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Abstract

We develop an unobserved components approach to study surveys of forecasts containing mul-

tiple forecast horizons. Under the assumption that forecasters optimally update their beliefs about

past, current and future state variables as new information arrives, we use our model to extract

information on the degree of predictability of the state variable and the importance of measurement

errors in the observables. Empirical estimates of the model are obtained using survey forecasts of

annual GDP growth and in�ation in the US with forecast horizons ranging from 1 to 24 months,

and the model is found to closely match the joint realization of forecast errors at di¤erent horizons.

Our empirical results suggest that professional forecasters face severe measurement error problems

for GDP growth in real time, while this is much less of a problem for in�ation. Moreover, in-

�ation exhibits greater persistence, and thus is predictable at longer horizons, than GDP growth

and the persistent component of both variables is well-approximated by a low-order autoregressive

speci�cation.
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1 Introduction

Much can be learned by studying how forecasters update their beliefs about economic variables such

as output growth or in�ation through time. Speci�cally, data on forecasts recorded at multiple hori-

zons reveal how persistent agents believe the underlying variables are, the value of new information

arriving between updating points, and the importance of measurement errors surrounding economic

variables.

The econometric analysis of multi-horizon survey data is, however, complicated by several fac-

tors. First, since forecasts are recorded at both long and short horizons, there is considerable overlap

in the forecasts and forecast errors. Second, the fact that measurement errors in the underlying

variables a¤ect agents�forecasts introduces a signal extraction problem in agents�learning process,

and causes further dependence in forecast errors measured at di¤erent horizons. For these reasons,

only limited results are available using this type of ��xed event�data, see Nordhaus (1987), Swi-

dler and Ketcher (1990), Davies and Lahiri (1995), Clements (1997), Isiklar, Lahiri and Loungani

(2006), and Lahiri and Sheng (2008).

This paper develops a new approach for extracting information on how rapidly agents learn

about the state of the economy and characterizing their views about temporary and persistent

components in the predicted variable. Speci�cally, we develop a framework for studying panels

of forecasts containing numerous di¤erent forecast horizons (�large H�) recorded for relatively

few time periods (�small T�). The �rst contribution of this paper is to analytically reveal the

rich information available by studying how forecasts of a variable measured at a low frequency

(e.g., annual GDP growth) are updated at a higher frequency (monthly, in our case). We do so

by modeling agents�learning problem�accounting for how they simultaneously backcast, nowcast

and forecast past, current and future variables�in the context of a set of Kalman �lter updating

equations. We then seek to exploit this information using method-of-moments-based estimation

techniques to match the properties of forecasts observed across di¤erent horizons with the moments

implied by our model for agents�updating process. To conduct inference, we propose a method for

simulating standard errors of the moments that are consistent with the underlying model. To our
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knowledge, this approach for modelling learning and conducting inference has not previously been

considered in the literature. We also develop a maximum likelihood approach for estimating the

parameters of the model.

The �large H� nature of our data enables us to answer a number of interesting questions

that are intractable with forecasts of just one or two di¤erent horizons, such as the importance

of measurement errors, the rate at which uncertainty about macroeconomic variables is resolved

as the forecast horizon is reduced, and forecasters�beliefs about the current state of the economy

(as measured by their �nowcasts�of GDP growth and in�ation). It is of course no surprise that

uncertainty about macroeconomic variables declines as the date the variable is revealed draws

nearer; the novel aspect of this paper is to propose a model that theoretically explains both the

level and the shape of this uncertainty as a function of the forecast horizon.

The second contribution of this paper is empirical: we use consensus forecasts of US in�ation

and GDP growth over 1990-2004, and �nd many interesting results. Consistent with our model,

we �nd that the rate of uncertainty resolution is faster at short and medium horizons than at long

horizons, due in part to the presence of a persistent component in the predicted series, in part to

forecasters�access to noisy data on current-period realizations. Measurement error appears to be

important in forecasts of GDP growth but much less so for in�ation, a �nding that is consistent

with other studies of measurement error in macroeconomic variables, but using di¤erent data sets,

see, e.g., Croushore and Stark (2001).

The plan of the paper is as follows. Section 2 presents our model for how forecasters update their

predictions as the forecast horizon shrinks and discusses various estimation and inference methods.

Section 3 presents empirical results using data from Consensus Economics over the period 1990-2004

and Section 4 concludes. Proofs and additional technical details are contained in appendices.

2 Multi-horizon Forecast Errors

We start by developing a model for how forecasters update their beliefs about macroeconomic

variables such as output growth and in�ation. Our analysis makes use of the rich information
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available in high frequency revisions of forecasts of a variable observed at a lower frequency, e.g.,

monthly revisions to forecasts of annual in�ation. Since we shall be concerned with �ow variables

that agents gradually learn about as new information arrives prior to and during the period of their

measurement, the fact that part of the outcome may be known prior to the end of the measurement

period (the �event date�) introduces additional complications, and means that the timing of the

forecasts has to be carefully considered.

Our analysis assumes that agents have a squared loss function over the forecast error, etjt�h �

zt � ẑtjt�h, where zt is the predicted variable, ẑtjt�h is the forecast computed at time t� h, t is the

event date and h is the forecast horizon. Other loss functions have been discussed by, e.g., Patton

and Timmermann (2007). One advantage of assuming squared loss is that it is easier to justify

focusing on aggregate or consensus forecasts, as we shall be doing here, computed as an average

of the individual forecasts. Under this loss function, the optimal h�period forecast is simply the

conditional expectation of zt given information at time t� h;Ft�h:

ẑtjt�h = E[ztjFt�h]: (1)

To study agents�learning process we keep the event date, t, �xed and vary the forecast horizon, h.

2.1 A Benchmark Model

Since the predicted variable in our application is measured less frequently than the forecasts are

revised, it is convenient to describe the target variable as a rolling sum of a higher-frequency

variable. To this end, let yt denote the single-period variable (e.g., monthly log-�rst di¤erences of

GDP or a log-price index tracking in�ation), while the rolling sum of the 12 most recent single-

period observations of y is denoted zt :

zt =

11X
j=0

yt�j : (2)
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Our model is based on a decomposition of yt into a persistent (and thus predictable) �rst-order

autoregressive component, xt, and a temporary component, ut:

yt = xt + ut (3)

xt = �xt�1 + "t; � 1 < � < 1

ut � iid (0; �2u); "t � iid (0; �2"); E[ut"s] = 0 8 t; s:

Here � measures the persistence of xt, while ut and "t are innovations assumed to be both serially

uncorrelated and mutually uncorrelated. Setting yt to be a combination of an AR(1) process and

an unpredictable process implies that yt follows an ARMA(1,1), see Granger and Newbold (1986)

for example. Without loss of generality, we assume that the unconditional mean of xt, and thus yt

and zt, is zero.

Our use of a variable tracking monthly changes in GDP (yt) is simply a modelling device: US

GDP �gures are currently only available quarterly. Economic forecasters, however, can almost

certainly be assumed to employ higher frequency data when constructing their monthly forecasts

of GDP. Giannone, et al. (2008) and Aruoba, et al. (2009), for example, propose methods to

incorporate into macroeconomic forecasts news about the economy between formal announcement

dates. When we take our model to data we focus on those aspects of the model that have empirical

counterparts.

