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1 Introduction

We study a model in which a network of agents can trade indivisible goods or services

via bilateral contracts. We find that if all agents’ preferences are fully substitutable,

then in the presence of transferable utility, stable outcomes and competitive equi-

libria are guaranteed to exist and are efficient. Moreover, in that case, the sets of

competitive equilibria and stable outcomes are in a sense equivalent. These results

apply to general trading networks and do not require any assumptions on the net-

work structure, such as two-sidedness or acyclicity. At the same time, they depend

critically on the full substitutability of preferences and the presence of a numeraire.

In our model, contracts specify a buyer, a seller, provision of a good or service, and

a monetary transfer. An agent may be involved in some contracts as a seller, and in

other contracts as a buyer; our framework is therefore suitable for studying production

economies in which some agents can turn inputs into outputs (e.g., iron ore into steel)

at some cost. Agents’ preferences are defined by cardinal utility functions over sets of

contracts and are quasilinear with respect to the numeraire. We say that preferences

are fully substitutable if contracts are substitutes for each other in a generalized sense,

i.e., whenever an agent gains a new purchase opportunity, he becomes both less willing

to make other purchases and more willing to make sales, and whenever he gains a new

sales opportunity, he becomes both less willing to make other sales and more willing

to make purchases. We formally show that this intuitive notion of substitutability,

which has appeared in the literature on matching in vertical networks (Ostrovsky,

2008; Hatfield and Kominers, 2010b; Westkamp, 2010), is equivalent to the gross

substitutes and complements condition introduced in the literature on competitive

equilibrium in settings in which indivisible objects are allocated to consumers (Sun

and Yang, 2006, 2009). It is also equivalent to the assumption of submodularity of

the indirect utility function (Gul and Stacchetti, 1999; Ausubel and Milgrom, 2002).1

Our main results are as follows. When preferences are fully substitutable, com-

petitive equilibria are guaranteed to exist. Moreover, there is a simple and natural

mapping from the set of competitive equilibria to the set of stable outcomes. Thus,

fully substitutable preferences are also sufficient for the existence of stable outcomes.

Conversely, full substitutability is in a sense necessary to guarantee the existence of

1For definitions of the classical notions of substitutability in two-sided settings with and without
transfers, see Kelso and Crawford (1982), Roth (1984), Gul and Stacchetti (1999), and Hatfield and
Milgrom (2005).
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stable outcomes (and thus also of competitive equilibria): if any agent’s preferences

are not fully substitutable, then fully substitutable preferences can be found for other

agents such that no stable outcome exists.2

While competitive equilibria always induce stable outcomes regardless of agents’

preferences, stable outcomes need not correspond to competitive equilibria in general.

However, in the presence of fully substitutable preferences, all stable outcomes do

correspond to competitive equilibria. This result is analogous to a similar finding

of Kelso and Crawford (1982) for two-sided many-to-one matching markets, but it

requires a more involved proof. In the setting of Kelso and Crawford (1982), one can

construct “missing” prices for unrealized trades simply by considering those trades

one by one, because in that setting, each worker can be employed by at most one

firm. In our setting, that simple procedure would not work, because each agent can

be involved in multiple trades.

We characterize the set of competitive equilibria, showing that the set of com-

petitive equilibrium price vectors forms a lattice, generalizing the results of Gul and

Stacchetti (1999) and Sun and Yang (2006). These results are also closely related to

the “polarization of interests” results in classical matching theory, which show that

the set of stable outcomes forms a lattice (see, e.g., Roth, 1984; Hatfield and Milgrom,

2005; and Ostrovsky, 2008).

Finally, we consider the relationship between stability and several other solution

concepts. Generalizing the results of Shapley and Shubik (1971) and Sotomayor

(2007), we show that all stable outcomes are in the core. We then consider the notion

of strong group stability and show that in our setting, in contrast to the results of

Echenique and Oviedo (2006) and Klaus and Walzl (2009) for matching settings with-

2In the setting of two-sided many-to-one matching with transfers, Kelso and Crawford (1982) show
that substitutability is sufficient for the existence of stable outcomes and competitive equilibria; Gul
and Stacchetti (1999) and Hatfield and Kojima (2008) prove corresponding necessity results.

In a setting in which two types of indivisible objects need to be allocated to consumers, Sun and
Yang (2006) show that competitive equilibria are guaranteed to exist if consumers view objects of the
same type as substitutes and view objects of different types as complements (see also Section 5.3).

Sufficiency and necessity of fully substitutable preferences also obtains in settings of many-to-
many matching with and without contracts (Roth (1984), Echenique and Oviedo (2006), Klaus and
Walzl (2009), and Hatfield and Kominers (2010a), prove sufficiency results; Hatfield and Kojima
(2008) and Hatfield and Kominers (2010a), prove necessity results) and in matching in vertical
networks (Ostrovsky (2008), and Hatfield and Kominers (2010b), prove sufficiency; Hatfield and
Kominers (2010b), prove necessity). Substitutable preferences are sufficient for the existence of a
stable outcome in the setting of many-to-one matching with contracts (Hatfield and Milgrom, 2005)
but are not necessary (Hatfield and Kojima, 2008, 2010).
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out transfers, the set of stable outcomes is in fact equal to the set of strongly group

stable outcomes. We also consider chain stability, extending the definition of Ostro-

vsky (2008); while chain stability is logically weaker than stability, we show that chain

stability is equivalent to stability when agents’ preferences are fully substitutable.3

The remainder of this paper is organized as follows. In Section 2, we formalize our

model. In Section 3, we discuss the notion of full substitutability in detail and prove

a result on the equivalence of various alternative definitions. In Section 4, we present

our main results. In Section 5, we consider the relationships between competitive

equilibria, stable outcomes, and other solution concepts. We conclude in Section 6.

2 Model

There is a finite set I of agents in the economy. These agents can participate in

bilateral trades. Each trade ω is associated with a seller s (ω) ∈ I and a buyer

b (ω) ∈ I, b(ω) 6= s(ω). The set of possible trades, Ω, is finite and exogenously given.

The set Ω may contain multiple trades that have the same buyer and the same seller.

For instance, a worker (seller) may be hired by a firm (buyer) in a variety of different

capacities with a variety of job conditions and characteristics, and each possible type

of job may be represented by a different trade. One firm may sell multiple units of a

good (or several different goods) to another firm, and each unit may be represented by

a separate trade. We also allow Ω to contain trades ω1 and ω2 such that s(ω1) = b(ω2)

and s(ω2) = b(ω1).

It is convenient to think of a trade as representing the nonpecuniary aspects of a

transaction between a seller and a buyer (although in principle it could include some

“financial” terms and conditions as well). The purely financial aspect of a trade ω is

represented by a price pω; the complete vector of prices for all trades in the economy is

denoted by p ∈ R|Ω|. Formally, a contract x is a pair (ω, pω), with ω ∈ Ω denoting the

trade and pω ∈ R denoting the price at which the trade occurs. The set of available

contracts is X ≡ Ω × R. For any set of contracts Y , we denote by τ(Y ) the set of

trades involved in contracts in Y : τ (Y ) ≡ {ω ∈ Ω : (ω, pω) ∈ Y for some pω ∈ R}.
For a contract x = (ω, pω), we will let s (x) ≡ s (ω) and b (x) ≡ b (ω), the seller

and the buyer associated with the trade ω of contract x. Consider any set of contracts

Y ⊆ X. We denote by Y→i the set of “upstream” contracts for i in Y , that is, the set

3Hatfield and Kominers (2010b) prove an analogous result for the setting of Ostrovsky (2008).
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of contracts in Y in which agent i is the buyer: Y→i ≡ {y ∈ Y : i = b (y)}. Similarly,

we denote by Yi→ the set of “downstream” contracts for i in Y , that is, the set of

contracts in Y in which agent i is the seller: Yi→ ≡ {y ∈ Y : i = s (y)}. We denote

by Yi the set of contracts in Y in which agent i is involved either as the buyer or

the seller: Yi ≡ Y→i ∪ Yi→. We let a(Y ) ≡
⋃
y∈Y {b(y), s(y)} denote the set of agents

involved in contracts in Y as buyers or sellers. We use analogous notation to denote

the subsets of trades associated with some agent i for sets of trades Ψ ⊆ Ω.

We say that the set of contracts Y is feasible if there is no trade ω and prices

pω 6= p̂ω such that both contracts (ω, pω) and (ω, p̂ω) are in Y ; i.e., a set of contracts

is feasible if each trade is associated with at most one contract in that set. An outcome

A ⊆ X is a feasible set of contracts.4 Thus, an outcome specifies which trades get

formed, and what the associated prices are, but does not specify prices for trades that

do not take place. An arrangement is a pair [Ψ; p], where Ψ ⊆ Ω is a set of trades

and p ∈ R|Ω| is a vector of prices for all trades in the economy. For any arrangement

[Ψ; p] we denote by κ ([Ψ; p]) ≡ ∪ψ∈Ψ{(ψ, pψ)}, the set of contracts induced by the

arrangement. Note that κ ([Ψ; p]) is an outcome, and that τ (κ ([Ψ; p])) = Ψ.

2.1 Preferences

Each agent i has a valuation function ui over sets of trades Ψ ⊆ Ωi; we extend ui to Ω

as follows: ui(Ψ) ≡ ui(Ψi) for any Ψ ⊆ Ω. The valuation ui gives rise to a quasilinear

utility function Ui over sets of trades and the associated transfers. We formalize this

in two different ways. First, for any feasible set of contracts Y , we say that

Ui (Y ) ≡ ui (τ (Y )) +
∑

(ω,pω)∈Yi→

pω −
∑

(ω,pω)∈Y→i

pω.

Second, for any arrangement [Ψ; p], we say that

Ui ([Ψ; p]) ≡ ui (Ψ) +
∑

ψ∈Ψi→

pψ −
∑

ψ∈Ψ→i

pψ.

Note that, by construction, Ui([Ψ; p]) = Ui(κ([Ψ; p])).

4In the literature on matching with contracts, the term “allocation” has been used to refer to a
set of contracts. Unfortunately, the term “allocation” is also used in the competitive equilibrium
literature to denote an assignment of goods, without specifying transfers. For this reason, to avoid
confusion, we use the term “outcome” to refer to a feasible set of contracts.
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We allow ui(Ψ) to take the value −∞ for some sets of trades Ψ in order to

incorporate various technological constraints. However, we also assume that for all

i, the outside option is finite: ui(∅) ∈ R. That is, no agent is “forced” to sign

any contracts at extremely unfavorable prices: he always has an outside option of

completely withdrawing from the market at some potentially high but finite price.

Many of our results also depend critically on the assumption that preferences are

fully substitutable. We present and discuss this assumption in Section 3.

The utility function Ui gives rise to both demand and choice correspondences.

The choice correspondence of agent i from the set of contracts Y ⊆ X is defined as

the collection of the sets of contracts maximizing agent i’s utility:

Ci(Y ) ≡ argmax
Z⊆Yi; Z is feasible

Ui (Z) .

The demand correspondence of agent i given a price vector p ∈ R|Ω| is defined as the

collection of the sets of trades maximizing agent i’s utility under prices p:

Di (p) ≡ argmax
Ψ⊆Ωi

Ui ([Ψ; p]) .

Note that while the demand correspondence always contains at least one (possibly

empty) set of trades, the choice correspondence may be empty-valued (e.g., if Y

consists of all contracts with prices strictly between 0 and 1). If the set Y is finite, then

the choice correspondence is also guaranteed to contain at least one set of contracts.

2.2 Stability and Competitive Equilibrium

The main solution concepts that we study are stability and competitive equilibrium.

Both concepts specify which trades are formed and what the associated transfers are.

Competitive equilibria also specify prices for trades that are not formed.

Definition 1. An outcome A is stable if it is

1. Individually rational: Ai ∈ Ci (A) for all i;

2. Unblocked: There is no feasible nonempty blocking set Z ⊆ X such that

(a) Z ∩ A = ∅, and

(b) for all i ∈ a (Z), for all of i’s choices Y ∈ Ci (Z ∪ A), we have Zi ⊆ Y .
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Individual rationality requires that no agent can become strictly better off by

dropping some of the contracts that he is involved in. This is a standard requirement

in the matching literature. The second condition states that when presented with a

stable outcome A, one cannot propose a new set of contracts such that all the agents

involved in these new contracts would strictly prefer to form all of them (and possibly

drop some of their existing contracts in A) instead of forming only some of them (or

none). This requirement is a natural adaptation of the stability condition of Hatfield

and Kominers (2010b) to the current setting. We discuss the relationship between our

notion of stability and those notions that have appeared in the previous literature,

such as chain stability, in Section 5.

Our second solution concept is competitive equilibrium.

Definition 2. An arrangement [Ψ; p] is a competitive equilibrium if for all i ∈ I,

Ψi ∈ Di (p) .

This is the standard notion of competitive equilibrium, adapted to the current

setting: market-clearing is “built in,” because each trade in Ψ carries with it the cor-

responding buyer and seller, and the condition is simply that each agent is optimizing

given market prices. Note that we only require weak optimality—at a competitive

equilibrium, an agent may be indifferent between the assigned bundle and some other

bundle of trades.

