + (yh − yl)

√

(yh − yl)2 + 6plyl/9− plyl/6 + yl.

Proof. In the lender’s problem, the constraint qB − I ≥ 0 binds as before, so B and I can
be solved as functions of il and ml from:

{

π′(I)(yh −B − (1− α(il))yl) = 1
π(I)B + (1− π(I))α(il)yl = I +ml

To simplify the complexity of notation, let us define:

σy ≡ yh − yl

u ≡ USB − yl

x(il, ml) ≡
√

I(il, ml)

I and U are given by:

√

I(il, ml) =
σy +

√

σ2
y + 12(1

2
plyl +

1
2
il −ml)

6

U(il, ml) = −ml − I(il, ml) +
√

I(il, ml)σy + yl

= −ml − x(il, ml)
2 + x(il, ml)σy + yl

Then Program PBenchmark becomes:

max
il,ml

ml

s.t. −ml − x(il, ml)
2 + x(il, ml)σy + yl ≥ USB

il ≤ plyl

The first order conditions are:

FOCml
: 1 + λ1(−1 − 2xxm + xmσy) = 0
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FOCil : λ1(−2xxil + xilσy) + λ2 = 0

where λ1 and λ2 are the lagrange multipliers on the first and second constraints respectively.
We see from FOCml

that if λ1 = 0, we get a contradiction. Thus, the constraint binds.

Next, we see from FOCil that x = σy

2
, that is I = IFB. To solve for the optimal insurance,

we first solve for ml as a function of il. It can be shown that:

ml(il) = −3

2

(

u+
1

6
(plyl + il)

)

+
σy
2

√

2u+ plyl + il

Then Program PBenchmark boils down to just:

max
il

ml(il)

il ≤ plyl

Taking the first order condition with respect to il, optimal imon
l is given by:

1 = σy
1

√

plyl + imon
l + 2u

⇒

imon
l = min{−2u+ σ2

y − plyl, plyl}

To check again that
√
Imon = 1

2
σy for the interior case:

m(imon
l ) = −3

2

(

1

6
σ2
y +

2

3
u

)

+
1

2
σ2
y =

1

4
σ2
y − u

1

2
(plyl + imon

l )−ml(i
mon
l ) = −u+ 1

2
σ2
y −

1

4
σ2
y + u =

1

4
σ2
y

plug this in the expression for I:

√

I(imon
l , ml) =

σy
√

σ2
y + 3σ2

y

6
=

1

2
σy

For the corner solution case.
U(il, ml) ≥ USB

−Imon + (yh − yl)
√
Imon −ml − yl ≥ −ISB + (yh − yl)

√
ISB − yl

−Imon + (yh − yl)
√
Imon ≥ ml − ISB + (yh − yl)

√
ISB

⇒ Imon ≥ ISB

Proof of Proposition 3. The proof consists of four steps. To simplify notation, define:

σc ≡ ch − cl

xm ≡ ∂x(il, ml)

∂ml
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xi ≡
∂x(il, ml)

∂il

Step 1:

We show that in Program Pspec both of the individual rationality constraints bind and
that in − α(il)yl = ch − cl:

max
il,ml,in,mn

ml +mn − (1− x(il, ml))(in − (plyl + il)/2

s.t. −ml − x(il, ml)
2 + x(il, ml)σy + yl ≥ USB

x(il, ml)
√
ch −mn + (1− x(il, ml))

√

cl + in − (plyl + il)/2−mn ≥
x(il, ml)u(ch) + (1− x(il, ml))u(cl)

il ≤ plyl

Let λ1, λ2, and λ3 be the lagrange multipliers of the above three constraints respectively.
The first order conditions are:
FOCml

:

1 + xm(in−(plyl + il)/2) + λ1(−1 − 2xxm + xmσy) + λ2xm
(√

ch −mn−
√

cl + in − (plyl + il)/2−mn − (
√
ch −

√
cl)

)

= 0

FOCil :

xi
(

in − (plyl + il)/2
)

+ (1− x)/2 + λ1(−2xxi + xiσy) + λ2

(

xi
(√

ch −mn

−
√

cl + in − (plyl + il)/2−mn − (
√
ch −

√
cl)

)

− (1− x)/2

2
√

cl + in − (plyl + il)/2−mn

)

+ λ3 = 0

FOCmn
:

1− 1

2
λ2
( x√

ch −mn

+
1− x

√

cl + in − (plyl + il)/2−mn

)

