
What Drives the Oil-Dollar Correlation?

Christian Grisse�

Federal Reserve Bank of New York

December 2010
Preliminary - comments welcome, please do not quote

Abstract

Oil prices and the US Dollar tend to move together: while the correlation between the WTI

spot price and the US Dollar trade-weighted exchange rate has historically �uctuated between

positive and negative values, it turned persistently negative in recent years. What explains

this comovement? This paper investigates the relationship between oil prices and the US Dollar

nominal e¤ective exchange rate using a structural model that is fully identi�ed by exploiting the

heteroskedasticity in the data, following Rigobon (2003). We control for e¤ects of US and global

economic developments on oil prices and exchange rates by including measures of the surprise

component of economic news releases. The results indicate that higher oil prices depreciate the

Dollar both in the short run and over longer horizons. We also �nd that that Dollar depreciation

is associated with higher oil prices in the short run. US short-term interest rates explain much

of the long-run variation in oil prices and and the Dollar exchange rate.
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1 Introduction

Oil prices and the US Dollar exchange rate tend to move together. Figure 1 plots oil prices against

the US Dollar nominal e¤ective exchange rate. No clear relationship is apparent for the early

part of the sample, but oil prices and the US Dollar appear to be negatively related in recent

years. As the Dollar depreciated between 2002 and 2008, oil prices surged. Conversely, during the

�nancial crisis oil prices collapsed, while the Dollar appreciated. Figure 2 shows the correlation

between oil prices and the Dollar, computed over 6-month moving windows. While the correlation

�uctuates between negative and positive values for most of the sample, it turns more persistently

negative after 2002. What economic relationships are behind this comovement? Do oil shocks drive

exchange rates, or do exchange rates a¤ect oil prices? Or does the comovement of oil prices and

exchange rates re�ect movements in other variables, such as for example the US or global growth

outlook? Financial market commentary routinely suggests a causal relationship between oil price

movements and changes in the value of the US Dollar as the following quotes illustrate: �Weak

dollar central to oil price boom,�1 �Strong Dollar presses crude oil,�2 �Oil settles lower on stronger

dollar, ample supply,�3 �Dollar index strength may tumble oil prices in 2011,�4 �Crude lower on

stronger Dollar.�5

While the relationship between oil prices and exchange rates is widely discussed in the popular

press and among market practitioners, the academic literature on this topic is relatively scarce.

One strand of the literature6 investigates the long-run relationship between US Dollar real exchange

rates and the real price of oil. Using monthly data on either US Dollar trade-weighted exchange

rates or Dollar bilateral exchange rates versus advanced economies, this literature generally �nds

that real exchange rates and the real price of oil are cointegrated and exhibit a positive long-run

equilibrium relationship: that is, higher oil prices are associated with an appreciation of the US

Dollar. Furthermore, the literature generally �nds that oil prices Granger-cause exchange rates, but

not vice-versa. Coudert, Mignon and Penot (2008) present evidence that both real oil prices and

the US Dollar real e¤ective exchange rate are cointegrated with the US net foreign asset position,

and argue that this suggests that the in�uence of oil prices on exchange rates runs through the

e¤ect of oil prices on US net foreign assets.7 Cheng (2008) estimates a dynamic error correction

model using data on commodity prices, the US Dollar e¤ective exchange rate, world industrial

production, the Federal funds rate, and commodity inventories. Dollar depreciation is associated

1See http://www.reuters.com/article/idUSL2576484820070926
2See http://www.profi-forex.us/news/entry4000000618.html
3See http://www.marketwatch.com/story/oil-lower-on-stronger-dollar-ample-inventories-2010-10-27
4See http://www.liveoilprices.co.uk/oil/oil_prices/11/2010/dollar-index-strength-may-tumble-oil-

prices-in-2011.html
5See http://online.wsj.com/article/BT-CO-20101215-704928.html
6See for example Amano and van Norden (1998a, 1998b), Chaudhuri and Daniel (1998), Chen and Chen (2007),

Benassy-Quéré, Mignon and Penot (2007) and Coudert, Mignon and Penot (2008).
7The literature typically employs (log-)linear models. In contrast, Akram (2004) estimates a model that allows

for a non-linear relationship between oil prices and the trade-weighted value of the Norwegian Krone.

2



with higher oil prices, with the e¤ect being strongest in the long run (after several years).