3 Full Substitutability

Kelso and Crawford (1982) introduced the gross substitutes condition (GS) in the con-

text of a two-sided many-to-one matching market between firms and workers. The

(GS) condition requires that an increase in the salary of some worker cannot cause

a firm to drop other initially employed workers whose salaries did not change. This

condition explicitly deals with indifferences, by placing restrictions on the behavior of

the multi-valued demand function when workers’ salaries change. Kelso and Crawford

use (GS) to establish the existence of a core outcome for many-to-one matching mod-

els in which prices can be either discrete or continuous. Substitutability conditions

similar to (GS) have been shown to be sufficient for the existence of stable outcomes

in a number of other two-sided settings (Roth and Sotomayor (1990) describe these
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results).

Ausubel and Milgrom (2002) offered a convenient alternative definition of (GS)

for a setting with continuous prices, in which demand is not guaranteed to be single-

valued: goods are (gross) substitutes if the demand for each one is nondecreasing

in the prices of others when attention is restricted only to the vectors of prices at

which demand is single-valued. Additionally, Ausubel and Milgrom (2002) showed

that (GS) is equivalent to submodularity of the indirect utility function.

In a setting with discrete contract sets, Ostrovsky (2008) introduced a combination

of two substitutability assumptions: same-side substitutability (SSS) and cross-side

complementarity (CSC). These assumptions impose two constraints: First, when an

agent’s opportunity set on one side of the market expands, that agent does not choose

any options previously rejected from that side of the market. Second, when an agent’s

opportunity set on one side of the market expands, that agent does not reject any

options previously chosen from the other side of the market. Ostrovsky (2008) and

Hatfield and Kominers (2010b) show that under (SSS) and (CSC) a stable outcome

always exists if the contractual set contains no cycles. In his setting, indifferences are

assumed away, and thus the conditions do not need to explicitly address multi-valued

choice functions. Hatfield and Kominers (2010b) also show that (SSS) and (CSC) are

together equivalent to the assumption of quasisubmodularity of the indirect utility

function—an adaptation of submodularity to the discrete setting.

Independently, Sun and Yang (2006) introduced the gross substitutability and

complementarity (GSC) condition for a setting with continuous transfers in which in-

divisible objects are allocated to consumers. This condition requires that objects can

be divided into two groups such that objects in the same group are substitutes, and

objects in different groups are complements. Sun and Yang (2006) show that under

(GSC), there always exists a competitive equilibrium in this setting. The Sun and

Yang (2006) definition explicitly deals with indifferences and multi-valued demand

functions. Sun and Yang (2009) show that (GSC) is equivalent to the condition that

the indirect utility function is submodular.

In this section, we introduce the notion of full substitutability5 for the current

setting: When presented with additional contractual options to purchase, an agent

both rejects any previously rejected purchase options, and continues to choose any

5Since preferences are quasilinear in our settting, there is no distinction between gross and net
substitutes. Therefore, we drop the “gross” specification.
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previously chosen sale options. Analogously, when presented with additional contrac-

tual options to sell, an agent both rejects any previously rejected sale options, and

continues to choose any previously chosen purchase options.

We introduce several alternative definitions, adapting the ones mentioned above

to our setting, and show that all of them are equivalent. For convenience, in this

section, we use the approach of Ausubel and Milgrom (2002) and restrict attention

to sets and vectors of prices for which choices and demands are single-valued. In

Appendix A, we consider definitions that explicitly deal with indifferences and multi-

valued correspondences and show that they are equivalent to the ones in this section.

3.1 Definitions of Full Substitutability

First, we define full substitutability in the language of sets and choices, adapting and

merging (SSS) and (CSC).

Definition 3. Agent i’s preferences are choice-language fully substitutable (CFS) if:

1. for all sets of contracts Y, Z ⊆ Xi such that |Ci(Z)| = |Ci(Y )| = 1, Yi→ =

Zi→, and Y→i ⊆ Z→i, for the unique Y ∗ ∈ Ci(Y ) and Z∗ ∈ Ci(Z), we have

(Y→i − Y ∗→i) ⊆ (Z→i − Z∗→i) and Y ∗i→ ⊆ Z∗i→;

2. for all sets of contracts Y, Z ⊆ Xi such that |Ci(Z)| = |Ci(Y )| = 1, Y→i =

Z→i, and Yi→ ⊆ Zi→, for the unique Y ∗ ∈ Ci(Y ) and Z∗ ∈ Ci(Z), we have

(Yi→ − Y ∗i→) ⊆ (Zi→ − Z∗i→) and Y ∗→i ⊆ Z∗→i.

In other words, the choice correspondence Ci is fully substitutable if, when atten-

tion is restricted to sets for which Ci is single-valued, when the set of options available

to i on one side expands, i rejects a larger set of contracts on that side (SSS), and

selects a larger set of contracts on the other side (CSC).

Our second definition uses the language of prices and demands, and goes back to

the gross substitutes and complements condition (GSC).

Definition 4. Agent i’s preferences are demand-language fully substitutable (DFS) if:

1. for all price vectors p, p′ ∈ R|Ω| such that |Di(p)| = |Di(p
′)| = 1, pω = p′ω for

all ω ∈ Ωi→, and pω ≥ p′ω for all ω ∈ Ω→i, for the unique Ψ ∈ Di(p) and

Ψ′ ∈ Di(p
′), we have {ω ∈ Ψ′→i : pω = p′ω} ⊆ Ψ→i and Ψi→ ⊆ Ψ′i→;
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2. for all price vectors p, p′ ∈ R|Ω| such that |Di(p)| = |Di(p
′)| = 1, pω = p′ω for

all ω ∈ Ω→i, and pω ≤ p′ω for all ω ∈ Ωi→, for the unique Ψ ∈ Di(p) and

Ψ′ ∈ Di(p
′), we have {ω ∈ Ψ′i→ : pω = p′ω} ⊆ Ψi→ and Ψ→i ⊆ Ψ′→i.

The demand correspondence Di is fully substitutable if, when attention is re-

stricted to prices for which demands are single-valued, a decrease in the price of some

inputs for agent i leads to the decrease in his demand for other inputs and to an in-

crease in his supply of outputs, and an increase in the price of some outputs leads to

the decrease in his supply of other outputs and an increase in his demand for inputs.

Our third definition is essentially a reformulation of Definition 4, using a conve-

nient vector notation due to Hatfield and Kominers (2010b). For each agent i, for any

set of trades Ψ ⊆ Ωi, define the (generalized) indicator function e(Ψ) ∈ {−1, 0, 1}|Ωi|

to be the vector with component eω(Ψ) = 1 for each upstream trade ω ∈ Ψ→i,

eω(Ψ) = −1 for each downstream trade ω ∈ Ψi→, and eω(Ψ) = 0 for each trade

ω /∈ Ψ. The interpretation of e(Ψ) is that an agent buys a strictly positive amount

of a good if he is the buyer in a trade in Ψ, and “buys” a strictly negative amount if

he is the seller of such a trade.

Definition 5. Agent i’s preferences are indicator-language fully substitutable (IFS)

if for all price vectors p, p′ ∈ R|Ω| such that |Di(p)| = |Di(p
′)| = 1 and p ≤ p′, for the

unique Ψ ∈ Di(p) and Ψ′ ∈ Di(p
′) we have eω(Ψ) ≤ eω(Ψ′) for each ω ∈ Ωi such that

pω = p′ω.

This definition clarifies the reason for the term “full substitutability”: an agent is

more willing to “demand” a trade (i.e., keep an object that he could potentially sell,

or buy an object that he does not initially own) if prices of other trades increase.

Our final definition concerns neither the choice correspondences nor the demand

correspondences, but agents’ indirect utility functions. It is a generalization of the

earlier submodularity assumption on the indirect utility of an agent (Ausubel and

Milgrom, 2002).

For price vectors p, p′ ∈ R|Ω|, let the join of p and p′, denoted p ∨ p′, be defined

as the pointwise maximum of p and p′; let the meet of p and p′, denoted p ∧ p′, be

defined as the pointwise minimum of p and p′.

Definition 6. The indirect utility function of agent i,

Vi(p) ≡ max
Ψ⊆Ωi

Ui([Ψ; p]),
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is submodular if, for all price vectors p, p′ ∈ R|Ω|, Vi(p∧p′)+Vi(p∨p′) ≤ Vi(p)+Vi(p
′).

3.2 Equivalence of the Definitions

The main result of this section shows that the three definitions of full substitutability

above are equivalent, and are also equivalent to the assumption of submodularity

of the indirect utility function.6 Subsequently, we will typically use the term full

substitutability in place of the notations (CFS), (DFS), and (IFS).

Theorem 1. (CFS), (DFS), and (IFS) are all equivalent, and hold if and only if the

indirect utility function is submodular.

We present the proof of Theorem 1 in Appendix A, along with several alterna-

tive characterizations of full substitutability. In Appendix A, we also show that in

quasilinear settings, full substitutability implies the Laws of Aggregate Supply and

Demand (Hatfield and Kominers, 2010b), extending an analogous result for the (GS)

condition (Hatfield and Milgrom, 2005). We use these additional characterizations

and properties to prove some of the main results in the paper.

4 Main Results

We first show that competitive equilibria exist when preferences are fully substitutable

and characterize the structure of the set of competitive equilibria. We then show that

full substitutability implies that the set of competitive equilibria essentially coincides

with the set of stable outcomes. Finally, we show that if preferences are not fully

substitutable, then stable outcomes and competitive equilibria need not exist. With

the exception of the proof of Theorem 7, which is given in the Online Appendix,

the proofs of all the results of this and the subsequent sections are presented in

Appendix B.

4.1 The Existence of Competitive Equilibria

Theorem 2. Suppose that agents’ preferences are fully substitutable. Then, there

exists a competitive equilibrium.

6One can also give an equivalent definition of full substitutability in terms of M\-concavity,
analogous to the equivalent definitions of (GS) of Reijnierse et al. (2002) and Fujishige and Yang
(2003).
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The main idea in the proof of Theorem 2 is to associate to the original market a

two-sided many-to-one matching market with transferable utility, in which each agent

corresponds to a “firm” and each trade corresponds to a “worker.” The valuation of

firm i for hiring a set of workers Ψ ⊆ Ωi in the associated two-sided market is given

by

vi (Ψ) ≡ ui (Ψ→i ∪ (Ω−Ψ)i→) . (1)

Intuitively, we think of the firm as employing all of the workers associated with

trades that the firm buys and with trades that the firm does not sell. We show

that vi satisfies the gross substitutes condition (GS) of Kelso and Crawford (1982)

as long as ui is fully substitutable. Workers strictly prefer to work rather than being

unemployed, and their utilities are monotonically increasing in wages. Worker ω has

a strict preference for being employed by s(ω) and b(ω) rather than some other firm

i ∈ I −{s(ω), b(ω)}. With these definitions, we have constructed a two-sided market

of the type studied by Kelso and Crawford (1982). In such markets, a competitive

equilibrium in which no worker is unemployed is guaranteed to exist.

We then transform this competitive equilibrium back into a set of trades and prices

for the original economy as follows: Let ω be formed in the original economy if the

worker ω was hired by b(ω) in the associated market and do not let it be formed if ω

was hired by s(ω) (our construction ensures that these are the only two possibilities).

We use the wages in the associated market as prices in the original market. We thus

obtain a competitive equilibrium of the original economy: Given the prices generated,

a trade ω is demanded by its buyer if and only if it is also demanded by its seller (i.e.,

not demanded by the seller in the associated market).

This construction also provides an algorithm for finding a competitive equilibrium.

For instance, once we have transformed the original economy into an associated mar-

ket, we can use an ascending auction for workers to find the minimal-price competitive

equilibrium of the associated market; we may then map that competitive equilibrium

back to a competitive equilibrium of the original economy.

One technical complication that we need to address in the proof is that the mod-

ified valuation function in Equation (1) may in principle be unbounded and take

the value −∞ for sets of trades that are not feasible. To deal with this issue, we

further modify the valuation function by bounding it in a way that preserves full

substitutability.
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4.2 The Properties of Competitive Equilibria

We now consider the structure of the set of competitive equilibria. We first note an

analogue of the first welfare theorem in our economy.

Theorem 3. Suppose [Ψ; p] is a competitive equilibrium. Then Ψ is an efficient set

of trades, i.e.,
∑

i∈I ui(Ψ) ≥
∑

i∈I ui(Ψ
′) for any Ψ′ ⊆ Ω.

The proof of this result is standard and follows simply from observing that in

a competitive equilibrium, each agent is maximizing his utility under prices p, and

when the utilities are added up across all agents, prices cancel out, leaving only the

sum of agents’ valuations.

Our next result can be viewed as a strong version of the second welfare theorem for

our setting, providing a converse to Theorem 3: For any efficient set of trades Ψ and

any competitive equilibrium price vector p, the arrangement [Ψ; p] is a competitive

equilibrium.7 Also, the set of competitive equilibrium price vectors forms a lattice.

Theorem 4. Suppose that agents’ preferences are fully substitutable. Then the set

of competitive equilibrium price vectors is a lattice. Furthermore, for any element of

this lattice p and any efficient set of trades Ψ, [Ψ; p] is a competitive equilibrium.