The assumption that the predicted variable contains a �rst-order autoregressive component,

while clearly an approximation, is able to capture the presence of a persistent component in most

macroeconomic data. For example, much of the dynamics in the common factors extracted from

large cross-sections of macroeconomic variables by Stock and Watson (2002) is captured by low-

order autoregressive terms. It is straight-forward to allow more lags or other observed variables

to enter in the forecasting model, although the latter approach is complicated by the existence of

literally hundreds of economic state variables that could be adopted in such models, (Stock and

Watson (2006)), �real time�revisions to such data (Diebold and Rudebusch (1991)) and uncertainty

about which models agents actually use (Garratt et al. (2003)).

We �rst present results under simple, but unrealistic, assumptions about the forecasters�infor-
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mation set in order to reveal some basic properties of the problem. We introduce more realistic

assumptions in the next section. Under the assumption that both xt and yt are observed at time t,

the simplicity of our benchmark model allows an analytic characterization of how the mean squared

forecast error (MSE) evolves as a function of the forecast horizon (h):

Proposition 1 Suppose that yt can be decomposed into a persistent component (xt) and a tem-

porary component (ut) satisfying equation (3) and forecasters minimize the squared loss given the

information set Ft = � ([xt�j ; yt�j ] ; j = 0; 1; 2; :::). Then the mean squared forecast error as a

function of the forecast horizon is given by:

E
h
e2tjt�h

i
=

8>>>>><>>>>>:
12�2u +

1
(1��)2

�
12� 2�(1��

12)
1�� +

�2(1��24)
1��2

�
�2"

+
�2(1��12)

2
(1��2h�24)

(1��)3(1+�) �2"; for h � 12

h�2u +
1

(1��)2

�
h� 2�(1��

h)
1�� +

�2(1��2h)
1��2

�
�2"; for h < 12

Proposition 1 is proved in the Appendix and is simple to interpret: The �rst term in the

expression for the mean squared error captures the unpredictable component, ut: The second term

captures uncertainty about shocks to the remaining values of the persistent component, xt, over

the measurement period. The additional term in the expression for h � 12 comes from having to

predict xt�11, the initial value of the persistent component at the beginning of the measurement

period.

To illustrate Proposition 1, Figure 1 plots the root mean squared error (RMSE) for h =

1; 2; :::; 24 using parameters similar to those we obtain in the empirical analysis for U.S. GDP

growth. Holding the unconditional variance of annual GDP growth, �2z; and the ratio of the tran-

sitory component variance to the persistent component variance, �2u=�
2
x, �xed we show the impact

of varying the persistence parameter, �. The �gure shows the large impact that this parameter

has on the shape of the RMSE function. For h < 12; the RMSE grows as a square root of the

length of the forecast horizon if y has no persistent component (� = 0). Conversely, the presence

of a persistent component gives rise to a more gradual decline in the forecast error variance as the
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horizon is reduced. Uncertainty is resolved more gradually, the higher the value of �. Notice also

how the change in RMSE gets smaller at the longest horizons, irrespective of the value of �.

2.2 Measurement Errors

Proposition 1 is helpful in establishing intuition for the drivers of how macroeconomic uncertainty

gets resolved through time. However, it also has some signi�cant shortcomings. Most obviously,

it assumes that forecasters observe both the predicted variable, y, and its persistent component,

x, without error, and so uncertainty vanishes completely as h ! 0: Macroeconomic variables are,

however, to varying degrees, subject to measurement errors as re�ected in data revisions and

changes in benchmark weights. Such errors are less important for survey-based in�ation measures

such as the consumer price index (CPI). Revisions are, however, very common for measures of

output, such as GDP, see, e.g., Croushore and Stark (2001), Croushore (2006), and Corradi et al.

(2009).

Measurement errors make the forecasters�problem more di¢ cult and introduce a signal extrac-

tion problem: the greater the measurement error, the noisier are past observations of y and hence

the less precise the forecasters�readings of the state of the economy. They also mean that forecast-

ers cannot simply �plug in�observed values of past y�s during the measurement period (h < 12):

these quantities must also be estimated.

To account for these e¤ects, we cast our original model in state-space form with a state equation264 1 �1

0 1

375
264 yt

xt

375 =

264 0 0

0 �

375
264 yt�1

xt�1

375+
264 ut
"t

375 (4)

264 ut
"t

375 s iid

0B@0;
264 �2u 0

0 �2"

375
1CA :

Next assume that agents only observe yt with error, and that xt is unobserved. This setup is far

more realistic for economic data which are often subject to measurement error and whose persistent

components are not directly observable. If, for example, the measurement error is assumed iid then
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the measurement equation for this system becomes:

~yt = yt + �t; �t � iid (0; �2�): (5)

Faust et al. (2005) �nd that revisions to U.S. GDP �gures are essentially unpredictable, motivating

the simple iid noise structure used above.

Despite its simplicity, this model does not yield a formula for the term structure of RMSE-

values that is readily interpretable. The key di¢ culty that arises is best illustrated by considering

�current-year� forecasts (1 � h < 12). When producing a current-year forecast at time t � h,

economic agents must use past and current information to �backcast�realizations yt�11; :::; yt�h�1;

they must also produce a �nowcast� for the current month yt�h; and, �nally, must predict future

realizations, yt�h+1; ::; yt. When the persistent component, xt, is not observable, the resulting

forecast errors will generally be serially correlated even after conditioning on all information that is

available to the agents. Handling this problem is di¢ cult and requires expressing past, current and

future forecast errors in terms of the primitive shocks, ut; "t and �t, which are serially uncorrelated.

We show how to accomplish this for a more general model in the next section.

2.3 A More General Model

We now extend the state-space model introduced in the previous section in two directions. First,

we allow the measurement error facing the forecasters to be either iid or follow an MA(1) process.

These cases correspond to the measurement error occurring directly in the growth rate, or in the

log-level of the series (which then becomes an MA(1) error term on the growth rate).

Second, the de�nition of the �annual� rate of change in the variable need not be the simple

December-on-December change as assumed in equation (2) above. Rather, it may be de�ned as the

change in the �average� level of the series in one year relative to that in the previous year. This

is the form of the annual variable used in our empirical analysis below. In Appendix B we show

that various alternative de�nitions of the annual growth rate can be represented as simple weighted

sums of the most recent 24 monthly growth rates:

zt =

23X
j=0

!jyt�j : (6)

7



In the simple de�nition used in equation (2) the weights equal one for each of the most recent

twelve months and zero for the rest; in Appendix B we show that for other de�nitions the weights

take an �inverted V�shape as a function of the lag.

Given the above considerations, and to more easily handle the backcasting, nowcasting, and

forecasting aspects of the forecasters� problem, it is convenient to extend the state variable to

include an additional error term and its lag (vt and vt�1), as well as 28 lags of the monthly growth

rate, yt. (Strictly, we only need 23 lags for the derivations in this section, but the additional 5 lags

are required in Section 2.5 and create no additional complexity.) The state equation is then:

�t = F�t�1 + �t (7)

where �t �
�
xt vt vt�1 yt � � � yt�28

�0
,

�t �
�
"t vt 0 "t + ut 01�28

�0
;

F =

2666666666664

� 0 0

0 0 0 04�29

0 1 0

� 0 0

028�3 I28 028�1

3777777777775
;

and �t s iid (0;Q) ;

where Q =

2666666666664

�2" 0 0 �2"

0 �2v 0 0 04�28

0 0 0 0

�2" 0 0 �2" + �
2
u

028�4 028�28

3777777777775
:

where 0m�n is a (m� n) matrix of zeros, and Ik is a k-dimensional identity matrix.