One common feature of this literature is that authors either focus on reduced-form models,

or use potentially problematic zero restrictions on the contemporaneous feedback e¤ects between

oil prices and exchange rates. Akram (2009) estimates a structural VAR using quarterly data on

OECD industrial production, real US short-term interest rates, the real trade-weighted US Dollar

exchange rate, and a set of real commodity prices including the oil price. One �nding is that Dollar

depreciation is associated with higher commodity prices, which is consistent with the negative

correlation between commodities and Dollar exchange rates observed in the data. The model is

identi�ed using standard exclusion restrictions; in particular, it is assumed that the real exchange

rate does not respond to �uctuations in commodity prices within the same quarter.

A second strand of the literature asks whether exchange rates can help forecast commodity

prices. Chen, Rogo¤ and Rossi (2010) study the relationship between commodity currencies and

commodity prices, using quarterly data on the nominal Dollar exchange rates of a set of commod-

ity exporting countries (Australia, Canada, South Africa, and Chile). They �nd that commodity

currencies help to forecast commodity prices, both in-sample and out-of-sample. This result is

consistent with the idea that exchange rates are determined by traders�expectations about future

macroeconomic shocks; for small commodity exporters, commodity prices are an important and rel-

atively exogenous source of economic �uctuations. In contrast, the authors argue that commodity

prices are less forward-looking because commodity markets are more regulated and mainly in�u-

enced by current demand and supply conditions. Therefore, commodity prices are less successful in

forecasting exchange rates.8 Groen and Pesenti (2009) provide an extensive study of the forecasting

power of exchange rates for a range of commodity prices. They �nd that commodity currencies

help to forecast commodity prices, but across forecast horizons and across a range of commodity

price indices do not robustly outperform naïve statistical benchmark models.

The contribution of this paper is to estimate a structural model that is fully identi�ed, allowing

for two-way contemporaneous comovements between oil prices and the trade-weighted US Dollar

exchange rate. This is important because exchange rates and oil prices are asset prices which are

likely to respond instantly to economic news and developments in �nancial markets. Following

Rigobon (2003) and Ehrmann, Fratzscher and Rigobon (2010) identi�cation is achieved by exploit-

ing the heteroskedasticity of the data. Intuitively, in times when oil shocks (to take an example) are

particularly volatile the e¤ect of oil shocks on exchange rates is likely to dominate the correlation

observed in the data; such high volatility periods can therefore be used to identify the in�uence of

oil shocks on exchange rates. This paper focuses on short-run comovements, using weekly data on

nominal variables, which exhibit more volatility and are therefore better suited for this method-

ology. It is of course possible that the comovement of oil prices and exchange rates re�ects the

in�uence of third variables. For example, the surge in oil prices between 2003 and 2008 could

8Chen and Rogo¤ (2003) present evidence that commodity prices are related to the exchange rates of three small
commodity exporters (Australia, Canada and New Zealand).
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Figure 1: Oil prices and the US Dollar e¤ective exchange rate (against major currencies)
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Figure 2: Correlation of oil prices (WTI spot price, weekly log changes) and the US Dollar nominal
e¤ective exchange rate (against major currencies, weekly log changes), computed over 6-month
moving windows.
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have been caused by strong global demand for oil, especially from fast-growing economies in Asia;

and the depreciation of the Dollar during much of the recent oil price boom likely re�ected both

US-speci�c and global factors.9 To allow for this possibility, we control for US and global economic

developments by including data on the surprise component of economic news releases, captured by

the Citi Economic Surprise indices. The availability of this data on news releases limits the start

of our sample to the beginning of 2003, so that our analysis focuses on the recent years in which

oil prices and the Dollar exchange rate appear to exhibit a clear negative relationship (as seen in

Figure 1).

The results indicate that an increase in oil prices is associated with a depreciation of the Dollar

both in the short run (within the same week) and over longer horizons. Also, Dollar depreciation

leads to higher oil prices within the same week. In the long run, �uctuations in interest rates

explain most of the variation in oil prices and exchange rates. The �nding that oil prices a¤ect

the US Dollar in the long run is consistent with previous studies, although in contrast to much of

the previous literature this paper focuses on nominal variables, uses weekly data, and studies the

2003-2010 period. This paper allows for two-way contemporaneous feedback between oil prices and

exchange rates in a fully identi�ed structural model; this allows us to identify the short-run e¤ect

of changes in the Dollar on oil prices that has not been picked up in the previous literature.

The next section reviews potential reasons why oil prices and the US Dollar exchange rate could

be related. The third section discusses the data and the empirical methodology used in this paper.

Section four presents benchmark results and discusses robustness. Finally, section �ve concludes.