The lattice structure of the set of competitive equilibrium prices is analogous to

the lattice structure of the set of stable outcomes for economies without transferable

utility (see, e.g., Hatfield and Milgrom, 2005). In those models, there is a buyer-

optimal and a seller-optimal stable outcome. In our model, the lattice of equilibrium

prices may in principle be unbounded. If the lattice is bounded,8 then there are

lowest-price and highest-price competitive equilibria.

4.3 The Relationship between Competitive Equilibria and

Stable Outcomes

We now show how the sets of stable outcomes and competitive equilibria are related.

First, we show that for every competitive equilibrium [Ψ; p], the associated outcome

κ ([Ψ; p]) is stable.

7Generically, the efficient set of trades is unique, and then this statement follows immediately
from Theorem 3. We show that it also holds when there are multiple efficient sets of trades.

8E.g., if all valuations ui are bounded.
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Theorem 5. Suppose [Ψ; p] is a competitive equilibrium. Then κ ([Ψ; p]) is stable.

If for some competitive equilibrium [Ψ; p] the outcome κ ([Ψ; p]) is not stable, then

either it is not individually rational or it is blocked. If it is not individually rational

for some agent i, then κ ([Ψ; p])i /∈ Ci (κ ([Ψ; p])). Hence, Ψi /∈ Di (p), and so [Ψ; p]

can not be a competitive equilibrium. If κ ([Ψ; p]) admits a blocking set Z, then all

the agents with contracts in Z are strictly better off after the deviation. Hence, there

must exist some agent i with a contract in Z such that i is strictly better off choosing

an element of Ci (Z ∪ κ ([Ψ; p])) given the original price vector p; hence, Ψi /∈ Di (p)

and so [Ψ; p] is not a competitive equilibrium. Note that this result does not rely on

substitutability.

However, it is not generally true that all stable outcomes correspond to competitive

equilibria. Consider the following example.

Example 1. Let Ω = {χ, ψ}, I = {i, j}, s (ψ) = s (χ) = i, b (ψ) = b (χ) = j, and

ui(∅) = 0, ui ({χ, ψ}) = ui ({χ}) = ui ({ψ}) = −4,

uj(∅) = 0, uj ({χ, ψ}) = uj ({χ}) = uj ({ψ}) = 3.

In this case, ∅ is stable. Since ∅ is the only efficient set of trades, by Theorem 4

any competitive equilibrium is of the form [∅; p]. However, the preferences of agent

i imply that pχ + pψ ≤ 4, as otherwise i will choose to sell at least one of ψ or χ.

Moreover, the preferences of agent j imply that pχ, pψ ≥ 3, as otherwise j will buy at

least one of ψ or χ. Clearly, all three inequalities can not jointly hold. Hence, while

∅ is stable, there is no corresponding competitive equilibrium.

The key issue is that an outcome A need only specify prices for the trades in

τ (A) while a competitive equilibrium, by contrast, must specify prices for all trades

(including those trades that do not transact). Hence, it may be possible, as in Exam-

ple 1, for an outcome A to be stable, but, because of complementarities in preferences,

it may be impossible to find a price vector for trades outside of τ(A) such that τ (Ai)

is in fact the optimal set of contracts for every agent i. Note that in Example 1 the

preferences of agent j are fully substitutable but those of agent i are not.

If, however, the preferences of all agents are fully substitutable, then for any stable

outcome A we can in fact find a supporting set of prices p such that [τ (A) ; p] is a
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competitive equilibrium and the prices of trades that transact are the same as in the

stable outcome.

Theorem 6. Suppose that agents’ preferences are fully substitutable and A is a stable

outcome. Then there exists a price vector p ∈ R|Ω| such that [τ (A) ; p] is a competitive

equilibrium and if (ω, p̄ω) ∈ A, then pω = p̄ω.

To construct a competitive equilibrium from a stable outcome A, we need to find

appropriate prices for the trades that are not part of the stable outcome, i.e., trades

ω ∈ Ω − τ (A). To do this, we construct a modified market in which the set of

trades available is Ω − τ (A) and the valuation of each player i for a set of trades

Ψ ⊆ Ω− τ (A) is equal to the highest value he can attain by combining the trades in

Ψ with various subsets of Ai. We show that the corresponding utility of each player

i is fully substitutable, and thus the modified market has a competitive equilibrium.

Furthermore, at least one such equilibrium has be of the form [∅; p̂] for some vector

p̂ ∈ R|Ω−τ(A)|—we show that otherwise, there exists a nonempty set blocking A.

Assigning prices p̂ to the trades that are not part of A, we obtain a competitive

equilibrium of the original economy.

4.4 The Necessity of Full Substitutability for Existence

We now show that if the preferences of any one agent are not fully substitutable,

then stable outcomes need not exist. In fact, in that case we can construct simple

preferences for other agents such that no stable outcome exists.

Definition 7. ψ, ω ∈ Ωi are

1. Independent if ui({ψ, ω} ∪ Φ) − ui({ω} ∪ Φ) = ui({ψ} ∪ Φ) − ui(Φ) for all

Φ ⊆ Ωi − {ψ, ω}.
2. Incompatible if ψ, ω ∈ Ω→i or ψ, ω ∈ Ωi→ and ui({ψ, ω}∪Φ)−u(Φ) = −∞ for

all Φ ⊆ Ωi − {ψ, ω}.
3. Dependent if ψ ∈ Ω→i, ω ∈ Ωi→ and either ui({ψ} ∪ Φ) − u(Φ) = −∞ or

ui({ω} ∪ Φ)− u(Φ) = −∞ for all Φ ⊆ Ωi − {ψ, ω}.

Preferences of agent i are simple if for all ψ, ω ∈ Ωi, ψ and ω are either independent,

incompatible, or dependent.
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Two trades ψ and ω are independent for i if the marginal utility i obtains from

performing ψ does not affect the marginal utility that i obtains from performing ω.

In contrast, the trades ψ and ω are incompatible for i if i is unable to perform ψ and

ω simultaneously; for instance, if ψ and ω both denote the transfer of a particular

object, but to different individuals, then ui({ψ, ω}) = −∞. Finally, the trades ψ

and ω are dependent for i if i can perform one of them only while performing the

other; for instance, if ψ denotes the transfer from s(ψ) to i of a necessary input of a

production process, and ω denotes the transfer of the output of that process from i

to b(ω), then ui({ω}) = −∞.

Simple preferences play a role similar to that of unit-demand preferences, used

in the Gul and Stacchetti (1999) result characterizing the maximal domain for the

existence of competitive equilibria in exchange economies. However, in our setting

we must allow an individual agent to act as a set of unit-demand consumers, as each

contract specifies both the buyer and the seller, and the violation of substitutability

may only occur for an agent i when he holds multiple contracts with another agent.

Our necessity result requires sufficient “richness” of the set of trades. Specifically,

we require that the set of trades Ω is exhaustive, i.e., that for each i 6= j ∈ I there

exist ωi, ωj ∈ Ω such that b (ωi) = s (ωj) = i and b (ωj) = s (ωi) = j.

Theorem 7. Suppose that there exist at least four agents and that the set of trades

is exhaustive. Then if the preferences of some agent are not fully substitutable, there

exist simple preferences for all other agents such that no stable outcome exists.9

To understand the result, consider the following example.

Example 2. Agent i is just a buyer, and has perfectly complementary preferences

over the contracts ψ and ω, and is not interested in other contracts, i.e., ui({ψ, ω}) = 1

and ui({ψ}) = ui({ω}) = ui(∅) = 0.

Suppose that s(ψ) and s(ω) also have contracts ψ̂ and ω̂ (where s(ψ̂) = s(ψ) and

9The proof of this result also shows that for two-sided markets with transferable utility if any
agent’s preferences are not fully substitutable, then if there exists at least one other agent on the
same side of the market, simple preferences can be constructed such that no stable outcome exists.
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s(ω̂) = s(ω)) with another agent j, and let the valuations of agents j 6= i be given by:

us(ψ)({ψ̂}) = us(ψ)({ψ}) = us(ψ)(∅) = 0, us(ψ)({ψ, ψ̂}) = −∞,

us(ω)({ω̂}) = us(ω)({ω}) = us(ω)(∅) = 0, us(ω)({ω, ω̂}) = −∞,

uj({ψ̂, ω̂}) = uj({ψ̂}) = uj({ω̂}) =
3

4
, uj(∅) = 0.

Then in any stable outcome s(ψ) will sell at most one of ψ and ψ̂, and similarly for

s(ω). It can not be that {ψ, ω} is part of a stable outcome, as their total price is

at most 1, meaning at least one of them has a price at most 1
2
; suppose it is ω—we

then have that {(ω̂, 5
8
)} is a blocking set. It also can not be the case that {(ψ̂, pψ̂)}

or {(ω̂, pω̂)} is stable: in the former case, pψ̂ must be less than 3
4
, in which case

{(ψ, 7
8
), (ω, 1

16
)} is a blocking set. A symmetric construction holds for the latter case.

The proof of Theorem 7, presented in the Online Appendix to this paper, essen-

tially generalizes Example 2.

Since a stable outcome does not necessarily exist when preferences are not fully

substitutable, and (for any preferences) all competitive equilibria generate stable out-

comes (by Theorem 5), Theorem 7 immediately implies the following corollary.

Corollary 1. Suppose that there exist at least four agents and that the set of trades

is exhaustive. Then, if the preferences of some agent are not fully substitutable, there

exist simple preferences for all other agents such that no competitive equilibrium exists.

5 Relation with Other Solution Concepts

In this section, we describe the relationships between competitive equilibrium, sta-

bility, and other solution concepts that have played important roles in the previous

literature.

5.1 The Core and Strong Group Stability

We start by introducing a classical solution concept: the core.

Definition 8. An outcome A is in the core if it is core unblocked: there does not

exist a set of contracts Z such that, for all i ∈ a(Z), Ui(Z) > Ui(A).
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The definition of the core differs from that of stability in two ways. First, a core

block requires all the agents with contracts in the blocking set drop their contracts

with other agents; this is a more stringent restriction than that of stability, which

allows agents with contracts in the blocking set to retain previous relationships. Sec-

ond, a core block does not require that Zi ∈ Ci(Z ∪ A) for all i ∈ a(Z); rather, it

requires only the less stringent condition that Ui(Z) > Ui(A).

We now introduce strong group stability, which is more restrictive than both core

and stability.

Definition 9. An outcome A is strongly group stable if it is

1. Individually rational;

2. Strongly unblocked: There does not exist a nonempty feasible Z ⊆ X such that

(a) Z ∩ A = ∅, and

(b) for all i ∈ a (Z), there exists a Y i ⊆ Z∪A such that Z ⊆ Y i and Ui (Y
i) >

Ui (A).

Strong group stability is a more stringent notion than both stability and core as,

when considering a block Z, agents may retain previously held contracts (as in the

defintion of stability, but not in the definition of the core), and the new set of contracts

for each agent need only be an improvement, not optimal (as in the definition of the

core, but not the definition of stability).

We call this notion strong group stability as it is more stringent than both strong

stability (introduced by Hatfield and Kominers, 2010a) and group stability (intro-

duced by Roth and Sotomayor, 1990, and extended to the setting of many-to-many

matching by Konishi and Ünver, 2006): Strong group stability is more stringent than

strong stability as strong stability imposes the additional requirement on blocking

sets that each Y i be individually rational. Strong group stability is more stringent

than group stability as group stability imposes the additional requirement on block-

ing sets that if y ∈ Y b(y), then y ∈ Y s(y), i.e., that the deviating agents agreed on

which contracts from the original allocation would be kept after the deviation. Strong

stability and group stability are themselves strengthenings of the notion of setwise

stability, introduced by Echenique and Oviedo (2006) and Klaus and Walzl (2009),

which imposes both of the above requirements on blocking sets.10

Given these definitions, the following result is immediate.

10The notion of setwise stability used in these works is slightly stronger than the definition of

18



Theorem 8. Any strongly group stable outcome is stable and in the core. Further-

more, any core outcome is efficient.

Without additional assumptions on preferences, no additional structure need be

present. In particular, it may be that both stable and core outcomes exist for a given

set of preferences, but that no outcome is both stable and core.

Example 3. There are two agents, i and j, and two trades, ψ and ω, where s (ψ) =

s (ω) = i and b (ψ) = b (ω) = j. Agents’ valuations are:

Ψ ∅ {ψ} {ω} {ψ, ω}
ui(Ψ) 0 −2 −2 −6

uj(Ψ) 0 0 0 7

.

The set of core outcomes is given by {{(ψ, pψ) , (ω, pω)} : 6 ≤ pψ + pω ≤ 7}. How-

ever, the unique stable outcome is ∅: Note that any outcome of the form {(ψ, pψ)} or

{(ω, pω)} is clearly not individually rational, and any outcome of the form {(ψ, pψ), (ω, pω)}
can only be individually rational if pψ, pω ≥ 4 and pψ + pω ≤ 7, which can not simul-

taneously all hold.

Example C.1 of Appendix C demonstrates that even an outcome that is both

stable and in the core need not be strongly group stable.

However, even when preferences are fully substitutable, the relationship between

strong group stability and stability is unclear. For models without transferable utility

(see e.g., Sotomayor, 1999; Echenique and Oviedo, 2006; Klaus and Walzl, 2009; Hat-

field and Kominers, 2010a; and Westkamp, 2010), strong group stability is strictly

more restrictive than stability. However, with quasilinear utility and fully substi-

tutable preferences, these equilibrium notions coincide.

