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Abstract. The newsworthiness of an event is partly determined by how unusual it is and
this paper investigates the business cycle implications of this fact. We present a tractable
model that features an information structure in which some types of signals are more likely
to be observed after unusual events. The proposed information structure can help us un-
derstand why we observe (i) large changes in macro economic aggregate variables without
a correspondingly large change in underlying fundamentals (ii) persistent periods of high
macroeconomic volatility and (iii) a positive correlation between absolute changes in macro
variables and the cross-sectional dispersion of expectations as measured by survey data.
These results are consequences of optimal updating by agents when the availability of some
signals is positively correlated with tail-events. The model is estimated by likelihood based
methods using raw survey data and a quarterly time series of total factor productivity along
with standard aggregate time series. The estimated model suggests that there have been
episodes in recent US history when the impact on output of innovations to productivity of
a given magnitude were up to twice as large compared to normal times.

1. Introduction

A well-known journalistic dictum states that “dog-bites-man is not news, but man-bites-
dog is news”. That is, unusual events are more likely to be considered newsworthy than
events that are commonplace. This paper investigates the business cycle implications of
this aspect of news reporting. Particularly, we will demonstrate that a single and relatively
simple mechanism can help us understand three features of business cycles. First, there can
be large changes in aggregate variables like CPI inflation and GDP growth, but without an
easily identifiable change in fundamentals of comparable magnitude. Second, there appear
to be persistent episodes of increased macroeconomic volatility in the data. Third, measures
of uncertainty as well as measures of cross-sectional dispersion of expectations are positively
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correlated with absolute magnitudes of changes in macro economic aggregates. These fea-
tures can be explained by Bayesian agents optimally updating to signals that are more likely
to be available about unusual events.

Conceptually, information about the current state of the world can be divided into at least
three categories. What we may call local information is information that agents observe
directly through their interactions in markets, e.g. through buying and selling goods or
through participating in the labor market. But there is also information that is collected
and summarized by organizations and made available to a broader public. One such type
of information is what we may call statistics. Statistics are often collected by government
agencies and are normally reported regardless of the realized values of the variable that they
refer to. Another source of information is the news media, such as newspapers and television,
which may be the main source of information for a large section of the general population.
Due to constraints on the number of pages or the time available for broadcasting, news
organizations need to select which news stories to report. The man-bites-dog dictum referred
to above suggests that more unusual events are more likely to be selected for dissemination
and are thus more likely to become news. In order to have a terminology that is distinct from
the one used by the literature studying how information about future productivity affect the
economy today (e.g. Beaudry and Portier 2006 and Jaimovich and Rebelo 2009) “news” in
the sense meant here will be referred to as man-bites-dog signals.

A prime example of man-bites-dog news reporting is the Movers segment on Bloomberg
Television. In a typical segment, the price movements of a few stocks are reported along
with short statements on the probable causes of these movements. The stocks in question
are a small sub-sample of all stocks traded and are selected on the basis of having had the
largest price movements during the day. Unusual price movements are thus more likely to
be reported than more common price movements.

That some types of signals are more likely to be available about unusual events may
suggest that we should be better informed about unusual events. However, the flip-side
of this argument is that if there is a man-bites-dog signal available, the probability of an
unusual event has increased. In fact, and as will be demonstrated below, observing a man-
bites-dog signal can actually increase agents’ uncertainty about an event. This may at first
seem counter intuitive, but consider again the example of the Movers segment. If you were
told that a certain stock had been mentioned in the Movers segment, but not told if its price
had risen or fallen, how would you revise your beliefs about the price of the stock in question?
Arguably, your conditional variance of the stock price should increase. Stated differently, the
fact that the stock was mentioned in the Movers section tells you something about the second
moment of the distribution of the stock’s price. After observing the actual price change, your
conditional variance decreases (to zero in this case). This example illustrates the two effects
at work: Conditioning only on the availability of a man-bites-dog signal increases uncertainty,
while observing the actual contents of the signal decreases the uncertainty. Below we show
in a tractable setting that when signals are noisy, the former effect can dominate so that
the posterior uncertainty after observing a man-bites-dog signal is larger than when no such
signal is observed.

In a dynamic setting, a larger posterior uncertainty in period t translates into a larger prior
uncertainty in period t+1. By embedding a man-bites-dog information structure in a simple
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business cycle model similar to that of Lorenzoni (2009), we show that the propagation of
uncertainty through time endogenously generates periods of persistently higher volatility
in output and inflation. The mechanism is the following. Agents in the model need to
solve a dynamic filtering problem in order to make optimal consumption and price setting
decisions. In a given period, the weight agents put on new information is inversely related
to the precision of their priors. Since a man-bites-dog signals in period t can increase the
prior uncertainty in period t+ 1, agents may put more weight on all signals in period t+ 1
relative to the case when there was no man-bites-dog episode in period t. The increased
sensitivity to new information can persist for several periods and implies that the impact
of an exogenous disturbance of a given magnitude can also be larger than usual for several
periods. This mechanism can endogenously generate periods of higher volatility of macro
economic aggregates as observed in the data and documented by Engle (1982), Stock and
Watson (2003), Primiceri (2005) and Fernandez-Villaverde and Rubio-Ramirez (2010) among
others.

Bloom (2009) presents a model in which firms respond to increased uncertainty by adopt-
ing a wait-and-see approach to capital investment and recruiting so that an increase in the
second moment of the exogenous shocks generates a fall in output. The paper by Bloom
thus provides a story for how firms respond to increased uncertainty and where uncertainty
has a direct effect on the level of output. The man-bites-dog mechanism provides a story
for how economic agents come to understand that conditional uncertainty has increased. In
the model presented here, a large shock in levels is more likely to generate a man-bites-dog
signal and a large shock in levels is thus more likely to lead to an increase in the condi-
tional uncertainty. In related work, Bachmann and Moscarini (2011) propose an alternative
mechanism that also implies that causality runs from realizations of first moment shocks to
conditional uncertainty. In their paper, imperfectly informed firms tend to be more likely
to experiment with prices after a large negative shock. This behavior allows firms to get a
better estimate of the demand elasticity of the good that they are producing, but increases
the conditional variance of profits in the short run.

In the business cycle model presented below, man-bites-dog signals are public signals.
This means that information about unusual events will be more correlated across agents
than information about common events. For a signal to be public in the strong common
knowledge sense of the word, it is not enough that a signal is publicly available. Instead,
the signal must not only be observed by everybody, but the fact the everybody observes
the signal must also be common knowledge. The concept of a public signal in this sense is
thus much stronger than the everyday meaning of the term “public information”. Arguably,
while the theoretical dichotomy between purely private or purely public signals is somewhat
artificial, information about unusual events are more likely to be closer to the theoretical
ideal of a public signal than information about more commonplace events. For instance, in
a segmented news market where different news outlets cater to partially different audiences,
there are some events that virtually all news organizations will report. Though there are
many aspects of an event that determines how newsworthy it is judged to be, everything else
equal, the more unusual an event is, the larger is the number of news organizations that will
consider it newsworthy.
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As mentioned above, observing a man-bites-dog signal can increase the posterior uncer-
tainty relative to the case when no man-bites-dog signal is observed. The same parameter
restrictions that ensure that posterior variances increases after a man-bites-dog signal also
imply that the cross-sectional dispersion of expectations increases. This holds even if the
man-bites-dog signal is public (in the strong common knowledge sense of the word). In the
data, we observe a positive correlation between the cross-sectional dispersion of forecasts (as
measured by the Survey of Professional Forecaster) and the absolute magnitudes of changes
in macro aggregates. Interpreted through the lens of the model, this suggest that the em-
pirically relevant specification of the model may be one where the increase in uncertainty
from conditioning on the availability of a man-bites-dog signal is dominating the increased
precision due to the content of the signal.

In order to quantify the importance of the the man-bites-dog aspect of news reporting
I estimate the model on US data. In addition to standard macro variables like GDP, CPI
inflation and the Federal Funds rate, I also use the quarterly time series of Total Factor
Productivity constructed by John Fernald (2010) as well as raw survey data from the Survey
of Professional Forecasters. Using raw survey data, i.e. the cross-section of individual survey
responses rather than a mean or median response, has at least two advantages. First, and as
documented by Mankiw, Reis and Wolfers (2004) and Swanson (2006a) there is significant
time variation in the dispersion of forecasts reported by survey respondents. Since the model
can potentially fit this fact, raw survey data can be exploited when estimating the model
allowing for a sharper inference about the precision of signals observed by agents. The
second advantage of using raw survey data rather than a median or mean expectation stems
from the fact that the number of survey respondents varies over time. For instance, the
number of respondents forecasting nominal GDP growth and CPI inflation varies between 9
(1990:Q2) and 50 (2005:Q4) in a sample that covers the period 1981:Q3 to 2010Q4. Using
raw survey data and likelihood based estimation methods naturally incorporates that we
have a (presumably) more representative sample of the population with 50 observations
than with 9.

Most existing macro models imply that the dispersion of cross-sectional expectations is
either zero, as in the full information rational expectations models, or non-zero but constant
as in models with private but time-invariant information structures, e.g. Lorenzoni (2009),
Mackowiak and Wiederholt (2009), Graham and Wright (2009), Nimark (2008, 2010) An-
geletos and La’O (2009, 2010) or Melosi (2011). One exception is the sticky information
models of Mankiw and Reis (2002) and Reis (2006a, 2006b). In sticky information models,
only a fraction of agents update their information in each period and those who update, all
observe the state perfectly. This results in a cross-sectional distribution of expectations that
is a mixture of a degenerate and a dispersed distribution. It is because the cross-sectional
dispersion of expectations in the model presented here is time varying but continuous that it
it possible to estimate the structural parameters of the model using likelihood based methods
and “raw” survey data. One methodological contribution of the paper is to demonstrate how
dynamic models with a time varying information structure can be solved and estimated. As
far as I know, this is the first paper to do so and this may be of independent interest to some
readers.
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The paper is structured as follows. In the next section, the concept of man-bites-dog
signals is introduced formally. In the static setting of that section, many results can be
derived analytically and it is demonstrated that the implications of man-bites-dog signals
crucially depend on two parameters (i) the parameter governing how unusual an event has
to be to significantly increase the probability of observing a signal (ii) the variance of the
noise in the generated signal. The larger either of these parameters are, the more likely it
is that the economy will display the features described here in the introduction. Section
3 presents a simple business cycle model similar to that of Lorenzoni (2009), but with a
man-bites-dog type of information structure. Section 4 discusses how the model is solved
and how the parameters are estimated. Section 5 contains the main empirical results of the
paper. Section 6 briefly discusses two alternative specifications of the model and Section 7
concludes.

2. Signals and unusual events

This section presents a simple and tractable framework in which some signals are more
likely to be available when something unusual has happened. There are no economic decisions
made by agents beyond forming an expectation about a latent variable. The purpose of the
section is to build intuition for how the filtering problems of Bayesian agents change when
the availability of some signals is positively correlated with tail events. These insights also
carry over to the business cycle model presented in a later section.