While more complicated in appearance, the data generating process for the key variables (xt; yt)

is unchanged from the previous section. The measurement equation is generalized to allow for the
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possibility of an MA(1) measurement error:

~yt = H0�t +wt; (8)

where H �
�
0 1 � 1 01�28

�0
;

wt s iid N (0;R) ;

and E
�
�tw

0
s

�
= 0 8 s; t:

In our application the measurement variable is a scalar (and wt = �t) but we will present our

theoretical framework for the general case where ~yt is a vector. Further, in our application the

error term wt is not strictly needed, as it is nested in the MA(1) error in equation (8), but we

include it for ease of comparison with the above model and with other state-space models. The

simple iid noise structure is obtained by setting � = 0: (In this case one should set either �2� = 0

or �2� = 0, as these parameters are not separately identi�ed when � = 0:) Alternatively, if the

measurement errors faced by forecasters were iid in the levels of the series, this would suggest an

MA(1) error structure in the growth rates, in which case we would set � = �1 and �2� = 0:

The annual target variable, zt; is de�ned as a weighted sum of the most recent 24 values of the

monthly growth rates:

zt =

23X
j=0

!jyt�j = 
0
0�t;

where 0 =

�
01�3 !0 01�5

�0
;

! =

�
!0 !1 � � � !23

�0
:

Di¤erent choices for the weight vector !; corresponding to di¤erent de�nitions of the annual vari-

able, are discussed in Appendix B.

In generating their forecasts, we assume that our forecasters know the form and parameters of

the data generating process, presented in equations (7) and (8), and we further assume that they

use the Kalman �lter to optimally predict (forecast, nowcast and backcast) the values of yt needed

for the forecast of the annual variable, zt: Thus the learning problem faced by the forecasters in our

model relates to the latent state of the economy (measured by xt and yt), but not to the parameters
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of the model. This simpli�cation is necessitated by our short time series of data. We also assume

that the forecaster has been using the Kalman �lter long enough that all updating matrices are at

their steady-state values. This is done simply to remove any �start of sample�e¤ects that may or

may not be present in the data. Let:

~Ft = �
�
~yt; ~yt�1; :::; ~y1

�
;

�̂tjt�1 � E
h
�tj ~Ft�1

i
� Et�1 [�t] ;

ŷtjt�1 � E
h
~ytj ~Ft�1

i
� Et�1 [~yt] .

Following Hamilton (1994), de�ne the following matrices

Pt+1jt � E

��
�t+1 � �̂t+1jt

��
�t+1��̂t+1jt

�0�
=

�
F�KtH

0�Ptjt�1 �F0�HK0
t

�
+KtRK

0
t+Q! P1;

Kt � FPtjt�1H
�
H0Ptjt�1H+R

��1 !K; (9)

Ptjt � E

��
�t��̂tjt

��
�t��̂tjt

�0�
= Ptjt�1�Ptjt�1H

�
H0Ptjt�1H+R

��1
H0Ptjt�1

! P1�P1H
�
H0P1H+R

��1
H0P1�P0:

The convergence of Ptjt�1; Ptjt and Kt to their steady-state values relies on j�j < 1, and we

impose this in the estimation. To initialize these matrices we use their unconditional equivalents,

P1j0 � E
�
(�t�E [�t]) (�t � E [�t])0

�
and �̂1j0 = E [�t] : Estimates of the state variables are updated

via

�̂tjt= �̂tjt�1+Ptjt�1H
�
H0Ptjt�1H+R

��1 �
~yt�H0�̂tjt�1

�
, (10)

while the multi-step prediction error uses

�̂t+hjt = Fh�̂tjt;

Pt+hjt � E

��
�t+h��̂t+hjt

��
�t+h��̂t+hjt

�0�
(11)

= FhPtjt
�
F0
�h
+

h�1X
j=0

FjQ
�
F0
�j ! Ph, for h � 1:
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The full set of MSE-values across di¤erent horizons can now be extracted from Ph :

ẑtjt�h � E
h
ztj ~Ft�h

i
=  00�̂tjt�h

yielding MSEh � E
h�
zt � ẑtjt�h

�2i
=  00Ph0, for h � 0: (12)

Note that for h < 12 the optimal forecast ẑtjt�h involves a combination of forecasts, E
h
yt�h+j j ~Ft�h

i
for j > 0; nowcasts, E

h
yt�hj ~Ft�h

i
; and backcasts, E

h
yt�h�kj ~Ft�h

i
for k > 0: Our use of an

extended state equation means that these terms are all captured in the above expressions without

having to handle them separately.

Figure 2 uses these equations to illustrate the impact of measurement error on the RMSE-values

at di¤erent horizons. For this illustration, we set � = �� = 0 and vary �� as a function of �u;

so the measurement error variance is expressed in terms of the innovation variance for y. In the

absence of measurement errors the RMSE will converge to zero as h! 0, whereas in the presence

of measurement error the RMSE will converge to some positive quantity. As the horizon, h, shrinks

towards zero, the relative importance of measurement errors grows. Moreover, the RMSE function

gets �atter as the size of the measurement error increases. Note, however, that measurement error

plays no part for long-horizon forecasts, since its impact on overall uncertainty is small relative to

other sources of uncertainty, and so Figure 2 resembles Figure 1 for long horizon forecasts. This

also shows that the persistence (�) and measurement error (�2�) parameters are separately identi�ed

by jointly considering long and short horizon forecast errors, and illustrates the rich information

contained in survey forecasts covering multiple forecast horizons.

The analytical results in this section show that a simple model of the forecasting environment

faced by macroeconomic forecasters in practice can accommodate a rich set of empirical phenomena:

with just four free parameters a variety of RMSE patterns is obtained. Further, by studying such

a model in detail we gain some quantitative insight into the key drivers of macroeconomic forecast

errors. We next move on to matching the parameters of our model to data.
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2.4 GMM Estimation

Our initial strategy for estimation is to choose the parameters that enable the model to match the

observed forecast errors as closely as possible. To this end, we estimate the parameters using the

Generalized Methods of Moments (GMM) based on the moment conditions obtained by matching

the sample MSE, T�1
PT
t=1 e

2
tjt�h at various forecast horizons to the population mean squared

errors, MSEh (�), implied by our model. Our parameter estimates are obtained from:

�̂T � argmin
�

gT (�)
0WTgT (�) (13)

gT (�) � 1

T

TX
t=1

266666664

e2tjt�1 �MSE1 (�)

e2tjt�2 �MSE2 (�)
...

e2tjt�H �MSEH (�)

377777775
(14)

where � �
�
�2u; �

2
"; �; �

2
v; �
�0 and MSEh (�) is obtained using Proposition 1 or the updating equa-

tions leading to (12).