2 Linkages between oil prices and US Dollar exchange rates

This section provides a brief overview of potential transmission channels which could generate

comovement between oil prices and the Dollar.10 First, changes in the US Dollar exchange rate

could have an e¤ect on oil prices because of (1) their e¤ect on the global demand for oil, and (2)

their e¤ect on oil producers�price setting behavior. In particular, since oil is priced in Dollar on

international �nancial markets, when the US Dollar depreciates oil becomes less expensive in terms

of local currency for consumers in non-Dollar countries. This could increase their demand for oil,

which in turn could lead to higher oil prices. This channel provides an intuitive explanation for the

negative relationship between oil prices and the Dollar observed in recent years, but there is little

empirical evidence that the global demand for oil is in fact responsive to changes in the Dollar. A

9Kilian and Hicks (2009) present evidence that revisions of monthly forecasts of one-year ahead real GDP growth
in emerging economies and Japan were associated with higher oil prices, and explain much of the surge in oil prices
between 2003 and 2008. Kilian and Vega (2010) analyze the impact of the surprise component of US macroeconomic
news releases on the daily percent change of oil prices. They �nd that US data releases have no signi�cant e¤ect on
oil prices at the daily and monthly horizon.
10See also Breitenfellner and Cuaresma (2008) and Coudert, Mignon and Penot (2008). Golub (1983) and Krugman

(1983) build theoretical models of the relationship between oil prices and exchange rates.
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related argument is that Dollar depreciation could be associated with monetary easing in countries

that peg their exchange rate to the Dollar. Lower interest rates in these countries could in turn

stimulate economic activity and lead to a higher demand for commodities.

Since oil is priced in Dollar, the export revenue of oil-producing countries is predominantly

denominated in Dollars. However, shipments from the US account for only a small fraction of the

imports of oil producers. Also, many oil producing countries peg their exchange rates to the Dollar.

This implies that a depreciation of the Dollar is associated with a decline in the purchasing power

of oil revenues (the amount of non-Dollar denominated goods and services that oil producers can

buy). Therefore oil producers have an incentive to counterbalance the e¤ects of Dollar depreciation

by raising oil prices. To the extent that oil producers do indeed have some pricing power (for

example, OPEC may be able to a¤ect prices through changing the amount of oil supplied to the

market) this could lead to higher oil prices.

Next, consider the reverse e¤ect of oil prices on exchange rates. Changes in oil prices could

a¤ect the value of the US Dollar because of (1) the impact of higher oil prices on the US and

global growth outlook, and (2) the impact of higher oil prices on the global allocation of capital

and trade �ows. In particular, higher oil prices could be associated with an appreciation of the US

Dollar if markets expect that the US economy will su¤er less from increased prices than the rest of

the world, for example because it is less energy intensive.11 Kilian, Rebucci and Spatafora (2009)

regress the external balances of oil exporting and importing countries on oil shocks as identi�ed

by Kilian (2009). They �nd that oil price shocks are associated with a deterioration in the oil

trade de�cit of selected oil importers (US, Euro Area, Japan), although the strength of the e¤ect

depends on the type of oil shock considered (shocks to oil supply, aggregate demand and oil-speci�c

demand).

Higher oil prices imply higher revenues for oil producers and lower savings in oil-importing

countries. To the extent that oil revenues are used to purchase goods and services disproportionately

from the US, or are invested disproportionately in the US, this recycling of petrodollars could be

associated with a stronger Dollar. Higgins, Klitgaard and Lerman (2006) document that only a

small fraction of payments from the US to oil exporters has been used to purchase goods and services

from the US. However, they argue that although limited data availability makes it inherently

di¢ cult to track where oil exporters� savings are invested, most of the pro�ts of oil producers

during the recent oil price boom directly or indirectly ended up �nancing the US current account

de�cit.
11For evidence on the e¤ects of oil price shocks on the macroeconomy see Hamilton (1983, 2003) and Kilian (2008a,

2008b, 2009) .
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3 Data and methodology

3.1 The data

Weekly data on oil prices (WTI spot price, Cushing), the US Dollar exchange rate and short-term

US interest rates (3-month Treasury bill) is obtained from Haver. As a measure of the exchange

value of the Dollar we use the trade-weighted US Dollar exchange rate (against major currencies)

computed by the Federal Reserve Board.

