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1 Introduction

This paper underscores learning about the “nature” of shocks in explaining salient features of

emerging market economy (EME) business cycles–the higher variability of consumption relative to

output and the negative correlation between cyclical components of the trade balance and output.

To do so, it builds a small open economy model in which the representative agent observes all the

past and current total factor productivity (TFP) shocks and knows the stochastic properties of the

distributions of trend growth and transitory components, but does not observe the realizations of

the individual components. Using the available information, she forms expectations about trend

growth (or permanent) and transitory (or cycle) components of TFP shocks using the Kalman

filter.1

Two key mechanisms in the imperfect information model help explain the regularities in the

data. First, under perfect information, in response to a positive and persistent trend growth shock,

the agent reduces her labor supply due to the wealth effect while increasing her investment. When

the persistence of the trend growth shock is higher than a threshold (around 0.2 in our calibration),

the decline in labor supply leads to a fall in output even after capital starts to accumulate. This

leads the model to generate low correlations of output with consumption and investment. Under

imperfect information, when a positive, persistent trend growth shock hits, the agent only gradually

realizes that the economy was hit by such a shock. This, in turn, contains the fall in hours worked,

preventing a decline in output.

Second, under imperfect information, when the signals are modeled as trend plus cycle, the

beliefs about the contemporaneous trend growth shock relative to the cycle shock can be higher

even when the variability of the trend growth shock is lower than that of the cycle shock. To

further elaborate, define TFP as At ≡ eztΓα
t .2 Γt represents the cumulative product of growth

shocks defined by Γt = egtΓt−1 =
∏t

s=0 egs . z and g are Normal AR(1) processes. The growth rate

of A can be written as ln(gA
t ) ≡ ln

(
At

At−1

)
= αgt+zt−zt−1. Under imperfect information, the agent

optimally decomposes the signals, ln(gA
t ), into trend growth, gt, and change in the cycle, zt − zt−1.

This, in turn, implies that when updating the beliefs about the changes in the cycle, she updates

her beliefs not only about the contemporaneous cycle shock but also its first lag. This backward
1Apart from the imperfect information and associated learning, our model is a canonical small open economy RBC

model featuring production with endogenous capital and labor, with capital adjustment costs. The representative
agent has access to international capital markets through a one-period non-contingent bond.

2α is labor share of output and appears in the definition of total TFP because of the labor augmenting trend
shock assumption. See Section 3 for a more detailed description.
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revision has no implications for the already executed decisions in the previous period. However, it

implies that in response to a positive signal, the agent may improve her beliefs about the change in

the cycle, i.e., zt− zt−1, by not only improving her beliefs about the contemporaneous cycle shock,

zt, but also by lowering her beliefs about its first lag, zt−1. Therefore, a given upward updating of

zt − zt−1 can be attained by improving the beliefs about contemporaneous cycle shock, zt, by less

than she would in a setting without the backward revision of zt−1 (e.g., trend plus pure noise).

These two key mechanisms–due to imperfect information coupled with stronger reactions of the

policy functions to the trend growth shocks compared with the cycle–are sufficient for the model

to generate “permanent-like” responses even when trend growth shocks are not predominant. Cali-

brated to Mexico, the imperfect information model can generate a higher variability of consumption

relative to output and a strong negative correlation between the trade balance and output for a

wide range of relative variance of trend shocks. A standard deviation of trend shocks relative to

cycle shocks in the interval [0.5, 5] allows the model to match the key features of emerging market

moments reasonably well.3

To reconcile the key differences between emerging and developed economy business cycles, we

study an extension of our baseline model in which we introduce an additional noisy signal that

reveals information about the permanent component of the TFP. This allows us to vary the degree

of information imperfection while keeping all other structural parameters unchanged including for

the TFP.4 Starting from the baseline imperfect information model for Mexico and reducing the

noisiness (variance) of the signal, the model moments move closer to those of developed economies

regarding variability of consumption and cyclical behavior of the trade balance. This structural

analysis shows that the degree of uncertainty that agents face while formulating expectations can

help explain key differences of EME business cycles compared to developed countries.

Why is imperfect information relevant for accounting for the EME business cycles? Because

EMEs are likely to be surrounded by an additional layer of uncertainty due to lesser transparency,

poorer institutional quality, and greater political uncertainty. These features would make it harder

to predict how policy makers would react to a given shock, which, in turn, would make it more

difficult for agents to form expectations about whether a given shock will have a permanent or

transitory impact.

To provide suggestive evidence about the severity of informational frictions, we analyze the
3We generate our baseline results with Cobb-Douglas preferences. However, we also show in Section 4.4 that our

results are robust to using Greenwood-Hercowitz-Huffmann (GHH) preferences (Greenwood et al., 1988).
4Notice particularly that in this case, the relative variance of trend shocks would remain unchanged.
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behavior of the GDP growth forecasting errors for EMEs and developed countries. Four facts

emerge from this analysis. First, we find that the root mean squared error (RMSE) of these errors

for EMEs is twice that of developed economies. This unpredictability declines considerably with the

level of development also in relative terms (i.e., considering the standard deviation relative to the

variation of the underlying series). Second, these errors are more likely to have non-zero means in

EMEs, a symptom of systematic errors. Third, the data reveal significant first order autocorrelation

for some EMEs, while none of the developed countries show this pattern. Finally, the dispersion of

analysts’ forecasts for GDP growth is twice as much for emerging market economies (EMEs) than

that for developed countries. We realize that informational frictions are difficult to measure since

they are abstract in nature and therefore our findings using forecast errors are suggestive rather

than conclusive, which is one of our motivations for building a structural model.

Our paper mainly contributes to the emerging market business cycles literature including Aguiar

and Gopinath (2007) (AG) and Garcia-Cicco, Pancrazzi and Uribe (2010) (GPU), Mendoza (1995,

2010), Neumeyer and Perri (2005), Oviedo (2005), and Uribe and Yue (2006), among others.5 AG

show that introducing trend shocks to an, otherwise, standard small open economy real business

cycle model can account for the salient features of economic fluctuations in EMEs.6 In order for

the perfect information model to account for the two key features of EME business cycles, a high

variability of innovation to trend shocks as well as a low autocorrelation of the trend growth shocks

are necessary. Our imperfect information model relaxes these assumptions considerably. More

specifically, our model can generate the salient features of emerging market business cycles for a

wider range of standard deviation and persistence of trend growth shocks. In a related paper,

GPU argue that RBC model could imply spurious dynamics such as a need for highly dominant

trend shocks as well as a near-unit root behavior of the trade balance-GDP ratio.7 Our imperfect

information model performs well on these two dimensions since our model does not need to resort

highly dominant trend growth shocks, and implies a stationary, downward slopping behavior for

the trade balance-GDP ratio.
5An early contribution in this literature includes Mendoza (1991), who provides a workhorse real business cycle

model for small open economies. Mendoza’s model calibrated to Canada proves successful in explaining the observed
persistence and variability of output fluctuations as well as counter-cyclicality of trade balance.

6The intuition for this result relies on the permanent-income theory of consumption. If faced with a positive trend
growth shock to output, the agent increases her consumption by more than the increase in current output since she
expects an even higher output in the following period. This mechanism generates a consumption profile that is more
volatile than output and also a trade balance deficit in response to a positive trend growth shock for the agent to
finance a consumption level above output.