In situations with large H there are several over-identifying restrictions, and so the choice of

weighting matrix, WT , in the GMM estimation is important. In our initial estimates we use the

identity matrix as the weighting matrix so that all horizons get equal weight in the estimation

procedure; this is not fully e¢ cient, but is justi�ed by our focus on modeling the entire term

structure of forecast errors. For comparison, we also present e¢ cient GMM estimates, using the

inverse covariance matrix of the moment conditions as the weighting matrix. The covariance

matrix of the sample moments is also used to compute standard errors and test the over-identifying

conditions. In our application the sample is only T = 14 years long while we have H = 24 forecast

horizons and so it is not feasible to estimate this matrix directly from the data since this would

require controlling for the correlation between the sample moments induced by overlaps across the

24 horizons. Fortunately, given the simple structure of our model, for a given parameter value we

can compute a model-implied covariance matrix of the sample moments. Under the assumption

that the model is correctly speci�ed, this matrix captures the correlation between sample moments

induced by overlaps and serial persistence.
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To obtain P1; P0; and K we simulate 100 non-overlapping years of data and update Ptjt�1;

Ptjt and Kt following Hamilton (1994). We use these matrices at the end of the 100th year as

estimates of P1; P0; and K: To obtain the covariance matrix of the moments, used to compute

standard errors and the test of over-identifying restrictions, we use the model-implied covariance

matrix of the moments, based on the parameter estimate from the �rst-stage GMM. This matrix is

not available in closed-form and so we simulate 1,000 non-overlapping years of data to estimate it,

imposing that the innovations to these processes (�t and wt) are normally distributed, and using

the expressions given above to obtain the Kalman �lter forecasts.

We use only six forecast horizons (h = 1; 3; 6; 12; 18; 24) in the estimation, rather than the full

set of 24, in response to studies of the �nite-sample properties of GMM estimates (e.g.,Tauchen,

(1986)) which �nd that using many more moment conditions than required for identi�cation leads

to poor approximations from the asymptotic theory, particularly when the moments are highly

correlated, as in our application. We have also estimated the models presented in this paper using

the full set of 24 moment conditions and the results were qualitatively similar.

2.5 Maximum Likelihood Estimation

With the analytical formulas for the model-implied mean squared forecast errors given in the pre-

vious section, obtaining GMM estimates of the unknown model parameters is straightforward.

Normality is su¢ cient but not necessary for the GMM estimates: under non-normality, our ap-

proach is still applicable if we assume that forecasters construct their predictions as optimal linear

projections rather than expectations. However, in this case the Kalman �lter is no longer optimal,

and another �lter based on di¤erent distributional assumptions may perform better.

Under normality, however, GMM su¤ers from the usual drawback that it is less e¢ cient than

fully-speci�ed maximum likelihood (ML). In this section we describe the steps required to estimate

the model by ML. This approach is complicated by the fact that forecasts of varying horizons

appear in the survey across di¤erent months. We address this by extending the econometrician�s

measurement variable (that is, the variable observable to us) to include a hypothetical full set of

forecasts, with horizons from h = 1 to h = 24; at each month. This simpli�es the algebra, but
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introduces the problem that not all of these variables are actually observable at each point in time.

We use the approach presented in Aruoba et al. (2009) to address this problem.

2.5.1 The econometrician�s state and measurement variables

Recall from Section 2.3 that the forecasters�state and measurement variables are �t and ~yt, respec-

tively. In turn, the econometrician�s state and measurement variables are

�t
(65�1)

� [ �0t
(32�1)

; �̂
0
tjt

(32�1)
; ~y0t
(1�1)

]0 (15)

�t
(30�1)

� [ẑt+24;t;ẑt+23;t; :::; ẑt+1;t; zt; zt�1; :::; zt�5]
0:

Hence ~yt, which is observed by forecasters but not by the econometrician, can be interpreted as

a summary statistic for all the information forecasters observe that helps them predict the actual

target variable. These variables give rise to a two-layered Kalman �lter, as we will use the Kalman

�lter to handle the inference problem faced by the econometrician on top of the Kalman �lter

assumed to be employed by the forecasters in our sample.

We �rst show that we can write the econometrician�s state variable as following a VAR(1). The

forecaster�s nowcast of the state variable is given by (see Hamilton (1994)):

�̂tjt = F�̂t�1jt�1 +P1H
�
H0P1H+R

��1 �
~yt �H0F�̂t�1jt�1

�
(16)

=
�
I� �A1H

0�F�̂t�1jt�1 + �A1~yt

where �A1 � P1H
�
H0P1H+R

��1
:

Next, we note that

~yt = H0�t + �t

= H0F�t�1 +H
0�t + �t; (17)

and so �̂tjt =
�
I� �A1H

0�F�̂t�1jt�1 + �A1
�
H0F�t�1 +H

0�t + �t
�

=
�
I� �A1H

0�F�̂t�1jt�1 + �A1H
0F�t�1 + �A1H

0�t + �A1�t:
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Pulling these together, we �nd that the econometrician�s state variable follows a VAR(1):

�t =

266664
�t

�̂tjt

~Yt

377775 =
266664

F 032�32 032�1

�A1H
0F

�
I� �A1H

0�F 032�1

H0F 01�32 0

377775
266664

�t�1

�̂t�1jt�1

~Yt�1

377775

+

266664
�t

�A1H
0�t + �A1�t

H0�t + �t

377775 ; or,

�t = F��t�1 + �
�
t ; (18)

where V [��t ] � Q� =

266664
�� ��H

0
1
�A ��H

�A01H�� �A1H
0��H�A

0
1+�A1R�A

0
1
�A1H

0��H+ �A1R

H0�� H0��H�A
0
1+R

0 �A01 H0��H+R

377775 :
(Starred objects refer to the econometrician�s inference problem.) Next we show that the econo-

metrician�s measurement variables are linear functions of his state variables:

�t =

2666666666666664

ẑt+24jt
...

ẑt+1jt

zt
...

zt�5

3777777777777775
=

26666666666666666664

 00F
24

024�32
... 024�1

 00F

 00

 0�1 06�33
...

 0�5

37777777777777777775

266664
�t

�̂tjt

~Yt

377775+

2666666666666664

w�24jt
...

w�1jt

w�0jt
...

w��5jt

3777777777777775
;

�t = H�0�t +w
�
t ; (19)

where w�t s iid (0;R�) ;

and �j �
�
01�(3+j) !0 01�(5�j)

�0
for j = 0; 1; ::; 5,

The vectors �j generate the lagged annual variable zt�j from the elements of the variable �t:

The error term in the econometrician�s measurement equation, w�t ; is included to accommodate

the possibility of errors in the survey of forecasters�predictions. In the absence of such errors this

variable can be set to zero (i.e., set R� = 0).
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With the expressions in equations (18) and (19) we have thus shown that the econometrician�s

problem �ts into a standard state-space framework. We next discuss how we handle the fact that

�t is not completely observed by the econometrician.