2.1. Reverse engineering the conditional probability of observing a signal. Agents
indexed by j ∈ (0, 1) want to form an expectation about the latent variable x. Its uncondi-
tional probability density function is denoted p(x) and x has zero mean and unconditional
variance σ2

x. The indicator variable S takes the value 1 when the signal y about x is available
and zero otherwise. We want to find a specification such that the conditional probability of
observing a signal is increasing in the distance of the realized value of x from its mean. That
is, we want to find a joint distribution of x and S such that the inequality

∂p (S = 1 | x)

∂ |x|
≥ 0 (2.1)

holds. The main idea is illustrated in Figure 1. There, the unconditional distribution p(x)
of x is plotted (solid line) together with the probability p(S = 1 | x) of observing the signal
y conditional on the realization of x. At the mean, there is approximately a 40% chance
of observing the signal y. As realizations of x further from the mean are considered, the
conditional probability of observing a signal increases towards 1 so that a signal is generated
almost surely when the realization of x is far enough away from the mean.

It turns out to be easier to maintain tractability by instead of directly specifying the
conditional probability of observing a signal p (S = 1 | x) in the numerator of (2.1) to in-
stead specify the distribution of x conditional on S = 1. By Bayes’ rule, we have that the
conditional probability of observing a signal is given by

p (S = 1 | x) =
p (x | S = 1)

p (x)
p (S = 1) . (2.2)
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Figure 1. Unconditional distribution of x and conditional probability of ob-
serving the signal y.

Since p(x) is uniformly decreasing in |x| for any symmetric unimodal distribution p(x), we
can ensure that the inequality (2.1) holds by choosing a conditional distribution p (x | S = 1)
that is decreasing at a slower rate than p(x) in |x| . For unimodal symmetric distributions
p(x) and p(x | S = 1) we thus need to choose a p(x | S = 1) that is more dispersed than
p(x).

The link between the conditional and unconditional distributions of x and the conditional
probability of observing a signal is perhaps easiest to illustrate in a graph. In Figure 1
the dotted line is the probability of x conditional on S = 1. The relationship (2.2) implies
that the conditional probability of observing the signal y is the ratio of the dotted line and
the solid line times the normalizing constant p (S = 1) . To ensure that the probability of
observing a signal increases as values of x further from its mean are considered, we thus need
to choose a conditional probability p (x | S = 1) that decreases at a slower rate than p(x) in
|x|. Visually, this is obvious if the more peaked distribution (solid curve) is compared to the
flatter distribution (dotted curve). At the points where the solid and the dotted curves cross,
the ratio on the right hand side of (2.2) is one, implying that the unconditional probability of
observing a signal in this example can be read off the dashed line on a straight line downward
from the point of the crossing curves. In the particular example used to construct Figure 1,
p (S = 1) is 50%.

One specification that delivers a conditional probability of observing the signal y that
is increasing in |x| and maintains tractability of agents’ filtering problem is to let x be
distributed as the mixture normal

x ∼ (1− ω)N
(
0, σ2

)
+ ωN

(
0, γσ2

)
(2.3)
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where ω is the unconditional probability of observing y, i.e. ω = p(S = 1) so that

p (x | S = 0) = N
(
µx, σ

2
)

(2.4)

p (x | S = 1) = N
(
µx, γσ

2
)

(2.5)

The parameter ω determines how unusual the outcomes associated with the signal y are
in the unconditional sense. The parameter γ determines how the conditional probability
of observing a public signal depends the realizations of x. Setting γ > 1 ensures that the
conditional probability p (S = 1 | x) is increasing in the deviation of x from its mean, i.e.
that the inequality (2.1) holds. Intuitively, the inequality (2.1) will hold since a more dis-
persed distribution is “flatter” at all points of the support except at the mean, than a more
concentrated distribution. Note that this argument works in both directions: Bayes’ rule
implies that any conditional distribution of the probability of observing a signal that is uni-
formly increasing in |x| must be associated with a conditional distribution p (x | S = 1) that
has relatively more probability mass further out in the tails compared to the unconditional
distribution of x.1

The advantage of modeling the information structure this way is that since the conditional
distributions (2.4) and (2.5) are Gaussian, the expectations of x conditional on S are known in
closed form. In the set up of this paper, agents will never need to evaluate the unconditional
distribution p(x) since whether S equals 1 or 0 will always be known to agents. So while
it is more tractable to specify the conditional distributions p (x | S = 0) and p (x | S = 1)
directly, we may still want to treat the unconditional distribution of x as the primitive,
perhaps because it corresponds to a particular data moment. For a given unconditional
variance σ2

x and parameters ω and γ we can back out the implied σ2 by using that the
variance of the mixture normal distribution (2.3) is given by

σ2
x = ωγσ2 + (1− ω)σ2 (2.6)

so that

σ2 =
σ2
x

ωγ + (1− ω)
(2.7)

For a given unconditional variance σ2
x we can thus adjust the slope and level of the dashed

line p(S = 1 | x) by choosing different values of ω and γ while holding the variance of the
unconditional distribution p(x) fixed by letting σ2 be determined by (2.7).2

2.2. The filtering problem. Agents indexed by j form an estimate of x conditional on all
available information. When S = 0, agent j observes only a private signal xj which is the
sum of the true x plus an idiosyncratic noise term

xj = x+ εj : εj ∼ N
(
0, σ2

ε

)
∀ j. (2.8)

1In the Appendix it is shown that a conditional distribution with more probability mass in the tails also
can be generated endogenously from an unconditionally normal distribution of x and a directly specified
man-bites-dog signal technology. I.e. instead of specifying p(x | S) and p(x) as is done here, we specify p(x)
and simple man-bites-dog selection mechanism. The conditional distribution p(x | S) can then be derived
endogenously and it is shown that it has more mass in the tails compared to p(x). However, the expressions
for the conditional expectations of x are less tractable.

2In settings where higher unconditional moments matter, one need to be careful since some values of ω
and γ may introduce kurtosis in the unconditional distribution of x.
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where the variance of the idiosyncratic noise is common across agents. When S = 1 agents
also observe the public signal y

y = x+ η : η ∼ N
(
0, σ2

η

)
. (2.9)

The information set of agent j is thus given by

Ω0
j = xj, S (2.10)

if S = 0 and
Ω1
j = y, xj, S (2.11)

if S = 1. The fact that all agents observe y when S = 1 is common knowledge (though this
does not really matter until later). The conditional expectations of x are then given by the
standard formulas for multiple signals with independent Gaussian noise processes

E
(
x | Ω0

j

)
=

σ−2
ε

σ−2
ε + σ−2

xj (2.12)

and

E
(
x | Ω1

j

)
=

σ−2
ε

σ−2
ε + σ−2

η + γ−1σ−2
xj +

σ−2
η

σ−2
ε + σ−2

η + γ−1σ−2
y (2.13)

That is, the conditional expectations of x are linear functions of the signals where the weights
are determined by the relative precision of the individual signals. The posterior variances are
also standard for normally distributed signals with independent noise processes and given
by

E
[
x− E

(
x | Ω0

j

)]2
=
(
σ−2
ε + σ−2

)−1
(2.14)

and
E
[
x− E

(
x | Ω1

j

)]2
=
(
σ−2
ε + σ−2

η + γ−1σ−2
)−1

(2.15)

2.3. The implications of man-bites-dog signals. The set up described above allows
us to prove two results that at first may appear counter intuitive. First, the posterior
uncertainty can be larger after the signal y has been observed, compared to when it has
not been observed. Secondly, the dispersion of expectations about x may increase after y is
observed, even though y is a public signal.

Proposition 1. The posterior uncertainty about x can be larger when the signal y is observed
relative to when it is not. I.e. there are parameter values such that the inequality

E
[
x− E

(
x | Ω0

j

)]2
< E

[
x− E

(
x | Ω1

j

)]2
(2.16)

holds.

Proof. Directly comparing the posterior variances (2.14) and (2.15) implies that the propo-
sition holds if

σ−2
ε + σ−2 > σ−2

ε + σ−2
η + γ−1σ−2 (2.17)

Rearranging this expression gives

σ2
η >

σ2

(1− γ−1)
(2.18)

so that if γ > 1 there exists some σ2
η > σ2 such that the inequality in the proposition

holds. �
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Proposition 1 states that if the signal y is noisy enough and γ > 1, the posterior variance
may be larger when y is observed compared to when it is not. This is possible due to the
conditional nature of the probability of observing y. The fact that y is observed indicates
that something unusual is more likely to have happened, in the sense that larger deviations
of x from its mean are more likely if γ > 1. When y is very noisy, this effect dominates.
Conversely, if γ is large so that only very unusual events are more likely to generate a signal
y, the signal y need not be very noisy for the increased uncertainty to dominate. However,
since the right hand side of (2.18) has a minimum of σ2 when γ → ∞ , that σ2

η > σ2 is
a necessary condition for the posterior uncertainty to be larger. Recognizing that the fact
that a signal is available tells agents something about the (second moments of the) state can
thus cause posterior uncertainty to be larger after a public signal is observed as compared
to when it is not.

Corollary 1. When the inequality

σ2
η >

σ2

(1− γ−1)
(2.19)

holds, the cross sectional dispersion of expectations about x is larger when y is observed than
when it is not.

The proof follows directly from that the denominator in the weight on the private signal
is the same as the denominator in the posterior variances. The cross sectional dispersion is
increasing in the weight on the private signal, holding the variance of the idiosyncratic noise
constant. The same conditions that deliver a higher posterior variance thus also deliver more
weight on the private signal and the intuition is also similar. If the public noise variance is
high and the conditional likelihood of a tail event is high, agents will put more weight on
other (e.g. private) sources of information.

It is straight forward to show that the total weight agents put on all signals increases when
S = 1.

Proposition 2. The average expectation of x responds stronger to x when S=1 than when
S=0.

Proof. In the Appendix. �

The proof of Proposition 2 simply entails verifying that the sum of the coefficients on the
two signals is larger when S = 1 than the coefficient on the single private signal when S = 0.
The result is a direct consequence of the decrease in precision of agents beliefs “posterior” to
observing S = 1 but “prior” to observing y. The weight agents put on y and xj is inversely
related to this precision and the sum of these weights thus go up unambiguously.

This section demonstrated that Bayesian updating to signals that are more likely to be
available after an unusual event can have quite different properties compared to Bayesian
updating to signals whose availability is uncorrelated with the underlying variable. Particu-
larly, it was demonstrated that both posterior uncertainty and the cross-sectional dispersion
of posterior beliefs can increase when a public man-bites-dog signal is observed. It was also
shown that on average, agents expectations of the latent variable respond stronger to a given
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deviation of the latent variable from its mean when there is a man-bites-dog signal avail-
able. In the next section, the man-bites-dog information structure is embedded in a simple
business cycle model in order to illustrate the dynamic consequences of having signals whose
availability is positively correlated with tail events.

