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1 Introduction

Many empirical studies of program evaluations are complicated by the presence of both observed
and unobserved heterogeneity in measuring the effects of treatments on outcomes. Challenges in
estimation arise when a researcher never observes individual outcomes with and without treatment.
This missing information requires the introduction of identifying assumptions to infer treatment
impacts, assumptions that impose semiparametric constraints on the underlying data generating
process. This paper discusses how a variety of treatment effect parameters, both conditional and
unconditional measures, can be flexibly estimated using conventional regression techniques and
conditional moment restrictions. This includes the parameters estimated by the popular approaches
relying on propensity score matching and other weighting methods. Moreover, except in situations
where propensity scores or weighting factors are known a priori, the regression and conditional
moment methods posed here attain statistically efficiency bounds.

The following discussion initially outlines the basic statistical problem underlying the estimation
of treatment effects. Section 3 next discusses the estimation of models that rely on the common
identification strategy based on conditional independence. The discussion then addresses the im-
portant distinctions and relevant issues in estimating conditional verse unconditional treatment
effect parameters, with Section 4 covering the linear case and Section 5 describing nonlinear ex-
tensions. Section 6 considers the case of endogenous treatments, and, finally, Section 7 presents
concluding remarks.

2 Background

In a typical treatment effect model, the researchers have access to a data set with information on
the observed covariates X, the treatment status variable D and the treatment outcome variable Y .
The treated outcome (when D = 1) is denoted Y1, while the untreated outcome (when D = 0) is
denoted Y0. For each individual in the sample, only Y1 or Y0, but not both, is observed. They are
related to the observed outcome variable by the relation:

Y = DY1 + (1−D)Y0.

In the presence of observed heterogeneity defined by covariates X that partition the data into
cells, many identifying assumptions, e.g. conditional independence, monotonicity, difference in
difference, regression discontinuity, are often made conditional on each cell.

With a sufficient amount of data, treatment effect analysis can be estimated cell-by-cell. How-
ever, it is often the case that available samples do not provide enough observations to conduct
precise statistical inference for each of the individual cells. The literature implements two alterna-
tive empirical strategies in this situation.
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The first approach is to change the parameter of interest to an overall unconditional treatment
effect parameter which is defined as the average over either the entire population or subpopulation
consisting of treated and untreated observations. These parameters can usually be estimated at
the usual asymptotic rate with a normal limiting distribution. However, the cost of doing this is
that the parameter of interest becomes different.

A second approach defines weighted unconditional treatment effect parameters over the popu-
lation or subpopulation with weights formulated to measure a parameter of economic interest. In
such applications, it is not uncommon for researchers to select weights for the sake of statistical
significance instead of economic importance.

Regardless of which of these estimation approach one considers, the underlying nonparametric
and semiparametric procedures can be essentially interpreted as partitioning the sample into cells
defined by the observed variables, with treatment effects estimated by comparing average outcomes
for the treated and untreated observations within a cell. Different averaging across cells yields
estimates of treatment effects. Smoothing across cells is often done to compensate for insufficient
data; and, to satisfy the conditions nonparametric theory, an analyst must shrink the coverage of
each cell as the sample size increases. The discussion below ignores these factors. Understanding
the concepts in this discussion, however, does continually return to the theme that estimating
treatment effects amounts to computing averages of estimates across cells which, in turn, merely
represents a flexible regression method.

3 Conditional Independence Models

A common identification strategy for controlling observed treatment effect heterogeneity is to im-
pose the assumption that the missing outcome information for the counterfactual treatment status
for a given individual can be recovered using individuals with similar observed characteristics. This
is usually stated formally as conditional independence, or unconfoundedness, or strong ignorability:

Assumption 1 Y1, Y0 ⊥ D | X.

The key implication of this identifying assumption is that for a group of individuals with similar
observed characteristics, some of which are treated and some of which are not treated, the effects
of treatment can be calculated in an average sense.

Two parameters of interest in this model are the conditional average treatment effect (CATE),
defined as E (Y1 − Y0|X) and the conditional average treatment effect on the treated (CATT),
defined as E (Y1 − Y0|D = 1, X) Under the conditional independence assumption, both CATE and
CATT are given by

β (X) ≡ E (Y1 − Y0|X) = E (Y1 − Y0|D,X) = E (Y |D = 1, X)− E (Y |D = 0, X) .