Theorem 9. If preferences are fully substitutable and A is a stable outcome, then

A is strongly group stable and in the core. Moreover, for any core outcome A, there

exists a stable outcome Â such that τ(A) = τ(Â).

However, even for fully substitutable preferences, the core may be strictly larger

than the set of stable outcomes.

setwise stability introduced by Sotomayor (1999); see Klaus and Walzl (2009) for a discussion of the
subtle differences between these two definitions.
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Example 4. Consider again the setting of Example 3, but take preferences to be:

Ψ ∅ {ψ} {ω} {ψ, ω}
ui(Ψ) 0 0 0 −3

uj(Ψ) 0 5 5 9

.

In this case, {(ψ, 2), (ω, 2)} is a core outcome, but is not individually rational for

agent i; he will choose to drop one of the two contracts. We therefore see that the

set of imputed utilities of a core outcome may not correspond to the set of imputed

utilities for any stable outcome: in this example, the payoff of agent i in any stable

outcome is at least 3, while it is only 1 in the core outcome.

5.2 Chain Stability

The stability concept used in this paper also appears substantively different and

noticeably stronger than the chain stability concept used in Ostrovsky (2008): the

former (Definition 1) requires robustness to all blocking sets, while the latter requires

robustness only to very specific blocking sets—chains of contracts. However, Hatfield

and Kominers (2010b) show that in the presence of fully substitutable preferences, in

the setting of Ostrovsky (2008) these conditions are in fact equivalent. In this section,

we prove an analogous result for the current setting with continuous prices.

First, we need to define the notion of chain stability. It is more general than that

in the earlier work, because in the current setting trading cycles are allowed, and the

definition needs to accommodate that. If trading cycles are prohibited (i.e., there is

an upstream–downstream partial ordering of agents), then the definition is essentially

the same as in Ostrovsky (2008), adjusted only for the presence of continuous prices.

Definition 10. A non-empty set of contracts Z is a chain if its elements can be

arranged in some order y1, . . . , y|Z| such that s(y`+1) = b(y`) for all ` < |Z|.

Note that under this definition, the buyer in contract y|Z| is allowed to be the seller

in contract y1 (in which case the chain becomes a cycle), and also the same agent

can be involved in the chain multiple times (because there is no enforced upstream–

downstream partial ordering).

Definition 11. An outcome A is chain stable if it is

1. Individually rational;
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2. Not blocked by a chain: There does not exist a chain Z ⊆ X such that

(a) Z ∩ A = ∅, and

(b) for all agents i ∈ a(Z), for all Y ∈ Ci (Z ∪ A), we have Zi ⊆ Y .

This definition is weaker than the defintion of stability (Definition 1), and so

it is immediate that any stable outcome is chain stable for any preferences. The

converse, for fully substitutable preferences, is a direct corollary of the following,

more general result, which shows that any blocking set of an arbitrary outcome A

can be “decomposed” into blocking chains.

Theorem 10. Suppose agents’ preferences are fully substitutable, and consider any

outcome A that is blocked by some nonempty set Z. Then for some m ≥ 1, we can

partition the set Z into a collection of m chains Wm such that Z = ∪mm=1W
m, A is

blocked by W 1, and for any m ≤ m − 1, the set of contracts A ∪W 1 ∪ · · · ∪Wm is

blocked by chain Wm+1.

Corollary 2. If agents’ preferences are fully substitutable, then any chain stable

outcome A is stable.

Full substitutability is critical for these results. Without it, chain stability is

strictly weaker than stability. For instance, consider Example 2 above. There is no

stable outcome in that example, yet {(ω̂, 0)} is chain stable: any set that blocks

{(ω̂, 0)} includes two contracts of the form (ψ, pψ) and (ω, pω), and so the blocking

set does not constitute a blocking chain.

5.3 Competitive Equilibria without Personalized Prices

The notion of competitive equilibrium studied in this paper considers trades as the

basic unit of analysis; a price vector specifies one price for each trade. E.g., if agent

i has one object to sell, a competitive equilibrium price vector generally specifies

a different price for each possible buyer, allowing for personalized pricing. This is

in contrast to the notions of competitive equilibrium that assign a single price to

each object (see, e.g., Gul and Stacchetti, 1999, and Sun and Yang, 2006). We

now introduce a condition on utilities under which it is convenient to study non-

personalized pricing.

Definition 12. Consider an arbitrary agent i. The trades in some set Ψ ⊆ Ωi are
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1. mutually incompatible for i if for all Ξ ⊆ Ωi such that |Ξ∩Ψ| ≥ 2, ui(Ξ) = −∞.

2. perfect substitutes for i if for all Ξ ⊆ Ωi −Ψ and all ω, ω′ ∈ Ψ, ui(Ξ ∪ {ω}) =

ui(Ξ ∪ {ω′}).

Theorem 11. Let agents’ preferences be fully substitutable. Suppose for agent i,

trades in Ψ ⊆ Ωi are mutually incompatible and perfect substitutes and let [Ξ; p] be

an arbitrary competitive equilibrium.

(a) If Ψ ⊆ Ωi→, let p = maxψ∈Ψ pψ and define q by qψ = p for all ψ ∈ Ψ and

qψ = pψ for all ψ ∈ Ω−Ψ. Then, [Ξ; q] is a competitive equilibrium.

(b) If Ψ ⊆ Ω→i, let p = minψ∈Ψ pψ and define q by qψ = p for all ψ ∈ Ψ and qψ = pψ

for all ψ ∈ Ω−Ψ. Then, [Ξ; q] is a competitive equilibrium.

Note that since the preferences of agent i are fully substitutable, a trade ω ∈ Ωi→

cannot be a perfect substitute for a trade ω′ ∈ Ω→i. Hence, the two cases in the

theorem are exhaustive.

This result allows us to embed the model of Sun and Yang (2006) as a special case

of our model. In their model, a finite set S of indivisible objects needs to be allocated

to a finite set I of agents with quasilinear utility. Objects are partitioned into two

groups, S1 and S2. For each agent i, preferences satisfy the (GSC) condition: Objects

in the same group are substitutes and two objects belonging to different groups are

complements. To embed this model into our setting, one can view each object in S1

as an agent who can sell goods to agents in I, and each object in S2 as an agent who

can buy goods from agents in I. Each agent in S = S1 ∪ S2 only cares about prices

and can not buy from/sell to more than one agent in I. For this embedding (GSC)

is equivalent to full substitutability and all our results apply immediately. Since

trades are mutually incompatible and perfect substitutes for every agent in S, we can

apply the procedure outlined in Theorem 11 to any competitive equilibrium (with

personalized prices) in order to obtain a competitive equilibrium without personalized

prices. In particular, our Theorem 2 implies the existence result in Sun and Yang

(2006).11

11Note that our network setting is strictly more general, as it cannot be embedded in the setting
of Sun and Yang (2006). E.g., consider a simple market with three agents i, j, and k, where i can
sell trades to both j and k, j can sell trades only to k, k cannot sell trades to anyone, and all agents’
preferences are fully substitutable. In this market, it is impossible to separate trades into two groups
S1 and S2 in such a way that every agent views trades in one group as substitutes and views trades
in different groups as complements.
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6 Conclusion

We have introduced a general model in which a network of agents can trade via bi-

lateral contracts. In this setting, when continuous transfers are allowed and agents’

preferences are quasilinear, full substitutability of preferences is sufficient and neces-

sary for the guaranteed existence of stable outcomes. Furthermore, full substitutabil-

ity implies that the set of stable outcomes is equivalent to the set of competitive

equilibria, and that all stable outcomes are strongly group stable, in the core, and

efficient.

Previous results have shown that for discrete contractual sets over which agents’

preferences are fully substitutable, supply chain structure (i.e., the acyclicity of the

contractual set) is sufficient to guarantee the existence of stable outcomes. More-

over, both full substitutability and supply chain structure are necessary to ensure

the existence of stable outcomes if the contractual set is otherwise fully general. We

show that, for contractual sets that allow for continuous transfers, in the presence

of quasilinearity, supply chain structure is not necessary for the existence of stable

outcomes, although full substitutability is. It is an open question why the presence of

a continuous numeraire can replace the assumption of a supply chain structure in en-

suring the existence of stable outcomes. Additionally, the extent to which our results

depend on the assumption of quasilinearity is not known: while many of our proofs

rely on quasilinearity, analogues of our results may hold without this assumption.

Appendix A: Full Substitutability

In this Appendix, we show the equivalence of eight definitions of full substitutability.

Four of these definitions were presented in Section 3. Below we introduce four other

definitions, all of which deal directly with indifferences in agents’ preferences. These

definitions are more convenient to work with in some settings, and also correspond

directly to those introduced in the prior literature. After proving the equivalence

of these definitions, we introduce the Laws of Aggregate Supply and Demand for

the current setting and show that quasilinearity and full substitutability imply those

laws. This result is subsequently used in the proof of Theorem 10, and is also of

independent interest.
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A.1 Equivalent Definitions

The first two definitions are analogues of Definition 3, explicitly considering indiffer-

ences in preferences. The first one states what happens when an agent’s set of options

expands, and the second one states what happens when it shrinks.

Definition A.1. The preferences of agent i are choice-language expansion fully sub-

stitutable (CEFS) if:

1. for all sets of contracts Y, Z ⊆ Xi such that |Ci(Z)| > 0, |Ci(Y )| > 0, Yi→ =

Zi→, and Y→i ⊆ Z→i, for every Y ∗ ∈ Ci(Y ) there exists Z∗ ∈ Ci(Z) such that

(Y→i − Y ∗→i) ⊆ (Z→i − Z∗→i) and Y ∗i→ ⊆ Z∗i→;

2. for all sets of contracts Y, Z ⊆ Xi such that |Ci(Z)| > 0, |Ci(Y )| > 0, Y→i =

Z→i, and Yi→ ⊆ Zi→, for every Y ∗ ∈ Ci(Y ) there exists Z∗ ∈ Ci(Z) such that

(Yi→ − Y ∗i→) ⊆ (Zi→ − Z∗i→) and Y ∗→i ⊆ Z∗→i.

Definition A.2. The preferences of agent i are choice-language contraction fully

substitutable (CCFS) if:

1. for all sets of contracts Y, Z ⊆ Xi such that |Ci(Z)| > 0, |Ci(Y )| > 0, Yi→ =

Zi→, and Y→i ⊆ Z→i, for every Z∗ ∈ Ci(Z) there exists Y ∗ ∈ Ci(Y ) such that

(Y→i − Y ∗→i) ⊆ (Z→i − Z∗→i) and Y ∗i→ ⊆ Z∗i→;

2. for all sets of contracts Y, Z ⊆ Xi such that |Ci(Z)| > 0, |Ci(Y )| > 0, Y→i =

Z→i, and Yi→ ⊆ Zi→, for every Z∗ ∈ Ci(Z) there exists Y ∗ ∈ Ci(Y ) such that

(Yi→ − Y ∗i→) ⊆ (Zi→ − Z∗i→) and Y ∗→i ⊆ Z∗→i.

Note that we use Y as the “starting set” in (CEFS) and Z as the “starting set” in

(CCFS) to make the two notions of choice-language full substitutability more easily

comparable. Furthermore, note that in Case 1 of (CEFS) and (CCFS), requiring

Y→i−Y ∗→i ⊆ Z→i−Z∗→i is equivalent to requiring that Z∗∩Y→i ⊆ Y ∗, and similarly, in

Case 2, requiring Yi→−Y ∗i→ ⊆ Zi→−Z∗i→ is equivalent to requiring that Z∗∩Yi→ ⊆ Y ∗.

The next two definitions are analogues of Definition 4.

Definition A.3. The preferences of agent i are demand-language expansion fully

substitutable (DEFS) if:

1. for all price vectors p, p′ ∈ R|Ω| such that pω = p′ω for all ω ∈ Ωi→ and pω ≥ p′ω

for all ω ∈ Ω→i, for every Ψ ∈ Di(p) there exists Ψ′ ∈ Di(p
′) such that {ω ∈

Ψ′→i : pω = p′ω} ⊆ Ψ→i and Ψi→ ⊆ Ψ′i→;
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2. for all price vectors p, p′ ∈ R|Ω| such that pω = p′ω for all ω ∈ Ω→i and pω ≤ p′ω

for all ω ∈ Ωi→, for every Ψ ∈ Di(p) there exists Ψ′ ∈ Di(p
′) such that {ω ∈

Ψ′i→ : pω = p′ω} ⊆ Ψi→ and Ψ→i ⊆ Ψ′→i.

Definition A.4. The preferences of agent i are demand-language contraction fully

substitutable (DCFS) if:

1. for all price vectors p, p′ ∈ R|Ω| such that pω = p′ω for all ω ∈ Ωi→ and pω ≥ p′ω

for all ω ∈ Ω→i, for every Ψ′ ∈ Di(p
′) there exists Ψ ∈ Di(p) such that {ω ∈

Ψ′→i : pω = p′ω} ⊆ Ψ→i and Ψi→ ⊆ Ψ′i→;

2. for all price vectors p, p′ ∈ R|Ω| such that pω = p′ω for all ω ∈ Ω→i and pω ≤ p′ω

for all ω ∈ Ωi→, for every Ψ′ ∈ Di(p
′) there exists Ψ ∈ Di(p) such that {ω ∈

Ψ′i→ : pω = p′ω} ⊆ Ψi→ and Ψ→i ⊆ Ψ′→i.