To control for US and global economic developments we employ the Citi Economic Surprise

indices, which are measures of the surprise component of economic news releases (available from

Bloomberg). These indices are computed from weighted historical standard deviations of data sur-

prises (actual releases versus Bloomberg survey median) over the past 3 months, using declining

weights for older releases. A positive reading of the index indicates that economic releases have

on balance been above the consensus.12 Surprise indices are available from January 2003 for indi-

vidual G10 countries (United States, Euro Area, Japan, United Kingdom, Canada and Australia);

furthermore, aggregate indices are available for Asia (including data releases from China, South

Korea, Hong Kong, India, Taiwan, Singapore, Indonesia, Malaysia, Thailand and the Philippines),

Latin America (including data releases from Mexico, Brazil, Chile, Columbia and Peru) and se-

lected other countries (Turkey, Poland, Hungary, South Africa, Czech Republic). Data coverage

is most extensive for indices on the US and the euro area (see Table 1), while for some emerging

economies only two or three economic data releases are covered.

Using weekly data helps to deal with the issue of the timing of news releases that are captured

in the City Economic Surprise indices across di¤erent regions and time zones. We include only

Friday�s value of the Citi indices for each week, which by construction aggregate the news releases

over the week and indeed the previous three months with decaying weights.13

3.2 Methodology

Our empirical model is a structural VAR,

Ayt = �
J
j=1Bjyt�j +Cxt + "t (1)

where yt is an nx1 vector of endogenous variables, xt is a set of exogenous variables and "t is a

vector of structural shocks. The nxn matrix A determines the contemporaneous feedback e¤ects

among the endogenous variables. The diagonal elements in A are normalized to one. We assume

that E ("i) = E ("i"j 6=i) = 0.

12The weights of economic indicators are derived from relative high-frequency spot FX impacts of 1 standard
deviaion data surprises. See James and Kasikov (2008) for details.
13The use of news indices that aggregate data releases over the past 3 months may be more appropriate to capture

the impact of economic news on the levels of variables, rather than on changes as in this paper. However, the Citi
Economic Surprise indices are available from Bloomberg only in aggregated form.
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Table 1: Components of the Citi Economic Surprise indices

United States Euro Area

Change in Non-Farm Payrolls German IFO Survey
Unemployment Rate (sign inverted) German ZEW Survey
Trade Balance German GDP, QoQ %
GDP, QoQ % ann. Euro-Zone Core CPI, YoY %
Retail Sales ex-Autos, MoM % German Factory Orders, MoM %
ISM Non-manufacturing German Industrial Production, MoM %
CB Consumer Con�dence Italy Business Con�dence
ISM Manufacturing Euro-Zone Economic Con�dence Index
TICS Net Portfolio Flows Euro-Zone M3, YoY %
Chicago PMI France Consumer Spending, MoM %
Durable Goods Orders, MoM % German Retail Sales, YoY %
New Home Sales Euro-Zone Consumer Con�dence Index
Core CPI, MoM % France INSEE Business Con�dence
Empire Manufacturing PMI Euro-Zone Industrial Con�dence Index
Industrial Production, MoM %
Philadelphia Fed Business Conditions
UoM Consumer Con�dence
Housing Starts
Initial Jobless Claims (sign inverted)

*Components ordered with decreasing weights. Source: Citi.

To identify the structural shocks in (1) we use �identi�cation by heteroskedasticity�, following

Rigobon (2003) and Ehrmann, Fratzscher and Rigobon (2010).14 In particular, we allow the vari-

ances of the structural shocks to change across the sample. Suppose that s = 1; :::; S volatility

periods or �regimes�can be found such that the shock variances are constant within each regime,

but may di¤er across regimes. We write the variance-covariance matrix of shocks in regime s as

E
�
"t"

0
t

�
= 
";s

The estimation strategy is as follows. First we estimate the reduced-form version of equation

(1) by OLS,

yt = �
J
j=1A

�1Bjyt�j +A
�1Cxt + ut (2)

where we have de�ned

ut � A�1"t (3)

14See also Sentana and Fiorentini (2001) for the theoretical background and Rigobon and Sack (2003, 2004) and
Lanne and Lütkepohl (2008) for applications.
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We then use the residuals of the regression in (2), as a proxy for the underlying structural shocks,

to �nd volatility regimes. Suppose we have determined s = 1; :::; S volatility periods, and let


e;s denote the variance-covariance matrix of the residuals in regime s. From equation (3) the

variance-covariance matrix of reduced-from shocks in regime s is computed as


u;s = A
�1
";sA

�10 (4)

Using
e;s, the variance-covariance matrix of the residuals, as a proxy for
u;s in (4) and rearranging

leads to a set of GMM moment conditions,

A
e;sA
0 = 
";s (5)

for volatility regime s = 1; :::; S. With n endogenous variables
e;s will have N = n(n+1)=2 distinct

elements, so that equation (5) delivers N moment conditions for each regime which we summarize

in the column vector ms. Therefore, with S regimes, we obtain N � S moment conditions which
can be used for GMM estimation. A total of n (n� 1) + S (n+ 1) structural parameters need to
be estimated: n (n� 1) non-normalized parameters in A, and the variances of the n+1 shocks for
the S regimes. The model is identi�ed if the number of volatility regimes S is su¢ ciently large to

ensure that there are at least as many moment conditions as unknown parameters.