To estimate such parameters, consider a flexible nonparametric regression of Y on D and X:
E (Y |D,X). Since D is a dummy variable taking values in 0 and 1, this regression function can be
written as

E (Y |D,X) = α (X) + β (X)D,
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where β (X) = E (Y |D = 1, X)− E (Y |D = 0, X).

Hence we see that with a flexible regression of Y on D and X, the coefficients appearing in the
function of interacting X with the dummy variable D gives the desired conditional treatment effect
parameter.

The propensity score is the probability of treatment given the observed covariates X:

p (X) = p (D = 1|X) .

A celebrated result due to Rosenbaum and Rubin (1983) shows that

D ⊥ X|p (X) , (1)

and, for any balancing score b (X) such that D ⊥ X|b (X), it is necessarily the case that p (X) is a
function of b (X). Assumption 1 and result (1) together imply that

E (Y |D = 1, p (X) = p)− E (Y |D = 0, p (X) = p) = E (Y1 − Y0|p (X) = p) .

Relying on this finding, Rosenbaum and Rubin (1983) suggest matching propensity scores, or
on any balancing score for that matter, enables one to estimate averaged treatment effect among
the set of individuals with the same propensity score of p.

While this statement is true, it is often not the case that a researcher happens to be interested in
the treatment effect of a group of individuals who share the same value of p (X). In most economic
applications, one is not interested in the quantity

E (Y1 − Y0|p (X) = p) ,

because X is multi-dimensional and the group of individuals with identical p (X) might include very
heterogenous values of X and heterogenous treatment effects E (Y1 − Y0|X). Moreover, a researcher
can choose p (X). Through different choices of p (X), which is used to “randomly” assign individuals
to the treatment and control groups conditional on their observed characteristics, the average effects
of treatment can be arbitrarily defined.

4 Relating Unconditional and Conditional Treatment Effects

Often researchers are interested in estimating unconditional parameters which predominately in-
cludes the average treatment effect (ATE), the average treatment effect of the treated (ATT),
or weighted versions of both. These quantities are defined as ATE = E (Y1 − Y0) and ATT =
E (Y1 − Y0|D = 1). Identification follows from integrating β (X) over either the marginal distribu-
tion of X or the conditional distribution of X given D = 1. In particular,

ATE = E (β (X)) and ATT = E (β (X) |D = 1) .

Given a flexible nonparametric estimate β̂ (X) of β (X), these parameters can be estimated by
integration over the relevant samples:

ÂTE =
1

n

n∑
i=1

β̂ (Xi) and ÂTT =

n∑
i=1

β̂ (Xi)Di/

n∑
i=1

Di.
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Alternative estimators can be developed based on the use of propensity score matching or
weighting methods. The discussion below argues that unless the propensity score is known, imple-
menting these methods using the estimated propensity score does not bring either identification or
efficiency benefits over the nonparametric estimate provided above.

As demonstrated in the literature, the unconditional treatment effects parameters can be rewrit-
ten as,

ATE = EE (β (X) |p (X)) = E [E (Y |D = 1, p(X))− E (Y |D = 0, p(X))] (2)

ATT = E [E (β (X) |p (X)) |D = 1] = E [[E (Y |D = 1, p(X))− E (Y |D = 0, p(X))] |D = 1] . (3)

These fomulations suggest that the ATE and ATT parameters can be estimated by averaging
the propensity score matched estimates over the desired population. In particular, for an initial
consistent estimate p̂ (X) of p (X), one can form

ÃTE =
1

n

n∑
i=1

[
Ê (Y |p̂ (Xi) , D = 1)− Ê (Y |p̂ (Xi) , D = 0)

]
(4)

ÃTT =
n∑
i=1

[
Ê (Y |p̂ (Xi) , D = 1)− Ê (Y |p̂ (Xi) , D = 0)

]
Di/

n∑
i=1

Di. (5)

Furthermore, the unconditional parameters can also be rewritten as:

ATE = E (β (X)) =
∫

[E (Y |D = 1, X)− E (Y |D = 0, X)] f (X) dX

= E
(
Y p
p(X) |D = 1

)
− E

(
Y 1−p

1−p(X) |D = 0
)
,

and

ATT = E (Y |D = 1)− E
(
Y p

1−p1− p (X)p (X)|D = 0
)
.