2.5.2 Dealing with �missing� forecasts

Now we address the fact that in our data set the econometrician does not get to observe a full set of

24 forecasts at each point in time. Rather, we only observe two forecasts, and possibly a realization

of the annual target variable. For example, if date t is January, then the observed variable is

��t =
�
ẑt+24jt; ẑt+12jt

�0
: If we were in April, then the measurement variable contains two forecasts

and the value for the actual in the year ended in December, and so ��t =
�
ẑt+21jt; ẑt+9jt; zt�3

�0
:

To handle these �missing�forecasts, we follow the approach of Aruoba et al. (2009). Let Jt be

a 30� 1 vector of ones and zeros indicating which elements of �t are observable at time t, and let

nt = �
0Jt be the number of ones in the vector Jt: De�ne the �selection matrix�St as a (nt � 30)

matrix containing the rows of I30 that correspond to the elements of Jt that equal one. This allows

us to write the nt � 1 sub-vector of �t, ��t :

��t = St�t: (20)

As Aruoba et al. (2009) explain, the Kalman �lter can be applied to problems with missing data

by exploiting the above mapping from �t to ��t:

Let �Ft = �
�
��t; ��t�1; :::; ��1

�
denote the information set available to the econometrician at

time t. In a minor abuse of notation we denote the econometrician�s expectations with �hats�,

even though these expectations are based on a di¤erent (smaller) information set to that of the

forecasters:

b��tjt�1 � E h��tj �Ft�1i , �̂tjt�1 � E h�tj �Ft�1i , �̂tjt�1 � E h�tj �Ft�1i : (21)

To obtain the likelihood for this model, we need to obtain the residuals and their covariance matrix
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at each point in time. The residuals in the standard case with no �missing�forecasts are

et � �t � �̂tjt�1 (22)

=
�
H�0�t +w

�
t

�
�H�0�̂tjt�1

= H�0
�
�t � �̂tjt�1

�
+w�t ;

and V [et] = H�0P�tjt�1H
� +R� � Qtjt�1;

where P�tjt�1 � E

��
�t � �̂tjt�1

��
�t � �̂tjt�1

�0�
:

The corresponding expressions for the residuals when we account for the fact that some of the

forecasts are not observed at each point in time is:

�et � ��t � b��tjt�1 (23)

= St

�
�t � �̂tjt�1

�
;

and V [�et] = StQtjt�1S
0
t � �Qtjt�1:

Finally, we need expressions for obtaining the forecasts of the measurement and state variables,

and for updating the variance matrices:

b��tjt�1 � St�̂tjt�1 = StH
�0�̂tjt�1;

and �̂tjt�1 = F��̂t�1jt�1; (24)

�̂tjt = �̂tjt�1 +P
�
tjt�1H

� �Q�1tjt�1�et;

P�tjt = P�tjt�1 �P
�
tjt�1H

�S0t �Q
�1
tjt�1StH

�0P�tjt�1;

P�t+1jt = F�P�tjtF
� +Q�:

With this in hand, we can now write down the log-likelihood for this problem, where at each point

in time we �zero out�the impact of the unobserved measurement variables, and only compute the

log-likelihood for those elements of �t that we observe. Thus our log-likelihood is:

logL (�) = �1
2

TX
t=1

n
nt log (2�) + log

����Qtjt�1 (�)���+ �e0t (�) �Q�1tjt�1 (�)�et (�)o ; (25)

where we have made the dependence of �Qtjt�1 and �et on the unknown parameter vector explicit.

As usual, we initialize the expectations and covariance matrices at their unconditional equivalents.
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3 Empirical Results

3.1 Data

Our data is taken from the Consensus Economics (CE) Inc. forecasts which comprise polls of

private sector forecasters and are widely considered by organizations such as the IMF and the U.S.

Federal Reserve. Each month participants are asked about their views of a range of variables for

the major economies and the consensus (average) forecast is recorded. Our analysis focuses on US

real GDP growth and Consumer Price Index (CPI) in�ation for the current and subsequent year.

This gives us 24 monthly next-year and current-year forecasts over the period January 1990 to

December 2004 or a total of 24 � 14 = 336 monthly observations. Naturally our observations are

not independent draws but are subject to a set of tight restrictions across horizons, as revealed by

the analysis in the previous section.

The CE database tracks the views of professional forecasters. Economic interest in professional

forecasts arises from the fact that these forecasts are used as inputs to the decisions of economic

agents such as �rms and consumers, see Granger and Machina (2006) for discussion, and that

consensus forecasts from professional forecasters have been found to out-perform consensus forecasts

from households in terms of forecast accuracy, see Ang et al. (2007). Further, the size and breadth

of the professional forecasting industry makes this an interesting sector in its own right. For

example, the CE survey we use draws on forecasts from over 70 unique institutions, including

banks, non-�nancial corporations, and government agencies.

Our assumption that the forecasters e¢ ciently update their forecasts on a monthly basis as new

information becomes available is likely to be a better characterization of professional forecasters�

behavior than households�behavior, as the latter have been found to update their forecasts rather

less frequently (Carroll (2003)). Our analysis also assumes that forecasters have a squared error

loss function. Under this loss function, the objective of professional forecasters is to report an

unbiased forecast for the eventual forecast user. Of course, if the objectives of the professional

forecasters and the forecast users di¤er, then there could be principal-agent issues related to how

professional forecasters generate their forecasts (see, e.g., Ottaviani and Sorensen (2006)). This
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could also lead to distortions from using a consensus estimate rather than basing the analysis on

individual forecasters�predictions or considering the dispersion in beliefs as done by Patton and

Timmermann (2008). These issues are not addressed in our analysis.

As a prelude to our analysis of the RMSE function, we initially undertook a range of statistical

tests that check for biases and serial correlation in the forecast errors. We tested for biases in

the forecasts by testing whether the forecast errors were mean zero and by estimating �Mincer-

Zarnowitz�(1969) (MZ) regressions and autocorrelation regressions

yt = �h0 + �
h
1 ŷtjt�h + �tjt�h; (26)

etjt�h = h0 + 
h
1et�12jjt�12j�h + �tjt�h:

In the latter regression we set j = 1 for h � 12 and j = 2 for h > 12 to account for the fact

that even perfectly optimal forecasts can generate forecast errors that are serially correlated at lags

shorter than the forecast horizon. We test optimality by testing that �h0 = 0; �h1 = 1 in the MZ

regression, and by testing that h0 = 
h
1 = 0 in the forecast error regression, for h = 1; :::; 24: The

results are presented in Table 1. For GDP growth, there was no evidence of signi�cant forecast bias

and only limited evidence against rationality in the MZ or forecast error regressions. For in�ation,

these tests revealed some evidence against forecast rationality at horizons beyond one year. The

modeling framework described in the previous section assumes that forecasts at all horizons are

rational, but does not require that we include the full set of horizons in the estimation, and so it

is possible to drop the forecasts that fail one or more of these tests of rationality and estimate the

model only using the remaining forecasts. In what follows we include all forecasts in the analysis

for simplicity, and proceed to estimate the parameters of our model under the assumption that

forecasters use information e¢ ciently.

The CE survey de�nes the annual target variable as a rate of growth in an average of the level

of the GDP or CPI series, rather than as a simple December-on-December change in the log-levels

of these series. We discuss the exact form of the CE de�nition in Appendix B. In our analysis,

we use the measure of the target variable published by Consensus Economics in the year after

the measurement period, and in Appendix B we show that this variable can be represented as a
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weighted sum of (the unobserved) monthly changes in the log-level of these series.

3.2 Parameter Estimates and Tests

The simple benchmark model contains just three free parameters, namely the variance of the inno-

vations in the temporary (�2u) and persistent (�
2
") components, and the persistence parameter, �,

for the predictable component. The expressions for the MSE as a function of h; stated in Propo-

sition 1 for the benchmark model and in equation (12) for the model that allows for measurement

error, enable us to use GMM to estimate the unknown parameters given a panel of forecast errors

measured at various horizons. These parameters are not separately identi�able if forecasts for a

single horizon are all that is available so access to multi-horizon forecasts is crucial to our analysis.