3. A business cycle model

This section presents a simple business cycle model, following closely that of Lorenzoni
(2009) but with a man-bites-dog information structure. As in the model by Lorenzoni,
there are informationally separated islands that are subject to both common and island
specific productivity shocks that cannot be distinguished by direct observation. Instead,
island inhabitants need to form an estimate of the common component of productivity in
order to make optimal consumption and price setting decisions. In the model, there is
both island specific and public information and the man-bites-dog signal is specified as
a public signal about aggregate productivity. This means that information about large
changes to productivity will be more correlated across agents than information about small
changes. The model also features strategic complementarities. It is well-known that strategic
complementarities tend to increase the importance of public signals, e.g. Morris and Shin
(2002). In the model presented here, this effect will be further reinforced by the man-bites-
dog mechanism, generating an amplification mechanism implying that aggregate variables
may respond more than proportionally to larger productivity shocks.

3.1. Preferences and technology. The set up is a stationary version of the island economy
described in Lorenzoni (2009). There is a continuum of islands indexed by j ∈ (0, 1) and
on each island there is a continuum of firms indexed by i ∈ (0, 1) producing differentiated
goods. On each island there is a representative household that consume goods and supply
labor Nj,t to the firms on the island. Households are thus also indexed by j ∈ (0, 1) and a
household on island j maximizes

E
∞∑
s=0

βs

[
exp(dj,t) lnCj,t −

N1+ϕ
j,t

1 + ϕ
| Ωt(j)

]
(3.1)

where Ωt(j) is the information set of inhabitants of island j and Cj,t is the consumption
bundle consumed by island j households defined as

Cj,t =

(∫
Bj,m

∫ 1

0

C
(δ−1)/δ
i,m,j,t di dm

)δ/(1−δ)
(3.2)

As in Lorenzoni (2009), households only consume a subset Bj,m ⊆ (0, 1) of the available
goods in the economy and the set Bj,m is drawn by nature in each period. The shock dj,t

dj,t = dt + ζj,t : ζj,t ∼ N
(
0, σ2

ζ

)
(3.3)

is a demand disturbance that is correlated across islands and the common component dt
follows an AR(1) process

dt = ρddt−1 + udt : udt ∼ N
(
0, σ2

d

)
(3.4)
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The demand disturbance dt is not present in the original model by Lorenzoni (2009) but is
needed here in order to avoid stochastic singularity when the model is estimated. Firm i on
island j produce good i, j using the technology

Yi,j,t = exp (aj,t)Ni,j,t (3.5)

(The log of) productivity aj,t is the sum of a common component at and the island specific
component εj,t

aj,t = at + εj,t : εj,t ∼ N
(
0, σ2

ε

)
∀ j, t. (3.6)

The common productivity component at follows an AR(1) process

at = ρaat−1 + uat : uat ∼ N
(
0, σ2

a

)
(3.7)

Firms on island j are owned by island j households and set prices Pj,t to maximize discounted
expected profits Πj,t

E

[
∞∑
s=t

θsβs
Cj,t
Cj,t+s

Πj,t | Ωj
t

]
= E

[
∞∑
s=t

θsβs
Cj,t
Cj,t+s

(Pj,t+sYj,t+s −Wj,t+sNj,t+s) | Ωj
t

]
(3.8)

where θ is the probability of not changing the price of a given good in a given period. The
intertemporal budget constraint of households on island j is given by

Bj,t+1

Rt

+

∫
Bj,m

∫
Pi,j,tCj,mdi dm = Bj,t +Wj,tNj,t +

∫
Πi,j,tdi (3.9)

where the (log of the) nominal one period interest rate Rt follows a Taylor rule

rt = φππt + φyyt + φrrt−1 + urt : urt ∼ N
(
0, σ2

r

)
(3.10)

and Bj,t are holdings of nominal bonds that pay one dollar in period t by households on
island j.

3.2. Linearized equilibrium conditions. The model presented above can be log linearized
around a non-stochastic steady state, yielding the following equilibrium conditions. (i) An
Euler equation determining the optimal intertemporal allocation of consumption

cj,t = E
[
cj,t+1 | Ωj

t

]
− rt + E

[
πBj,t+1 | Ωj

t

]
+ dj,t (3.11)

where πBj,t+1 is the inflation of the goods basket consumed on island j in period t+ 1. (ii) A
labor supply condition equating marginal disutility of labor supply with the marginal utility
of consumption multiplied by the real wage

wj,t − pBj,t = cj,t + ϕnj,t. (3.12)

(iii) A demand schedule for good j depending on aggregate output and the relative price of
good j

yj,t =

∫
C,j,t

cm,tdm− δ
(
pj,t −

∫
C,j,t

pm,tdm

)
(3.13)
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where
∫
C,j,t pm,tdl is the log of the relevant price sub index for consumers from other islands

buying goods from island j. (iv) An island j Phillips curve relating inflation on island j to
the nominal marginal cost on island j and expected future island j inflation is given by

pj,t − pj,t−1 = λ
(
pBj,t + cj,t − pj,t − aj,t

)
+ λϕ (yj,t − aj,t) (3.14)

+βE
(
pj,t+1 − pj,t | Ωj

t

)
where pBj,t is the relevant price subindex for consumers on island j and λ = (1−θ)(1−θβ)/β.
The steps required to arrive at the linearized equilibrium conditions (3.11) - (3.14) are
identical to those described in Lorenzoni (2009).

3.3. Local information. The inhabitants of each island observes their own productivity
and demand disturbances aj,t and dj,t. Since these contain a component that is common
across islands, these local variables are informative about the aggregate state. In addition
to these exogenous local signals, firms and households can also extract information about
the aggregate state from observing the demand for their own good yj,t and the price of
the goods basket that they purchase. Lorenzoni (2009) assumes that the islands visited by
the inhabitant of island j while shopping are drawn so that the price index of the goods
basket consumed by island j inhabitants is equal to the aggregate price level plus a normally
distributed island j specific shock. We will make a similar assumption, with an adjustment to
the mean of of the normally distributed shock such that the signal is conditionally stationary.
That is, the set Bj,t is drawn such that

pBj,t = pt + ξ1
j,t : ξ1

j,t ∼ N(pj,t−1 − pt−1, σ
2
ξ1) (3.15)

Since pj,t−1 is observable by the inhabitants of island j the price index of the good purchased
by island j inhabitant is thus a noisy measure of aggregate inflation pt − pt−1, rather than
of the aggregate price level as in Lorenzoni (2009). Reformulating the signal structure this
way does not change anything substantial in the model but simplifies the representation of
agents’ filtering problems since all other variables are stationary (while the price level is not).
Similarly, we assume that the set of islands Cj,t are drawn such that (3.13) takes the form

yj,t = yt − δ (pj,t − pt) + ξ2
j,t : ξ2

j,t ∼ N(δ [pj,t−1 − pt−1] , σ2
ξ2) (3.16)

Again, the adjustment of the mean of the disturbance relative to Lorenzoni (2009) is made in
order to keep signals stationary and does not change anything of substance. As in Lorenzoni’s
original model, the shocks ξ1

j,t and ξ2
j,t are introduced in order to prevent local interactions

from perfectly revealing the aggregate state.

3.4. The joint distribution of signals and shocks. The man-bites-dog signal structure
is embedded in the business cycle model in a similar way as in the static setting discussed
above. The unobservable variable of interest is the common component of productivity at
and I will specify a joint distribution of the indicator variable st and the innovations uat in
(3.7) such that a man-bites-dog signal is more likely to be generated when there has been a
large (in absolute terms) innovation to the common productivity process at. The indicator
variable st takes the value 1 when a man-bites-dog signal is generated in period t which
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occurs with unconditional probability ω. Similar to the static setting of Section 2, a mixture
normal density for uat will be used to keep the filtering problem tractable

uat ∼ (1− ω)N
(
0, σ2

)
+ ωN

(
0, γσ2

)
. (3.17)

The unconditional variance of the productivity innovations uat is then given by

E (uat )
2 = (1− ω)σ2 + ωγσ2 (3.18)

To complete the description of the joint distribution of innovations and signals, it is further
assumed that when st = 1 all households observe an additional public signal za,t given by

za,t = at + ηt : ηt ∼ N
(
0, σ2

η

)
(3.19)

The signal zat is thus the man-bites-dog signal and the vector of observables zj,t available to
households and firms on island j in period t then is

zj,t =
[
aj,t, dj,t, yj,t, pj,t, rt, st

]
(3.20)

if st = 0 and

zj,t =
[
aj,t, dj,t, yj,t, pj,t, rt, st, z

a
t

]
(3.21)

if st = 1. The information set Ωj,t of firms and households on island j evolves as

Ωj,t = {zj,t,Ωj,t−1} (3.22)

This completes the description of the model. It is perhaps worth noting that the original
model of Lorenzoni (2009) is nested in the model presented here, i.e. by setting ρa = ω =
γ = 1 and σ2

d = 0.

4. Solving and estimating the model

There are two features of the model presented above that make standard solution methods
for linear rational expectations models inapplicable. First, there is island specific information
about variables of common interest to all islands. Natural state representation then tend to
become infinite, due to the well-known problem of the infinite regress of expectations that
arises when agents need to “forecast the forecasts of others” (see Townsend 1983 and Sargent
1991). Second, the precision of agents’ information is a function of the realized history of
st and thus varying across time. In this section, I first describe how the method to solve
dynamic models with private information proposed in Nimark (2011) can be modified to solve
a model with a time varying information structure. Details are kept at a minimum and focus
is on aspects of the solution method that help intuition for how time varying information
sets translate into time varying equilibrium dynamics, though a complete description of the
solution algorithm is given in the Appendix. When solved, the model is in standard state
space form, albeit with time varying parameters and the section ends with a description of
how a posterior estimate of the joint distribution of the parameters of the model and the
history of st can be constructed using a version of the Metropolis-Hastings algorithm.
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4.1. Solving dynamic models with private information. In Nimark (2011) it is demon-
strated that if the variance of the unobservable exogenous state is finite, the equilibrium
dynamics of a linear rational expectations model with privately informed agents can be ap-
proximated to an arbitrary accuracy by a finite dimensional representation. There are two
parts to deriving this result. The first step puts structure on higher order expectations, i.e.
expectation about other agents expectations, by exploiting that it is common knowledge
that agents form model consistent expectations. The second step uses this structure to show
that the impact of orders of expectations is decreasing in the order of expectation. The
second step is somewhat involved, and interested readers are referred to the original refer-
ence for more details. Here we briefly describe how common knowledge of model consistent
expectations help put structure on the dynamics of higher order expectations.

Let xt denote a vector containing the exogenous state variables at and dt so that

xt ≡
[
at
dt

]
(4.1)

The solution method then delivers a law of motion of the state Xt of the form

Xt = MXt−1 +Nut : ut ∼ N(0, I) (4.2)

where

Xt ≡


xt

x
(1)
t
...

x
(k)
t

 (4.3)

and

x
(k+1)
t ≡

∫
E
[
x

(k)
t | Ωt(j)

]
dj (4.4)

The state thus consists of average higher order expectations of current productivity at and the
common demand shock dt. The constant k is the maximum order of expectation considered.