7In a related paper, Chang and Fernandez (2008) also study the driving forces of the emerging market business
cycles using a Bayesian approach. Their estimation assigns relatively less weight for the importance of trend growth
shocks.
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Our paper does not undermine the importance of trend shocks, financial frictions or terms of

trade shocks. Our paper complements the earlier studies by explicitly modeling a friction that has

largely been overlooked. Also our paper makes an important methodological contribution to a large

literature on macro models with learning. To our knowledge, ours is the first paper to incorporate

a learning problem with permanent shocks as well as persistent AR(1) transitory shocks using

Kalman filtering techniques into a dynamic stochastic general equilibrium growth model.8

Last but not the least, our model contributes to the “news shocks” literature (e.g., Jaimovich

and Rebelo (2009) and Lorenzoni (2006), Schmitt-Grohe and Uribe (2008), among others). As

shown by these studies, the standard RBC model with Cobb-Douglas preferences implies coun-

terfactual dynamics on labor supply in response to positive news shocks; labor supply drops on

impact due to positive wealth effect–similar to the dynamics of labor supply in response to highly

persistent trend growth shocks. Many of the recent studies have focused on building frameworks

that deliver empirically-plausible dynamics of labor. Jaimovich and Rebelo (2009), for example,

propose “quasi-GHH preferences” to contain the large wealth effect. Our analysis shows that an

alternative modeling approach could be the introduction of learning in an environment with trend

growth shocks. Highly persistent trend growth shocks have similar economic interpretation as news

shocks and the gradual learning in our framework leads to realistic dynamics of labor supply.

The rest of the paper is structured as follows. The next section presents our empirical findings.

Section 3 introduces the model as well as the information structure and the consequent learning

process. Section 4 presents our baseline quantitative analysis and sensitivity. Section 5 concludes

and discusses extensions for further research.

2 Empirical Evidence: Comparison of Forecast Errors

To provide a suggestive evidence as to whether there are any differences in the uncertainty faced in

EMEs compared with developed economies, we calculate the standard deviations of forecast errors,

check the efficiency of these forecasts, and also examine forecast errors’ autocorrelation structure.
8In this literature, Nieuwerburgh and Veldkamp (2004) study U.S. business cycle asymmetries in an RBC frame-

work with asymmetric learning regarding transitory TFP shocks. Boz (2009) investigates the business cycle im-
plications of learning about persistent productivity shocks. This model does not allow simultaneously for both,
permanent and transitory shocks. Edge, Laubach and Williams (2004) show that uncertainty with respect to the
nature of productivity shocks (permanent shifts versus transitory shocks) helps explain some of the U.S. business
cycle characteristics. They model signals as trend plus iid shocks, whereas we model signals as trend plus AR(1)
cycle shocks. Similarly, Guvenen (2007) studies learning about earnings utilizing a signal extraction problem with
AR(1) plus noise shocks. Blanchard, L’Huillier and Lorenzoni (2008) use a similar learning framework with trend
growth and transitory shocks to explore the contribution of news and noise shocks to macroeconomic volatility.
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Let the forecast for period t + 1 based on information available at time t be defined by ŷt+1,t

and actual GDP growth be yt+1. Then, the one-step-ahead forecast error can be defined as:

et+1,t = yt+1 − ŷt+1,t (1)

First, we investigate the RMSE of forecast errors based on Consensus Forecasts, IMF’s World

Economic Outlook forecasts, and finally by estimating an ARMA model using TFP data. Table 1

summarizes the RMSE of Consensus Forecasts’ forecast errors (et+1,t) for quarterly GDP growth

(at annualized rates) for a set of developed and emerging market countries until the third quarter of

2007 since - at most - the last quarter of 1998.9 This table suggests that the RMSE of forecast errors

for EMEs are systematically higher than those of developed economies. On average, the RMSE

of these errors are 0.95 percentage points for EMEs and 0.38 percentage points for developed

countries, less than half that of EMEs. The same result holds if we consider the median RMSE for

both groups. In this case, EMEs median value is 0.81 versus 0.39 for developed countries. Thus,

forecasts are subject to more uncertainty in EMEs than in developed countries. Similar evidence is

reported by Timmermann (2006) regarding the IMF’s World Economic Outlook forecast errors. For

example, for Western Hemisphere the standard deviation of forecast errors is 2.41%, Asia (2.22%),

Middle East (6.38%), Africa (3.19%), and Central and Eastern Europe (3.49%), while for advanced

economies it is 1.36%. Finally, estimating a simple country-specific ARMA model including or not

a time trend for our TFP yields standard deviations of forecast errors for the emerging market

sample that are on average 78% larger than for developed countries.10

It could be argued that the comparison of RMSE of forecast errors in levels does not take into

account the fact that GDP growth shocks in emerging market economies have a larger standard

deviation. Thus, next we present a measure of relative predictability frequently used to compare

the accuracy of forecasts across series with different variability. The statistic used is the Theil

(1961) Ui indicator for country i, defined by:

Ui =

√√√√
1
N

∑N
t=1 e2

i,t

1
N

∑N
t=1 y2

i,t

,

where the the nominator is the RMSE of forecast errors and the denominator the standard deviation
9The GDP growth data are from Bloomberg and refer to quarterly year-on-year growth rates. We report only

those countries for which we have at least 10 quarters of forecasts available.
10More detailed results on the ARMA estimations are available upon request.
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of real GDP growth.

Clearly, when this statistic is equal to 0, it means that the forecast is perfect, whereas larger

values imply less forecasting accuracy. We compute this statistic for all countries in our sample

and plot its relationship with GDP per capita in Figure 1. As seen in the graph, there is a

significantly negative correlation between Theil’s U statistic and GDP per capita. The simple

correlation coefficient between both variables is -0.46, significant at conventional levels of confidence.

Thus, the figure provides further evidence on the fact that forecasting real GDP growth in less

developed countries is less accurate, even in relative terms.

Further, in emerging market economies forecasts are more likely to be inefficient, in the sense

that the sample mean of forecasting errors differs significantly from zero which would imply that

forecasters make systematic errors when projecting GDP growth. While in the case of developed

countries there are just two cases out of nine where the forecast errors are biased, for EMEs in

almost 50% of the cases (8 out of 18) the sample mean of forecast errors differs significantly from

zero at a 10% level of significance. This result suggests again that there are serious difficulties in

forecasting the relevant economic variables for EMEs.

In the fifth column of Table 1, we examine the first order autocorrelations of forecast errors.

These autocorrelations are positive and significant for the cases of Argentina, Malaysia and Mexico;

however, there is no developed country with a significant autocorrelation. This positive autocor-

relation implies that if e.g., the current GDP growth forecast is below the actual realization, next

period, it will probably underestimate growth again. This type of errors are likely to occur if a

trend shock hits and the agent is uncertain about it. In the case of a positive (negative) trend shock,

she would underestimate (overestimate) until she learns that a structural break took place.11

Finally in the last two columns of Table 1, we examine the dispersion of analysts’ forecasts

reported in the consensus forecasts. To do this, for a given quarter, we calculate the standard

deviation of the forecasts across analysts and calculate the median over the sample period to

arrive at the dispersion reported for each country in the second to last column.12 The last column

normalizes the dispersion with the standard deviation of the GDP growth for each country over the

sample period. As illustrated in these columns, the dispersion of analysts’ forecasts is systematically
11For both Argentina and Mexico, quarters of extreme collapses in output are not included due to lack of Consensus

Forecast data. We conjecture the results would be much stronger in the case of Argentina, if the two quarters of 2002
where output collapsed at year-on-year rates greater than -10% were included in our sample. Consensus Forecasts
are unavailable for these particular quarters, which per se is an indicative of the degree of uncertainty surrounding
this kind of episodes.

12Calculating the average of dispersion leads to similar results to those with median. Due to space limitations, we
report only the median dispersions.
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higher for EMEs than developed countries. Even after normalizing with the variability of the GDP

growth in EMEs, the dispersion still appears higher for EMEs than developed countries.

The evidence that EMEs are surrounded by greater uncertainty we documented can be due to

a lack of transparency, lower institutional quality, and greater political uncertainty faced by these

economies.13 These differences could also contribute to the uncertainty as to how policy makers

would react to any given shock. This uncertainty could, in turn, contribute to the difficulty in

forming expectations as to whether a given shock will have a permanent or transitory impact on

the economy.

3 Model

Motivated by the observations outlined in the last section, we consider a standard small open

economy real business cycle model with trend shocks similar to that utilized by AG and GPU.