Note that we use p as the “starting price vector” in (DEFS) and p′ as the “starting

price vector” in (DCFS). Also, in Case 1 of (DEFS) and (DCFS), requiring {ω ∈ Ψ′→i :

pω = p′ω} ⊆ Ψ→i is equivalent to requiring that {ω ∈ (Ω→i−Ψ) : pω = p′ω} ⊆ Ω→i−Ψ′,

and similarly, in Case 2, requiring {ω ∈ Ψ′i→ : pω = p′ω} ⊆ Ψi→ is equivalent to

requiring that {ω ∈ (Ωi→ −Ψ) : pω = p′ω} ⊆ Ωi→ −Ψ′.

A.2 The Equivalence Result

Theorem A.1. (CFS), (DFS), (IFS), (CEFS), (CCFS), (DEFS), and (DCFS) are

all equivalent, and hold if and only if the indirect utility function is submodular.

Proof. It is immediate that (CEFS) and (CCFS) each imply (CFS). Below we show

that (CFS) ⇒ (DFS), (DFS) ⇒ (DEFS), (DFS) ⇒ (DCFS), (DEFS) ⇒ (CEFS),

and (DCFS) ⇒ (CCFS), thus proving the equivalence of these six definitions. We

then show that these definitions are equivalent to (IFS) and the submodularity of the

indirect utility function.

(CFS) ⇒ (DFS)

We first show that Case 1 of (DFS) implies Case 1 of (CFS). For any agent i and price

vector p ∈ R|Ω|, let Xi(p) ≡ {(ω, p̂ω) : ω ∈ Ω→i, p̂ω ≥ pω} ∪ {(ω, p̂ω) : ω ∈ Ωi→, p̂ω ≤
pω}, in essence denoting the set of contracts available to agent i under prices p.

Let price vectors p, p′ ∈ R|Ω| be such that |Di(p)| = |Di(p
′)| = 1, pω = p′ω for all

ω ∈ Ωi→, and p′ω ≤ pω for all ω ∈ Ω→i. Let Y = Xi(p) and Z = Xi(p
′). Clearly,
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Yi→ = Zi→ and Y→i ⊆ Z→i. Furthermore, it is immediate that Ψ ∈ Di(p) if and only

if κ([Ψ; p]) ∈ Ci(Y ), and similarly, Ψ′ ∈ Di(p
′) if and only if κ([Ψ′; p′]) ∈ Ci(Z). In

particular, we have |Ci(Y )| = |Ci(Z)| = 1 and can thus apply (CFS) to the sets Y

and Z.

Take the unique Ψ ∈ Di(p), let Y ∗ = κ([Ψ, p]), and note that Y ∗ ∈ Ci(Y ). By

(CFS), the unique Z∗ ∈ Ci(Z) satisfies Y→i − Y ∗→i ⊆ Z→i − Z∗→i and Y ∗i→ ⊆ Z∗i→. Let

Ψ′ = τ(Z∗) and note that Ψ′ ∈ Di(p
′). We show that Ψ′ satisfies the conditions in

Case 1 of Definition 4.

Note that Y→i − Y ∗→i ⊆ Z→i − Z∗→i implies {ω ∈ Ω→i − Ψ→i : pω = p′ω} ⊆
τ(Y→i) − τ(Y ∗→i) ⊆ τ(Z→i) − τ(Z∗→i) ⊆ Ω→i − Ψ′→i. Furthermore, Y ∗i→ ⊆ Z∗i→ and

pω = p′ω for each ω ∈ Ωi→ imply Ψ′i→ ⊆ Ψi→.

The proof that Case 2 of (CFS) implies Case 2 of (DFS) is analogous.

(DFS) ⇒ (DEFS), (DFS) ⇒ (DCFS)

We first show that Case 1 of (DFS) implies Case 1 of (DEFS). Take two price vectors

p, p′ such that p′ω ≤ pω for all ω ∈ Ω→i and pω = p′ω for all ω ∈ Ωi→, and fix an

arbitrary Ψ ∈ Di(p). We need to show that there exists a set Ψ′ ∈ Di(p
′) that

satisfies the conditions of Case 1 of (DEFS).

As the statement is trivial when Di(p
′) = {Ξ : Ξ ⊂ Ωi}, we assume the contrary.

Furthermore, we assume that Di(p) 6= {Ξ : Ξ ⊂ Ωi}; the arguments below are easily

extended to the case where this assumption is not satisfied. In the following, let

Ω̃→i = {ω ∈ Ω→i : p′ω < pω}. Let ε1 = Vi(p) − maxΞ⊆Ωi,Ξ/∈Di(p) Ui([Ξ; p]), ε2 =

Vi(p
′)−maxΞ⊆Ωi,Ξ/∈Di(p′) Ui([Ξ; p′]), and ε3 = minω∈Ω̃→i

(pω − p′ω). Let ε = min{ε1,ε2,ε3}
3|Ωi| .

Note that by construction, ε > 0.

We now define a price vector q1 by

q1
ω =


pω − ε ω ∈ Ωi→ −Ψ or ω ∈ Ψ→i

pω + ε ω ∈ Ω→i −Ψ or ω ∈ Ψi→

0 ω /∈ Ωi.

Clearly, we must have Di(q
1) = {Ψ}. Now define q2 by q2

ω = q1
ω for all ω ∈ Ω− Ω̃→i

and q2
ω = p′ω for all ω ∈ Ω̃→i. We claim that Di(q

2) ⊆ Di(p
′). To see this, fix an
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arbitrary Φ ∈ Di(p
′) and an arbitrary Ξ /∈ Di(p

′). Then we must have

U([Φ; q2]) ≥ U([Φ; p′])− |Φ|ε > U([Ξ; p′]) + |Ξ|ε ≥ U([Ξ; q2]),

where the first and third inequalities follow directly from the definitions of q2, and

the second inequality follows from (|Ξ|+ |Φ|)ε ≤ 2|Ωi|ε < U([Φ; p′])− U([Ξ; p′]).

We will now show that the condition in Case 1 of Definition 4 is satisfied for

any set of trades Ψ′ ∈ Di(q
2). Take any such Ψ′. Similar to the above, we define

δ1 = Vi(q
1) − maxΞ⊆Ωi,Ξ/∈Di(q1) Ui([Ξ; q1]), δ2 = Vi(q

2) − maxΞ⊆Ωi,Ξ/∈Di(q2) Ui([Ξ; q2]),

and δ3 = minω∈Ω̃→i
(q1
ω − p′ω). Let δ = min{δ1,δ2,δ3}

3|Ωi| , and define price vector q3 as

q3
ω =


q2
ω − δ ω ∈ Ωi→ −Ψ′ or ω ∈ Ψ′→i

q2
ω + δ ω ∈ Ω→i −Ψ′ or ω ∈ Ψ′i→

0 ω /∈ Ωi.

Clearly, we must have Di(q
3) = {Ψ′}. Now define q4 by q4

ω = q3
ω for all ω ∈ Ω− Ω̃→i

and q4
ω = q1

ω for all ω ∈ Ω̃→i. Similar to the above, we can show that Di(q
4) ⊆ Di(q

1),

and therefore Di(q
4) = {Ψ}. Since q3

ω < q4
ω for all ω ∈ Ω̃→i and q3

ω = q4
ω for all

ω ∈ Ω − Ω̃→i, we can now apply Case 1 of (DFS) to conclude that Ψ′ satisfies the

condition in Case 1 of (DEFS).

The proofs that Case 2 of (DFS) implies Case 2 of (DEFS), and that (DFS) implies

(DCFS) are completely analogous.

(DEFS) ⇒ (CEFS), (DCFS) ⇒ (CCFS)

We first prove Case 1 of (CEFS). Take agent i and any sets of contracts Y, Z ⊆ Xi

such that |Ci(Z)| > 0, |Ci(Y )| > 0, Yi→ = Zi→, and Y→i ⊆ Z→i. Define usable and

unusable trades in Y as follows. Take trade ω ∈ Yi→. If there exists real number r

such that (i) (ω, r) ∈ Y and (ii) for any r′ > r, (ω, r′) /∈ Y , then trade ω is usable in

Y ; otherwise, it is unusable in Y . Similarly, take trade ω ∈ Y→i. If there exists real

number r such that (i) (ω, r) ∈ Y and (ii) for any r′ < r, (ω, r′) /∈ Y , then trade ω

is usable in Y ; otherwise, it is unusable in Y . Note that an unusable trade cannot

be a part of any contract involved in any optimal choice in Ci(Y ). The definitions of

trades usable and unusable in Z are completely analogous.

We now construct preliminary price vectors q and q′ as follows. First, for every
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trade ω /∈ Ωi, qω = q′ω = 0. Second, for every trade ω unusable in Y , qω = 0, and

for every trade ω unusable in Z, q′ω = 0. Next, for any trade ω ∈ Ωi→ usable in

Y , qω = max{r : (ω, r) ∈ Y }, and similarly, for any trade ω ∈ Ωi→ usable in Z,

q′ω = max{r : (ω, r) ∈ Z}. Finally, for any trade ω ∈ Ω→i usable in Y , qω = min{r :

(ω, r) ∈ Y } and for any trade ω ∈ Ω→i usable in Z, q′ω = min{r : (ω, r) ∈ Z}.
We now construct price vectors p and p′. First, for any trade ω /∈ Ωi, pω = p′ω = 0.

Second, for any trade ω ∈ Ωi that is usable in both Y and Z, let pω = qω and let

p′ω = q′ω. Finally, we need to set prices for trades unusable in Y or Z. We already

noted that for any trade ω unusable in set Y , it has to be the case that ω is not

involved in any contract in any optimal choice in Ci(Y ); and likewise, if ω is unusable

in Z, then ω is not involved in any contract in any optimal choice in Ci(Z). Thus, in

forming prices p and p′, we will need to assign to these trades prices that are so large

(or small, depending on which side the trade is on) that the corresponding trades are

not demanded by agent i.

Let Π be a very large number. For instance, let

∆1 = max
Ω1⊂Ωi,Ω2⊂Ωi,ui(Ω1)>−∞,ui(Ω2)>−∞

|Ui(Ω1; q)− Ui(Ω2; q)|,

∆2 = max
Ω1⊂Ωi,Ω2⊂Ωi,ui(Ω1)>−∞,ui(Ω2)>−∞

|Ui(Ω1; q′)− Ui(Ω2; q′)|,

and Π = 1+∆1 +∆2 +maxω∈Ωi
|qω|+maxω∈Ωi

|q′ω|. For all ω ∈ Ωi→ that are unusable

in Y (and thus also in Z), let pω = p′ω = −Π. For all ω ∈ Ω→i that are unusable in

both Y and Z, let pω = p′ω = Π. For all ω ∈ Ω→i that are unusable in Y but not in

Z, let pω = Π and p′ω = q′ω. Finally, for all ω ∈ Ω→i that are unusable in Z but not in

Y , let pω = p′ω = qω. Note that for any such ω, since Y ⊂ Z, (ω, qω) ∈ Z; also, as ω

is unusable in Z, there are no contracts involving ω in any optimal choice in Ci(Z).

Now, p′ω = pω for all ω ∈ Ωi→ and p′ω ≤ pω for all ω ∈ Ω→i. Take any Y ∗ ∈ Ci(Y ),

and let Ψ = τ(Y ∗). By construction, Ψ ∈ Di(p). By (DEFS), there exists Ψ′ ∈ Di(p
′)

such that {ω ∈ (Ω→i − Ψ→i) : pω = p′ω} ⊆ Ω→i − Ψ′→i and Ψi→ ⊆ Ψ′i→. Let

Z∗ = κ([Ψ′, p′]). Again, by construction, Z∗ ∈ Ci(Z). We now show that this set of

contracts satisfies the conditions in Case 1 of (CEFS).

First, take some y ∈ Y→i−Y ∗→i and suppose that contrary to what we want to show,

y ∈ Z∗→i. The latter implies that y = (ω, p′ω) for some trade ω, which, in turn, implies

that pω = p′ω (because y = (ω, p′ω) ∈ Y and, since Y ⊂ Z, (ω, r) /∈ Y for any r < p′ω).
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But then, by construction, {ω ∈ (Ω→i−Ψ→i) : pω = p′ω} ⊆ Ω→i−Ψ′→i, contradicting

y ∈ Z∗→i. Second, since Y ∗i→ = {(ω, pω) : ω ∈ Ψi→}, Z∗i→ = {(ω, pω) : ω ∈ Ψ′i→}, and

Ψi→ ⊆ Ψ′i→, it is immediate that Y ∗i→ ⊆ Z∗i→. This completes the proof that Case 1

of (DEFS) implies Case 1 of (CEFS).

The proofs that Case 2 of (DEFS) implies Case 2 of (CEFS) and that (DCFS)

implies (CCFS) are completely analogous.

(DFS) ⇒ (IFS)

Take two price vectors p, p′ such that |Di(p)| = |Di(p
′)| = 1 and p ≤ p′. Let Ψ ∈ Di(p)

and Ψ′ ∈ Di(p
′) be the unique demanded sets. We have to show that eω(Ψ′) ≥ eω(Ψ)

for all ω ∈ Ωi such that pω = p′ω.