Let � denote a vector containing all unknown structural parameters. We choose � to minimize

the objective function

min
�
m0m (6)

with

m =
h
m0
1 � T1T m0

2 � T2T ::: m0
S �

TS
T

i0
where Ts denotes the number of observations in regime s and T denotes the total number of all

observations. Note that we multiply the moment conditions of regime s with the relative weight

of the regime: in this way more importance is attached to moment conditions that represent a

larger number of observations and thus are associated with less uncertainty. This implicitly de�nes

a weighting matrix for GMM estimation.15

What then remains is to identify periods in which the volatility of the underlying structural

shocks changes. Several studies using �identi�cation through heteroskedasticity�have used exoge-

nous events to identify volatility regimes. For example, Rigobon and Sack (2004) analyze the e¤ect

of US monetary policy on asset prices. They use two regimes, one including periods of FOMC

meetings and Fed chairman�s testimonies to congress, and another including all other periods. The

idea is that monetary policy is more volatile on days when interest rate decisions are taken or

when news about interest rate policies emerge. Since no such natural regime choices are available

15The estimation is implemented using the built-in Matlab routine fmincon.
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in our case, we follow Ehrmann, Fratzscher and Rigobon (2010) in using a simple threshold rule

to determine volatility regimes. Whenever the volatility of the residual for one variable in a given

period �computed over moving windows of a �xed size �is above the chosen threshold, while the

volatility of the other residuals is not, we classify the structural shock for this variable in that

period as being excessively volatile. In this way, we identify periods in which the residuals, as

proxies for the underlying structural shocks, are uniquely volatile, and periods when the volatility

of all residuals is below the threshold. With n variables this gives n high volatility regimes and

one �tranquility�regime, which are su¢ cient to identify the model. Periods in which the volatility

of the residuals of more than one variable is above the threshold are not used for the identi�cation

procedure: identi�cation works best with large relative changes in volatility, and periods in which

the volatility of all or several variables increases would therefore not help much for identi�cation.

To be precise, we compute the standard deviation of the residual of variable j in period t,

�jt, over �xed windows ending in t. The threshold used is E (�jt) + c � V ar (�jt), with c = 0:5.

Decreasing the threshold level by lowering c increases the number of observations that are classi�ed

as re�ecting volatility states, but it also increases the number of periods where more than one

variable is volatile. Ehrmann, Fratzscher and Rigobon (2010) use moving windows of 20 days to

compute �jt, which with daily data roughly corresponds to one month (four work weeks). With

weekly data, we use a window size of 2 as the benchmark speci�cation. Section 4.2 discusses the

robustness of our results to other assumptions about c and !.

4 Empirical analysis

4.1 Results

This section presents the benchmark results for the identi�cation of the structural VAR in (1). We

focus on weekly returns of oil prices and exchange rates, so that the vector of endogenous variables

is given by

yt =
h
100 �� ln pt 100 �� ln et �rt

i0
where pt, et and rt denote the oil price, the nominal US Dollar trade-weighted exchange rate

(against major currencies) and the nominal US short-term interest rate. The vector xt of exogenous

variables in (1) includes a set of measures of the surprise component of US and global economic

news releases described in section 3.1. We include 2 lags in the VAR, as suggested by the �nal

prediction error, Akaike�s information criterion, and the Hannan-Quinn information criterion.16

The 2003-2010 sample includes 415 observations of weekly data. The structural coe¢ cients in

matrix A are identi�ed using volatility regimes of 252 weekly observations (shocks to all variables

16Schwarz�s Bayesian information criterion indicates that a model without any lags is optimal, while the Likelihood
ratio test suggests 11 lags. Our intuition is that �nancial markets should respond quickly to new information, so that
including 2 lags with weekly data should be su¢ cient.
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Table 2: Identi�cation results

(a) direct contemporaneous e¤ects (matrix A)
From... "Oil;t "Dollar;t "r;t
...to
Oilt 1 �0:1674��

[0:0220]
0:0359
[0:3240]

Dollart �0:1755��
[0:0320]