Since the variance of the h-period forecast error grows linearly in �2u while �
2
" and � generally

a¤ect the MSE in a non-linear fashion, these parameters can be identi�ed from a sequence of MSE-

values corresponding to di¤erent forecast horizons, h, provided at least three di¤erent horizons are

available.

Figure 3 plots the RMSE-values for output growth and in�ation at the 24 di¤erent horizons.

(Note that we plot RMSE and not MSE, for ease of interpretation, and so these plots would not

be linear in the case of � = 0.) In the case of output growth the RMSE shrinks from about 1.5%

at the 24-month horizon to 1% at the 12-month horizon and 0.3% at the 1-month horizon. For

in�ation it ranges from 0.7% at the two-year horizon to 0.5% at the 12-month horizon and less than

0.06% at the 1-month horizon. Forecast precision improves systematically as the forecast horizon

is reduced, as expected. Moreover, consistent with Proposition 1, the rate at which the RMSE

declines is smaller in the next-year forecasts (h � 12) than in current-year forecasts (h < 12).

The �tted values from the model without measurement error (where we impose �2v = � = 0),

also shown in Figure 3, clearly illustrate the limitation of this speci�cation. This model assumes

that forecasters get a very precise reading of the outcome towards the end of the current year

and hence forces the �tted estimate of the RMSE to decline sharply at short forecast horizons.

This property is clearly at odds with the GDP growth data and means that the benchmark model

without measurement error does not succeed in simultaneously capturing the behavior of the RMSE
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at both the short and long horizons. For in�ation forecasts the assumption of zero measurement

error appears broadly consistent with the data. This is consistent with Croushore and Stark (2001)

who report that revisions in reported GDP �gures tend to be larger than those in reported in�ation

�gures, and with Giannone et al. (2008) who note that �nowcasting�GDP in real time is a di¢ cult

statistical task, whereas it is less so for in�ation as reliable estimates of in�ation are available at a

monthly frequency.

Table 2 presents estimates of the unknown parameters obtained by GMM using the identity

weight matrix, e¢ cient GMM and maximum likelihood. First consider Panel A of Table 2 which

presents parameter estimates and provides a formal test of the �no noise�model. Unsurprisingly,

in view of Figure 3, this model is strongly rejected for GDP growth, and it is also rejected for

in�ation, indicating the need for a small but non-zero measurement error component. Notice that

the estimate of � is positive for GMM, but negative for e¢ cient GMM. While this at �rst seems

odd, it can be explained by considering the structure of the annual target variable and the weights

used in e¢ cient GMM. As shown in Appendix B, the annual target variable used by Consensus

Economics can be expressed as a weighted sum of monthly changes, which induces a substantial

amount of autocorrelation in the annual series, independent of the value of �: For example, keeping

the other parameters �xed at their values for GDP growth, the �rst-order autocorrelations in

the annual target variable when � = �0:9; 0 or 0:9 are 0.15, 0.22 and 0.55. Using the same

parameters and the weighting scheme underlying the annual in�ation variable we obtain �rst-order

autocorrelations of 0.25, 0.25 and 0.57. Thus apparently large di¤erences in this parameter do not

translate to correspondingly large di¤erences in the predicted behavior of the target variable.

Panel B of Table 2 presents parameter estimates for the model extended to allow for iid mea-

surement errors which introduces an extra parameter, �2�, re�ecting the magnitude of measurement

errors. This model passes the speci�cation tests for both GDP growth and in�ation and thus there

is little statistical evidence against our simple speci�cation, once measurement errors are consid-

ered. Of course, this does not mean that these simple speci�cations would be preferred with a

longer time series of data, which might help identify richer dynamics in GDP growth or in�ation.

Panel B also reveals that the predictable component of in�ation is more persistent than that in
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output growth, according to all three estimation methods.

Finally, we estimate a third model, which allows for an iid measurement error in the forecasters�

observation of the log-level of these series, inducing an MA(1) error in their observation of its growth

rate, with MA coe¢ cient of -1. (With a longer sample of data it is possible to estimate the MA

parameter freely, allowing the data to decide whether it equals 0, corresponding to iid noise, -1,

corresponding to iid noise on the level, or some other value. In our short sample of data we found

that this parameter was not well-identi�ed, and so we do not attempt to estimate it here.) The

parameter estimates for this model are presented in Panel C of Table 2. For both GDP growth

and in�ation, we �nd quite similar results to the iid error case presented in Panel B: the MA(1)

model is not rejected using the test of over-identifying restrictions, and the parameter estimates

are similar. Note that the model for in�ation is poorly estimated under ML. From both the value

of the GMM objective function and the log-likelihood, we see that the iid measurement error is

preferred for GDP growth, while the MA(1) error speci�cation is preferred for in�ation.

4 Conclusion

This paper considered survey forecasts of macroeconomic variables which hold the �event� date

constant, while varying the length of the forecast horizon. We proposed a simple, parsimonious

unobserved components model and developed tools for estimation and inference based on simulation

methods that account for the forecasters�learning problem. Our methods can be used to estimate

the size of measurement errors in the underlying variables and the degree of persistence in the data

generating process.

Empirically, our analysis con�rms several �ndings in the existing literature that were obtained

using very di¤erent data sets: (1) Professional forecasters face severe measurement error prob-

lems for GDP growth in real time, while this is much less of an issue for in�ation; (2) in�ation

exhibits greater persistence, and thus is predictable at longer horizons, than GDP growth; and

(3) the persistent component of these variables is well-approximated by a low-order autoregressive

speci�cation.
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Appendix A: Proof of Proposition 1
Proof of Proposition 1. Since zt =

P11
j=0 yt�j and yt = xt + ut, where xt is the persistent

component, forecasting zt given information h months prior to the end of the measurement period,

Ft�h = fxt�h; yt�h; xt�h�1; yt�h�1; :::g, requires accounting for the persistence in x. Note that

xt�h+1 = �xt�h + "t�h+1

xt�h+2 = �
2xt�h + �"t�h+1 + "t�h+2

...

xt = �
hxt�h +

h�1X
j=0

�j"t�j :

Adding up these terms we �nd that, for h � 12,

zt =
11X
j=0

xt�j +
11X
j=0

ut�j

=
�(1� �12)
1� � xt�12 +

1

1� �

11X
j=0

(1� �12�j)"t�12+1+j +
11X
j=0

ut�j :

Thus the optimal forecast for h � 12 is

ẑtjt�h � E [ztjFt�h] =
11X
j=0

E [yt�j jFt�h] =
11X
j=0

�h�jxt�h;

so ẑtjt�h =
�h�11

�
1� �12

�
1� � xt�h , for h � 12:

For the current-year forecasts (h < 12) the optimal forecast of zt makes use of those realizations of

y that have already been observed. Thus the optimal forecast is:

ẑtjt�h =
11X
j=0

E [yt�j jFt�h] =
11X
j=h

yt�j +
h�1X
j=0

E [xt�j jFt�h] =
11X
j=h

yt�j +
h�1X
j=0

�h�jxt�h;

so ẑtjt�h =
11X
j=h

yt�j +
�
�
1� �h

�
1� � xt�h , for h < 12:

Using these expressions for the optimal forecasts, we can derive the forecast error, etjt�h � zt�ẑtjt�h;
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as a function of the forecast horizon. For h � 12,

etjt�h =
11X
j=0

ut�j +
11X
j=0

xt�j �
�h�11

�
1� �12

�
1� � xt�h

=
11X
j=0

ut�j +
11X
j=0

1� �j+1

1� � "t�j +
h�1X
j=12

�j�11
�
1� �12

�
1� � "t�j :

In computing the variance of etjt�h we exploit the fact that u and " are independent of each other

at all lags. For h �12,

E
h
e2tjt�h

i
=

11X
j=0

E
�
u2t�j

�
+

11X
j=0

�
1� �j+1

�2
(1� �)2

E
�
"2t�j

�
+

h�1X
j=12

�2j�22
�
1� �12

�2
(1� �)2

E
�
"2t�j

�
= 12�2u +

�2"

(1� �)2

 
12� 2

�
�
1� �12

�
1� � +

�2
�
1� �24

��
1� �2

� !