Unlike these two studies, in our emerging market economy model, the representative agent is

imperfectly informed about the trend-cycle decomposition of the TFP shocks and, thereby, solves

a signal extraction problem as explained in detail below.

The model features production with endogenous capital and labor. There are costs associated

with adjusting capital which are typically introduced in the literature to match the variability and

the persistence in investment. The agent can borrow and lend in international capital markets. We

assume incomplete asset markets, such that the only financial instrument available is a one-period

non-contingent bond that pays an interest rate that increases with the debt level to account for

possible risk premia charged due to a higher default risk when debt increases. At the beginning of

every period, the agent observes the realization of the TFP shock, updates expectations regarding

the components of TFP, makes investment, labor, level of debt, and consumption decisions.

The production function takes a standard Cobb-Douglas form,

Yt = eztK1−α
t (ΓtLt)α,

where α ∈ (0, 1) is the labor’s share of output. zt is the transitory shock that follows an AR(1)

process

zt = ρzzt−1 + εz
t

13Acemoglu et al. (2003) and references therein document that EMEs are characterized by poorer institutional
quality and greater political uncertainty compared with developed countries.
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with |ρz| < 1, and εz
t is independently and identically and normally distributed, εz

t ∼ N(0, σ2
z). Γt

represents the cumulative product of growth shocks and is defined by

Γt = egtΓt−1 =
t∏

s=0

egs ,

and

gt = (1− ρg)µg + ρggt−1 + εg
t ,

where |ρg| < 1, and εg
t is independently and identically and normally distributed with εg

t ∼ N(0, σ2
g).

The term µg represents the long run mean growth rate. Combining trend growth and transitory

shocks, we define a single productivity shock A:14

ln(At) ≡ zt + α ln(Γt).

and growth rate of A as gA:

ln(gA
t ) ≡ ln

(
At

At−1

)
= zt − zt−1 + αgt. (2)

The representative agent’s utility function is in Cobb-Douglas form:

ut =
(Cγ

t (1− Lt)1−γ)1−σ

1− σ
.15

The agent maximizes expected present discounted value of utility subject to the following re-

source constraint:

Ct + Kt+1 = Yt + (1− δ)Kt − φ

2

(
Kt+1

Kt
− µg

)2

Kt −Bt + qtBt+1.

Ct, Kt, qt, and Bt denote consumption, the capital stock, price of debt and the level of debt, respec-

tively. We assume that capital depreciates at the rate δ, and adjustments to capital stock requires

quadratic adjustment cost where φ is adjustment cost parameter. µg denotes the unconditional

mean of the growth rate of A.

We assume that the small open economy faces a debt-elastic interest-rate premium, such that
14This follows directly from the fact that the production function could be written alternatively as Yt =

AtK
1−α
t (Lt)

α, where At = eztΓα
t .

15We explore the case with GHH preferences in Section 4.4.
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the interest rate paid is given by:

1
qt

= 1 + rt = 1 + r∗ + ψ

[
e

Bt+1
At

−b − 1
]

,

where b is the aggregate level of debt that the representative agent takes as given.16

Since realizations of shock gt permanently affect Γt, output is nonstationary. To induce sta-

tionarity, we normalize all the variables by At−1.17 We use the notation that a variable with a hat

denotes its detrended counterpart. After detrending, the resource constraint becomes:

Ĉt + K̂t+1g
A
t = Ŷt + (1− δ)K̂t − φ

2

(
K̂t+1

K̂t

gA
t − µg

)2

K̂t − B̂t + gA
t qtB̂t+1.

The recursive representation of the representative agent’s problem can be formulated as follows:

V (K̂t, B̂t, z̃t, ln(g̃t), gA
t ) = max

{
u(Ĉt, Lt) + β(gA

t )γ(1−σ)EtV (K̂t, B̂t+1, z̃t+1, ln(g̃t+1), gA
t+1)

}
,

where z̃t and ln(g̃t) are the beliefs regarding the transitory and permanent shock, respectively.

subject to the budget constraint:

Ĉt + K̂t+1g
A
t = Ŷt + (1− δ)K̂t − φ

2

(
K̂t+1

K̂t

gA
t − µg

)2

K̂t − B̂t + gA
t qtB̂t+1.

Defining investment as Xt, we can summarize the evolution of the capital stock as follows:

gA
t K̂t+1 = (1− δ)K̂t + X̂t − φ

2

(
K̂t+1

K̂t

gA
t − µg

)2

K̂t.

The first order conditions for the competitive equilibrium are:

γĈγ(1−σ)−1(1− Lt)(1−γ)(1−σ)

(
gA
t φ

(
gA
t

K̂t+1

K̂t

− µg

)
+ gA

t

)
= −βg

Aγ(1−σ)
t Et

∂V

∂K̂t+1

, (3)

16The debt elastic interest rate premium is introduced so as to induce stationarity to the asset holdings in the
stochastic steady state. Other formulations used in the literature for this purpose include Mendoza (1991)’s endoge-
nous discounting, and Aiyagari (1994)’s preferences with the rate of time preference higher than the interest rate.
Schmitt-Grohé and Uribe (2003) survey some of the alternative methods used for this purpose and concludes that
quantitative differences among the approaches applied to linearized systems are negligible.

17Note that perfect information model can be normalized by Γt−1. In our imperfect information setting, however,
Γt−1 is not in the information set of the agent. Yt−1 and At−1 are other plausible candidates for normalization as
they grow at the same rate as A and are in emerging market representative agent’s information set. We choose to
normalize by At−1, but normalizing by Yt−1 would yield identical results.
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γĈγ(1−σ)−1(1− Lt)(1−γ)(1−σ)gA
t qt = β(gA

t )γ(1−σ)Et
∂V

∂B̂t+1

, (4)

K̂t

1− Lt
=

γ

1− γ

∂Ŷt

∂Lt
. (5)

Equation (3) is the Euler Equation that relates the marginal benefit of investing an additional

unit of resource in capital to marginal cost of not consuming that unit. Equation (4) is the Euler

Equation related to the level of debt and equation (5) is the first order condition concerning the

labor-leisure choice.

3.1 Filtering Problem

We assume that the representative agent is imperfectly informed about the true decomposition of

the TFP shocks into its trend growth and cycle components and forms expectations about this

decomposition using the Kalman filter. Her information set as of time t includes the entire history

of TFP shocks; It ≡ {At, At−1, ...}. We also assume that underlying probabilistic distributions

of Γ and z are known to the agent. Thus, we abstract from any consideration regarding model

uncertainty to concentrate exclusively on the implications of learning under imperfect information

about the realizations of the shocks.

In order to use the Kalman filter, we express the filtering problem in state space form as

described in Harvey (1989). This form is composed of a measurement equation and a transition

equation. The measurement equation is just a vector reformulation of Equation (2). It describes

the relationship between the observed variable gA, and the unobserved variables z and g, and is

given by:

ln(gA
t ) =

[
1 −1 α

]

︸ ︷︷ ︸
Z




zt

zt−1

gt




︸ ︷︷ ︸
αt

.

The measurement equation includes the lagged value of transitory shock, zt−1. Because, to make the

learning problem stationary, the relationship between the observed and unobserved variables needs

to be formulated in growth rates. The transition equation summarizes the evolution of unobserved
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variables and is given by:




zt

zt−1

gt




︸ ︷︷ ︸
αt

=




ρz 0 0

1 0 0

0 0 ρg




︸ ︷︷ ︸
T




zt−1

zt−2

gt−1




︸ ︷︷ ︸
αt−1

+




0

0

(1− ρg)µg




︸ ︷︷ ︸
c

+




1 0

0 0

0 1




︸ ︷︷ ︸
R


 εz

t

εg
t




︸ ︷︷ ︸
ηt

(6)

where ηt ∼ N(0,Q) and Q ≡

 σ2

z 0

0 σ2
g


. Equation (6) simply summarizes the autoregressive

processes of trend growth and transitory components of TFP in matrix notation. Given the nor-

mality of the disturbances, the optimal estimator that minimizes the mean squared error is linear.