The intuition for how common knowledge of model consistent expectations puts structure
on the dynamics of higher order expectations so that the law of motion (4.2) can be found

is the following: As usual in rational expectations models, first order expectations x
(1)
t are

optimal, i.e. model consistent estimates of the actual state xt. The knowledge that other
islands have model consistent estimates allow inhabitants of an individual island to treat
average first order expectations as a stochastic process with known properties when they
form second order expectations. Common knowledge of the model thus implies that second

order expectations x
(2)
t are optimal estimates of x

(1)
t given the law of motion for x

(1)
t . Imposing

this structure on all orders of expectations allows us to find the law of motion (4.2) for the
complete hierarchy of expectations as functions of the structural parameters of the model. In
practise, this is implemented by letting the agents use the Kalman filter to form an estimate
of the state Xt so that agent j’s state estimate evolves according to the update equation

E [Xt | Ωt(j)] = (I −KtD)ME [Xt−1 | Ωt−1(j)] +Ktzj,t (4.5)
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where Kt is the Kalman gain. The law of motion (4.2) of the state will thus depend on the
update equation (4.5) since by the definitions (4.3) and (4.4) we have that

Xt ≡
[
I2k 02k×2

] [ xt∫
E
[
X

(k)
t | Ωt(j)

]
dj

]
(4.6)

i.e.. the state is partly made up of higher order expectations about the exogenous state
vector xt.

For a given law of motion (4.2), the endogenous variables can be computed as a linear
function of higher order expectations about the current state xt and the aggregate shocks ut
by using that the structural equations of the linearized model can be written in the form[

πt
yt

]
= A

∫
E

([
πt+1

yt+1

]
| Ωj,t

)
+ (B + C)Xt +Guut +Grrt−1

Conjecturing a solution of the form[
πt
yt

]
= GXt +Guut +Grrt−1 (4.7)

together with method of undetermined coefficients then implies that matrix G must satisfy
the equation

G = AGMH + (B + C) (4.8)

where H is a matrix defined so that∫
E [Xt | Ωt(j)] dj = HXt (4.9)

i.e. H moves a vector of average higher order expectations one step “up” in orders of expec-
tations. For a given A and M , the equation (4.8) can be solved for G by function iteration.

The fact that the state of the model is made up of expectations and higher order expec-
tations means that the law of motion of the state in a given period is a function of the
precision of agents priors as well as the precision of period t signals. Since these quantities
will depend on the history of st, the law of motion of the state will be time varying. That
the law of motion will be time varying then in turn implies that the function mapping the
current state into endogenous variables will also be time varying.

4.2. Regimes and endogenous time varying dynamics. Changes in the regimes st will
in general have persistent effects on the dynamics of the model. The reason is that if, for
example, there is a man-bites-dog episode in period t that increases the posterior uncertainty
in period t, then this will translate into an increase in prior uncertainty in period t+ 1. How
much weight agents put on signals observed in period t+ 1 depends on the precision of the
signals relative to the precision of the prior. A large posterior uncertainty in period t thus
translates into more weight being put on signals observed in period t + 1. Since the state
is made up of the (higher order) estimates of the exogenous states, the dynamics of the
state in a given period depend on the weight agents put on signals in that period so a single
man-bites-dog episode may have a persistent effect on the dynamics of the state. This makes
the model more interesting and allow us to potentially fit more facts in the data. It also
allows us to exploit the variation in the cross-sectional dispersion of forecasts as measured
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by the SPF to make sharper inference about the precision of agents information at different
points in time. But since a period t regime st has persistent effects we need to keep track of
the history of st (which we denote st) to determine period t equilibrium dynamics. Here we
describe how this is done in practice.

As long as the filtering errors of agents follows a stable process, we do not need to keep
track of the entire history but only the most recent realizations of st. How far back in time
the realizations of st matter of course depends on the parameters of the model and more
specifically, it will depend on the eigenvalues of the process that propagates the variance of
the filtering errors through time. If the underlying processes are not very persistent, or if
information is very accurate, filtering errors do not tend to be long lived and only a few of
the past realizations of st influence current dynamics. In general, how many lags of st that
are relevant for period t dynamics depend on the parameters of the model and needs to be
checked on a case-by-case basis. However, that the matrix M in the law of motion is stable,
is sufficient to ensure that the current state uncertainty can be approximated accurately by
a finite history st.

We will proceed by specifying a maximum lag of st, say st−T , that matters for current
dynamics and then check whether increasing the lag T changes the dynamics sufficiently
to motivate the increased computational burden. If we for instance set T = 4 we thus
implicitly assume that period t dynamics are similar for all histories st−4. In practise, we
need to ensure that T is large enough so that the Kalman gain Kt in agents’ update equation
(4.5) is invariant to whether st = {..., 1, 0, 0, 0, 1} or st = {..., 0, 0, 0, 0, 1}. If that is the case,
we only need to keep track of the T most recent realizations of st. This strategy implies
that if there are 2 different exogenous regimes (i.e. st ∈ {0, 1}) we have 2T relevant different
histories st. The number of endogenous regimes thus increases exponentially in T . For
instance, if only the last four periods matter for current dynamics we have 24 = 16 different
endogenous regimes, but if the last 8 periods matter the number of endogenous regimes is
28 = 256. 3 It is perhaps worth pointing out here that while we truncate the history of st
used to compute the Kalman gain Kt, agents still condition on the entire history of vector
of observables zj,t.

4.3. Solving the model with time varying information sets. As described in Section
4.1 above, the fact that the state of the model is made up of expectations and higher order
expectations means that how agents update their state estimates determines the actual law
of motion of the very same state that agents form estimates about. Here, a brief overview of
how the solution method needs to be amended when the information structure is time-varying
is given, though most of the details are relegated to the Appendix.

First, with time varying information sets, the law of motion now depends on the history
of regimes st so that

Xt = M(st)Xt−1 +N(st)ut : ut ∼ N(0, I) (4.10)

3The endogenous regimes are quite similar which reduces the computational burden. Setting T = 12
which implies that there are 212 = 4096 different endogenous regimes result in a computational time of
about 10 seconds to solve the model once on a standard desktop PC. This can be compared to a solution
time of about 0.3 seconds for T = 5 at the posterior mode of the estimated model.
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The endogenous variables can still be written as linear functions of the state, but now with
time varying parameters [

πt
yt

]
= G(st)Xt +Guut +Grrt−1 (4.11)

The matrices Guand Gr captures the effect of the monetary policy shock and lagged interest
rate respectively. Since interest rate is observable these matrices do not depend on st. The
matrix G(st) can be computed by noting that for a given conjectured law of motion (4.10)
and a given linear function (4.11) we have that[

πt
yt

]
= A

∫
E

([
πt+1

yt+1

]
| Ωj,t

)
+ (B + C)Xt +Grrt−1 (4.12)

When forming expectations about future inflation and output agents will need to take into
account that there may a man-bites-dog signal available in the next period. Expectations of
output and inflation thus depend on the probability ω that st+1 will take the value 1. The
Euler equation for inflation and output (4.12) can thus be written as[

πt
yt

]
= ωAG

(
st+1

1

)
M
(
st+1

1

)
HXt

+ (1− ω)AG
(
st+1

0

)
M
(
st+1

0

)
HXt

+ (B + C)Xt +Guut +Grrt−1

where st+1
n denotes the history st+1 with st+1 = n. Using the conjectured form (4.11) and

equating coefficients implies

G
(
st
)

= ωAG
(
st+1

1

)
M
(
st+1

1

)
H (4.13)

+ (1− ω)AG
(
st+1

0

)
M
(
st+1

0

)
H

+ (B + C)

With a constant information structure the matrices G (st) and G
(
st+1

1

)
are the same and

(4.13) simplifies to (4.8). When information sets are time-varying, the solution algorithm
becomes a fixed point problem over the S relevant histories of st. A fixed point can again be
found by function iteration. The Appendix describes an algorithm that for given G(st),M(st)
and N(st) computes new values of the same matrices. Nimark (2011) uses a version of
Brouwer’s fixed point theorem to prove for the time invariant case that a solution to this
iteration exists and that there is a finite maximum order of expectation k that results in
equilibrium dynamics that are arbitrarily close to the dynamics of the limit k → ∞. For
these results to apply it is sufficient that the variance of the exogenous state xt is finite and
these results thus also apply to the current model as long as xt follows a stable process.

4.4. Estimating the model. The solved model is a state space system with time varying
parameters and standard likelihood based methods are applicable to estimate the parameters
of the model. In addition to the 18 structural parameters of the model, which we denote

Θ = {ρa, ρξ, σa, σd, σr, σε, σζ , σξ1, σξ2, ση, δ, η, φπ, φy, φr, θ, β, ω, γ} (4.14)
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we also want to construct a posterior estimate of the indicator variable st that keeps track
of whether there was a man-bites-dog signal available in period t or not. Below we describe
how this can be done by sampling from the two conditional distributions p

(
Θ | sT , ZT

)
and

p
(
sT | Θ, ZT

)
. Dividing the sampling from the joint posterior distribution of Θ and sT into

two blocks also lets us get around the problem that unlike the agents inside the model, we
as econometricians do not observe the regimes st. Conditional on a draw from sT , the model
is linear-Gaussian and it is easy to evaluate the likelihood.

1980 1985 1990 1995 2000 2005 2010 2015
-0.05

0

0.05

CPI inflation forecasts

1980 1985 1990 1995 2000 2005 2010 2015
-0.05

0

0.05

Nominal GDP growth forecasts

Figure 2. Actual and SPF Forecasts of CPI inflation and Nominal GDP growth

4.5. The data. The time series used to estimate the model are US CPI inflation, the Federal
Funds rate, US real GDP, the quarterly time series of total factor productivity constructed
by John Fernald (2010) and raw survey data from the Survey of Professional Forecasters
(SPF). The data is quarterly and the sample ranges from 1981:Q3 to 2010:Q4. The start
date is chosen based on the availability of survey data for inflation forecasts and the end date
is the date of the most recent data on real GDP and total factor productivity. CPI inflation
is de-trended using a linear trend and the same trend is taken out of the Federal Funds
rate. Real GDP is de-trended using the HP-filter with a smoothing coefficient of 1600. The
raw survey data is one quarter ahead forecasts of CPI inflation and nominal GDP growth
taken from the Survey of Professional Forecasters available from the web site of the Federal
Reserve Bank of Philadelphia. The (de-trended) survey data is plotted in Figure 2 along
with the actual outcomes of CPI inflation and Nominal GDP growth. Inflation forecasts are
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de-trended using the CPI inflation trend and nominal GDP growth forecasts are de-trended
by subtracting the inflation trend and the growth in the real GDP (HP-filter) trend. We
denote the vector of observables in period t Zt. All elements in Zt have natural counterparts
in the model. Specifically, TFP will be taken as a noisy measure of the common productivity
component and the vectors of survey forecasts f ′t,π and f ′t,π+∆y are taken to be representative
of the expectations of the privately informed agents in the model.