= 0

FOCin :

(1− x) = λ2
1− x

2
√

cl + in − (plyl + il)/2−mn

Then from either FOCmn
or FOCin, λ2 6= 0. And from both FOCmn

and FOCin we have
that: √

ch −mn =
√

cl + in − (plyl + il)/2−mn

⇒ in − (plyl + il)/2 = ch − cl and λ2 = 2
√
ch −mn

Suppose λ1 = 0, then using λ2 = 2
√
ch −mn, FOCml

becomes:

1 + xmσy − 2xm
√
ch −mn(

√
ch −

√
cl) = 0 (18)
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⇒
√
ch −mn =

xiσc − 1
2

2xi(
√
ch −

√
cl)

(19)

And since λ2 6= 0,
√
ch −mn = x

√
ch + (1− x)

√
cl. Plug this in to (19):

2(x(
√
ch −

√
cl)

2 +
√
ch(

√
ch −

√
cl)) = σc −

√

σ2
y + 12(

1

2
plyl +

1

2
il −ml) (20)

Define:

a ≡
√

σ2
y + 12(

1

2
plyl +

1

2
il −ml)

then,

(20) ⇒ (
σy
3

+
a

3
)(
√
ch −

√
cl)

2 + 2
√
ch(

√
ch −

√
cl) = σc − a

⇒ a =
σc − 2

√
ch(

√
ch −

√
cl)− σy

3
(
√
ch −

√
cl)

2

1
3
(
√
ch −

√
cl)2 + 1

=
−(

√
ch −

√
cl)

2 − σy

3
(
√
ch −

√
cl)

2

1
3
(
√
ch −

√
cl)2 + 1

≤ 0

which is a contraction. �

Step 2:

After some simplifications allowed from step 1, we derive the optimal insurance contracts
(il, ml), (in, mn) and λ1 which are given by the following five equations:

FOCml
: 1 + xml

σc + λ1(−1− 2xxm + xmσy)− 2
√
ch −mnxm(

√
ch −

√
cl) = 0

FOCil : σc + λ1(−2x+ σy)− 2
√
ch −mn(

√
ch −

√
cl) = 0

FOCin & FOCmn
: in =

1

2
(py + il) + σc

−ml − x2 + xσy − u = 0
√
ch −mn = x(

√
ch −

√
cl) +

√
cl (21)

From FOCml
and FOCil:

1+xmσc+
2
√
ch −mn(

√
ch −

√
cl)− σc

−2x+ σy
(−1)+(2

√
ch −m(

√
ch−

√
cl)−σc)xm−2

√
ch −mnxm(

√
ch−

√
cl) = 0

⇒ 1 =
2
√
ch −mn(

√
ch −

√
cl)− σc

−2x+ σy
⇒ 2

√
ch −mn(

√
ch −

√
cl)− σc = −2x+ σy

Then the above together with (21):

2x(
√
ch −

√
cl)

2 + 2
√
cl(

√
ch −

√
cl)− σc = −2x+ σy

⇒ x =
1
2
(σyσc)−

√
cl(

√
ch −

√
cl)

1 + (
√
ch −

√
cl)2
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Define:

g ≡
1
2
(σyσc)−

√
cl(

√
ch −

√
cl)

1 + (
√
ch −

√
cl)2

x(il) = x(il, ml(il)) =
(

σy

√

σ2
y + 6(plyl + il)− 12ml(il))

)

/6

=
(

σy

√

σ2
y + 9(plyl + il) + 18u− 2σy

√

9(plyl + il) + 18u
)

/6

Setting x(il) equal to g, il can be solved as:

il = 4g2 − 2u− plyl

Thus, the optimal insurance contracts are given by:

i∗l =min{4g2 − 2u− pyl, plyl}

m∗

l =







−u− g2 + σyg if il ≤ plyl

−3
2

(

u+ 1
3
plyl

)

+ σy

2

√
2u+ 2plyl if il = plyl

i∗n =
1

2
(plyl + i) + σc = min{2g2 − u+ σc, plyl + σc}

m∗

n =ch − (x(
√
ch −

√
cl) +

√
cl)

2

Step 3: Proof of the result on over and under-investment.