First, let p1 be a price vector such that p1
ω = p′ω for all ω ∈ Ω→i and p1

ω = pω for

all ω ∈ Ωi→. By (DCFS) there must exist a Ψ1 ∈ Di(p
1) such that {ω ∈ Ψ→i : p1

ω =

pω} ⊆ Ψ1 and Ψ1
i→ ⊆ Ψi→. This immediately implies eω(Ψ1) ≥ eω(Ψ) for all ω ∈ Ωi

such that p1
ω = pω. Now by (DEFS) we must have {ω ∈ Ω→i−Ψ1 : p1

ω = pω} ⊆ Ω−Ψ′

and Ψ1
→i ⊆ Ψ′→i, implying eω(Ψ′) ≥ eω(Ψ1) for all ω ∈ Ωi such that p′ω = p1

ω.

Combining this with the above, we obtain the desired statement.

(IFS) ⇒ (DFS)

This follows immediately, because the price change conditions in both Cases 1 and 2

of (DFS) are special cases of the price change condition of (IFS).

Submodularity

The proof of the equivalence of the (DFS) condition and the submodularity of the

indirect utility function is completely analogous to the proof of Theorem 2 of Sun and

Yang (2009). We cannot apply Theorem 2 of Sun and Yang (2009) directly, because

in addition to (DFS) ((DCFS) to be precise), Sun and Yang impose monotonicity

and boundedness conditions on ui. The proof of that theorem, however, does not

rely on these additional assumptions. More specifically, it only relies on (i) (DCFS),

(ii) the equivalence of (DCFS) and (DEFS), which we have shown above to hold in

our setting as well, and (iii) the monotonicity of the indirect utility function, which

always holds.
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A.3 Laws of Aggregate Supply and Demand

An important property of fully substitutable preferences in two-sided quasilinear set-

tings is the Law of Aggregate Demand (Hatfield and Milgrom, 2005). Its analogues

for the current setting are the Laws of Aggregate Supply and Demand, introduced by

Hatfield and Kominers (2010b). Below we show that in the current network setting

with quasilinear utilities and continuous transfers, full substitutability implies that

preferences satisfy these laws.

Definition A.5. Agent i’s preferences satisfy the Law of Aggregate Demand if for

all finite sets of contracts Y and Y ′ such that Yi→ = Y ′i→ and Y→i ⊆ Y ′→i, for any

W ∈ Ci(Y ), there exists W ′ ∈ Ci(Y ′) such that |W ′
→i| − |W→i| ≥ |W ′

i→| − |Wi→|.
Agent i’s preferences satisfy the Law of Aggregate Supply if for all finite sets of

contracts Y and Y ′ such that Yi→ ⊆ Y ′i→ and Y→i = Y ′→i, for any W ∈ Ci(Y ), there

exists W ′ ∈ Ci(Y ′) such that |W ′
i→| − |Wi→| ≥ |W ′

→i| − |W→i|.

Theorem A.2. If the preferences of agent i are fully substitutable and quasilinear in

the numeraire, then they satisfy the Laws of Aggregate Supply and Demand.

Proof. We prove the Law of Aggregate Demand; the proof of the Law of Aggregate

Supply is analogous.

Fix a fully substitutable valuation function ui for agent i. First, take two finite sets

of contracts Y and Y ′ such that |Ci(Y )| = |Ci(Y ′)| = 1, Yi→ = Y ′i→, and Y→i ⊆ Y ′→i,

and let W ∈ Ci(Y ), W ′ ∈ Ci(Y ′). Define a modified valuation ũi on τ(Y )∪ τ(Y ′) for

agent i by setting, for each Ψ ⊆ τ(Y ) ∪ τ(Y ′),

ũi(Ψ) = ui(Ψ→i ∪ (τ(Y )−Ψ)i→).

Let C̃i denote the associated choice correspondence. Using the same arguments as

in the proof of Theorem 2 (step 2), one can show that ũi satisfies the gross substitutes

condition of Kelso and Crawford (1982). Furthermore, we must have C̃i(Y ) = {W→i∪
(Y −W )i→} and C̃i(Y

′) = {W ′
→i ∪ (Y −W ′)i→}. Since we assume quasilinear utility,

the law of aggregate demand applies to C̃i (Theorem 7 in Hatfield and Milgrom,

2005). Since Y ⊆ Y ′, this implies |W ′
→i∪ (Y −W ′)i→| ≥ |W→i∪ (Y −W )i→|. The last

inequality is equivalent to |W ′
→i|−|W→i| ≥ |W ′

i→|−|Wi→|, which is precisely what we

needed to show. The proof that the Law of Aggregate Demand for the case in which

choice correspondences are single-valued implies the more general case in which they
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can be multi-valued is analogous to the proof of the implication (DFS)⇒(DEFS) in

Theorem A.1.

Appendix B: Proofs of Results in Sections 4 and 5

Proof of Theorem 2

The proof consists of four steps: (1) transforming the original valuations into bounded

ones, (2) constructing a two-sided many-to-one matching market with transfers, based

on the network market with bounded valuations, (3) picking a full-employment com-

petitive equilibrium in the two-sided market, and (4) using that equilibrium to con-

struct a competitive equilibrium in the original market.

Step 1: We first transform a fully substitutable but potentially unbounded from

below valuation function ui into a fully substitutable and bounded valuation function

ûi. For this purpose, we now introduce a very high price Π. Specifically, for each

agent i, let ui be the highest possible absolute value of the utility of agent i from a

combination of trades, i.e., ui = max{Ψ∈Ωi:|ui(Ψ)|<∞} |ui(Ψ)|. Then set Π = 2
∑

i ui+1.

Consider the following modified economy. Assume that for every trade, the buyer of

that trade can always purchase a perfect substitute for that trade for Π and the seller

of that trade can always produce this trade at the cost of Π with no inputs needed.

Formally, for each agent i, for a set of trades Ψ ⊆ Ωi, let

ûi(Ψ) = max
Ψ′⊆Ψ

[ui(Ψ
′)− Π · |Ψ−Ψ′|] .

For the economy with valuations ûi, let Ûi denote agent i’s utility function and let D̂i

denote the modified demand correspondence. Note that by the choice of Π, for any

Ψ ⊆ Ωi, ui ≥ ûi(Ψ) ≥ max{ui(∅)−Π · |Ψ| , ui(Ψ)}, and that ûi(Ψ) = ui(Ψ) whenever

ui(Ψ) 6= −∞. We will use these facts throughout the proof.

The rest of Step 1 consists of proving the following lemma.

Lemma B.1. Utility function Ûi is fully substitutable.

Proof. We will first prove the following auxiliary statement. Take any fully substi-

tutable valuation function ui. Take any trade φ ∈ Ωi→. Consider a modified valuation
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function uφi :

uφi (Ψ) = max[ui(Ψ), ui(Ψ− φ)− Π].

I.e., this valuation function allows (but does not require) agent i to pay Π instead of

forming one particular trade, φ. Then valuation function uφi is also fully substitutable.

To see this, consider utility Uφ
i and demand Dφ

i corresponding to valuation uφi .

We will show that Dφ
i satisfies (IFS). Fix two price vectors p and p′ such that p ≤ p′

and |Dφ
i (p)| = |Dφ

i (p′)| = 1. Take Ψ ∈ Dφ
i (p) and Ψ′ ∈ Dφ

i (p′). We need to show that

for all ω ∈ Ωi such that pω = p′ω, eω(Ψ) ≤ eω(Ψ′).

Let price vector q coincide with p on all trades other than φ, and set qφ =

min{pφ,Π}. Note that if pφ < Π, then p = q and Dφ
i (p) = Di(p). If pφ > Π,

then under utility Uφ
i , agent i always wants to form trade φ at price pφ, and the only

decision is whether to “buy it out” or not at the cost Π; i.e., the agent’s effective

demand is the same as under price vector q. Thus, Dφ
i (p) = {Ξ ∪ {φ} : Ξ ∈ Di(q)}.

Finally, if pφ = Π, then p = q and Dφ
i (p) = Di(p)∪ {Ξ∪ {φ} : Ξ ∈ Di(p)}. Construct

price vector q′ corresponding to p′ analogously.

Now, if pφ ≤ p′φ < Π, then Dφ
i (p) = Di(p), D

φ
i (p′) = Di(p

′), and thus eω(Ψ) ≤
eω(Ψ′) follows directly from (IFS) for demand Di.

If Π ≤ pφ ≤ p′φ, then (since we assumed that Dφ
i was single-valued at p and p′) it

has to be the case that Di is single-valued at the corresponding price vectors q and q′.

Let Ξ ∈ Di(q) and Ξ′ ∈ Di(q
′). Then Ψ = Ξ∪ {φ}, Ψ′ = Ξ′ ∪ {φ}, and the statement

follows from (IFS) for demand Di, because q ≤ q′.

Finally, if pφ < Π ≤ p′φ, then p = q, Ψ is the unique element in Di(p), and Ψ′

is equal to Ξ′ ∪ {φ}, where Ξ′ is the unique element in Di(q
′). Then for ω 6= φ,

the statement follows from (IFS) for demand Di, because p ≤ q′. For ω = φ, the

statement does not need to be checked, because pφ < p′φ.

Thus, valuation function uφi is fully substitutable. The proof for the case φ ∈ Ω→i

is completely analogous.

To complete the proof of the lemma, it is now enough to note that valuation

function ûi(Ψ) = maxΨ′⊆Ψ [ui(Ψ
′)− Π · |Ψ−Ψ′|] can be obtained from the original

valuation ui by allowing agent i to buy out all of his trades, one by one, and since

each such transformation preserves substitutability, ûi is substitutable as well.

Step 2: We now transform the modified economy with bounded and fully sub-

stitutable valuations ûi into an associated two-sided many-to-one matching market
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with transfers, which will satisfy the assumptions of Kelso and Crawford (1982; sub-

sequently KC). The set of firms in this market is I, and the set of workers is Ω.

Worker ω can be matched to at most one firm. His utility is defined as follows.

If he is matched to firm i ∈ {s(ω), b(ω)}, then his utility is equal to the monetary

transfer that he receives from that firm, i.e., his salary pi,ω, which can in principle be

negative. If he is matched to any other firm i, his utility is equal to −Π − 1 + pi,ω,

where Π is as defined in Step 1 and pi,ω is the salary firm i pays him. If worker ω

remains unmatched, his utility is equal to −2Π− 2.

Firm i can be matched to any set of workers, but only its matches to workers

ω ∈ Ωi have an impact on its valuation. Formally, firm i’s valuation from hiring a set

of workers Ψ ⊆ Ω is given by

ũi (Ψ) = ûi (Ψ→i ∪ (Ω−Ψ)i→)− ûi (Ωi→) ,

where the second term in the difference is simply a constant, which ensures that

ũi (∅) = 0 and thus valuation function ũi satisfies assumption (NFL) of KC. Hiring

a set of workers Ψ ⊆ Ω when the salary vector is p ∈ R|I|×|Ω| yields i a utility of

Ũi([Ψ; p]) ≡ ũi(Ψi)−
∑
ω∈Ψ

pi,ω.

The associated demand correspondence is denoted by D̃i.

Assumption (MP) of KC requires that any firm’s change in valuation from adding

a worker, ω, to any set of other workers is at least as large as the lowest salary worker

ω would be willing to accept from the firm when his only alternative is to remain

unmatched. This assumption is also satisfied in our market: A worker’s utility from

remaining unmatched is −2Π−2, while his valuation, excluding salary, from matching

with any firm is at least −Π−1, and so he would strictly prefer to work for any firm for

negative salary −Π instead of remaining unmatched. At the same time, the change

in valuation of any firm i from adding worker ω to a set of workers Ψ is equal to

ũi(Ψ ∪ {ω}) − ũi(Ψ) ≥ −ūi − ūi > −Π, and thus every firm i would also always

strictly prefer to hire worker ω for the negative salary −Π.

Finally, we show that i’s preferences in this market satisfy the gross substitutes

(GS) condition of KC. Take two salary vectors p, p′ ∈ R|I|×|Ω| such that p ≤ p′ and

|D̃i(p)| = |D̃i(p
′)| = 1. Let Ψ ∈ D̃i(p) and Ψ′ ∈ D̃i(p

′). Denote by q = (pi,ω)ω∈Ω and
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q′ = (p′i,ω)ω∈Ω the vectors of salaries that i faces under p and p′, respectively. Note

that Ψ ∈ D̃i(p) if and only if (Ψ→i ∪ (Ω−Ψ)i→) ∈ D̂i(q) and Ψ′ ∈ D̃i(p
′) if and only

if (Ψ′→i ∪ (Ω − Ψ′)i→) ∈ D̂i(q
′). In particular, |D̂i(q)| = |D̂i(q

′)| = 1. Since q ≤ q′

and demand D̂i is fully substitutable, (IFS) implies that for any ω ∈ Ψ→i such that

qω = q′ω, we have ω ∈ Ψ′→i, and for any ω /∈ (Ωi→ −Ψi→) such that qω = q′ω, we have

ω /∈ (Ωi→−Ψ′i→). In other words, for every ω ∈ Ψ such that qω = q′ω, we have ω ∈ Ψ′,

and thus the (GS) condition is satisfied for all salary vectors for which demand D̃i

is single-valued. By the implication (DFS)⇒(DCFS) of Theorem A.1, it follows that

(GS) is satisfied for all salary vectors.