The observables in period t are thus given by

Zt =
[
at πt yt rt f ′t,π f ′t,π+∆y

]′
(4.15)

and linked to the state of the model by the measurement equation

Zt = D(st)Xt +Drrt−1 +R(st)ut (4.16)

Due to the fact that the number of survey respondents is not constant in the sample, the
dimensions of both D and R are varying across time. More interestingly, the entries of D
and R also varies over time. The matrix D is time varying since the function mapping the
state into endogenous variables is time varying. The matrix R is time varying since the cross-
sectional dispersion of forecasts are time varying in the model and each survey entry can be
viewed as a noisy measure of the average expectation where the variance of the “noise” is
the cross-sectional variance of forecasts implied by the model. Individual respondents can be
tracked in the SPF so while it is in theory possible to exploit the (limited) panel dimension
of the SPF responses, it is not feasible in practise. Doing so would require that in order to
evaluate the likelihood, we as econometricians would need to carry along an individual state
for each respondent in the SPF, thereby increasing the state dimension by a multiplier of 50.
Instead, we treat individual survey responses ft,π and ft,π+∆y in each period as independent
draws from the distributions

ft,π ∼ N

(∫
E [πt | Ωj,t] dj, σ

2
fπ(st)

)
(4.17)

and

ft,π+∆y ∼ N

(∫
E [∆yt+1 + πt | Ωj,t] dj, σ

2
fπ+∆y(s

t)

)
(4.18)

where the variances σ2
fπ(st) and σ2

fπ+∆y(s
t) are the model implied cross-sectional variance of

inflation and nominal GDP growth expectations. The cross-sectional variances vary across
time and are a function of the structural parameters Θ as well as the history st.

There are four observable variables in Zt that map into aggregate variables in the the-
oretical model, but in most periods there are only three aggregate disturbances, i.e. the
innovations to common productivity, the demand shocks and to the interest rate rule. To
avoid stochastic singularity when evaluating the likelihood function, we treat the TFP series
as well as the in CPI inflation and real GDP growth as being measured with (very small)
noise.4

4The variances of the measurement errors are about 1/100th of the variance of the actual time series.
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4.6. Estimation Algorithm. The posterior distribution of Θ and sT are estimated using
a Multiple-Block Metropolis algorithm (see Chib 2001). It exploits that conditional on a
history of man-bites-dog regimes sT , the model is in linear-Gaussian state space form. The
estimation algorithm can be described as follows.

(1) Specify initial values Θ0 and sT0 .
(2) Repeat for j = 1, 2, ...., J

(a) Block 1: Draw from p
(
Θ | sT , ZT

)
(i) Propose Θ∗ ∼ N (Θj,1, cΣ) where c is a constant a nd Σ is a matrix with the

absolute with diagonal |Θ0| and zeros on the off-diagonal. The constant c
is chosen to achieve an acceptance rate of about 22%.

(ii) Calculate αΘ
j = min

{
L(ZT |sTj−1,Θ

∗)
L(ZT |sTj−1,Θj−1)

, 1

}
(iii) Set Θj+1 = Θ∗ if U(0, 1) ≤ αΘ

j and Θj+1 = Θj otherwise.

(b) Block 2: Draw from p
(
sτ | sT−τ ,Θ, ZT

)
where sT−τ ≡ {s1, s2, ...sτ−1,sτ+1,..., sT−1,sT}

(i) Draw a time period τ uniformly from the set {1, 2, ...T}
(ii) Set s∗T−τ = sT−τ,j−1

(iii) Propose s∗τ = 1 if U(0, 1) ≤ ω and 0 otherwise.

(iv) Calculate αsj = min

{
L(ZT |s∗T ,Θj)p(s∗T )

L(ZT |sTj−1,Θj)p(sTj−1)
, 1

}
(v) Set sTj = s∗ if U(0, 1) ≤ αsj and sTj = sTj−1 otherwise.

(3) Return values {Θ0,Θ1,...,ΘJ} and {sT0 , sT1 ,...,sTJ }

The log of the likelihood function L
(
ZT | sT ,Θ

)
can be evaluated as

logL
(
ZT | sT ,Θ

)
= −1

2

{
T∑
t=1

2π dim(Zt) + log
∣∣Σ(st)

∣∣+ Z̃ ′tΣ(st)−1
t Z̃

}
(4.19)

where Z̃t is the innovation to the observation vector Zt defined as

Z̃t ≡ Zt − E
(
Zt | Zt−1

)
(4.20)

and

Σ(st) ≡ E
(
Z̃tZ̃

′
t

)
(4.21)

The innovation Z̃t can for a given history st and parameter vector Θ be computed as the
Kalman filter innovations to the state space system made up of the measurement equation
(4.16) and the state equation (4.10).

4.7. Posterior parameter estimates. The posterior estimates of Θ from 500 000 draws
from the Metropolis algorithm are reported in Table 1.
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Table 1 (Preliminary)
Posterior Parameter Estimates 1981:Q3-2010:Q3

Θ Mode Θ̂ Prior dist. Posterior 2.5%-97.5%
Preferences etc

ϕ 1.10 U (0, 10) (1.00− 1.11)
δ 1.07 U (0, 10) (1.00− 1.09)
β 0.98 U (0.96, 1) (0.97− 0.99)
θ 0.74 U (0, 1) (0.72− 0.75)

Exogenous aggregate processes

ρa 0.87 U (0, 0.99) (0.85− 0.88)
ρd 0.72 U (0, 0.99) (0.69− 0.72)
σa 0.018 U (0, 0.99) (0.014− 0.020)
σd 0.010 U (0, 1) (0.008− 0.011)
σr 0.014 U (0, 1) (0.012− 0.016)

Island specific processes
σε 0.25 U (0, 1) (0.24− 0.30)
σξ1 0.29 U (0, 1) (0.29− 0.31)
σξ2, 0.31 U (0, 1) (0.29− 0.31)
σζ , 0.21 U (0, 1) (0.19− 0.22)

Man-bites-dog parameters

ω 0.051 U (0, 1) (0.046− 0.054)
γ 4.27 U (1, 10) (4.01− 4.29)
ση 0.49 U (0, 10) (0.48− 0.53)

Taylor rule parameters

φr 0.08 U (0, 1) (0.07− 0.10)
φπ 1.55 U (0, 10) (1.50− 1.56)
φy 0.24 U (0, 10) (0.20− 0.25)

Log likelihood at Θ̂: 2933.7

5. Estimated Man-bites-dog Dynamics

The estimated model can be used to quantify the contribution of the man-bites-dog mecha-
nism to business cycle dynamics. This section presents impulse response functions of various
objects as well as estimates of when man-bites-dog episodes have been more likely to have
occurred in the past. We also discuss how man-bites-dog episodes can be interpreted at the
aggregate level.

5.1. The impact of innovations to productivity. Figure 3 illustrates the impulse re-
sponse function of output and inflation to a one (unconditional) standard deviation inno-
vation to the common productivity shock at. The black lines are the responses when there
is no man-bites-dog signal, the blue lines are the responses when there is a man-bites-dog
signal in the impact period but none thereafter. It is clear from the figure that the response
of output to a productivity shock of a given magnitude is substantially (and significantly)
larger if it coincides with the generation of a man-bites-dog signal. A man-bites-dog signal
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approximately doubles the impact of an innovation to productivity on output and inflation
falls by approximately an additional third of the response when there is no man-bites-dog
signal. Since the exogenous shock is the same for both cases, the difference must be driven
by different responses of expectations.
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Figure 3. Impulse responses of inflation (top panel) and output (bottom
panel) to a 1 s.d. innovation to productivity. Blue lines are for man-bites-dog
signal in period 1, i.e. st = 1, 0, 0, 0, 0 and black lines for no man-bites-dog
signal. Dotted black and blue lines show the 95 per cent posterior credible
intervals. The dashed red lines are the responses of inflation and output when
the availability of the signal zat is uncorrelated with the innovation to produc-
tivity.

The stronger responses of endogenous variables to an innovation of given magnitude are
caused by three conceptually different effects. First, since there is an additional signal
available, average expectations respond stronger. Second, since the man-bites-dog signal is
public (in the strong common knowledge sense of the word) higher order expectations will
respond stronger than they would if the man-bites-dog signal was private. In equilibrium,
there are strategic complementarities between individual price and consumption decisions
and aggregate price and consumption outcomes. As pointed out by Morris and Shin (2002),
public signals can then appear to be disproportionately influential on affecting equilibrium
outcomes as they work as “focal points” for expectations. Third, the man bites-dog effect
makes agents willing to update their expectations further for a given magnitude of the
surprise component in their signal vector since the availability of a man-bites-dog signal
suggests that a large innovation is more likely to have occurred. We can get a handle on the
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relative importance of the man-bites-dog effect by solving the model under the alternative
assumption that the availability of the man-bites-dog signal is entirely random, that is,
under the assumption that a public signal about productivity is as likely to be observed
when there has been a large innovation to productivity as when there has been a small
innovation. The results are illustrated by the red dashed line in Figure 3. While the first
two effects contribute a little to the stronger responses of output and inflation, it is clear
that the man-bites-dog effect explains most of the difference between the black and blue
lines. The “more information” and the “coordination effect” only increases the impact of
productivity on output by from 0.0076 to 0.0088, while the response with a man-bites-dog
signal virtually doubles the impact multiplier to 0.015.
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Figure 4. Expected output multiplier on innovation to productivity condi-
tional on magnitude of innovation.

Since the probability of generating a man-bites-dog signal is increasing in the absolute size
of the shock, the larger a shock is, the more likely it is that the response to the shock will be
described by the blue impulse responses. Small shocks on the other hand are more likely to
generate the weaker responses. This conditionality of the magnitude of the impulse responses
is illustrated in Figure 4, where the expected impact multiplier (y-axis) of a productivity
shock on output is plotted for different ratios (x-axis) of the size of the shock relative to
its unconditional standard deviation. We can see in the figure that the expected impact is
larger for larger shocks. For productivity innovations smaller than one standard deviation in
magnitude, inflation and output will almost surely respond according to the black impulse
responses. Innovations larger than three standard deviations will almost surely generate
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the stronger responses illustrated by the blue lines. The man-bites-dog information struc-
ture thus introduces a non-linearity in the endogenous variables’ responses to exogenous
shocks with the consequence of making both recessions and booms sharper than they would
otherwise be.
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Figure 5. Posterior historical probability of st = 1 (top panel) and poste-
rior estimate of historical impact of a 1 (unconditional) s.d. innovation to
productivity on output with 95 per cent probability interval.