The matrices Z, d, T, c, R and Q are the system matrices. Following the notation of Harvey

(1989), we denote the optimal estimator of αt based on information set, It by at:

at ≡ E[αt|It].

The covariance matrix of the estimation error is given by Pt:

Pt ≡ E[(αt − at)(αt − at)′].

In this setting, the updating rule converges monotonically to a time-invariant solution for the

error covariance matrix.18 In addition, the steady state error covariance matrix can be calculated

as a solution to the following algebraic Riccati equation:

P = TPT′ −TPZ′(ZPZ′)−1ZPT′ + RQR′. (7)

Finally, using It−1 and the transition equation (6), we have:

at|t−1 = Tat−1 + c.

The updating rule sets the posteriors at to be a convex combination of prior beliefs at|t−1 and

the new signal ln(gA
t ):

18See Harvey (1989) pp. 123 for a proof of this statement.
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at = [I−PZ′(ZPZ′)−1Z]︸ ︷︷ ︸
k1

at|t−1 + [PZ′(ZPZ′)−1]︸ ︷︷ ︸
k2

ln(gA
t ) (8)

where I is an identity matrix of size 3 × 1. Equations (3.1) and (8) fully characterize learning.

Equation (8) deserves a closer look. This equation consists of two parts. The first part is priors,

at|t−1 or E[α|It−1] = E[zt, zt−1, gt|It−1], multiplied by their corresponding weights summarized in

the matrix k1
3×3. The second part is the new signal, gA

t , multiplied by the Kalman gain k2
3×1.

Weights assigned to the priors and the new signals (k1 and k2) depend mainly on the relative

variance of trend to cycle shocks, σg/σz. As we will illustrate and explain in detail in the next

section, the higher the relative variability of trend shocks, the larger the share of TFP shocks

attributed to the permanent component.

4 Quantitative Analysis

This section explains the calibration and estimation procedure of the parameters, documents the es-

timated parameters, and business cycle moments for Mexico. In addition, it plots impulse response

functions and explains in detail the implications of introducing imperfect information.

4.1 Emerging Market Business Cycles: Application to Mexico

We calibrate our model to quarterly Mexican data. We use a combination of calibrated and esti-

mated parameters. For β, γ, b, ψ, α, σ, and δ, we use values that are standard in the literature

(see e.g., Mendoza (1991); AG; Schmitt-Grohé and Uribe (2003); Neumeyer and Perri (2005)). The

parameter γ is set to 0.36 which implies that around one-third of agent’s time is devoted to labor

in the steady-state. Note that the coefficient on the interest rate premium is set to a small value,

0.001. The full set of calibrated parameters is summarized in Table 2.

We set µg to the average growth rate of output from the data and estimate the remaining

structural parameters, σg, σz, ρg, ρz, and φ using a GMM estimation applied to the imperfect

information model.19 Our estimation, reported in Table 3, yields a standard deviation of transitory

component higher than the standard deviation of the trend growth component. The autocorrelation

coefficients for both the trend growth and the transitory components are around 0.6.
19See the appendix for more details, as well as Burnside (1999) for the description and application of the GMM

methodology.
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4.1.1 Business Cycle Moments and Impulse Response Functions

We solve our model using a first order approximation around the deterministic steady state following

the “brute-force iterative procedure” proposed by Binder and Pesaran (1997).20 Table 4 compares

the business cycle moments of the imperfect information model with Mexican data as well as

with those of the benchmark perfect information model.21 For comparison, we also calculate the

moments of the perfect information model using the imperfect information model’s parameters. We

calculate all moments using simulated data series. Simulated data is HP-filtered with a smoothing

parameter of 1600, the standard value for quarterly data.

Before examining the model with imperfect information, it is worth revisiting the dynamics

of the benchmark model with perfect information. In the perfect information model, when there

is a positive transitory shock to output, the representative agent increases her consumption but

this increase is lower than the increase in output. Because the agent knows that the output will

gradually decline back to its previous level, she saves a portion of the increase in output. This is

the standard consumption-smoothing effect in the presence of transitory shocks. When the shock

is permanent, however, i.e., there is a positive shock to trend growth rate, the agent observes an

increase in output today but she also realizes that future output will be even higher. The agent’s

optimal response to such positive permanent shocks is to increase her consumption more than the

increase in current output. When both shocks are present in such an environment with perfect

information, whether the effects of trend growth shocks dominate the transitory shocks depends on

the relative importance of each shock.

To measure the relative importance of trend shocks, we examine two related metrics calculated

based on our estimated parameters. The first metric is the variability of innovations to trend

growth shocks relative to innovations to transitory shocks, σg/σz. This metric, however, does not

incorporate any potential differences in the persistence of these two types of shocks. Therefore, we

also examine a second metric that we calculate as follows. We decompose the first log-difference of

TFP according to:

∆ lnAt = ∆zt + αgt.

Computing the variance of this expression, and taking into account that trend and transitory shocks
20The log-linearized system is provided in an Appendix available upon request.
21For the perfect information, we use the parameters estimated by AG for Mexico.
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are uncorrelated in our model, we obtain

σ2
∆ ln A =

2σ2
z

1 + ρz︸ ︷︷ ︸
σ2
∆z

+
α2σ2

g

1− ρ2
g︸ ︷︷ ︸

σ2
αgt

and we define our measure of the relative importance of trend shocks simply as follows:

V =

α2σ2
g

1−ρ2
g

2σ2
z

1+ρz
+ α2σ2

g

1−ρ2
g

,

which is reported in the last row of Table 3. Note that this metric is bounded in the interval [0,1]

where higher values imply higher importance of trend growth shocks.

This metric has several advantages that makes it an accurate measure of relative variability

of trend shocks. First, it does not restrict the permanent shocks to follow a random walk. As

pointed out by Campbell and Mankiw (1987), if trend growth shocks are persistent (remember

that we estimate ρg to be 0.61 for Mexico), only a type of metric we use would preserve that trend

and cycle shocks remain uncorrelated. This is an important aspect that is also highlighted by

Campbell and Mankiw (1987).22 Second, Quah (1990, 1992) shows that when the trend follows a

more complicated process, as it does in our model, an unobserved component estimation of trend

growth shocks should be pursued, as we do in our analysis.23 Guided by these studies, we use the

metric reported above to measure the relative importance of trend shocks.

Using the two metrics described, we find that the perfect information model requires strong

predominance of permanent shocks as well as a low persistence for trend growth shocks. The perfect

information model implies a variability for trend growth shocks of 2.55 percent and a variability for

transitory shocks of 0.54 percent, which implies σg/σz = 4.02. In addition, GMM estimation for the

perfect information model yields a ρg = 0. This, together with the estimates for standard deviations,

implies V = 0.88. To illustrate the resulting implications of the perfect information model when

permanent shocks are not predominant, the last column of Table 4 reports the moments of the

perfect information model using the parameters that we estimated with the imperfect information

model. In this case, the perfect information model implies a consumption variability less than that
22Campell and Mankiw indicate that: “...But of course, one usually thinks of trend and cycle as having a low or

zero correlation...”
23Similarly, Oh et al. (2008) also makes a case in favor of a use of type of metric we present when the trend is not

a pure random walk.”
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of output and procyclical trade balance, which is at odds with the observed patterns in the data.

Also, the correlation of output with consumption and investment is significantly smaller than in

the data.

The imperfect information model matches the key moments of the Mexican data very closely as

reported in the third column of Table 4. The ratio of consumption variability to income variability

is 1.17, compared with 1.26 in the data. The correlation of net-export with output is −0.69,

which compares quite well with the value of −0.75 in the data. The model also matches the other

moments closely as illustrated in Table 4. The GMM estimation reveals σg/σz = 0.78 and V = 0.26,

suggesting that the imperfect information model matches the data without a predominance of trend

growth shocks.