These relations form the basis of the inverse propensity score weighting estimators:

ATE =
n∑
i=1

Yi
p̂

p̂ (Xi)
Di/

n∑
i=1

Di −
n∑
i=1

Yi
1− p̂

1− p̂ (Xi)
(1−Di) /

n∑
i=1

(1−Di) . (6)

Essentially all three estimation methods (2), (4) and (6) identify the same population parameters
without any additional assumptions. Various papers (e.g. Hahn (1998), Hirano, Imbens, and Ridder
(2003) and Chen, Hong, and Tarozzi (2008)) have shown that nonparametric variants of these
different estimators all converge at the same rate and have the same limiting distribution. They
also all achieve the semiparametric efficiency bound exploiting general nonparametric specifications.

When the propensity score is known ex ante, or if a research assumes that the propensity
score has a correctly specified parametric functional form, efficient estimators require different
modifications to each of the three estimation methods. See for example Hirano, Imbens, and
Ridder (2003), Hahn (1998) and Chen, Hong, and Tarozzi (2008). It is also important to note that
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under Assumption 1, E (Y |D = 1) − E (Y |D = 0) does not estimate either ATE or ATT. On the
other hand, when treatment assignment is completely random, it estimates both.

A researcher interested in estimating the effect of the treatment D sometimes specifies a model
in which the treatment effect is either: (i) homogenous β (X) ≡ β, or (ii) takes a parametric
specification such as a linear functional form given by β (X) = β0+β′1X. These structures introduce
additional identifying and efficiency information. We interpret these as conditional parameters.

Consider, first, the specification that β (X) ≡ β. Obviously β can be estimated by ATE
or ATT, or β (X) can be estimated for any X. In particular, an optimal estimate of β should
be given by a weighted average of β (X) across the covariates X, where the optimal weights are
determined through the conditional variance structure of Y given X. Similarly, for the specification
β (X) = β0 + β′1X, optimal estimates of β0 and β1 are given by weighted least square regressions
where the optimal weights are also determined through the conditional variance structure of Y
given X.

Alternatively, one can interpret β (X) ≡ β as a semiparametric partial linear model that includes
both a finite dimensional parameter β and an infinite dimensional function α (X):

E (Y |D,X) = α (X) + βD.

Similarly, the linear specification of β (X) = β0 + β′1X translates into

E (Y |D,X) = α (X) + β0D + β1DX.

These partial-linear models can be estimated efficiently and flexibly using a variety of methods,
such as the procedures discussed in Robinson (1988) and Ai and Chen (2003). Comparing Theorem
1 in Hahn (1998) and the partial linear model in Robinson (1988) using Cauchy-Schwartz inequality
shows that for a homoscedastic model, in which V ar (ε|D,X) ≡ σ2, the average treatment effect

estimate ÂTE has a strictly larger variance than the semiparametrially efficient partial-linear least
square estimator. This is not surprising given that the constraint β (X) ≡ β imposes additional
structure in the model. The variances are the same only when the propensity score is a constant,
or when the assignment is completely random.

5 Extensions to Nonlinear Conditional and Unconditional Effects

The recent literature has become increasingly focused on estimating nonlinear treatment effects,
such as quantile parameters. See for example Firpo (2007), Abadie, Angrist, and Imbens (2002)
and Chernozhukov and Hansen (2005). In these models the parameter of interest is generally a
nonlinear functional of a conditional distribution of the outcome variables Y1 and Y0. Unconditional
parameters (such as quantile) are defined as functionals of f (Y1) and f (Y0), or f (Y1|D = 1) and
f (Y0|D = 1) for the “effects on the treated”.

Under the conditional independence Assumption 1, the effects for the entire population are
measured by comparing the quantities

f (Y1) = f1 (Y ) ≡
∫
f (Y |D = 1, X) f (X) dX,

f (Y0) = f0 (Y ) ≡
∫
f (Y |D = 0, X) f (X) dX.
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The unconditional effects on the ”treated population” are analogously defined as

f (Y1|D = 1) = f (Y |D = 1) ,

f (Y0|D = 1) =
∫
f (Y |D = 0, X) f (X|D = 1) dX.