+
�2
�
1� �12

�2 �
1� �2h�24

�
(1� �)3 (1 + �)

�2";

as presented in the proposition. For h < 12 we have:

etjt�h =
11X
j=0

yt�j �
11X
j=h

yt�j �
�
�
1� �h

�
1� � xt�h

=
h�1X
j=0

ut�j +
h�1X
j=0

1� �j+1

1� � "t�j ;

so E
h
e2tjt�h

i
=

h�1X
j=0

E
�
u2t�j

�
+
h�1X
j=0

�
1� �j+1

�2
(1� �)2

E
�
"2t�j

�
= h�2u +

�2"

(1� �)2

 
h� 2

�
�
1� �h

�
1� � +

�2
�
1� �2h

�
1� �2

!
:

Appendix B: Representation of the annual target variable
In this appendix we show that the yearly growth rates used by Consensus Economics (CE) as the

target variables for their surveys can be represented as a weighted sum of monthly rates of growth.

When the yearly variable is a simple December-on-December growth rate this representation is

perfect; when the yearly variable is a growth rate involving averages of the level of the series within

a calendar year (as in CE�s de�nition) this representation is only an approximation, but one that

is extremely accurate for realistic parameter values.
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Let pt be the level of a series (in�ation or GDP growth, for example) measured in month t: The

CE yearly variables for in�ation and GDP growth are de�ned as:

zINFt � �pt
�pt�12

� 1 and zGDPt � ~pt
~pt�12

� 1;

where �pt � 1

12

11X
k=0

pt�k and ~pt �
1

4

3X
k=0

pt�3k:

We now show that we can represent zINFt and zGDPt as weighted sums of log-di¤erences of pt;

yt � log (pt=pt�1) : First, take the in�ation de�nition. We obtain an expression for �pt as a non-

linear function of the monthly growth rates:

pt�k = pt�24 exp

8<:
23X
j=k

yt�j

9=; ;
�pt � 1

12

11X
k=0

pt�k = pt�24
1

12

11X
k=0

exp

8<:
23X
j=k

yt�j

9=;
= exp

8<:
23X
j=12

yt�j

9=; pt�24 112
11X
k=0

exp

8<:
11X
j=k

yt�j

9=; ;
and �pt�12 = pt�24

1

12

23X
k=12

exp

8<:
23X
j=k

yt�j

9=; ;
so

�pt
�pt�12

=
exp

nP23
j=12 yt�j

o
pt�24

1
12

P11
k=0 exp

nP11
j=k yt�j

o
pt�24

1
12

P23
k=12 exp

nP23
j=k yt�j

o
=

exp
nP23

j=12 yt�j
oP11

k=0 exp
nP11

j=k yt�j
o

P23
k=12 exp

nP23
j=k yt�j

o :

Note that we have not employed any approximations so far. Next we use the approximation
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exp fag � 1 + a when a � 0: So

zINFt � �pt
�pt�12

� 1 � log
�

�pt
�pt�12

�

= log

0@exp
nP23

j=12 yt�j
oP11

k=0 exp
nP11

j=k yt�j
o

P23
k=12 exp

nP23
j=k yt�j

o
1A

=

23X
j=12

yt�j + log

0@ 11X
k=0

exp

8<:
11X
j=k

yt�j

9=;
1A� log

0@ 23X
k=12

exp

8<:
23X
j=k

yt�j

9=;
1A

�
23X
j=12

yt�j + log

0@ 11X
k=0

0@1 + 11X
j=k

yt�j

1A1A� log
0@ 23X
k=12

0@1 + 23X
j=k

yt�j

1A1A
=

23X
j=12

yt�j + log

0@12 + 11X
k=0

11X
j=k

yt�j

1A� log
0@12 + 23X

k=12

23X
j=k

yt�j

1A
=

23X
j=12

yt�j + log

 
12 +

11X
k=0

(k + 1) yt�k

!
� log

 
12 +

23X
k=12

(k � 11) yt�k

!
:

Then we apply this approximation again, to obtain log (12 + a) � log (12)+a=12 when a � 0: This

allows:

zINFt �
23X
j=12

yt�j + log (12) +
1

12

11X
k=0

(k + 1) yt�k � log (12)�
1

12

23X
k=12

(k � 11) yt�k

=

23X
j=12

yt�j +
1

12

11X
k=0

(k + 1) yt�k �
1

12

23X
k=12

(k � 11) yt�k

=
11X
k=0

k + 1

12
yt�k +

23X
k=12

23� k
12

yt�k

�
23X
k=0

!INFk yt�k;

where !INFk �

8><>: 1� jk � 11j =12 0 � k < 24

0; k � 24
:

A similar set of computations for the GDP target variable (details available upon request) yields

the following weights:
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zGDPt � ~pt
~pt�12

� 1 �
23X
k=0

!GDPk yt�k;

where !GDPk =

8><>: 1� jbk=3c � 3j =4 0 � k < 24

0; k � 24
;

and bac rounds a down to the nearest integer.

To con�rm that the approximations used above are reasonable in practice, we ran the following

simulation study. We generated 10,000 samples of 24 �months�of log-changes in the variable, yt. We

assume that the monthly growth rates are iid uniformly distributed in the range [�5%;+5%] : (Note

that this degree of volatility is rather high, which works against the accuracy of our approximation.)

We then computed the exact annual target variable (either in�ation or GDP) using each of these

24 months of log-changes, and labelled this zXi ; for X 2 fINF;GDPg : Finally, we compute the

R2 of the analytical approximation for the true annual growth rates, across the 10,000 replications.

These R2-values were 0.9950 and 0.9949 respectively.