Consider the following four cases:

Case 1: max{σ2
y − 2u− pyl, 4g

2 − 2u− pyl} ≤ pyl
Case 2: 4g2 − 2u− pyl ≤ pyl ≤ σ2

y − 2u− pyl
Case 3: σ2

y − 2u− pyl ≤ pyl ≤ 4g2 − 2u− pyl
Case 4: pyl ≤ min{σ2

y − 2u− pyl, 4g
2 − 2u− pyl}

Case 1. In this case, both imon and i∗l are given by the respective interior solutions. There is
an over-investment if Imon = 1

2
σy ≤ g = I∗, an under-investment if otherwise. For example,

if ch = yh and cl = yl, the condition g ≥ 1
2
σy boils down to whether 1 ≥ σy.

Case 2. Here, imon = plyl, i.e. it is a corner solution while i∗l is an interior solution.
Then:

Imon =
σy
6

+
1

6

√

σ2
y + 18(plyl + u)− 2σy

√

18(plyl + u) and I∗ = g

Thus, there is an over-investment if g ≥ σy

6
+ 1

6

√

σ2
y + 18(plyl + u)− 2σy

√

18(plyl + u) and

an under-investment if otherwise.

Case 3. In this case, σy ≤ 4g2, thus imon ≤ i∗. Also ml(il) attains maximum at imon(il) and
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is concave, thus ml(i
∗) ≤ ml(i

mon). Hence, Imon ≤ I∗

Case 4. imon = i∗ = plyl, thus again ml(i
mon) = ml(i

∗), hence Imon = I∗. �

Step 4: Proof of the result on cost of borrowing.

Cases 1 and 3 where imon
l = σ2

y − 2u− plyl:

π′(Imon)(yh−Bmon−(1−α(imon))yl) = 1 ⇒ π′(Imon)(yh−yl) = 1 ⇒ Bmon = α(imon)yl

Bmon = α(imon)yl =
1

2
pyl +

1

2
imon

B∗ = −2
√
I∗ + yh − yl +

1

2
pyl +

1

2
i∗

Bmon −B∗ =
1

2
(imon − i∗) + 2

√
I − (yh − yl)

Thus, Bmon ≥ B∗ if an over-investment and vice versa and since q = I
B
the result about the

cost of borrowing follows.

Case 2.

B∗ = −2
√
I∗ + (yh − yl) +

1

2
plyl +

1

2
i∗

Bmon = −2
√
Imon + (yh − yl) +

1

2
plyl +

1

2
imon

Bmon −B∗ = −2(
√
Imon −

√
I∗) +

1

2
(plyl − i∗)

If an over-investment: −(
√
Imon −

√
I∗) ≥ 0 ⇒ Bmon −B∗ ≥ 0. Thus, the result about

cost of borrowing follows since q = I
B
. If an under-investment: it is analytically intractable

in this case to show the result about cost of borrowing, so we resort to checking this com-
putationally.

Case 4:
Imon = I∗, thus qmon = q∗. �
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A.4 Default and Bargaining in Both States {H, L}

In this subsection, we relax the assumption that the borrower and the lender do not bargain
when yh is realized.

✘✘✘✘✘✘✘✘✘
yl

Y1

bargaining
succeeds

�
�

�
��✠

(1− αl)yl
αlyl

bargaining
fails

❅
❅
❅
❅❅
(1− pl)yl
0

Borrower:

Lender:

❳❳❳❳❳❳❳❳❳
yh

bargaining
succeeds

bargaining
fails

�
�

�
��✠

yh − αhB

αhB

❅
❅
❅
❅❅

(1− ph)yh
0

Figure 1: Date 1 subgame without insurance

Solving the bargaining problem:31

αh =
phyh
2B

⇒ αhB =
phyh
2

(22)

The first best:

max
q,B,I

qB − I + π(I)(yh − αhB) + (1− π(I))(1− αl)yl

s.t. π(I)αhB + (1− π(I))αlyl = qB

qB − I ≥ 0

The second best:

max
q,B,I

qB − I + π(I)(yh − αhB) + (1− π(I))(1− αl)yl

s.t. π′(I)(yh − αhB − (1− αl)yl) = 1

π(I)αhB + (1− π(I))αlyl = qB

qB − I ≥ 0

31The product of the bargaining surpluses are:

∆B∆L =
(

yh − αhB − (1− ph)yh
)

αhB = (−αhB + phyh)αhB = −B2α2

h + phyhBαh

Maximizing this w.r.t αh, we get (22).
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Substituting in the solutions to the bargaining problem:

max
q,B,I

qB − I + π(I)(yh −
1

2
phyh) + (1− π(I))(yl −

1

2
plyl)

s.t. π′(I)
(

yh −
1

2
phyh − (yl −

1

2
plyl)