The imperfect information model performs well with perfect information model parameters,

too. When those parameters are fed into the imperfect information model, the model can match

key moments reasonably well as illustrated in the fourth column of Table 4. Therefore, the results

of the imperfect information model do not hinge on a specific value for relative variability of trend

shocks as we explain further below.

To understand the quantitative implications of the imperfect information model we first explain

why the perfect information model is subject to some limitations. In the perfect information model,

the response of hours to a persistent trend growth shock, ρg > 0.2, is quite strong. In response to

a persistent, positive trend growth shock, hours decline significantly due to the wealth effect. The

magnitude of this decline increases with the persistence of the trend growth shock. With higher

values of ρg, the decline in hours becomes so large that it leads output to fall in response to a

positive trend growth shock. Investment increases gradually due to the capital adjustment cost.

Hence, the increase in capital in response to positive trend growth shock is insufficient to offset the

impact of the fall in hours on output.

The strong response of hours to persistent trend growth shocks makes it difficult for the perfect

information model to match the correlations of aggregate variables with output observed in the

data. This is evident in Figure 2, which plots the impulse response functions to 1-percent shocks

to transitory as well as permanent components of TFP in the perfect information model using

the imperfect information parameters (remember that estimated ρg in this case is 0.61).24 The

graph shows that in response to a positive trend growth shock, hours and net exports fall while
24In general, the perfect information model with ρg > 0.2 cannot generate ρ(c, y) or ρ(I, y) that is greater than 0.9

regardless of σg/σz.
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consumption and investment increase. Note that output also falls in response to this positive shock

to trend growth. As a result, the model generates ρ(c, y) and ρ(I, y) that are lower compared with

the case when ρg = 0. In addition, ρ(nx, y) becomes positive because net exports move in the same

direction with output both in the case of a cyclical shock and a trend growth shock.

These insights also explain the results reported in the last column of Table 4. The imperfect

information parameters fed into the perfect information model lead to a low output-consumption

correlation (0.44), a low investment-output correlation (0.31) and a positive trade balance-output

correlation (0.38).

The imperfect information model can deliver high ρ(c, y) and ρ(I, y) for relatively higher values

of ρg. This is because learning leads the agent to realize only gradually that a trend shock hit.

Since learning induces gradual realization, even for higher values of ρg, the decline in hours is not

sufficient to lead to a decline in output. Therefore, the imperfect information model matches the

correlations in the data quite well even with persistent trend growth shocks.

This gradual behavior is evident in Figures 3 and 4. Figure 3 plots the response of the imper-

fect information model to transitory and permanent shocks. In response to a 1-percent transitory

shock (top panel), the model displays “permanent-like” responses: consumption increases more

than output; net export declines significantly. In response to a 1-percent permanent shock (bottom

panel), the model again displays permanent-like responses: consumption responds more than out-

put; net-export declines significantly. Even though imperfect information dampens the response of

all variables, for the case of transitory shocks, there is an amplification effect, driven by the fact

that the agent assigns a positive probability to the event that the shock might be permanent and,

therefore, increases investment and consumption by more than in the perfect information case. In

addition, comparing the perfect information model impulse responses depicted in Figure 2 to those

of imperfect information model, learning introduces persistence.

To illustrate the learning dynamics implied by the model, in Figure 4, we plot beliefs for

permanent and transitory components along with TFP that the agent directly observes. The

crossed solid line depicts TFP, the diamond-dashed line plots the evolution of the belief about

the permanent component, while the star-dashed line represents the evolution of the belief for the

transitory component. In the top panel, the source of fluctuation in TFP is a 1-percent transitory

component shock, whereas in the bottom panel, it is a trend shock of the same magnitude.25 A
25In the first panel, interestingly, TFP shock turns negative after the initial positive shock. This is in fact intuitive.

Rewriting Equation 2, we have: ln(gA
t ) = zt−zt−1 +αgt. Thus, gt is zero as only the transitory component is shocked

in the first panel, while zt increases by 1-percent on impact and zt−1 = 0 because we start from the steady state.
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close investigation of the bottom panel of Figure 4 - the case of a trend growth shock- suggests

that, on impact, beliefs regarding the trend growth shock, g̃, goes up by only half of the increase

in the true value of g. The initial period in which a high TFP growth is observed is particularly

confusing for the agent. Only after observing another signal, g̃ becomes significantly close to the

true value of g in that period. This is because of the nature of learning about cycle and trend. A

high TFP growth today can be either a positive trend growth shock or a positive cyclical shock.

Therefore, the observation of a high TFP growth by itself is not very informative. However, note

that a cyclical shock dies out very differently from a trend shock.26 A positive cyclical shock in

period 2 leads to a negative TFP growth starting from period 3. This is because given that the

trend does not change, an above trend growth in period 2 has to be followed by below trend growth

so that the economy converges back to the same trend as the shock dies out. On the contrary,

a positive trend growth shock in period 2 dies out by leading to an even higher trend over time.

Given these differences, after observing the initial high TFP growth in period 2, the TFP growth

in period 3 becomes crucial for the agent to be able to decompose trend and cycle. Therefore,

it is this initial uncertainty and its gradual disappearance that contains the decline in hours and

prevents a potential decline in output in response to a persistent trend growth shock.

This establishes why the perfect information model requires ρg = 0 while the imperfect in-

formation model does not. In fact, as mentioned before, imperfect information model can match

the key moments with different combinations of ρg and σg/σz. For a given value of ρg, imperfect

information model in general implies that σ(c)/σ(y) increases with σg/σz. Hence, lower values

of ρg combined with higher values of σg/σz deliver the desired key moments. In addition, in the

imperfect information model, note that ρ(nx, y) rarely turns positive as opposed to the perfect

information model where for most calibrations, this correlation is positive. (Compare the lower

panels of Figures 6 and 7.) We observe that because of the dynamics through hours and output

that the perfect information model most of the time generates a positive trade balance output

correlation. Hence, it is not the trade balance that increases in response to a positive trend shock,

but it is the output that declines.27

As the shock dies out after the first period, zt = ρzzt−1 becomes smaller than zt−1 implying a negative value for
zt − zt−1. With zt − zt−1 < 0 and gt = 0, we have ln(gA

t ) turning negative after the initial period as depicted in the
top panel of Figure 4.

26The comparison of “simulated TFP growth,” solid blue line, in the lower and higher panels of Figure 4 reveals
this.

27Similar dynamics with hours declining sufficient to lead to a decline in output takes place in the imperfect
information model only in the case of unrealistically high values for both ρg and σg/σz. Those values imply output
variabilities that are larger than 3 percent - higher than that in the data.

17



We explore further the imperfect information model to see if it relies on certain values of ρg

and σg/σz. Figure 5 shows how key moments change as we change the relative variability of the

trend shocks, σg/σz, while keeping the other parameters constant. As the first panel illustrates, as

long as the relative variability of the permanent component relative to the transitory component

is higher than approximately 0.7, the model can generate a higher consumption variability relative

to output variability. In order for the model to match counter-cyclicality of the trade balance, the

relative variability of trend shocks needs to be less than 2. Hence, the imperfect information model

can match these two key moments with σg/σz in 0.7 to 2 range, assuming ρg = 0.61. However,

this does not imply that the imperfect information model requires a σg/σz in the range of [0.7, 2].

Our analysis suggests that once we allow the other estimated parameters (ρz, ρg, φ) to change, the

imperfect information model is able to match the data fairly closely for a wide range of values for

σg/σz.