1 �0:0174
[0:3940]

rt 0:0518
[0:1040]

0:0079
[0:4220]

1

(b) overall contemporaneous e¤ects (matrix A�1)
From... "Oil;t "Dollar;t "r;t
...to
Oilt 1:0324���

[0:0000]
�0:1725��
[0:0220]

0:0400
[0:3180]

Dollart �0:1821��
[0:0260]

1:0303���
[0:0000]

�0:0244
[0:3560]

rt 0:0521�
[0:1000]

�0:0008
[0:4940]

1:0019���
[0:0000]

Note: Oilt, Dollart and rt denote, respectively, the WTI spot oil price, the nominal
trade-weighted exchange value of USD versus major currencies (both in log changes),
and changes in the US 3-month interest rate. ***, ** and * denote signi�cance at the
1%, 5% and 10% level, respectively. P-values (in square brackets) are computed from
500 bootstrap replications. Coe¢ cient (i; j) corresponds to the contemporaneous
e¤ect of a shock to variable j on variable i. Sample includes weekly data from 2003
to 2010.

have low variance), 31 observations (high oil shock volatility), 56 observations (high Dollar shock

volatility) and 25 observations (high interest rate shock volatility).17

Table 2 presents the results from the identi�cation procedure. Panel (a) shows the coe¢ cients

of matrix A in equation (1), with inverted signs, which capture the direct contemporaneous (intra-

week) e¤ects of structural shocks. Panel (b) shows the coe¢ cients of matrix A�1, which determine

the overall contemporaneous e¤ects of structural shocks. Note that the coe¢ cients on the diagonal

of matrix A�1 are greater than one, which indicates that the initial impact of the shocks (which

is normalized to one in matrix A) are magni�ed through the various contemporaneous feedback

e¤ects with other variables. The results indicate that a depreciation of the US Dollar is associated

with a contemporaneous increase in oil prices in the short-run (within the same week), while higher

oil prices lead to a depreciation of the trade-weighted US Dollar exchange rate. Both e¤ects are

estimated to be roughly equal in magnitude and statistically signi�cant at the 5 percent level. The

contemporaneous e¤ects of US short-term interest rates on oil prices and the US Dollar exchange

rate are found not to be statistically signi�cant, but oil price shocks are associated with an increase

17The distribution of high volatility regime periods is shown in Figure ?? in the appendix.
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Table 3: Granger causality Wald tests

Equation Excluded �2 df Prob > �2

Oil Dollar 4.3487 2 0.114
Oil Interest rate 8.6866 2 0.013
Oil ALL 11.902 4 0.018

Dollar Oil 7.8781 2 0.019
Dollar Interest rate 22.457 2 0.000
Dollar ALL 27.517 4 0.000

Interest rate Oil 1.7651 2 0.414
Interest rate Dollar 2.2959 2 0.317
Interest rate ALL 2.9709 4 0.563

Note: Oil, Dollar and Interest rate denote, respectively, the WTI spot oil price,
the nominal trade-weighted USD versus major currencies (both in log changes), and
changes in the nominal US 3-month interest rate. Sample includes weekly data from
2003 to 2010.

in US short-term interest rates.

A somewhat di¤erent picture emerges over longer horizons. Table 3 presents the results of

Granger causality tests. Oil prices Granger-cause the US Dollar exchange rate, but not vice versa,

while US interest rates Granger-cause both oil prices and exchange rates. This is in line with

the previous literature that studies the long-run relationship between real oil prices and the real

Dollar exchange rate, and typically �nds that oil prices Granger-cause exchange rates, but not the

other way round.18 In the reduced-form VAR of equation (2), oil prices are increasing in all news

variables, with the exception of news from Canada and Australia, although the coe¢ cients are

mostly not signi�cant. The surprise component of US data releases is estimated to be associated

with both higher US short-term interest rates and an appreciation of the Dollar, but again the

coe¢ cients are not statistically signi�cant.

Since all parameters of the structural model have been estimated, impulse responses and vari-

ance decompositions do not depend on the ordering of the endogenous variables. This is a major

advantage of the identi�cation method used in this paper. Table 4 presents estimates for the

one-week ahead forecast error variance decomposition and the long-run variance decomposition.