)

= 1 (23)

π(I)αhB + (1− π(I))αlyl = qB

qB − I ≥ 0

A.4.1 With CDS

✘✘✘✘✘✘✘✘✘
yl

Y1

bargaining
succeeds

�
�

�
��✠

(1− αl(il))yl
αl(il)yl

bargaining
fails

❅
❅
❅
❅❅
(1− pl)yl
il

Borrower:

Lender:

❳❳❳❳❳❳❳❳❳
yh

bargaining
succeeds

bargaining
fails

�
�

�
��✠

yh − αh(ih)B

αh(ih)B

❅
❅
❅
❅❅
(1− ph)yh

ih

Figure 2: Date 1 subgame with insurance

Solving the bargaining problem:32

αh(ih) =
phyh + ih

2B
⇒ αh(ih)B =

phyh
2

+
ih
2

(24)

Equilibrium

max
q,B,I,ih,il

qB − I + π(I)(yh −
1

2
(phyh + ih)) + (1− π(I))(yl −

1

2
(plyl + il))

s.t. π′(I)(yh − αhB − (1− αl)yl) = 1

π(I)αhB + (1− π(I))αlyl = qB

qB − I ≥ 0

il ≤ plyl

ih ≤ phyh

32The product of the bargaining surpluses are:

∆B∆L =
(

yh−αhB−(1−ph)yh
)(

αhB−ih
)

= (−αhB+phyh)(αhB−ih) = −B2α2

h+(phyhB+ihB)αh−phyhi

Maximizing this w.r.t αh, we get (24).
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Substituting in the solutions to the bargaining problem:

max
q,B,I,ih,il

qB − I + π(I)(yh −
1

2
(phyh + ih)) + (1− π(I))(yl −

1

2
(plyl + il))

s.t. π′(I)
(

yh −
1

2
(phyh + ih)− (yl −

1

2
(plyl + il)

)

= 1 (25)

π(I)
(1

2
phyh +

1

2
ih
)

+ (1− π(I))
(1

2
plyl +

1

2
il
)

= qB (26)

qB − I ≥ 0

il ≤ plyl

ih ≤ phyh

Note that if ih = il, comparing (25) with the second best equivalent (23), the borrower
will choose the same investment level as in the second best; in other words, the lender’s
insurance activity will not matter. This is because the borrower’s consumption in both
states goes down by exactly same amount (1

2
ih or 1

2
il). Thus, the optimal il and ih will have

to be different to induce the borrower to invest an amount other than the second best.

Solving for the optimal insurance

Comparing (25) with the second best equivalent (23) rewritten here:

π′(I)
(

yh − yl −
1

2
(phyh − plyl)−

1

2
(ih − il)

)

= 1

π′(I)
(

yh − yl −
1

2
(phyh − plyl)

)

= 1

we see that due to the concavity of π(I), CDS increases investment and thereby alleviates
moral hazard only if −1

2
(ih − il) ≥ 0 or il > ih. In fact the bigger the difference il − ih is,

the bigger the investment. I is increasing in il and we can set ih = 0.
Substituting (26) into the objective function and cancelling terms, we get:

max
I,il

− I + π(I)yh + (1− π(I))(1− yl) (27)

s.t. π′(I)
(

yh −
1

2
phyh − (yl −

1

2
(plyl + il)

)

= 1 (28)

il ≤ plyl

Since we have assumed that π(I) =
√
I, then from (28):

√
I =

1

2

(

yh − yl −
1

2
(phyh − plyl) +

1

2
il

)

Substituting the above equation into the objective function (27) and maximizing with respect
to il we get:

il = min
{

phyh − plyl, plyl
}

Thus, the borrower’s utility is increasing in il up until il = phyh−plyl. When il = phyh−plyl,
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the moral hazard is completely alleviated since I(il) = IFB. However, we have the constraint
il ≤ plyl and if the parameters are such that plyl ≤ phyh− plyl, then the constraint will bind
and the optimal il equals plyl and U

FB ≥ U ins ≥ USB. Nevertheless, U ins ≥ USB and the
main result of the paper that the lender’s insurance activity has a disciplining effect holds in
this slightly more general setting. An issue here is the fact that q and B are not identified
separately because B is not a control variable anymore. Because of the bargaining in both
of the states, how much the borrower ends up repaying is fixed: 1

2
phyh in the high state and

1
2
plyl in the low state regardless of the investment level or how much was borrowed initially
qB.