The ability of the imperfect information model to match the key moments (σ(c)/σ(y) and

ρ(nx, y)) for a wide range of relative variability of trend shocks is evident in Figure 6. The top

panel of this figure plots σ(c)/σ(y) for different values of relative variability of trend shocks (y-

axis) and ρg (x-axis).28 We keep the remaining parameters (ρz, µ, φ) at their original values from

the baseline parametrization of imperfect information model. Similarly, the bottom panel shows

ρ(nx, y) for the same sets of parameters. The top panel suggests that, in general, σ(c)/σ(y)

increases with the relative variability of trend shocks and ρg. σ(c)/σ(y) of 1.26 observed in the

data can be matched with (σg/σz, ρg) ∈ {(5, 0), (3, 0.2), (2, 0.4), (1, 0.61), (0.5, 0.8)}. That is, the

model can match this moment with higher relative variability of trend shocks if one allows for

lower ρg. Similarly, the correlation between output and net exports, ρ(nx, y) of −0.75, in the

data is implied by the imperfect information model for (σg/σz, ρg) ∈ {(4.5, 0), (2.2, 0.2), (1.1, 0.4),

(0.7, 0.61), (0.5, 0.8)}. Likewise, the model can match this moment with several values for relative

variability of trend shocks and ρg combinations if lower ρg’s are combined with higher relative

variability of trend shocks.

Finally, we investigate the higher order correlations of the trade balance since GPU finds that

one shortcoming of the perfect information model is that it implies a near-unit root behavior of

the trade balance-GDP ratio. The imperfect information performs well on this dimension, too. As
28We conducted similar analysis by allowing ρz and φ to vary along with the relative variability of trend shocks

and found that variation in those parameters do not change the relationship between σ(c)/σ(y), ρ(nx, y), and the
relative variability of trend shocks. In other words, regardless of ρz and φ, σ(c)/σ(y) and ρ(nx, y) increase with
relative variability of trend shocks. Simulations are available upon request.
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shown in Figure 8, the imperfect information model implies a stationary behavior for the trade

balance-GDP ratio, which converges quickly to zero.

As a separate point, our results make a methodological contribution to the “news shocks”

literature (e.g., Jaimovich and Rebelo (2009) and Lorenzoni (2006), Schmitt-Grohe and Uribe

(2008), among others) as well. As shown by these studies, the standard RBC model with Cobb-

Douglas preferences implies counterfactual dynamics on labor supply in response to positive news

shocks; labor supply drops on impact due to positive wealth effect–similar to the dynamics of labor

supply in response to highly persistent trend growth shocks. Many of the recent studies in this

literature have focused on building frameworks that deliver empirically-plausible dynamics of labor.

Jaimovich and Rebelo (2009), for example, propose “quasi-GHH preferences” to contain the large

wealth effect. Our analysis shows that an alternative modeling approach could be the introduction

of learning in an environment with trend growth shocks. Highly persistent trend growth shocks have

similar economic interpretation a similar economic interpretation to news shocks and the gradual

learning in our framework implies realistic dynamics of the labor supply.

4.2 Further Insights on Learning

The Kalman filter assigns slightly higher probability to trend component. This appears counterin-

tuitive considering that the cycle component is more volatile than the trend according to our GMM

estimations of the imperfect information model. However, the experiment explained next clarifies

the intuition for this finding.

We simulate a case where both 1% permanent shock and 1% transitory shock are given at the

same time in the perfect and the imperfect information models. Table 5 documents the true values

of these shocks in perfect information case and the beliefs calculated by the agent in imperfect

information case under baseline parameterization. As expected, under perfect information, the

shocks are 1 % each for gt and zt leading to 1.68 % growth in TFP, given that α = 0.68. Under

imperfect information, however, while decomposing TFP between gt and ∆zt, the agent assigns

0.65% to g̃t, 0.60% to z̃t, and −0.63% to z̃t−1. In other words, the agent, using the Kalman filter,

increases z̃t while decreasing z̃t−1, part of the increase in ∆z̃t coming from an update of z̃t−1.

This leads to the increase in g̃t to be larger than z̃t inducing a dampening of the contemporaneous

cyclical component in the imperfect information model. Considering that the policy decisions of

time t−1 are already executed at the time when the signal ln(gA
t ) arrives, the reduction in z̃t−1 does

not impact the imperfect information model’s long run moments directly. However, as mentioned
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earlier, the reduction in z̃t−1 allows the agent to increase ∆z̃t by increasing z̃t by a smaller amount

than she would otherwise under perfect information scenario. This has a significant impact on the

long run moments because it induces the agent to give more weight to permanent shocks relative

to the contemporaneous cycle shocks in the imperfect information model.

Note that both g̃t and z̃t under imperfect information are lower than gt and zt under perfect

information as reported Table 5. This leads to a dampening in the overall volatilities in imperfect

information setting. This dampening manifests itself as a reduction in overall volatilities in the

imperfect information model relative to the perfect information model (compare σ(y) of 3.21 in the

perfect information model vs 2.18 in the imperfect information model in Table 4).

In order to further analyze the implications of learning using the Kalman filter, we conduct

further experiments. We report implied beliefs attached to the components of TFP for various

values of σg/σz (Table 6). These experiments reveal that the probability assigned to a given TFP

shock being permanent (g̃t) monotonically increases with σg/σz, while that assigned to it being

transitory (z̃t) decreases. Note that the relative variability of trend shocks that equates g̃t to z̃t is

0.76, which is slightly lower than 0.78 under baseline parametrization.

This mechanism hinges on the revision of z̃t−1. This revision of z̃t−1 in case of a positive shock

at time t is downwards. This is because the agent assigns positive probability to a scenario with

a negative transitory shock in period t − 1. A close investigation of the top panel of Figure 4

reveals that for example in the case of a positive transitory shock in period 1, gA
t = αgt + zt− zt−1

increases in period 1 with unchanged zt−1 and gt. However, starting with the second period, gA
t

turns negative with zt < zt−1 as the shock dies out gradually. The mirror image of these dynamics

occur in the case of a negative shock. Going back to Table 5, observing a positive signal in period

t, the agent realizes that a positive transitory or permanent shock might have hit at time t, or a

negative transitory shock might have hit in period t−1 and gA went up in period t as this negative

shock dies out. Assigning some probability to each of these scenarios, the agent increases her belief

about gt, zt, and reduces the one about zt−1.

4.3 From Emerging Market to Developed Economy Business Cycles: Varying

Degrees of Information Imperfection

In this subsection, we explore further the hypothesis that the higher degree of information imper-

fection in EMEs is the main driver of the higher consumption volatility relative to income and

countercyclical net exports. In order to do so, we generalize our model to allow for lower levels
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of information imperfection than the baseline scenario we considered. In our baseline imperfect

information model, TFP growth (gA
t ) is the only source of information about the true values of gt

and zt and therefore the noisiness of signals are inherently determined by the TFP process. In order

to separate the TFP process uncertainty from the degree of information imperfection, we introduce

an additional publicly observable signal that reveals information about the trend shocks. Note that

the baseline imperfect information model is a particular case of this model when the noisiness of

this additional signal goes to infinity and therefore it reveals no information. And when it goes to

zero and reveals entirely the true trend shock, the model converges to a full information setting.

To make such a modification, we need to alter the filtering problem. Let us define the new

additional signal as st = gt + εs
t where εs ∼ N(0, σs). Note that we could also model this signal as

one that reveals information about the cycle (z). This would yield similar results because a more

accurate knowledge of g would transform into a more accurate knowledge of z and vice versa. This

latter observation is due to the fact that the sum of g and ∆z is actually observed (through the

TFP growth). Accordingly, the information set is modified to include the realization of these new

signals, It ≡ {At, st, At−1, st−1, ...}. The measurement equation now becomes:


 ln(gA

t )

st


 =


 1 −1 α 0

0 0 1 1
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The transition equation is modified as:
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where ηt ∼ N(0,Q) and Q ≡




σ2
z 0 0

0 σ2
g 0

0 0 σ2
s


. The remaining parts of the model regarding

production, consumption, etc. remain the same as baseline. In this setting with two signals, we
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can control the degree of information imperfection by varying σs without changing the TFP process.