Each of these unconditional densities of Y1 and Y0 can be estimated using nonparametric analogs
of any one of the three methods described in Section 4.

For example, an estimate of the unconditional effects f (Y0|D = 1) can be obtained either by

n∑
i=1

f̂ (Y |D = 0, Xi)Di/
n∑
i=1

Di,

where

f̂ (Y |D = 0, x) =

n0∑
i=1

1

h
k

(
yi − y
h

)
k

(
xi − x
h

)
/

n0∑
i=1

k

(
xi − x
h

)
;

or by

1

n0

n0∑
i=1

1

h
k

(
yi − y
h

)
p̂ (Xi)

p

1− p
1− p̂ (Xi)

.

Turning to an example of a nonlinear conditional parameter, nonparametric quantile regressions
define conditional quantile treatment effects β (X) through conditional quantiles:

E1 (Y ≤ β0 (X) + β (X)D|D,X) = τ,

with β (X) = β1 (X) − β0 (X), β1 (X) = Qτ (Y1|X) and β0 (X) = Qτ (Y0|X). When β (X) is
heterogenous, one may be interested in learning about its entire distribution over X measured by
its mean and percentiles. Alternatively, Firpo (2007) defines the notion of a quantile treatment
effect as the difference between the quantiles of the marginal distributions of Y1 and Y0:

β ≡ β1 − β0 = Qτ (Y1)−Qτ (Y0) .

These marginal quantiles can be defined and estimated through the regression principle:

EXE [1 (Y ≤ β1) |D = 1, X] = EXE [1 (Y ≤ β0) |D = 0, X] = τ ;

or, as in Firpo (2007) through the propensity score weighting principle:

E1 (Y ≤ β1)
p

p (D = 1|X)
= E1 (Y ≤ β0)

1− p
1− p (D = 1|X)

= τ.

As yet another alternative, a researcher may be interested in efficiently estimating a model under
the assumption of homogeneous treatment effects β (X) = β, or by introducing additional paramet-
ric or semiparametric assumptions on the functions β0,θ (X) and βθ (X) as in Chernozhukov and
Hansen (2005) and Abadie, Angrist, and Imbens (2002). The parameters θ appearing in these func-
tions, being either finite or infinite dimensional, can be estimated by parametric, semiparametric,
or nonparametric quantile regressions of the form:

E1 (Y ≤ β0,θ (X) + βθ (X)D|D,X) = τ.
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6 Allowing for Endogenous Treatment Effects

The above estimation concepts can be extended to instances where the treatment status is endoge-
nous, regardless of whether one considers the linear or nonlinear effects.

6.1 Linear Treatment Parameters

With endogenous treatments D, Imbens and Angrist (1994) studied a model with a binary instru-
ment. Under their independence and monotonicity assumptions,

Assumption 2 Y1, Y0, D1, D0 ⊥ Z, and P (D1 ≥ D0) = 1,

for Z̃ = (1, Z), the instrumental variable parameter β defined by

EZ̃ (Y − α− βD) = 0 (7)

estimates the local average treatment effect (LATE) parameter: β = E (Y1 − Y0|D1 > D0). Their
paper did not consider exogenous covariates X.

The LATE framework with endogenous D is generalized to allow for conditioning on exogenous
covariates X in a sequence of papers by Abadie, Angrist, and Imbens (2002) and Abadie (2003).
In the conditional version, the independence assumption takes the form of

Assumption 3 Conditional on each X, Y1, Y0, D1, D0 ⊥ Z, and P (D1 ≥ D0|X) = 1.

Under these conditions, a parameter β (x) defined by the conditional moment restriction:

E
[
Z̃ (Y − α (X)− β (X)D) |X

]
= 0, (8)

which can also be written analytically as

β (X) =
E (Y |Z = 1, X)− E (Y |Z = 0, X)

E (D|Z = 1, X)− E (D|Z = 0, X)
,

estimates a conditional LATE parameter:

β (X) = E (Y1 − Y0|D1 > D0, X) . (9)

Note that Assumption 1 is a special case of Assumption 8 with D = Z.