5.2. Historical man-bites-dog episodes. In the top panel of Figure 5 the posterior prob-
abilities of man-bites-dog events are plotted against the sample dates with shaded areas
representing NBER dated recessions. There are four episodes (some of them lasting several
quarters) that have an estimated probability of a man-bites-dog event close to unity: The
recession in the early 1980s, the 1987 stock market crash, the 1991 recession and the current
“great recession”. In addition to these major events, there are a handful of episodes for
which the probability of a man-bites-dog event is estimated to be larger than 50 per cent.
Of those, three are in the 1980s, one coincides withe the 2001 recession and one occur in the
last quarter of 2002.

As suggested by the theory, the quarters that are assigned a high probability of being a
man-bites-dog episode are also quarters with larger than average (in absolute terms) produc-
tivity innovations. The average absolute innovation from the quarters assigned a probability
larger than 10 per cent is 0.0068 compared to 0.0052 for the full sample. The corresponding
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numbers for quarters with a probability of a man-bites-dog event above 50 and 90 per cent
are 0.0076 and 0.0092, respectively.

There appear to be a slight bias towards quarters associated with negative productivity
innovations (relative to trend) to be assigned a large probability of being man-bites-dog
episodes. This bias becomes more pronounced the more stringent one defines a man-bites-
dog episode. For instance, of the 18 quarters in which the probability of a man-bites-dog
event is estimated to be larger than 50 per cent, 14 are negative and 4 are positive innovations
(as computed at the mode of posterior estimate of ρa). For the quarters with a probability
larger than 90 per cent, the numbers are 9 negative and 1 positive innovation. This may
suggest that bad news are perhaps more newsworthy, though an alternative explanation
could be that most of the largest (in absolute terms) innovations in the sample are negative
(the 3 largest innovations are all negative). Another feature of the estimates that perhaps
makes this bias appear stronger than what is actually the case is that recessions typically
feature several quarters in a row that have both negative innovations and are assigned a
high probability of being a man-bites-dog episode. If we were to count episodes rather than
quarters, then there are 5 episodes that are associated with bad news, the four recessions
and the 1987 stock market crash (though the latter did not coincide with a large negative
productivity innovation). The three non-recession non-stock market crash episodes in the
1980s are all associated with positive innovations to productivity.

5.3. Interpreting historical man-bites-dog episodes. In the introduction, the Movers
segment on Bloomberg Television was given as an example of man-bites-dog news reporting.
One can think of other types of news events that are more likely to affect the macro economy
than the movements of individual stock prices. For instance, the news that a governor of an
important central bank held an unscheduled press conference could certainly be interpreted
as increasing the likelihood of unusual macroeconomic developments. If little concrete in-
formation was given beyond reassuring words of “policy vigilance” etc, this may very well
increase uncertainty. Still, it seems unlikely that individual events, perhaps with the ex-
ception of the 1987 stock market crash, directly causes what is identified as man-bites-dog
episodes by the model. A more plausible interpretation of these episodes is the following.
At certain times the economy for various reasons become one of the main news stories, dom-
inating network news and newspaper front pages. According to the man-bites-dog dictum,
this should be more likely to happen when macro economic developments are in some sense
unusual. Arguably, one reasonable reaction to intense media focus on the economy is to ask
“Why are all the newspapers talking about the economy? Maybe something unusual is going
on.” and thus making people more sensitive to news about the economy.

The interpretation of man-bites-dog events as periods when economic issues dominate the
news also motivates modeling man-bites-dog signals as public signals. If unusual economic
events are more likely to dominate the news media as compared to more common place
events, it seems reasonable to think of signals about these type of events as being a closer
approximation to the theoretical ideal of a public signal in the strong common knowledge
sense of the word. It seems clear that, for instance, there are more people who knows
approximately how much the stock market fell in the crash of 1987, than who knows what
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Figure 6. Posterior historical probability of st = 1 (blue lines) and Unfa-
vorable News Heard (red dashed line, top panel) and Favorable News Heard
(green dashed line, bottom panel). Data on News Heard are from Michigan
Survey and are re-scaled to range between zero and one.

the Dow Jones index did in 2005, though both pieces of information are clearly publicly
available.

One way to check more directly whether what the model interprets as man-bites-dog
events are indeed related to the intensity of news coverage we can compare the posterior
probabilities that st = 1 with the fraction of respondents in the Michigan Survey that have
heard unfavorable or favorable news “during the last months”. This data was not used in
estimation and thus provides an independent check on the reasonableness of the estimates
produced by the model. Figure 6 contains the posterior probabilities of st = 1 and the
number of respondents that have heard unfavorable news (top panel) and unfavorable news
(bottom panel). The numbers are re-scaled to lie in the range between 0 and 1. It is clear
that the unfavorable news heard index increases around recessions and around the stock
market crash in Q4 of 1987. Of the remaining episodes that are assigned a high probability
of being a man-bites-dog event, but that are not associated with these events, two out of
three are associated with a significantly higher than normal index of “favorable news heard”.
There is thus only one episode in late 1989 that is assigned a high probability of being a
man-bites-dog event but where there is little movement in the either the unfavorable or
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favorable news index. The fact that the model identifies episodes that are indeed associated
with a higher news penetration as man-bites-dog events should increase our confidence in it.

5.4. Endogenous persistence in volatility. The model estimates suggest that man-bites-
dog events are associated with stronger responses to productivity innovations. The posterior
estimate of the history of the output multiplier on productivity innovations is plotted in the
bottom panel of Figure 5. There it can be seen that when there is man-bites-dog event, the
impact multiplier increases sharply, but only returns back to a more normal level gradually.
That is, a single man-bites-dog signal increases the sensitivity of output to productivity
shocks for several periods. The reason is that if a man-bites-dog signal is observed in period
t then this will affect the posterior covariance of the state estimation error in period t. As
explained above, the posterior covariance in period t translates into the prior covariance in
period t+ 1, implying that the man-bites-dog signal in period t has persistent effects on the
law of motion of the state, through its effect on the sensitivity of agents to new information.
These effects can be quite long-lived, depending on the parameters and generally last longer
when uncertainty is relatively large and when the persistence of the exogenous state is high.

Figure 6 illustrates the output multiplier on a productivity shock the periods after a man-
bites-dog signal is observed. That is, Figure 7 plots the posterior estimate of the relevant
elements of

G(st)N(st) : t = 1, 2, ... (5.1)

from the model solution (4.10) - (4.11) for

st = 1, 0, 0, 0, 0, ... (5.2)

That is, Figure 6 plots an impulse response of the time varying parameter that governs how
much output increases after a one standard deviation innovation to productivity. As can
be seen from the figure, the impact a productivity shock has when a man-bites-dog signal
is generated is persistently higher after the impact period. The man-bites-dog information
structure thus generates something similar to ARCH dynamics or stochastic volatility in
the endogenous variables even though no such persistence is present in the volatility of the
exogenous productivity process. (A picture similar to Figure 6 can also be plotted for the
inflation multiplier.) It is worth noting that the positive autocorrelation observed in Figure
6 is an empirical finding, not a necessary implication of the man-bites-dog mechanism. For
instance, if the man-bites-dog signal was estimated to be very precise, posterior covariances
would decrease in period t, making agents less sensitive to new information in period t + 1
and we would see a negative correlation between the impact multiplier in period t and period
t+ 1.

Coibion and Gorodnichenko (2011) document that expectations are updated faster, in
the sense that average expectations in surveys respond proportionally stronger, during more
volatile periods. Though Coibion and Gorodnichenko are looking at a different sample period
and focus on low frequency movements, this is exactly the qualitative prediction made by
the model presented here: A man-bites-dog event increases the volatility of macro aggregates
because expectations are updated faster, since a man-bites-dog signal makes agents put more
weight on new information.
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Figure 7. Illustration of persistent increase in endogenous volatility after
man-bites-dog event.

5.5. Man-bites-dog signals and the cross-sectional dispersion of expectations. As
was shown in the static setting of Section 2, uncertainty can either increase or decrease
when a man-bites-dog signal is observed relative to when it is not. Whether this effect is
present depends on the value of the parameter γ governing how unusual an event has to be
to significantly increase the probability of observing a man-bites-dog signal and how noisy
the man-bites-dog signal is when it is observed. When γ is large or the man-bites-dog signal
is very noisy, uncertainty is more likely to increase after a man-bites-dog signal and the
cross-sectional dispersion of first order expectations increases. In Figure 8 we have plotted
how the cross-sectional dispersion of first order expectations changes after a man-bites-dog
signal at the posterior mode of the estimated model. It can be seen that at the mode,
the uncertainty effect of a man-bites-dog signal appear to dominate and the cross-sectional
dispersion increases at the time of the man-bites-dog signal. Afterwards, the dispersion
gradually returns to the more concentrated distribution associated with periods when there
are no man-bites-dog events in the relevant history of st.

These results can be contrasted to those of Kondor (2010). He shows that in a setting where
two classes of agents are constrained in what type of private information they can acquire,
a public signal may increase the dispersion between first and second order expectations.
In the model presented here, a man-bites-dog signal decreases dispersion between different
orders of expectation (not shown) but increases the cross-sectional dispersion of first order
expectations.

6. Alternative specifications

In this section I investigate the implications of changing the empirical specifications in two
different ways. First, I analyze how the empirical estimates change when the cross-sectional
component is excluded from the sample data and the model is instead estimated using only
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Figure 8. Impulse response of cross sectional distribution of expectations
after a man-bites-dog signal, i.e. st = 0, 1, 0, 0, 0, ... (Cross sectional dispersion
increases (widens) in period 2 when s2 = 1.)

mean forecasts from the Survey of Professional Forecasters. Second, I re-estimate the model
allowing man-bites-dog signal to be more likely to be observed when there has been a large
innovation to demand, rather than to productivity.

6.1. The information in the cross-section of the survey data. In the benchmark
specification above, we used up to 50 survey observations in a given period to estimate the
parameters of the model as well as the historical probabilities that st = 1. Since there is quite
a bit of time-variation in the cross-sectional dispersion in the SPF, and since changes in the
cross-sectional dispersion of expectations in the model are caused by man-bites-dog episodes,
it may be interesting to to try to gauge the influence of the cross-sectional dimension of the
data on the estimates of st . In order to investigate the influence of using the cross-sectional
information, the model was re-estimated using the within period cross-sectional average
forecast of inflation and nominal GDP as noisy indicators of the average expectations in the
model. In addition to the standard parameters of the model, the standard deviation of the
measurement errors associated with the average forecasts then also need to be estimated.

There are three main implications of this change. First, and unsurprisingly, credible inter-
vals for the posterior parameter estimates become wider as the the number of indicators is
decreased. Second, the only episodes that are identified by the model as having a probability
of being a man-bites-dog event of more then 50 per cent are the recession in the early 1980s
and the current recession. The cross-sectional dimension thus appears to play a crucial role
in identifying historical man-bites-dog episodes. Third, the difference between the impulse



30 KRISTOFFER P. NIMARK

responses to a productivity innovation with and without a man-bites-dog signal becomes
much larger. At the posterior mode, the impact multiplier on output is 4 times larger when
there is a man-bites-dog signal available compared to when there is not. This last point is
perhaps natural, given that only the two most extreme events in the sample are identified as
man-bites-dog episodes. The difference between man-bites-dog episodes and normal times
are then naturally also found to be larger.