Table 7 reports the business cycle moments for different degrees of information imperfection,

using the previously estimated parametrization for Mexico. The first column with σs → ∞ is

identical to our baseline imperfect information model. We report in the following five columns the

results with lower values of σs. All the structural parameters in this exercise are kept constant,

which, in turn, implies merely the same σg/σz, and V across columns. Notice that as σs falls,

the moments get closer to those of developed economies, i.e., consumption variability becomes

lower than output variability and trade balance becomes procyclical. (See AG for business cycle

statistics of developed economies.) Hence, this exercise illustrates that the differences in the degree

of uncertainty faced by agents while formulating their expectations can contribute greatly to the

key differences between emerging and developed economy business cycles.

In order to link our evidence on the severity of informational frictions in EMEs with the quan-

titative implications of our baseline model, we report the standard deviation of forecast errors in

the last two rows of Table 7. The forecast errors implied by the model are defined in the same

fashion with those in the empirical section (Equation 1). Since we look at one-step ahead forecast

errors, these errors are non-zero even in the full information case.

The standard deviation of forecast errors decline as we move towards full information. In the

baseline imperfect information case, the standard deviation of these errors is 1.76 while that in the

perfect information is 1.59. This result survives even after normalizing the standard deviation of

forecast errors with output’s standard deviation. We also evaluated the autocorrelation and means

of these errors, but did not find them to be significantly different from zero in any of the scenarios

reported in Table 7.

4.4 Sensitivity Analysis: The Role of Preferences

In this section, we explore the sensitivity of our baseline results to the preference specification.

For this, we revisit the implications of our baseline results with the widely-used GHH preferences

(Greenwood et al. 1988), which takes the following form:

ut =
(Ct − τLν

t )
1−σ

1− σ
,
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where τ > 0 and ν > 1.29 The elasticity of the labor supply is given by
(

1
ν−1

)
. The budget

constraint and the information structure remains the same as in our baseline model.

Table 8 lists the additional parameters required for the calibration as well as the associated

new set of estimated parameters for exogenous shock processes.30 Table 9 summarizes the implied

business cycle moments. With those estimated parameters, our imperfect information model does

a remarkable job in matching the business cycle moments shown in the first column. Consumption

is more variable than output, trade balance is strongly countercyclical, and the model matches the

variability of output, investment and trade balance quite well. Further, similar to Cobb-Douglas

preferences, the model delivers these results when the relative variability of trend shock is lower

than that of transitory shock. When we feed in the same estimated parameters to the perfect

information model with GHH preferences, it generates weakly countercyclical trade balance and

consumption profile that is less variable than output; and undershoots the variability of investment

and trade balance.

This section establishes that our baseline results are robust to the preference specification. Since

perfect information model features zero wealth effect on labor supply with GHH, the counterfac-

tual dynamics that we observed in the perfect information model with Cobb-Douglass preferences

in response to highly persistent trend growth shocks do not arise. Therefore, GHH preferences

can generate a negative correlation between trade balance and output. However, without the pre-

dominance of trend growth shocks, in the perfect information model with GHH preferences, the

countercyclicality of the trade balance is weak and consumption variability is lower than output

variability.

5 Conclusion

In this paper, we provided a framework to explain the key business cycle characteristics of emerging

market economies. We showed that when the agents are imperfectly informed about the trend-cycle

decomposition of productivity shocks, and they solve a learning problem using the Kalman filter

to estimate the components of the TFP, the model performance in matching the salient features

of emerging market business cycles improves greatly. The key ingredients for these results are: the

existence of trend shocks, the existence of transitory but persistent cycle shocks, and uncertainty
29We assume that βµ1−σ

g < 1 to ensure that utility is well defined. Further, to have a well-behaved steady state

consumption, we impose β(1 + r∗)1/σ = µg.
30We take the calibration of τ and ν from the existing literature.
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regarding the decomposition of TFP into its components.

Our analysis contributes to the emerging market business cycles literature, which has largely

emphasized the role of financial frictions, terms of trade shocks, and trend shocks but has overlooked

the role of uncertainty and informational frictions. We fill this gap by highlighting the role of

uncertainty that the agents face while formulating their expectations about long-run implications

of the shocks they face in explaining the emerging market business cycles. Further, by introducing

imperfect information and learning about the underlying fundamentals of the economy in a tractable

manner, we also open up a new line of research. For example, studying optimal policy (fiscal

or monetary) in the framework we provide can deliver interesting insights. Another interesting

application could be to build the signal extraction problem developed in this paper into a two

country environment allowing different levels of informational frictions across the two economies to

explore cross country portfolio allocations, consumption correlations, etc. In addition, the gradual

learning inherent in our setup makes an important contribution to the news shocks literature by

generating a realistic response of labor in the face of highly persistent trend growth shocks.
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A Appendix

A.1 GMM Estimation

This subsection presents the GMM moment conditions and procedures used in our estimations.

The estimated structural parameters are b ≡ (σg, σz, ρg, ρz, φ). In terms of notation, all lower-case

variables are in logs and x̃ refers to the Hodrick-Prescott filtered series of x. Net exports, nx, is

expressed as a fraction of output. Further, σ refers to the theoretical variance-covariance terms,

while S refers to the moments in the data. The moments conditions are given by:

ut =




σ2
ỹ − S2

ỹ

σ2
∆y − (∆y − ȳ)2

σ2
c̃ − S2

c̃

σ2
ĩ
− S2

ĩ

σ2
nx − (nx− n̄x)2

σỹ,c̃ − Sỹ,c̃

σỹ,̃i − Sỹ,̃i

σỹ,nx − Sỹ,nx

σỹt,ỹt−1 − Sỹt,ỹt−1

σ∆yt,∆yt−1 − S∆yt,∆yt−1




Let ū be the sample mean of ut and J(b,W ) = ū′Wū, with W being a symmetric positive

definite weighting matrix. The GMM estimate of b is given by the vector that minimizes J(b,W ).

The matrix W is estimated using the two-step procedure outlined by Burnside (1999).
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Figure 1: Relative Predictability of Real GDP Growth
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Figure 2: Impulse Responses in the Perfect Information Model
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Note: This figure illustrates the response of the endogenous variables to a 1-percent shock to the transitory (top
panel) vs. trend growth component (bottom panel) of the TFP.
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Figure 3: Impulse Responses in the Imperfect Information Model
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Note: This figure illustrates the response of the endogenous variables to a 1-percent shock to the transitory (top
panel) vs. trend growth component (bottom panel) of the TFP.
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Figure 4: Beliefs Attached to TFP Components
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Figure 5: Sensitivity of Moments to the Relative Variability of Trend Shocks Ratios
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Figure 6: Imperfect Information Model Moments with Different σg/σz and ρg’s
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Figure 7: Perfect Information Model Moments with Different σg/σz and ρg’s
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Figure 8: The Predicted Autocorrelation Function of Trade Balance-Output Ratio
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Note: This figure shows the estimated autocorrelation function of trade balance-output ratio in the baseline estimation
of the imperfect information model.
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Table 1: Moments of Forecast Errors in EMEs vs. Developed Economies

Country # of obs. Mean RMSE corr(et+1,t, et,t−1) Dispersion Norm. Dispersion

DCs
Australia 33 -0.01 0.50 0.16 0.20 0.22
Denmark 23 0.11 0.39 -0.02 0.33 0.25
Finland 11 0.35* 0.70 -0.41 0.76 0.39
France 25 -0.02 0.30 -0.35 0.12 0.15
Italy 18 -0.11 0.39 -0.02 0.15 0.17
Netherlands 16 -0.02 0.36 0.32 0.15 0.10
Spain 20 0.04 0.15 -0.13 0.10 0.13
Switzerland 14 0.14 0.46 0.08 0.16 0.19
UK 36 0.05* 0.14 0.01 0.09 0.13
Average 21.78 0.06 0.38 -0.01 0.23 0.19
Median 20.00 0.04 0.39 0.01 0.15 0.17