In the presence of treatment heterogeneity where β (X) can vary substantially across X, a pa-
rameter of interest is the ”unconditional average treatment effect” defined by β = E (Y1 − Y0|D1 > D0).
This parameter can be estimated by averaging β (X) over the subpopulation of f (X|D1 > D0):

β =

∫
β (X) f (X|D1 > D0) dX,

where

f (X|D1 > D0) =
P (D = 1|Z,X)− P (D = 1|Z = 0, X)

P (D1 > D0)
f (X)
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and

P (D1 > D0) =

∫
[P (D = 1|Z,X)− P (D = 1|Z = 0, X)] f (X) dX.

Hence β can be estimated by

β̂ =

1
n

∑n
i=1

(
Ê (Y |Z = 1, Xi)− Ê (Y |Z = 0, Xi)

)
1
n

∑n
i=1

(
Ê (D|Z = 1, Xi)− Ê (D|Z = 0, Xi)

) .
With endogenous treatment status, Abadie (2003) shows that a proper notion of the propensity

score is defined by pz (X) = p (Z = 1|X). The same unconditional parameter of interest can also
be expressed in terms of propensity score weighting schemes:

β =

∫
E (Y |Z = 1, X) p

pz(X)f (X|Z = 1) dX −
∫
E (Y |Z = 0, X) 1−p

1−pz(X)f (X|Z = 0) dX

P (D1 > D0)
.

Hence, an alternative estimate is given by

β̃ =

1
n1

∑n1
i=1 Yi

p̂
p̂z(Xi)

− 1
n0

∑n0
j=1 Yj

1−p̂
1−p̂z(Xj)

1
n1

∑n1
i=1Di

p̂
p̂z(Xi)

− 1
n0

∑n0
j=1Dj

1−p̂
1−p̂z(Xj)

.

In this expression, n1 and n0 denote the subsamples for which Z = 1 and Z = 0. Hong and
Nekipelov (2007) and Frolich (2006) show that β̂ and β̃ achieve the semiparametric effiency bound
for estimating β.

If a researcher is willing to assume the treatment effect is homogeneous (i.e., β (X) ≡ β), then
the set of moment conditions

E
[
Z̃ (α (X) + βD) |X

]
= 0,

again defines a semiparametric conditional moment model with both a finite dimensional parameter
β and an infinite dimensional parameter α (X). These quantities can be estimated using procedures
described in Newey and Powell (2003) and Ai and Chen (2003).

Instead of assuming that the treatment effect is purely homogeneous, it is common to adopt
a parametric or semiparametric specification of β (X), such as a linear specification β (X) = β0 +
β1X. These models can also be estimated efficiently as a partial-linear semiparametric conditional
moment model:

E
[
Z̃ (α (X) + β0D + β1DX) |X

]
= 0.

In addition, parametric and semiparametric specifications can also be imposed on α (X), e.g.,
α (X) ≡ α or α (X) = α0 + α1X. Because Z is a dummy variable, the second set of moment
condition E [Z (αθ (X) + βθ (X)D) |X] = 0 is equivalent to

E [A (X) (αθ (X) + βθ (X)D) |Z = 1] = 0
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for any instrument function A (X). Abadie, Angrist, and Imbens (2002) and Abadie (2003) show
that parameters can be estimated using a transformation of it based on propensity score weighting:

E [A (X) (αθ (X) + βθ (X)D) |Z = 1] = EA (X) (αθ (X) + βθ (X)D)
pz

pz (X)
.

The instrument functions A (X) can be chosen efficiently to achieve the semiparametric variance
bound (Hong and Nekipelov (2007)).

6.2 Nonlinear Treatment Parameters

The finding that the parameters β (X) estimated using the linear instrumental variable condition
given by (8) coincides with the LATE parameter (9) of Imbens and Angrist (1994) appears to be
specific to the linear model and does not generalize to nonlinear specifications. For example, the
quantile treatment effect model under rank invariance conditions in Chernozhukov and Hansen
(2005) and under LATE conditions in Abadie, Angrist, and Imbens (2002) depend on different
moment conditions. In the moment Condition 8, while β (X) estimates (9), α (X) and α (X)+β (X)
do not estimate E (Y0|D1 > D0) and E (Y1|D1 > D0).