Step 3: By the results of KC (Theorem 2 and the discussion in Section 2), there

exists a full-employment competitive equilibrium of the two-sided market constructed

in Step 2. Take one such equilibrium, and for every ω and i, let µ(ω) denote the firm

matched to ω in this equilibrium and let ri,ω denote equilibrium salary of ω at i.

Note that in this equilibrium, it must be the case that every worker ω is matched to

either b(ω) or s(ω). Indeed, suppose ω is matched to some other firm i /∈ {b(ω), s(ω)}.
Since by definition, for any Ψ ⊂ Ω, ũi(Ψ∪{ω})− ũi(Ψ) = 0, it must be the case that

ri,ω ≤ 0. Then, for worker ω to weakly prefer to work for i rather than b(ω), it must

be the case that rb(ω),ω ≤ −Π−1. But at that salary, firm b(ω) strictly prefers to hire

ω, contradicting the assumption that ω is not matched to b(ω) in this equilibrium.

Note also that if µ(ω) = b(ω), then rb(ω),ω ≥ rs(ω),ω, and if µ(ω) = s(ω), then

rs(ω),ω ≥ rb(ω),ω (otherwise, worker ω would strictly prefer to change his employer).

Now, define prices pi,ω as follows: if i 6= b(ω) and i 6= s(ω), then pi,ω = ri,ω. Otherwise,

pi,ω = max{rb(ω),ω, rs(ω),ω}. Note that matching µ and associated prices pi,ω also

constitute a competitive equilibrium of the two-sided market.

Step 4: We can now construct a competitive equilibrium for the original economy.

Let p∗ ∈ R|Ω| be defined as p∗ω ≡ pµ(ω),ω for each ω ∈ Ω, i.e., the salary that ω actually

receives in the equilibrium of the two-sided market. Let Ψ∗ ≡ {ω ∈ Ω : µ(ω) = b(ω)},
i.e., the set of trades/workers who in the equilibrium of the two-sided market are

matched to their buyers (and thus not matched to their sellers!).

We now claim that [Ψ∗; p∗] is a competitive equilibrium of the network economy

with bounded valuations ûi. Take any set of trades Ψ ∈ Ωi. We will show that

Ûi([Ψ
∗; p∗]) ≥ Ûi([Ψ; p∗]). By construction, for any ω ∈ Ω→i, ω ∈ Ψ∗ if and only
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if i = µ(ω), and for any ω ∈ Ωi→, ω ∈ Ψ∗ if and only if i 6= µ(ω). Thus, in

the equilibrium of the two-sided market, firm i is matched to the set of workers

Ψ∗→i ∪ (Ωi→ −Ψ∗i→), which implies that

ũi(Ψ
∗
→i ∪ (Ωi→ −Ψ∗i→))−

∑
ω∈Ψ∗→i

pi,ω −
∑

ω∈(Ωi→−Ψ∗i→)

pi,ω

≥ ũi(Ψ→i ∪ (Ωi→ −Ψi→))−
∑
ω∈Ψ→i

pi,ω −
∑

ω∈(Ωi→−Ψi→)

pi,ω. (2)

Using the definition of ũi and the fact that for any set Φ ⊆ Ωi→,
∑

ω∈(Ωi→−Φ) pi,ω =(∑
ω∈Ωi→

pi,ω
)
−
(∑

ω∈Φ pi,ω
)
, we can rewrite the inequality (2) as

ûi(Ψ
∗
→i ∪Ψ∗i→)−

∑
ω∈Ψ∗→i

pi,ω +
∑
ω∈Ψ∗i→

pi,ω ≥ ûi(Ψ→i ∪Ψi→)−
∑
ω∈Ψ→i

pi,ω +
∑
ω∈Ψi→

pi,ω,

which in turn can be rewritten as

Ûi([Ψ
∗; p∗]) = ûi(Ψ

∗
i )−

∑
ω∈Ψ∗→i

p∗ω+
∑
ω∈Ψ∗i→

p∗ω ≥ ûi(Ψ)−
∑
ω∈Ψ→i

p∗ω+
∑
ω∈Ψi→

p∗ω = Û([Ψ; p∗]).

We now show that [Ψ∗; p∗] is an equilibrium of the original economy with valu-

ations ui. Suppose to the contrary that there exists an agent i and a set of trades

Ξ ⊂ Ωi, such that Ui([Ξ; p∗]) > Ui([Ψ
∗; p∗]). Since Ûi([Ξ; p∗]) ≤ Ûi([Ψ

∗; p∗]), and

by the construction of ûi, Ûi([Ξ; p∗]) ≥ Ui([Ξ; p∗]), it follows that Ûi([Ψ
∗; p∗]) >

Ui([Ψ
∗; p∗]). This, in turn, implies that for some nonempty set Φ ⊆ Ψ∗i , we have

ûi(Ψ
∗
i ) = ui(Ψ

∗
i − Φ) − Π · |Φ| ≤ ui − Π. This implies that

∑
j∈I ûj(Ψ

∗) = ûi(Ψ
∗) +∑

j 6=i ûj(Ψ
∗) ≤ ui − Π +

∑
j 6=i uj =

∑
j∈I uj − Π = −

∑
j∈I ui − 1 <

∑
j∈I uj(∅),

contradicting Theorem 3. (The proof of Theorem 3 is entirely self-contained.)

Proof of Theorem 3

If [Ψ; p] is a competitive equilibrium, then for any Ξ ⊆ Ω, we have

ui (Ψ) +
∑
ω∈Ψi→

pω −
∑
ω∈Ψ→i

pω = Ui([Ψ; p]) ≥ Ui([Ξ; p]) = ui (Ξ) +
∑
ω∈Ξi→

pω −
∑
ω∈Ξ→i

pω
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for every i ∈ I. By summing these inequalities over all i ∈ I, we get∑
i∈I

ui (Ψ) ≥
∑
i∈I

ui (Ξ) .

Proof of Theorem 4

Interchangeability of Price Vectors

First, we prove the latter half of Theorem 4, using an approach analogous to that Gul

and Stacchetti (1999) used to prove their Lemma 6. Suppose [Ξ; p] is a competitive

equilibrium and Ψ ⊆ Ω is an efficient set of trades. Since Ψ is efficient, we have

∑
i∈I

[
ui (Ψ) +

∑
ω∈Ψi→

pω −
∑
ω∈Ψ→i

pω

]
=
∑
i∈I

Ui([Ψ; p]) (3)

≥
∑
i∈I

Ui([Ξ; p]) =
∑
i∈I

[
ui (Ξ) +

∑
ω∈Ξi→

pω −
∑
ω∈Ξ→i

pω

]
.

In light of the fact that [Ξ; p] is a competitive equilibrium, so that

ui (Ξ) +
∑
ω∈Ξi→

pω −
∑
ω∈Ξ→i

pω = Ui([Ξ; p])

≥ Ui([Ψ; p]) = ui (Ψ) +
∑
ω∈Ψi→

pω −
∑
ω∈Ψ→i

pω

for every i ∈ I, we see that (3) can hold only if Ui([Ξ; p]) = Ui([Ψ; p]) for every i ∈ I.

Hence (as Ξ ∈ Di(p) for all i ∈ I) we have Ψi ∈ Di(p) for all i ∈ I, and therefore

[Ψ; p] is a competitive equilibrium.

Lattice Structure

The proof is analogous to the proof of Theorem 3 of Sun and Yang (2009), applied to

the network setting. Given a price vector p, let V (p) ≡
∑

i∈I Vi(p). Let Ψ∗ ⊆ Ω be

any efficient set of trades and let U∗ =
∑

i∈I ui(Ψ
∗). Note that for any competitive

equilibrium price vector p∗, V (p∗) = U∗.

We first prove an analogue of Lemma 1 of Sun and Yang (2009).

Lemma B.2. A price vector p′ is a competitive equilibrium price vector if and only

if p′ ∈ argminp V (p).
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Proof. To prove the first implication of the lemma, we let p′ be a competitive equi-

librium price vector and let p be an arbitrary price vector. For each agent i, consider

some arbitrary Ψi ∈ Di(p). By construction, we have

V (p) =
∑
i∈I

Vi(p) =
∑
i∈I

ui(Ψi) +
∑
ω∈Ψi

i→

pω −
∑
ω∈Ψi

→i

pω


≥
∑
i∈I

ui(Ψ∗) +
∑
ω∈Ψ∗i→

pω −
∑
ω∈Ψ∗→i

pω


=
∑
i∈I

ui(Ψ
∗) = U∗ = V (p′),

where the inequality follows from utility maximization.

Now, to prove the other implication of the lemma, let p′ be any price vector that

minimizes V (and thus satisfies V (p′) = U∗). We claim that [Ψ∗; p′] is a competitive

equilibrium. To see this, note that the definition of Vi implies that

Vi(p
′) ≥ ui(Ψ

∗) +
∑
ω∈Ψ∗i→

p′ω −
∑
ω∈Ψ∗→i

p′ω. (4)

Summing (4) across i ∈ I gives

∑
i∈I

Vi(p
′) ≥

∑
i∈I

ui(Ψ∗) +
∑
ω∈Ψ∗i→

p′ω −
∑
ω∈Ψ∗→i

p′ω

 =
∑
i∈I

ui(Ψ
∗) = U∗, (5)

with equality holding exactly when (4) holds with equality for every i. If (4) were

strict for any i, we would obtain V (p′) > U∗ from (5), contradicting the assumption

that p′ minimizes V and thus satisfies V (p′) = U∗. Thus, for all i ∈ I, equality holds

in (4), and thus [Ψ∗; p] is a competitive equilibrium.

Now, suppose p and q are two competitive equilibrium price vectors, and let p∧ q
and p ∨ q denote their meet and join, respectively. Note that

2U∗ ≤ V (p ∧ q) + V (p ∨ q)

≤ V (p) + V (q) = 2U∗,
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where the first inequality follows because (by Lemma B.2) U∗ is the minimal value

of V , the second follows from the submodularity of V (which holds because by The-

orem 1, Vi is submodular for every i ∈ I), and the equality follows from Lemma B.2,

because p and q are competitive equilibrium price vectors. Since we also know that

V (p∧q) ≥ U∗ and V (p∨q) ≥ U∗, it has to be the case that V (p∧q) = V (p∨q) = U∗,

and so by Lemma B.2, p ∧ q and p ∨ q are competitive equilibrium price vectors.

Proof of Theorem 5

Let A ≡ κ ([Ψ; p]). Suppose A is not stable; then either it is not individually rational

or there exists a blocking set.

If A is not individually rational, then Ai /∈ Ci(A) for some i ∈ I. Hence, Ai /∈
argmaxZ⊆Ai

Ui(Z), and therefore τ(Ai) = Ψi /∈ Di(p), contradicting the assumption

that [Ψ; p] is a competitive equilibrium.

Suppose now that there exists a set Z blocking A, and let J = a(Z) be the set

of agents involved in contracts in Z. For any trade ω involved in a contract in Z, let

p̃ω be the price for which (ω, p̃ω) ∈ Z. For each j ∈ J , pick a set Y j ∈ Cj (Z ∪ A).

As Z blocks A, (by definition) we have Zj ⊆ Y j. Since Z ∩ A = ∅, and for all

Y ∈ Cj (Z ∪ A) we have that Zj ⊆ Y and Aj /∈ Cj (Z ∪ A). Hence, for all j ∈ J ,

Uj(A) < Uj(Y
j) =

 uj(τ(Y j))+∑
ω∈τ(Z)j→

p̃ω −
∑

ω∈τ(Z)→j
p̃ω+∑

ω∈τ(Y j−Z)j→
pω −

∑
ω∈τ(Y j−Z)→j

pω

 .
Summing these inequalities over all j ∈ J , we have

∑
j∈J

Uj(A) <
∑
j∈J

[
uj(τ(Y j))+∑

ω∈τ(Y j−Z)j→
pω −

∑
ω∈τ(Y j−Z)→j

pω

]

=
∑
j∈J

 uj(τ(Y j))+∑
ω∈τ(Z)j→

pω −
∑

ω∈τ(Z)→j
pω+∑

ω∈τ(Y j−Z)j→
pω −

∑
ω∈τ(Y j−Z)→j

pω


=
∑
j∈J

[
uj(τ(Y j))+∑

ω∈τ(Y j)j→
pω −

∑
ω∈τ(Y j)→j

pω

]
=
∑
j∈J

Uj(Y
j),

where we repeatedly apply the fact that for every trade ω in τ(Z), the price (first p̃ω
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and then pω) of this trade is added exactly once and subtracted exactly once in the

summation over all agents.

Now, the preceding inequality says that the sum of the utilities of agents in J given

prices p would be strictly higher if each j ∈ J chose Y j instead of Aj. It therefore

must be the case that for some j ∈ J , we have Uj([τ(Y j); p]) > Uj([A; p]). It follows

that Aj /∈ Dj(p), and therefore [Ψ; p] cannot be a competitive equilibrium.