To compare the analytical weights with the optimal linear approximation to the annual variable

using these monthly growth rates, we regress the exact annual target variable on the 24 monthly

log-growth rates across the 10,000 replications:

zINFi =

23X
j=0

�jy
(i)
24�j + ui; i = 1; 2; :::; 10000:

zGDPi =
23X
j=0

jy
(i)
24�j + ei:

The R2 from these regressions were 0.9951 and 0.9949 respectively. The estimated coe¢ cients, along

with the analytical approximate weights derived above, are presented in Figure 4. This �gure shows

that the analytical approximation is essentially identical to the optimal linear approximation. To

see how volatility in this variable a¤ects the approximation, we also considered monthly growth

rates as distributed in the ranges [�10%;+10%] and [�2:5%; 2:5%] : The R2-values both slightly

fell to 0.98 in the �rst case, and both rose to 0.999 in the second case.
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Table 1: Rationality tests for consensus forecasts of US GDP growth and In�ation

GDP Growth In�ation

Horizon Bias MZ Autocorr Bias MZ Autocorr
1 0.85 0.95 0.23 0.76 0.60 0.30
2 0.78 0.96 0.26 0.84 0.79 0.64
3 0.47 0.72 0.13 0.25 0.34 0.34
4 0.50 0.28 0.42 0.13 0.30 0.28
5 0.42 0.23 0.42 0.11 0.26 0.27
6 0.67 0.05 0.59 0.14 0.27 0.25
7 0.80 0.30 0.70 0.10 0.11 0.28
8 0.83 0.45 0.75 0.42 0.06 0.82
9 0.34 0.48 0.48 0.92 0.18 0.97
10 0.15 0.30 0.04 0.62 0.11 0.74
11 0.06 0.17 0.00 0.58 0.16 0.35
12 0.08 0.21 0.08 0.95 0.04 0.44
13 0.13 0.32 0.02 0.51 0.00 0.68
14 0.16 0.34 0.00 0.33 0.00 0.23
15 0.25 0.50 0.04 0.16 0.00 0.03
16 0.49 0.79 0.09 0.09 0.00 0.00
17 0.61 0.87 0.08 0.13 0.04 0.00
18 0.67 0.87 0.24 0.09 0.03 0.00
19 0.68 0.63 0.28 0.06 0.04 0.00
20 0.69 0.32 0.27 0.04 0.01 0.00
21 0.66 0.28 0.22 0.05 0.01 0.00
22 0.68 0.25 0.20 0.06 0.03 0.00
23 0.69 0.20 0.25 0.04 0.01 0.00
24 0.62 0.84 0.21 0.04 0.02 0.00

Notes: For horizons ranging from 1 to 24 months, this table presents p-values from three tests of
forecast rationality for the consensus forecasts of GDP growth (columns 1-3) and in�ation (columns
4-6). For each variable, the �rst column presents the results of a test for bias in the forecasts; the
second column presents the p-values from a joint test that, for each horizon, h, �h0 = 0 \ �h1 = 1
in the Mincer-Zarnowitz regression of the realized value of the target variable on the forecast:
yt = �

h
0 +�

h
1 ŷtjt�h+ �tjt�h; the third column in each panel presents the p-values from a test for zero

mean and zero autocorrelation in the forecast errors, based on a regression of the forecast error on
its corresponding monthly lag during the previous year (for horizons up to 12 months) or the year
prior to that (for horizons greater than 12 months).
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Table 2: GMM parameter estimates of the consensus forecast model

PANEL A: No measurement error

GDP Growth In�ation

GMM GMMeff MLE GMM GMMeff MLE

�2u 0:000
(� � )

0:000
(� � )

0:186
(0:081)

0:037
(0:035)

0:000
(� � )

0:017
(0:106)

�2" 0:048
(0:043)

1:759
(1:249)

0:001
(0:000)

0:000
(0:001)

0:4259
(0:132)

0:000
(0:001)

� 0:586
(0:249)

�0:853
(0:185)

0:996
(0:002)

0:993
(0:275)

�0:999
(0:383)

0:999
(0:001)

�2v � 10 0:000
(� � )

0:000
(� � )

0:000
(� � )

0:000
(� � )

0:000
(� � )

0:000
(� � )

� 0:000
(� � )

0:000
(� � )

0:000
(� � )

0:000
(� � )

0:000
(� � )

0:000
(� � )

J p-value 0:000 0:000 � � 0:000 0:000 � �
QGMM � 103 36:743 16504 7630:7 0:032 377:91 41:035
logL �2518:5 �1214:1 �211:3 �244:6 �2621:3 �64:95

Notes: The table reports estimates of the parameters of the Kalman �lter model �tted to the
Consensus Economics forecasts with standard errors in parentheses. Three estimation methods
are considered: GMM using the identity weight matrix, e¢ cient GMM (GMMeff ), and maximum
likelihood (MLE). The p-values from the J-tests of over-identifying restrictions for the two GMM
estimates are given in the third-last row. The �nal two rows presents the values of the GMM ob-
jective function, with identity weight matrix, and the log-likelihoods, at the estimated parameters.
Panel A presents results when the model is estimated imposing that there is no measurement error
(i.e., �2v = � = 0), Panel B presents results when an iid measurement error (i.e., setting � = 0) is
considered, and Panel C presents results when a MA(1) measurement error is considered, imposing
that � = �1.
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Table 2: GMM parameter estimates of the consensus forecast model

PANEL B: iid measurement error

GDP Growth In�ation

GMM GMMeff MLE GMM GMMeff MLE

�2u 0:000
(� � )

0:000
(� � )

0:494
(0:208)

0:035
(0:011)

0:038
(0:002)

1:235
(0:838)

�2" 0:033
(0:041)

0:029
(0:010)

0:002
(0:000)

0:000
(0:001)

0:000
(0:000)

0:005
(0:001)

� 0:663
(0:292)

0:671
(0:077)

0:997
(0:002)

0:974
(0:223)

0:999
(0:105)

0:999
(0:001)

�2v � 10 0:116
(0:117)

0:142
(0:080)

0:074
(0:055)

0:004
(0:012)

0:004
(0:002)

0:031
(0:080)

� 0:000
(� � )

0:000
(� � )

0:000
(� � )

0:000
(� � )

0:000
(� � )

0:000
(� � )

J p-value 0:698 0:895 � � 0:990 1:000 � �
QGMM � 103 13:409 55:396 155952 0:001 0:015 1327033
logL �2417:6 �2416:5 �192:4 �684:26 �110:6 �60:304

PANEL C: MA(1) measurement error

GDP Growth In�ation

GMM GMMeff MLE GMM GMMeff MLE

�2u 0:000
(� � )

0:000
(� � )

0:499
(0:115)

0:026
(0:022)

0:023
(0:004)

0:238
(0:838)

�2" 0:017
(0:033)

0:471
(0:091)

0:002
(0:000)

0:000
(0:002)

0:001
(0:001)

0:001
(0:001)

� 0:771
(0:320)

�0:976
(0:061)

0:996
(0:002)

0:928
(0:262)

0:915
(0:107)

0:999
(0:001)

�2v � 10 1:421
(2:098)

2:753
(1:807)

0:247
(0:093)

0:158
(0:266)

0:187
(0:036)

16:45
(0:080)

� �1:00
(� � )

�1:00
(� � )

�1:00
(� � )

�1:00
(� � )

�1:00
(� � )

�1:00
(� � )

J p-value 0:000 0:519 � � 0:981 1:000 � �
QGMM � 103 29:766 2040:50 170186 0:001 0:004 45425
logL �2317:0 �1319:4 �200:4 �1464:8 �1608:4 �57:826

Notes: See the previous page.
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Figure 1: Root-mean squared forecast errors (RMSE) as a function of the forecast horizon (h) for
various degrees of persistence (�) in the predictable component
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Figure 2: Root-mean squared forecast errors (RMSE) as a function of the forecast horizon (h) for
various levels of measurement error in the predicted variable (larger k implies greater meas. error).
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Figure 3: Root mean squared forecast errors (RMSE) for US GDP growth and In�ation as a function
of the forecast horizon, for three di¤erent models.
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Figure 4: Weights on monthly growth rates to obtain the annual target variables used by Consensus
Economics via analytical approximation or by OLS estimation.
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