In the short run, the forecast error variance of each variable is almost exclusively explained by

its own structural shocks. Shocks to the Dollar explain only less than 3 percent of the short-run

variation in oil prices, and similarly oil prices explain only about 3 percent of the variation in

18For example, Amano and van Norden (1998a, 1998b).
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Table 4: Variance decompositions

One-week ahead variance decomposition
Oilt Dollart rt

"Oil;t 0:9725
[0:0289]

0:0311
[0:0269]

0:0037
[0:0071]

"Dollar;t 0:0264
[0:0285]

0:9685
[0:0269]

0:0000
[0:0028]

"r;t 0:0011
[0:0043]

0:0004
[0:0049]

0:9963
[0:0080]

Long-run variance decomposition
Oilt Dollart rt

"Oil;t 0:0411
[0:0475]

0:0110
[0:0103]

0:0037
[0:0071]

"Dollar;t 0:0120
[0:0242]

0:3204
[0:1137]

0:0001
[0:0029]

"r;t 0:9469
[0:0648]

0:6686
[0:1166]

0:9962
[0:0080]

Note: Fraction of the forecast error variance of the variables listed in the columns,
explained by shocks listed in the rows. Oilt, Dollart and rt denote, respectively,
the WTI spot oil price, the nominal trade-weighted exchange value of USD versus
major currencies (both in log changes), and changes in the US 3-month interest rate.
Standard errors (in square brackets) are computed from 500 bootstrap replications.
Sample includes weekly data from 2003 to 2010.

exchange rates. In contrast, in the long-run the variation in both oil prices and exchange rates is

predominantly explained by shocks to US-short term interest rates. Figure 3 plots the response of

each of the endogenous variables (listed in the columns) to one standard deviation19 realizations of

di¤erent shocks (listed in the rows). The comovement of US Dollar exchange rates and oil prices is

statistically signi�cant only within the same week.

4.2 Robustness

The identi�cation results for the structural parameters are potentially sensitive to the volatility

periods used in the GMM estimation. Recall that periods of �high�volatility for the residual of

variable j are de�ned as periods in which the standard deviation �jt of these residuals, computed

over moving windows of size t � !=2, is above the threshold given by E (�jt) + c � V ar (�jt).
Identi�cation is based on periods in which all residuals have low volatility, and on periods in

which the residual of only one variable is classi�ed as volatile. The benchmark results used on a

speci�cation with ! = 2 and c = 0:5. In general, we would like to choose a value for ! that is low

19We use the average standard deviation weighted by the number of observations across volatility periods

13



2 4 6 8 10 12

0

0.5

1

2 4 6 8 10 12
0.2

0.1

0

2 4 6 8 10 12

0

0.05

0.1

2 4 6 8 10 12

0.5

0

0.5

2 4 6 8 10 12

0
0.2
0.4
0.6
0.8

2 4 6 8 10 12
0.04
0.02

0
0.02
0.04

2 4 6 8 10 12

2

0

2

4

2 4 6 8 10 12
1

0

1

2 4 6 8 10 12

0
0.2
0.4
0.6

Figure 3: Impulse response functions. Responses of endogenous variables listed in the columns
(oil, Dollar, US short-term interest rate) to one-standard deviation shocks listed in the rows ("oil;t,
"Dollar;t, "r;t). Dashed lines are 95% con�dence bands from 500 bootstrap replications. Sample
includes weekly data from 2003 to 2010.

enough to capture the volatility of the shocks in period t, rather than several periods away from

t. Also, the larger ! the smoother the estimated standard deviations be over time, which makes

it more di¢ cult to identify periods of changes in volatility. The threshold c is chosen such that

the major spikes in the standard deviation of the residuals are classi�ed as high volatility periods.

This section explores the robustness of the identi�cation results to alternative assumptions about

the threshold level c and the window size !.

Panel (a) in Table 5 reports selected identi�cation results for the case where the window size is

�xed at ! = 2, as in the benchmark results. As the threshold level c is increased, less periods are

classi�ed into the regimes of unique high volatility, making it more di¢ cult to identify the structural

parameters based on changes in volatility. The result that higher oil prices are associated with Dollar

depreciation and vice versa is robust as long as there are a su¢ cient number of observations in each

high volatility regime to identify statistically signi�cant e¤ects. Panel (b) explores robustness to

increasing the window size over which the volatility of the residuals is computed to up to 12 weeks,

keeping the threshold level �xed at c = 0:5 as in the benchmark results. With a larger window

14



Table 5: Robustness to choice of volatility regime

(a) Threshold

# of obs. in high volatility regime contemporaneous comovement
Oil price Dollar Interest rate Oil!Dollar Dollar!Oil

c = 0 58 70 34 �0:2029��
0:0420

�0:1668��
[0:0440]

c = 0:5 31 56 25 �0:1821��
[0:0220]

�0:1725��
[0:0220]

c = 1 19 35 21 �0:1609�
[0:0900]