EMEs
Argentina 26 -0.57 2.23 0.57* 0.42 0.06
Brazil 28 -0.28* 0.83 0.06 0.43 0.20
Chile 14 0.10 0.28 0.21 0.17 0.14
China 21 0.30* 0.55 -0.33 0.39 0.31
Colombia 17 0.23 0.87 0.03 0.41 0.24
India 21 0.30 0.85 0.06 0.48 0.26
Indonesia 20 0.18* 0.43 0.18 0.41 0.35
Hong Kong 26 0.70* 0.80 -0.16 0.68 0.18
Korea 23 0.23 0.86 -0.10 0.31 0.23
Malaysia 28 0.01 0.99 0.62* 0.45 0.19
Mexico 33 0.05 0.59 0.31* 0.36 0.16
Peru 61 0.43* 1.45 -0.13 0.54 0.30
Philippines 17 -0.35* 0.65 -0.13 0.48 0.48
Singapore 18 -0.37* 0.46 -0.21 0.31 0.08
South Africa 23 -0.01 0.80 0.28 0.28 0.16
Taiwan 22 -0.16 0.86 0.21 0.61 0.21
Thailand 18 -0.19* 0.42 0.16 0.41 0.25
Turkey 28 -0.13 3.12 0.10 1.07 0.18
Average 24.67 0.03 0.95 0.10 0.46 0.22
Median 22.50 0.03 0.81 0.08 0.41 0.21

Source: Bloomberg. * Significantly different from 0 at 10% level.
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Table 2: Calibrated Parameters

β Discount factor 0.98

γ Consumption exponent of utility 0.36

b Steady state normalized debt 10

ψ Coefficient on interest rate premium 0.001

α Labor exponent 0.68

σ Risk aversion 2

δ Depreciation rate 0.05

Table 3: Estimated Parameters of the Imperfect Information Model for Mexico

σg Stdev of permanent component noise 1.06
(0.00)

σz Stdev of transitory component noise 1.35
(0.00)

ρg Persistence of permanent component 0.61
(0.02)

ρz Persistence of transitory component 0.60
(0.03)

φ Capital adjustment cost 1.27
(0.03)

µg Growth rate 0.66

Relative variance of trend shocks
σg/σz 0.78

V 0.26

Note: This table summarizes the parameter estimates calculated using generalized method of moments. The moment
conditions are provided in the Appendix. The numbers in parentheses are standard errors in percent.
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Table 4: Business Cycle Moments for Mexico

Data PI GMM with II II with PI PI with II param

σ(y) 2.40 2.13 2.18 1.46 3.21

σ(∆y) 1.52 1.42 1.55 1.33 2.68
σ(c)
σ(y) 1.26 1.10 1.17 1.17 0.75
σ(I)
σ(y) 4.15 3.83 4.17 6.74 3.71
σ(NX)

σ(y) 0.90 0.95 0.89 1.44 1.31

ρ(y) 0.83 0.82 0.77 0.66 0.68

ρ(∆y) 0.27 0.18 0.27 0.04 0.10

ρ(y, NX) -0.75 -0.50 -0.69 -0.69 0.38

ρ(y, c) 0.92 0.91 0.97 0.95 0.44

ρ(y, I) 0.91 0.80 0.85 0.83 0.31

Notes: Moments are calculated using the simulated and HP-filtered data generated by the corresponding model. PI
refers to the perfect information model using the parameter values from Aguiar and Gopinath (2007), II refers to
the imperfect information model. The column “II with PI param” refers to the imperfect information model using
the parameters estimated in column PI, while the column ‘PI with II param’ reports the moments of the perfect
information setup generated using the estimated parameters of the imperfect information setup.

Table 5: Perfect vs Imperfect Information

ln(gA
t ) = αgt + ∆zt g̃t z̃t z̃t−1

PI 1.68 % 1 % 1 % 0 %

II 1.68 % 0.65 % 0.60 % -0.63 %

Note: g̃t, z̃t, and z̃t−1 are equal to their true values in the perfect information case.
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Table 6: Further Experiment on Kalman Learning

Model σg/σz ln(gA
t ) = αgt + ∆zt g̃t z̃t z̃t−1

PI 0.78 1.68 % 1 % 1 % 0 %

II 0.5 1.68 % 0.36 % 0.83 % -0.61 %

II 0.76 1.68 % 0.62 % 0.62 % -0.63 %

II 0.78 1.68 % 0.65 % 0.60 % -0.63 %

II 1 1.68 % 0.85 % 0.49 % -0.61 %

II 1.5 1.68 % 1.25 % 0.32 % -0.51 %

II 2 1.68 % 1.54 % 0.22 % -0.41 %

II 2.5 1.68 % 1.75 % 0.16 % -0.33 %

II 3 1.68 % 1.91 % 0.12 % -0.26 %

II 4 1.68 % 2.10 % 0.08 % -0.17 %

II 5 1.68 % 2.22 % 0.05 % -0.12 %

Notes: This table illustrates the weights or beliefs attached to the components of TFP for various values of relative
variability of permanent to transitory shock.

Table 7: Comparison of EMEs vs. Developed Economies: Varying Degrees of Information Imperfection

σs →∞ σs = 0.5 σs = 0.1 σs = 0.05 σs = 0.02 σs = 0.005

σ(y) 2.18 2.20 2.26 2.46 2.81 3.11

σ(∆y) 1.55 1.56 1.61 1.77 2.04 2.30
σ(c)
σ(y) 1.17 1.16 1.13 1.03 0.91 0.83
σ(I)
σ(y) 4.17 4.16 4.11 3.94 3.75 3.62
σ(NX)

σ(y) 0.89 0.90 0.93 1.06 1.19 1.25

ρ(y) 0.77 0.77 0.82 0.67 0.76 0.74

ρ(∆y) 0.27 0.25 0.43 0.32 0.30 0.30

ρ(y, NX) -0.69 -0.64 -0.53 -0.15 0.17 0.32

ρ(y, c) 0.97 0.96 0.94 0.82 0.67 0.57

ρ(y, I) 0.85 0.83 0.79 0.62 0.41 0.30

Forecast errors
σ(e) 1.76 1.75 1.74 1.74 1.71 1.59

σ(e)
σ(y) 0.81 0.81 0.80 0.78 0.69 0.50
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Table 8: Parameters with GHH Preferences

Additional Calibrated Parameters

ν Elasticity of labor supply 1.60

τ Labor Coefficient 1.40

Estimated Parameters

σg Stdev of permanent component noise 0.95
(0.00)

σz Stdev of transitory component noise 1.00
(0.00)

ρg Persistence of permanent component 0.75
(0.03)

ρz Persistence of transitory component 0.75
(0.03)

φ Capital adjustment cost 1.27
(0.03)

µg Growth rate 0.66

Relative variance of trend shocks

σg/σz 0.95

V 0.45

Note: This table summarizes the parameter used for the estimation of the imperfect information model with GHH
preference. The numbers in parentheses are standard errors in percent.
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Table 9: Business Cycle Moments with GHH Preferences

Data II PI

σ(y) 2.40 2.39 2.74

σ(∆y) 1.52 1.59 2.13
σ(c)
σ(y) 1.26 1.06 0.87
σ(I)
σ(y) 4.15 5.06 2.04
σ(NX)

σ(y) 0.90 0.86 0.19

ρ(y) 0.83 0.84 0.72

ρ(∆y) 0.27 0.46 0.12

ρ(y,NX) -0.75 -0.78 -0.09

ρ(y, c) 0.92 0.99 0.98

ρ(y, I) 0.91 0.89 0.91

Notes: Moments are calculated using the simulated and HP-filtered data generated by the corresponding model. II
refers to the imperfect information model. PI refers to the perfect information model using the same parameter values
for the imperfect information model.
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