6.2. Man-bites-dog demand shocks. In the benchmark specification, large innovations to
productivity are more likely to generate a man-bites-dog signal. An alternative specification
is to let the man-bites-dog signals be about demand shocks so they are more likely to be
observed when there has been a large innovation to aggregate demand. When the model is
estimated under this alternative specification, there are two major changes. First, the fit in
terms of the log likelihood at the posterior mode is significantly worse, on the order of 400 log
points. Secondly, the posterior estimate of st now suggest that there were up to 40 man-bites-
dog episodes in the sample, more or less evenly distributed over the sample period. Based
on the evidence from the Michigan Survey referred to above, it seems like the model with
man-bites-dog demand episodes is capturing something that operates at a different frequency
compared to the News Heard indices plotted in Figure 6. One possible explanation for this
difference is that we do not have an observable time series of the demand disturbance, while
we do treat TFP as observable in estimation. The model is thus less disciplined by the data
in assigning probabilities of man-bites-dog events. Given the worse fit, implausible estimate
of st and the that it is an econometrically less disciplined exercise, there seems to be little
reason to prefer a specification with demand driven man-bites-dog episodes.

7. Conclusion

That some types of signals are more likely to be available about unusual events may sug-
gest that we should be better informed about unusual events. However, in this paper we
have showed that the flip-side of this argument is that the distribution of events conditional
on there being a man-bites-dog signal available is different from the unconditional distri-
bution in ways that may undo the effect of having more information. It was demonstrated
that conditioning only on the availability of a man-bites-dog signal increases uncertainty,
while observing the actual contents of the signal decreases uncertainty. If the likelihood of
observing the signal only increases substantially after very unusual events or if the signal
is sufficiently noisy, the former effect may dominate so that the posterior uncertainty after
observing a man-bites-dog signal is larger than it would be if no such signal was available.
We also showed that even though the man-bites-dog signal is public, the cross-sectional
dispersion of (first order) expectations may increase.

In the second part of the paper, a simple business cycle model was presented in which
large innovations to productivity is more likely to generate a public signal. When estimated,
the model was used to quantify the potential effects of man-bites-dog signals on business
cycle dynamics. According to the model, there were several episodes in recent US history
in which the impact of an innovation to productivity on aggregate output was about twice
as strong as the corresponding impact during normal times. The increased sensitivity of
macro aggregates to productivity innovations were found to be persistent, lasting about 5
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quarters after a single man-bites-dog event occurred. We also presented corroborative and
independent evidence from the Michigan Survey that the episodes identified by the model
as man-bites-dog events were indeed associated with higher than normal news coverage of
the economy.

Arguably, some features of the model captures a “crisis mentality” in which there is
an intense media focus on the economy. Yet, while there is more information produced
and broadcast about the economy during recessions, uncertainty and sensitivity to new
information appears to increase. While a majority of the episodes identified as man-bites-
dog event by the model were indeed negative events, we also found several episodes in which
a similar effect appears to be at work when economic news are favorable.

The model was estimated by likelihood based methods using both the quarterly total
factor productivity time series constructed by Fernald (2010) and “raw” survey data from
the Survey of Professional Forecasters along with more standard macro indicators. Using a
time series of TFP as an observable variable has obvious advantages in terms of disciplining
the model, especially since one of the aims of the paper has been to quantify the extent
of time variation in the impact of TFP shocks on other variables. Using raw survey data
allowed us to incorporate the information in the time variation in the second moment of
survey responses into the posterior estimates of the parameters of the model. Particularly,
we showed that the cross-sectional dimension in the Survey of Professional Forecasters is
informative about the the timing of man-bites-dog events. In order to exploit the time
variation in the cross-sectional dispersion of the survey data, it is necessary to have a model
that can fit this fact and the paper makes a methodological contribution by demonstrating
how a model with time varying information sets can be solved and estimated. This may be
of separate interest to some readers.

Finally, it may also be worth pointing out a difference between the mechanism proposed
here and models featuring stochastic volatility. In a stochastic volatility model, the variance
of the exogenous shocks hitting the economy is a persistent time-varying process. In the
model presented here, the sensitivity of endogenous variables to a given magnitude of shocks
varies over time. While the man-bites-dog mechanism is more likely to be triggered by a
large exogenous shock, the persistent increase in sensitivity of the endogenous variables to
exogenous shocks is entirely endogenous. To the extent that we can observe the exogenous
shocks directly, this distinction is a testable difference between the two approaches.
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Appendix A. Generating conditional heteroscedasticity

In Section 2 of the main text a man-bites-dog information structure was reversed engi-
neered by directly specifying the conditional distributions p (x | S) for S = 0, 1. Here we
show that if more unusual events are more likely to be reported, this endogenously generates
heteroscedastic conditional distributions an unconditionally normal distribution of x.

A.1. Set up. The basic set up is the following. There are two latent variables of interest;
x1 ∼ N(0, 1) and x2 ∼ N(0, 1). We can interpret x1 as being the state of the macro economy
and x2 as being “everything else”. There exists what we may think of as a newspaper that
observes noisy measure z1 and z2 of x1 and x2

z1 = x1 + ε1 : ε1 ∼ N(0, 1) (A.1)

z2 = x2 + ε2 : ε2 ∼ N(0, 1) (A.2)

The newspaper will report either a noisy signal of x1 or x2 but due to page constraints is
assumed to be unable to report both. Instead, it will report a signal about the variable with
the most unusual realization (in expectations) Since

E [xi | zi] =
1

2
zi : i ∈ {1, 2} (A.3)

it will report the signal y1

y1 = x1 + η1 : η1 ∼ N(0, 1) (A.4)

if |z1| > |z2| and the signal y2

y2 = x2 + η2 : η2 ∼ N(0, 1) (A.5)

otherwise.

A.2. Implied conditional distribution. Let the variable S take the value 1 when y1 is
reported and zero otherwise. Rearranging Bayes’ rule from (2.2) gives

p (x1 | S = 1) =
p (S = 1 | x1) p (x1)

p (S = 1)
(A.6)

which we can use to find the distribution of x1 conditional on the availability of the signal
y1. With symmetric variables we have that p (S = 1) = 0.5 and p (x1) is by assumption the
standard normal distribution. To find p (S = 1 | x) note that

p (S = 1 | x1) = p (|z1| > |z2| | x1) (A.7)

=

∫ ∞
−∞

p (ε1) [1− 2 (1− Φ (|x1 + ε1|))] dε1 (A.8)

where Φ is the cdf of z2 which is zero mean normally distributed with variance 2. The quantity
1 − Φ (|x1 + ε1|) is thus the probability that z2 > |z1| , the quantity 2 (1− Φ (|x1 + ε1|)) is
the probability that |z2| > |z1| so that 1 − 2 (1− Φ (|x1 + ε1|)) equals the probability that
|z1| > |z2| for given x1 and ε1. Since we only condition on x1 we need to integrate over
the support of ε1 weighting each probability [1− 2 (1− Φ (|x1 + ε1|))] by the pdf of ε1. The
expression (A.8) can be plugged into (A.6) to get the distribution of x1 conditional on there
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Figure 9. Conditional and unconditional distributions of x1 and conditional
probability of observing the signal y1. (Note: Graph generated by scaling the
standard deviation of all shocks by 0.2.)

being a signal y1 available. All three distributions that make up the expression (A.7) are
plotted in Figure 10.

We can see in the figure that the information structure has the man-bites-dog property
that the conditional probability of observing a signal is increasing as realizations of x1 further
out in the tails are considered. Also, the distribution of x1 conditional on S = 1 has fatter
tails than the unconditional (normal) distribution of x1. This simple example thus displays
the same properties that are essential for the results in Section 2, though it is less tractable.
For instance, there is no closed form solution available for the expectation of x1 conditional
on S and y1. Readers with a particular interest in modeling filtering from fat-tailed priors
may want to also look at Swanson (2006b) for a different approach in an optimal policy
context.

Appendix B. Proof of Proposition 2

Proposition 2.The average expectation of x responds stronger to x when S=1 than when
S=0.

Proof. We need to show that the sum of the coefficients on the private signal xj and public
signal y in the conditional expectation

E
(
x | Ω1

j

)
=

σ−2
ε

σ−2
ε + σ−2

η + γ−1σ−2
xj +

σ−2
η

σ−2
ε + σ−2

η + γ−1σ−2
y (B.1)
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when S = 1 is larger than the coefficient on the private signal

E
(
x | Ω0

j

)
=

σ−2
ε

σ−2
ε + σ−2

xj (B.2)

when S = 0. Simply comparing the expected average expectation conditional on x for S = 0∫
E
[
x | Ω0

j

]
dx =

∫
σ−2
ε

σ−2
ε + σ−2

xjdj (B.3)

=

(
1− σ−2

σ−2
ε + σ−2

)
x (B.4)

and S = 1

E

[∫
E
(
x | Ω1

j

)
dx | x

]
=

∫
σ−2
ε

σ−2
ε + σ−2

η + γ−1σ−2
xjdj (B.5)

+
σ−2
η

σ−2
ε + σ−2

η + γ−1σ−2
x (B.6)

=

(
1− γ−1σ−2

σ−2
ε + σ−2

η + γ−1σ−2

)
x (B.7)

+
σ−2
η

σ−2
ε + σ−2

η + γ−1σ−2
η (B.8)

means that the proposition is true if the inequality(
1− σ−2

σ−2
ε + σ−2

)
<

(
1− γ−1σ−2

σ−2
ε + σ−2

η + γ−1σ−2

)
(B.9)

holds. The last expression can with a little algebra be rearranged to

γ−1 < 1 + σ−2
η (B.10)

which is always true since γ > 1 and σ−2
η > 0. �

Appendix C. Solving the model

This section describes how to find the equilibrium dynamics of the model. We first describe
how the equilibrium relationships that can be used to pin down inflation and output and the
law of motion for the state. We then describe an algorithm for finding a solution.