Proof of Theorem 6

Consider a stable set A ⊆ X. For every agent i ∈ I, define a modified valuation

function ûi, on sets of trades Ψ ⊆ Ω− τ(A):

ûi(Ψ) = max
Ξ⊆Ai

ui(Ψ ∪ τ(Ξ)) +
∑

(ω,p̄ω)∈Ξi→

p̄ω −
∑

(ω,p̄ω)∈Ξ→i

p̄ω

 .
In other words, the modified valuation ûi(Ψ) of Ψ is equal to the maximal value

attainable by agent i by combining the trades in Ψi with various subsets of Ai. We

denote the utility function associated to ûi by Ûi. Since the original utilities were

fully substitutable, and thus the choice correspondences Ci satisfied (CEFS), the

choice correspondences Ĉi for utility functions Ûi also satisfy (CEFS) and thus every

Ûi is also fully substitutable.

Now, consider a modified economy for the set of agents I: The set of trades is

Ω − τ(A), and utilities are given by Û . If there is a competitive equilibrium of the

modified economy of the form [∅; p̂Ω−τ(A)], i.e., involving no trades, then we are done.

We combine the prices in this competitive equilibrium with the prices in A to obtain

the price vector p as

pω =

p̄ω (ω, p̄) ∈ A

p̂ω otherwise.

It is clear that [τ(A); p] is a competitive equilibrium of the original economy: since

∅ ∈ D̂i(p̂) for every i, no agent strictly prefers to add trades not in τ(A), and by the

individual rationality of A, no agent strictly prefers to drop any trades in τ(A).

Now suppose there is no competitive equilibrium of this modified economy in

which no trades occur. By Theorem 2, this economy has at least one competitive

equilibrium [Ψ̂; p̂]. By Theorems 3 and 4, we know that Ψ̂ is efficient and ∅ is not.
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It follows that ∑
i∈I ûi(Ψ̂)−

∑
i∈I ûi(∅)

2|Ωi|
> 0;

we denote this value by δ.

Now, consider a second modification of the valuation functions:

ũi(Ψ) = ûi(Ψ)− δ|Ψi|.

We show next that utility functions Ũi corresponding to ũi are fully substitutable.

Take agent i. Take any two price vectors p′ and p′′. Construct a new price vector p̃′

as follows. For every trade ω ∈ Ω − τ(A), p̃′ω = pω + δ if b(ω) = i, p̃′ω = pω − δ if

s(ω) = i, and p̃′ω = 0 if ω /∈ Ωi. Construct price vector p̃′′ analogously, starting with

p′′. Note that for any set of trades Ψ ⊂ Ω − τ(A), we have Ũi([Ψ; p′]) = Ûi([Ψ; p̃′])

and Ũi([Ψ; p′′]) = Ûi([Ψ; p̃′′]), and therefore, for the corresponding indirect utility

functions, we have Ṽi(p
′) = V̂i(p̃

′) and Ṽi(p
′′) = V̂i(p̃

′′).

Now, by the submodularity of V̂i, we have

V̂i(p̃
′ ∧ p̃′′) + V̂i(p̃

′ ∨ p̃′′) ≤ V̂i(p̃
′) + V̂i(p̃

′′),

and therefore

Ṽi(p
′ ∧ p′′) + Ṽi(p

′ ∨ p′′) ≤ Ṽi(p
′) + Ṽi(p

′′).

Hence, Ṽi is submodular, and therefore Ũi is fully substitutable.

Now, by our choice of δ,
∑

i∈I ũi(Ψ̂) >
∑

i∈I ũi(∅). Thus, ∅ is not efficient under

the valuations ũ and therefore cannot be supported in a competitive equilibrium

under those valuations. Take any competitive equilibrium [Ψ̃, q] of the economy with

agents I, trades Ω − τ(A), and utilities Ũ . We know that Ψ̃ 6= ∅. Moreover, since

Ψ̃ ∈ D̃i(q) for every i (where D̃ is the demand correspondence induced by Ũ), we

know that Ũ([Ψ̃; q]) ≥ Ũ([Φ; q]) for any Φ ( Ψ̃, which in turn implies Û([Ψ̃; q]) >

Û([Φ; q]). This, in turn, implies that for all i, in the original economy with trades

Ω and utility functions Ui, the set of trades {(ψ, qψ) : ψ ∈ Ψ̃i} is a subset of every

Y ∈ Ci(A ∪ {(ψ, qψ) : ψ ∈ Ψ̃i}). Thus, {(ψ, qψ) : ψ ∈ Ψ̃i} is a blocking set for A,

contradicting the assumption that A is stable.
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Proof of Theorem 9

Suppose A is a stable outcome that is not strongly group stable. Let Z be a set that

blocks A. By the second part of the proof of Theorem 5, there is no vector of prices

p such that [τ(A) ; p] is a competitive equilibrium. This contradicts Theorem 6. To

see that for any core outcome A there is a stable outcome Â such that τ(A) = τ(Â),

note that by Theorem 8, every core outcome induces an efficient set of trades. By

Theorem 4, we can find a competitive equilibrium corresponding to any efficient set of

trades. Finally, by Theorem 5, the competitive equilibrium induces a stable outcome.

Proof of Theorem 10

We prove the following result, which implies Theorem 10 by a natural inductive

argument:

Lemma B.3. For any feasible outcome A blocked by a nonempty set Z, if Z is not

itself a chain, then there exists a nonempty chain W ( Z such that set A is blocked

by Z −W and set A ∪ (Z −W ) is blocked by W .

Proof. The second part of the statement, that A ∪ (Z −W ) is blocked by W , is true

for any W ⊆ Z: Set Z blocks A, and thus for every agent i involved in W (and hence

in Z), every choice of i from A ∪ Z = (A ∪ (Z −W )) ∪W contains every contract

in Zi, and thus contains every contract in Wi ⊂ Zi. So we only need to prove the

first part of the statement, that we can “remove” some chain W from Z so that the

remaining set Z −W still blocks A.

Also, without loss of generality, we can assume that set A is empty: As in

the proof of Theorem 6, consider a modified economy with the set of available

trades equal to Ω − τ(A) and agents’ valuations over subsets Ψ of this set given

by ûi(Ψ) = maxΞ⊆Ai

[
ui(Ψ ∪ τ(Ξ)) +

∑
(ω,pω)∈Ξi→

pω −
∑

(ω,pω)∈Ξ→i
pω

]
. Agents’ pref-

erences in this modified economy are fully substitutable, and blocking of outcome A

by any set of contracts Y in the original economy is equivalent to blocking of the

empty set of contracts by the same set Y in the modified economy. Note that by

definition, set Y blocks the empty set if and only if for every i involved in Y , the

unique optimal choice of agent i from Yi is equal to Yi itself.

Consider now any contract y ∈ Z, and let y0 = y. We will algorithmically “grow”

a chain

W `s,`b ≡ {y−`s , . . . , y`b}
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by applying (generally in both directions from y0) the iterative procedure below,

starting with `s = `b = 0 and W 0,0 = {y0}. We will ensure that at every step of

the procedure, the following four conditions hold for every agent i. If i 6= b(y`b),

i 6= s(y`s), then Ci(Z − W `s,`b) = {(Z − W `s,`b)i}. If i = b(y`b) 6= s(y`s), then

Ci((Z −W `s,`b) ∪ {y`b}) = {(Z −W `s,`b)i ∪ {y`b}}, and if i = s(y`s) 6= b(y`b), then

Ci((Z−W `s,`b)∪{y`s}) = {(Z−W `s,`b)i∪{y`s}}. Finally, if i = s(y`s) = b(y`b), then

Ci((Z −W `s,`b) ∪ {y`b , y`s}) = {(Z −W `s,`b)i ∪ {y`b , y`s}}. Clearly, these conditions

are satisfied in the beginning. Our chain-growing algorithm has two main steps:

Buyer Step: Let j = b(y`b) 6= s(y`s). If Cj(Z −W `s,`b) = {(Z −W `s,`b)j}, stop.

Otherwise, recall that Cj((Z−W `s,`b)∪{y`b}) = {(Z−W `s,`b)j ∪{y`b}}. This implies

(by full substitutability) that each Y ∈ Cj(Z −W `s,`b) must contain (Z −W `s,`b)→j

as a subset, and also (by the Law of Aggregate Demand; see Section A.3) that each

such Y excludes at most one contract in (Z − W `s,`b)j→. Pick any such Y that

excludes exactly one contract, and denote that excluded contract by y`b+1. Note that

by construction, the unique optimal choice of j from (Z−W `s,`b+1) is (Z−W `s,`b+1)j,

and the four conditions are satisfied for W `s,`b+1.

Seller Step: Let k = s(y`s) 6= b(y`b). Consider its optimal choices from Z −W `s,`b .

If the unique optimal choice is (Z −W `s,`b)k, stop. Otherwise, by analogy with the

Buyer Step, pick contract y`s−1.

As long as s(y`s) 6= b(y`b), we sequentially iterate these two steps for W `s,`b ,

decrementing `s and incrementing `b with each iteration.

Over the course of this process, it may happen that s(y`s) = b(y`b) ≡ h. If

Ch(Z−W `s,`b) = {(Z−W `s,`b)h}, we are done—the chain W `s,`b suffices for the result.

Otherwise, note that as before, by full substitutability and the Laws of Aggregate

Supply and Demand, each Y ∈ Ch(Z−W `s,`b) excludes at most one upstream contract

and at most one downstream contract from (Z −W `s,`b)h. Take any such excluded

contract y, and suppose it is a downstream contract for agent h (the argument if

it is an upstream contract for h is completely analogous). Let y`b+1 = y. Each

Y ∈ Ch((Z − W `s,`b) − {y`b+1}) is, by construction, also in Ch(Z − W `s,`b). Each

such Y contains (Z − W `s,`b) − {y`b+1})h→ as a subset and excludes at most one

contract from (Z − W `s,`b) − {y`b+1})→h. If it so happens that each Y contains

(Z − W `s,`b) − {y`b+1})→h as a subset, then we continue with the Buyer Step on

W `s,`b+1. Otherwise, we select any excluded contract in (Z −W `s,`b) − {y`b+1})→h,
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take it to be y`s−1, and continue with the Buyer Step on W `s−1,`b+1.

Since set Z is finite, this algorithm must terminate, resulting in some chain W `s,`b .

At every iteration, we ensured that for each agent i /∈ {b(y`b), s(y`s)}, Ci(Z−W `s,`b) =

{(Z −W `s,`b)i}. The algorithm’s stopping conditions ensure that the same equality

also holds for i ∈ {b(y`b), s(y`s)}. Thus, the empty set is blocked by Z −W `s,`b .

Proof of Theorem 11

(a) We show first that Ξi ∈ Di(q). In the following let p = maxω∈Ψ pω and ξ ∈ Ψ

be any trade such that pξ = p. Note that |Ξi ∩ Ψ| ∈ {0, 1} due to mutual incom-

patibility, and if ω ∈ Ξi ∩ Ψ then pω = p: Otherwise, perfect substitutability would

imply Ui([Ξ− {ω} ∪ {ξ}; p]) > Ui([Ξ; p]), contradicting the assumption that [Ξ; p] is

a competitive equilibrium.

This implies that prices for trades in Ξi have not been changed in going from p to q

and in particular implies that Ui([Ξi; p]) = Ui([Ξi; q]). Since prices for trades in Ω−Ψ

have also not been changed, we must have Ui([Ξi; q]) = Ui([Ξi; p]) ≥ Ui([Φ; p]) =

Ui([Φ; q]) for all Φ ⊆ Ω−Ψ. Now take any set Φ ⊆ Ω−Ψ and any ω ∈ Ψ. By perfect

substitutability, Ui([Φ ∪ {ω}; q]) ≤ Ui([Φ ∪ {ξ}; q]) = Ui([Φ ∪ {ξ}; p]) ≤ Ui([Ξi; p]) =

Ui([Ξi; q]). Hence, Ξi ∈ Di(q).

Now consider an arbitrary agent j 6= i. If Ξj ∩ Ψ = {ω}, we must have pω = p,

implying Uj([Ξj; q]) = Uj([Ξj; p]). If Ξj ∩ Ψ = ∅ the last statement is evidently true

as well. Let Φ ⊆ Ωj be arbitrary and note that Uj([Φ; q]) ≤ Uj([Φ; p]) since trades

in Φ ∩ Ψ→j have become weakly more expensive. Since Uj([Ξj; q]) = Uj([Ξj; p]) ≥
Uj([Φ; p]), we obtain Ξj ∈ Dj(q). This completes the proof.

(b) Analogous to part (a).

Appendix C: Example Omitted from Section 5.1

In this appendix, we provide an example of an outcome that is stable and in the core,

but is not strongly group stable.

Example C.1. Let I = {i, j}, Ω = {χ, ψ, ω}, and s (χ) = s (ψ) = s (ω) = i and

b (χ) = b (ψ) = b (ω) = j. Furthermore, let agents’ valuations be given by:

43



Ψ ∅ {χ} {ψ} {ω} {χ, ψ} {χ, ω} {ψ, ω} {χ, ψ, ω}
ui(Ψ) 0 0 −2 −2 −2 −2 −9 −20

uj(Ψ) 0 2 1 1 3 3 2 15

.

In this case, any outcome of the form {(χ, pχ)} such that 0 ≤ pχ ≤ 2 is both stable

and in the core. At the same time, any such outcome is not strongly group stable, as

{(ψ, 6) , (ω, 6)} constitutes a block.
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