A.5 Uncompetitive Lender

α = (1− β)p

33 First best

max
q,B,I,i

UβL1−β (29)

st: qB − I ≥ 0 (30)

L ≥ 0 (31)

U ≥ 0 (32)

where
U = qB − I + π(I)(yh − B) + (1− π(I))(1− α)yl − yl

L = π(I)B + (1− π(I))αyl − qB

Throughout I don’t explicitly the conditions U ≥ 0 and L ≥ 0, and just assume these
are satisfied. Also I let qB = I:

max
B,I

(

π(I)(yh −B) + (1− π(I))(1− α(i))yl − yl

)β(

π(I)B + (1− π(I))α(i)yl − I

)1−β

(33)

max
B,x

(

x(yh − B) + (1− x)(1− α)yl − yl

)β(

xB + (1− x)αyl − x2
)1−β

(34)

FOCB : βUβ−1L1−β(−x) + (1− β)UβL−βx = 0 ⇒ βU−1L = (1− β) (35)

FOCx : βUβ−1L1−β(yh − B − (1− α)yl) + (1− β)UβL−β(B − αyl − 2x) = 0 (36)

33

max
α

(

(1− α)yl − (1− p)yl

)β(

αy

)1−β

β(−αy + py)β−1(αy)β(−y) + (1− β)(−αy + py)β(αy)−βy = 0

β(−αy + py)−1αy = (1− β) ⇒ βα = (1− β)(−α + p) ⇒ α = (1− β)p
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These two FOCs combine to get: x = σ
2

Second best without insurance

max
B,I

(

π(I)(yh − B) + (1− π(I))(1− α)yl − yl

)β(

π(I)B + (1− π(I))αyl − I

)1−β

(37)

st: π′(I)(yH − B − (1− α)yL) = 1 (38)

max
B,x

(

x(yh −B) + (1− x)(1− α)yl − yl

)β(

xB + (1− x)αyl − x2
)1−β

(39)

st: B = −2x+ σ + αyl (40)

U = x(2x+ (1− α)yl) + (1− α)y − x(1− α)yl − yl = 2x2 − αyl

L = −2x2 + σx+ αylx+ (1− x)αyl − x2 = −3x2 + σx+ αyl (41)

= −3

(

x− σ +
√

σ2 + 12αyl
6

)(

x− σ −
√

σ2 + 12αyl
6

)

(42)

Suppose x > 1
2
σ

The moral hazard condition boils down to:

σ2 ≥ 4αyl ⇒ 12αyl ≤ 3σ2 ⇒ σ +
√

σ2 + 12αyl
6

≤ 1

2
σ

Then L < 0, hence it’s a contradiction that x > 1
2
σ. Thus, ISB ≤ IFB.

With insurance:

max
q,B,I,i

UβL1−β (43)

π′(I)(yH − B − (1− α(i))yL) = 1 (44)

qB − I ≥ 0 (45)

i ≤ py (46)

max
B,I,i

(

π(I)(yh − B) + (1− π(I))(1− α(i))yl

)β(

π(I)B + (1− π(I))α(i)yl − I

)1−β

(47)

π′(I)(yH −B − (1− α(i))yL) = 1 (48)

i ≤ py (49)
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max
B,x,i

(

x(yh − B) + (1− x)(1− α(i))yl

)β(

xB + (1− x)α(i)yl − I

)1−β

(50)

st: B = −2x+ σ + αyl (51)

i ≤ py (52)

max
x,i

(

2x2 − α(i)yl

)β(

− 3x2 + σx+ α(i)yl

)1−β

(53)

st: i ≤ py (54)

α(i)yl = βi+ (1− β)pyl
34

FOCx : βUβ−1L1−β4x+ (1− β)UβL−β(−6x+ σ) = 0 ⇒ βU−1L4x = (1− β)(6x− σ)

FOCi : βUβ−1L1−β(−β) + (1− β)UβL−β(β) = 0 ⇒ βU−1L = (1− β)

Combining these two, we get: x = 1
2
σ

34

max
α

(

− αy + py

)β(

αy − i

)1−β

β(−αy + py)β−1(αy − i)β(−y) + (1− β)(−αy + py)β(αy − i)−βy = 0

β(−αy + py)−1(αy − i) = 1− β ⇒ β(αy − i) = (1− β)(−α+ p)y ⇒ αyl = βi + (1− β)pyl
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