C.1. Definitions and conjectures. First, define the exogenous state vector

xj,t ≡
[
aj,t
dj,t

]
(C.1)

and note that ∫
xj,tdj = xt (C.2)
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Island j’s hierarchy of expectations is then given by

Xj,t ≡

[
xj,t

E
[
X

(k−1)
t | Ωj,t

] ]
(C.3)

where

X
(k−1)
t ≡


xt

x
(1)
t
...

x
(k−1)
t

 (C.4)

We will conjecture (and later verify) that consumption and inflation on island j can be
written as linear functions of the true state Xt and island j’s hierarchy of expectations Xj,t[

cj,t
πj,t

]
= Gx

(
st
)
Xt +Gj

(
st
)
Xj,t +Grrt−1 +Guut +Gξ

[
ξ1
j,t

ξ2
j,t

]
(C.5)

where ut is a vector that contains the aggregate shocks in the economy, i.e. those shocks
that have a common effect on all islands. Note that this conjecture implies that aggregate
consumption and inflation is given by[

ct
πt

]
=
[
Gx

(
st
)

+Gj

(
st
)]
Xt +Grrt−1 +Guut (C.6)

since
∫
ξnj,tdj = 0 for n = 1, 2 . Use that ct = yt and define G(st) ≡ G (st) + Gj (st) so that

inflation and output can be written as[
yt
πt

]
= G(st)Xt +Grrt−1 +Guut (C.7)

It will also be convenient to partition G (st) into row vectors[
yt
πt

]
=

[
Gy(s

t)
Gπ(st)

]
Xt +Grrt−1 +Guut (C.8)

We also need to conjecture (and later verify) that the state Xt follows

Xt = M(st)Xt−1 +N(st)ut : ut ∼ N(0, I) (C.9)

Solving the model implies finding the matrices G (st) , Gr, Gu,M(st) and N(st).

C.2. Inflation and output as functions of the state. We can use the Euler equation
for island j consumption

cj,t = E
[
cj,t+1 | Ωj

t

]
− rt + E

[
πBj,t+1 | Ωj

t

]
+ dj,t (C.10)

and the island j Phillips curve

πj,t = λ(1 + ϕδ) (πt − πj,t) + λcj,t + λϕyt − λ1(+ϕ)aj,t (C.11)

+βE
(
πj,t+1 | Ωj

t

)
+ λξ1

j,t + λϕξ2
j,t
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(where we use the definitions (3.15) and (3.16) of pBj,t and yj,t) to find the matricesA,B,C,Gr

and Gu in[
cj,t
πj,t

]
= A

∫
E

([
ct+1

πt+1

]
| Ωj,t

)
+BXj

t + CXt +Grrt−1 +Guut (C.12)

A,B,C,Gr and Gu are then given by

A =

[
1 1
0 β

]
(C.13)

B =

[
e2

−λ(1 + ϕ)e1

]
+

[
0

−λ(1 + ϕδ)e2Gj (st)

]
+

[
0

λe1Gj (st)

]
(C.14)

C =

[
φπGπ(st) + φyGy(s

t)
0

]
+

[
0

λ(1 + ϕδ)Gπ(st)

]
(C.15)

+

[
0

λϕGy(s
t)

]
+

[
0

−λ(1 + ϕδ)Gπ(st)

]
Gr = −

[
φr(1− φr)−1 (λ+ λϕ)φr(1− βφr)−1

]′
(C.16)

Gu = −
[

(1− φr)−1 (λ+ λϕ) (1− βφr)−1
]′ [

σr 0
]
e′r (C.17)

where Gr and Gu are simply given by direct forward substitution of the effect of the lagged
interest rate rt−1 and the monetary policy shock urt on future consumption and inflation rates,
where the effect on inflation is indirect and works through how consumption affect marginal
cost. The row vector e′r picks out the element of ut that corresponds to the monetary policy
shock urt in the Taylor rule (3.10).

C.2.1. Aggregation. If we are not interested in deriving the dynamics of prices on an indi-
vidual island, we can proceed by taking averages across islands and use the conjectured form
(C.7) to get

G
(
st
)
Xt = (B + C)Xt (C.18)

+ωAG
(
st+1

1

)
M
(
st+1

1

)
HXt

+ (1− ω)AG
(
st+1

0

)
M
(
st+1

0

)
HXt

The expression (C.18) uses that expected output and inflation is given by

E

([
yt+1

πt+1

]
| Ωj,t

)
= ωAG

(
st+1

1

)
M
(
st+1

1

)
HXt (C.19)

+ (1− ω)AG
(
st+1

0

)
M
(
st+1

0

)
HXt

where st+1
n denotes the history st+1 with st+1 = n. That is, the expectations of period t + 1

inflation and output have to be weighted by the probability that will be a man-bites-dog
signal available in the next period. Equating coefficients then implies that G (st) must satisfy

G
(
st
)

= (B + C) (C.20)

+ωAG
(
st+1

1

)
M
(
st+1

1

)
H

+ (1− ω)AG
(
st+1

0

)
M
(
st+1

0

)
H



38 KRISTOFFER P. NIMARK

C.3. The law of motion of the state. We now describe how to find the law of motion
for the state. We have conjectured above that it will take the form

Xt = M(st)Xt−1 +N(st)ut : ut ∼ N(0, I) (C.21)

and the partly, this law of motion is exogenous. That is, the first two row are given by the
law of motion for the exogenous aggregate states at and dt

xt = ρxt−1 + νtut

where

ρ =

[
ρa 0
0 ρd

]
(C.22)

and

νt =

[
σ2
a 0

0 σ2
d

]
if σt = 0 (C.23)

νt =

[
γσ2

a 0
0 σ2

d

]
if st = 1 (C.24)

C.3.1. The filtering problem of agent j. Since Xt is made up of agents’ higher order expec-
tations about xt, the endogenous part of M(st) and N(st) depend on the how agents update
their higher order expectations. For given M(st) and N(st) and for given G (st) the filtering
problem of the agents can be described by the state space system made up of the law of
motion (C.21) and the measurement equation

zj,t = D(st)Xt +
[
Ru(st) Rj(st)

] [ ut
uj,t

]
(C.25)

The matrices D(st) and Ru(st) and Rj(st) vary over time and are given by

D(st) =


e1

e2

Gπ(st)
Gy(s

t) +Gπ(st)
φyGy(s

t) + φπGπ(st)

 , Ru(st) =

[
04×4 04×1

0 σr

]
, (C.26)

Rj(st) =


σj,a 0 0 0 0
0 σj,d 0 0 0
0 0 σξ1 0 0
0 0 0 σξ2 0
0 0 0 0 0

 (C.27)
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when st = 0 and

D(st) =


e1

e2

Gπ(st)
Gy(s

t) +Gπ(st)
φyGy(s

t) + φπGπ(st)
e1

 , Ru(st) =

 04×4 04×1 04×1

01×4 σr 0
01×4 0 ση

 , (C.28)

Rj(st) =


σj,a 0 0 0 0 0
0 σj,d 0 0 0 0
0 0 σξ1 0 0 0
0 0 0 σξ2 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (C.29)

when st = 1. Agent j’s state estimate

Xj,t|t ≡ E [Xt | Ωj,t] (C.30)

evolves according to the Kalman update equation

Xj,t|t = M(st)Xj,t−1|t−1 +K(st)
[
zj,t −D(st)M(st)Xj,t−1|t−1

]
(C.31)

where the Kalman gain is given by

K(st) =
[
P (st)D′(st) +N ′(st)R(st)

] [
D(st)P (st)D′(st) +R(st)R

′(st)
]−1

(C.32)

where

R(st) ≡
[
Ru(s

t) Rj(s
t)
]

(C.33)

and P (st) is defined as

P (st) = E
(
Xt −Xj,t|t−1,st

) (
Xt −Xj,t|t−1,st

)′
(C.34)

with

Xj,t|t−1,st ≡ E
(
Xt | zt−1

j , st
)

i.e. the state estimation error covariance P (st) is variance of error prior to observing zj,t
but “posterior” to observing st. The state estimation error are thus conditionally normally
distributed with covariance P (st) given by

P (st) = M(st)

 P (st−1)− [P (st−1)D′(st−1) +N ′(st−1)R(st)]×
[D(st−1)P (st−1)D′(st−1) +R(st−1)R′(st−1)]

−1×
[P (st−1)D′(st−1) +N ′(st−1)R(st−1)]

′

M ′(st) (C.35)

+N(st)N(st)

(The term in brackets is the posterior state estimation error in period t−1.) The expressions
for K(st) and P (st) are standard formulas for the Kalman filter recursions for state space
systems with time varying (but known) parameters (see for instance Anderson and Moore
1979).
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C.3.2. The average expectation hierarchy. Substituting in the expression for zt(j) into (C.31)
gives

Xj,t|t =
[
I −K(st)D(st)

]
M(st)Xj,t−1|t−1 (C.36)

+K(st)D
(
st
)

Xt +K(st)R
(
st
) [ ut

uj,t

]
Taking averages across agents and using law of motion for Xt to get gives

Xt|t =
[
I −K(st)D(st)

]
M(st)Xt−1|t−1 (C.37)

+K(st)D
(
st
) [
M(st)Xt−1 +N(st)ut

]
+K(st)Ru (st) ut

since
∫

ut(j)dj = 0. Amending the result to the exogenous law of motion for xt results in
the law of motion for the entire system[

xt
Xt|t

]
=

[
ρ 0
0 0

] [
xt−1

Xt−1|t−1

]
+

[
0

K(st)D(st)M(st)

] [
xt−1

Xt−1|t−1

]
(C.38)

+

[
0 0
0 [I −K(st)D(st)]M(st)

] [
xt−1

Xt−1|t−1

]
+

[
ν(st)

K(st)D(st)N(st)

]
ut +K(st)Ru (st) ut

For each st we thus need to find a fixed point of

M
(
st
)

=

[
ρ 0
0 0

]
+

[
0

K(st)D(st)M(st)

]
+

[
0 0
0 [I −K(st)D(st)]M(st)

]
(C.39)

N
(
st
)

=

[
ν(st)

K(st)D(st)N(st)

]
+K(st)Ru (st) (C.40)

C.4. Algorithm for finding the solution.

(1) Start by making initial guesses for the S different versions of the matricesG (st) ,M(st)
and N(st). A good initial guess is to set all of them equal to the full information so-
lution.

(2) For given matrices G (st) , Gr, Gu,M(st) and N(st) compute S ”new” G (st) using
(C.20). (That is, one need to loop through the S different matrices G (st) .

(3) For given matrices Gr, Gu,M(st) and N(st) and the ”new” G (st) compute S ”new”
M(st) and N(st) using (C.39) and (C.40)

(4) Iterate on 2 and 3 until convergence.

To keep track of the S different versions of the matrices G (st) ,M(st) and N(st) it is
helpful to use the following indexing strategy. Define m×n×S arrays such that each “slice”
of the array correspond to the matrices G (st) ,M(st) and N(st) for a given history st. Each
unique finite history of st can be expressed as a decimal number using the mapping between
binary and decimal numbers. The history

st = {0, 0, 0, 1} (C.41)
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will thus be assigned the index number 1 since the binary number 0001 equals 1 in the
decimal system. Similarly, the history

st = {1, 1, 0, 1} (C.42)

is given the index number 13 since the binary number 1101 equals 13 in the decimal system,
and so on. The number of relevant histories of st equals 16 in this case where it is assumed
that the last last 4 periods of st are relevant for current dynamics. If the number of different
relevant histories equal 8, we have S = 28 so that we would need to use 8 bit binary numbers
to keep track of the 256 different relevant histories of st and so on.