�0:2284��
[0:0200]

c = 1:5 22 20 17 �0:1185
[0:2420]

�0:2561
[0:1380]

c = 2 15 11 16 0:0354
[0:2280]

�0:3590�
[0:0720]

(b) Length of window

# of obs. in high volatility regime contemporaneous comovement
Oil price Dollar Interest rate Oil!Dollar Dollar!Oil

! = 4 25 36 33 �0:1623
[0:1600]

�0:1579
[0:1300]

! = 6 17 35 34 �0:2627
[0:1440]

�0:0933
[0:3000]

! = 8 14 35 40 0:1194
[0:3600]

�0:3550�
[0:0540]

! = 10 11 22 46 0:3583
[0:4540]

�0:4501
[0:1860]

! = 12 10 13 51 �0:0670
[0:1780]

�0:2607
[0:3200]

Note: High volatility periods for variables j are de�ned as periods in which the standard deviation sjt
computed over moving windows of size t � !=2 is larger than E(�jt) + c � V ar(�jt). This table presents
selected robustness results for di¤erent values of window length ! and threshold level c. The reported
contemporaneous comovements are the estimated coe¢ cients in matrix A�1. Panel (a) uses ! = 2 as in
the benchmark results. Panel (b) uses c = 0:5 as in the benchmark results. P-values in square brackets.
***, ** and * denote signi�cance at the 1%, 5% and 10% level, respectively.

size changes in volatility become less pronounced, making it more di¢ cult to identify the model.

Again, the result of negative two-way inter-weekly comovement between oil prices and the US

Dollar is robust to di¤erent window sizes, as long as the coe¢ cients are statistically signi�cant.

The contemporaneous e¤ect of oil prices on the Dollar is estimated to be positive (though not

signi�cant) with window sizes ! = 8 and ! = 10, but 14 and 11 observations in the oil shocks high

volatility regime are unlikely to be su¢ cient to correctly identify the contemporaneous feedback

e¤ect from oil prices.
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5 Conclusions

Oil prices and exchange rates tend to move together, and appear to have been negatively related in

recent years: during the 2003-2008 oil price boom and during the �nancial crisis, Dollar depreciation

(appreciation) was typically associated with higher (lower) oil prices. This paper investigates the

relationship between oil prices and the US Dollar nominal e¤ective exchange rate using a structural

model that is fully identi�ed by exploiting the heteroskedasticity in the data, following Rigobon

(2003). In contrast to the previous literature this allows us to identify the short-run comovements

of oil prices and the Dollar. We control for e¤ects of US and global economic developments on

oil prices and exchange rates by including measures of the surprise component of economic news

releases.

The results indicate that higher oil prices lead to a depreciation of the Dollar both in the short

run �within the same week �and (in line with some of the previous literature) over longer horizons.

We also �nd that Dollar depreciation is associated with higher oil prices within the same week. In

the long run, �uctuations in interest rates explain most of the variation of oil prices and exchange

rates.
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Figure 4: Estimated high volatility regimes. The charts plot the standard deviation of residuals
from the reduced-form VAR, �it, computed over rolling windows of 2 weeks centered around t.
Dashed lines represent the threshold used, equal to E (�it) + c � V ar (�it), where c = 0:5. The
shaded areas are the chosen high volatility regime periods for each variable.
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Table 6: Bootstrap results

contemporaneous feedback e¤ects (matrix A�1)

bootstrap
Point estimate mean standard error p-value

"oil;t !oil 1.0324*** 1.0237 0.0151 0.0000
"oil;t !dollar -0.1821** -0.1735 0.0877 0.0260
"oil;t !interest rate -0.0521* 0.0517 0.0409 0.1000

"dollar;t !oil -0.1725** -0.1749 0.0843 0.0220
"dollar;t !dollar 1.0303*** 1.0224 0.0147 0.0000
"dollar;t !interest rate -0.0008 -0.0010 0.0366 0.4940

"r;t ! oil 0.0400 0.0361 0.0808 0.3180
"r;t ! dollar -0.0244 -0.0203 0.0615 0.3560
"r;t ! interest rate 1.0019*** 0.9987 0.0055 0.0000

Note: ***, ** and * denote signi�cance at the 1%, 5% and 10% level, respectively. Results from 500
bootstrap replications. Sample includes weekly data from 2003 to 2010.
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Figure 5: Distribution of estimated coe¢ cients in matrix A from 500 bootstrap replications.
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Figure 6: Distribution of estimated coe¢ cients in matrix A�1 from 500 bootstrap replications.
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