Under the LATE assumption, Abadie (2003) shows that for any function g (·) of Y1 and Y0:

E (g (Y1) |D1 > D0, X) = E(g(Y1)D1|X)−E(g(Y1)D0|X)
P (D1>D0|X)

= E(g(Y )D|Z=1,X)−E(g(Y )(1−D)|Z=0,X)
E(D|Z=1,X)−E(D|Z=0,X) ,

and

E (g (Y0) |D1 > D0, X) = E(g(Y0)(1−D0)|X)−E(g(Y0)(1−D1)|X)
P (D1>D0|X)

= E(g(Y )(1−D)|Z=0,X)−E(g(Y )(1−D)|Z=1,X)
E(D|Z=1,X)−E(D|Z=0,X) .

Hence a conditional quantile difference parameter can be defined as β (X) = β1 (X) − β0 (X),
where

E (1 (Y ≤ β1 (X))D|Z = 1, X)− E (1 (Y ≤ β1 (X))D|Z = 0, X)

E (D|Z = 1, X)− E (D|Z = 0, X)
= τ,

and

E (1 (Y ≤ β0 (X)) (1−D) |Z = 0, X)− E (1 (Y ≤ β0 (X)) (1−D) |Z = 1, X)

E (D|Z = 1, X)− E (D|Z = 0, X)
= τ.

Unconditional parameters can be defined by functionals of the distribution of β (X), or in terms of
the unconditional quantiles in the spirit of Firpo (2007), Frolich (2006) and Hong and Nekipelov
(2007).

If a researcher is willing to impose parametric or semiparametric restrictions on β0 (X) and
β1 (X), such as β1 (X) ≡ θ1 and β0 (X) = θ0, or more generally β (X)’s take a parametric or
semiparametric functional form βθ1 (X) and βθ0 (X), then θ can be estimated by the system of
moment equations:

E
(

1
(
Y ≤ βθ1 (X)

)
D − τD|Z = 1, X

)
= E

(
1
(
Y ≤ βθ1 (X)

)
D − τD|Z = 0, X

)
,
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and

E
(

1
(
Y ≤ βθ0 (X)

)
(1−D) + τD|Z = 0, X

)
= E

(
1
(
Y ≤ βθ0 (X)

)
(1−D)− τD|Z = 1, X

)
.

The above system of moment conditions has different conditioning sets. However, it can be
transformed into a system with the same conditioning parameters as in Ai and Chen (2003), by
introducing auxiliary variables η0 and η1:

E
(
Z
(

1
(
Y ≤ βθ1 (X)

)
D − τD

)
− η1Z|X

)
= 0,

E
(

(1− Z)
(

1
(
Y ≤ βθ1 (X)

)
D − τD

)
− η1 (1− Z) |X

)
= 0,

and

E
(

(1− Z)
(

1
(
Y ≤ βθ0 (X)

)
(1−D) + τD

)
− η0 (1− Z) |X

)
= 0,

E
(
Z
(

1
(
Y ≤ βθ0 (X)

)
D − τD

)
− η0Z|X

)
= 0.

The parameters θ, η0 and η1 can be jointly efficiently estimated by the above system of conditional
moment restrictions.

7 Concluding Remarks

The efficiency properties and efficient estimators under the unconfoundness assumption extend
generally not only to local average treatment effect models, but also to a variety of other identi-
fication strategies, including difference in difference methods, panel data fixed effect methods and
regression discontinuity methods. Each of these models have a common cell structure, in which
the observed heterogeneity of the regression defines a partition of the sample into cells, while the
treatment and instrumental like variables further partition each cell into subcells. Efficiency results
under the unconfoundness assumption can be viewed as special cases of the efficient results under
a general cell structure, and in particular as a special case of the local average treatment effect
model when the instrumental variable coincides with the treatment status variable. Typically in
the presence of exogenous covariates that defines the cell structure, identification assumptions are
imposed conditional on each value of the covariate, or cell by cell. Treatment effects across cells are
typically heterogeneous. Researchers might be interested in unconditional parameters which are the
averaged treatment effects across the cells. Alternatively, treatment effects can be estimated more
efficiently if researchers are willing to impose additional parametric and semiparametric structures
on the heterogeneous treatment effects across cells.
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