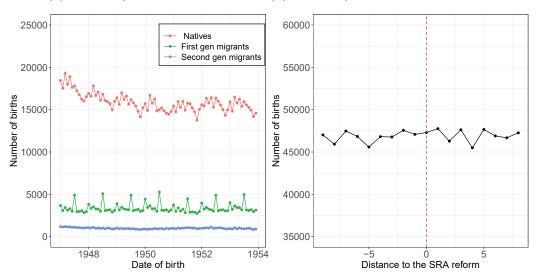
Increasing the Retirement Age:
Policy Effects and Underlying Mechanisms

Simon Rabaté Egbert Jongen Tilbe Atav

Online Appendix

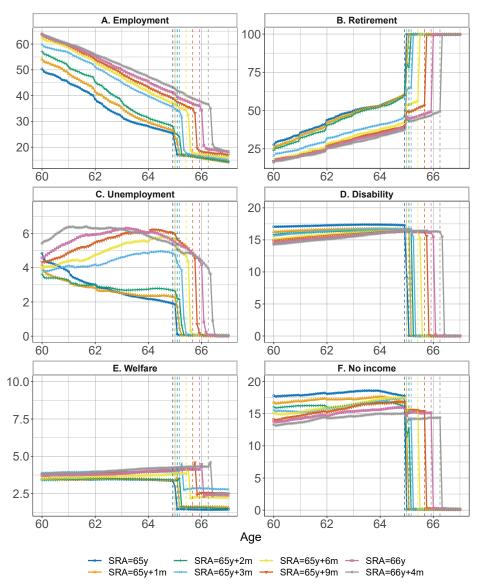

March 2023

A. Supplementary graphs and tables

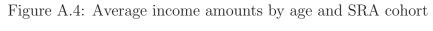
Figure A.1: Distribution of the number of births data by year

(a) Births by month of birth

(b) Births by distance to the SRA reform


Note: Panel (a) presents the number of births recorded by date of birth, broken down by migration status (born in the Netherlands (and the parents as well), first and second generation migrants). Panel (b) presents the number of birth by distance to the SRA change for the pooled estimation sample (see subsection II.B for a description of the estimation samples).

Migration background Female In couple 0.010 0.02 0.01 0.01 0.005 0.00 0.00 0.000 -0.01 -0.01 -0.005 -0.02 SD -0.02 SD estimates cut1 cut2 cut3 cut4 cut4 cut3 cut3 Disabled at 58 Employed at 58 Retired at 58 0.010 0.01 0.005 0.005 0.000 0.00 0.000 -0.005 -0.01 -0.005 -0.010 -0.02 pooled cut3 cut4 Estimation sample


Figure A.2: Balancing tests for the different estimation samples

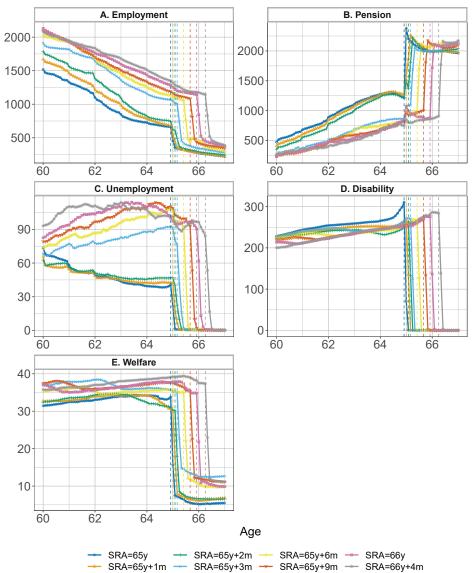
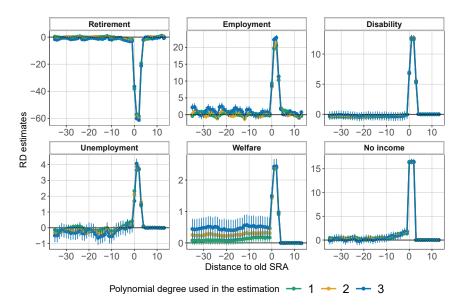

NOTE: This figure presents the β coefficients from the estimation of equation (1) for our different estimation samples and for pre-treatment variables we do not expect to be affected by the reforms of interest. Lines around the point estimates present the 95% confidence intervals.

Figure A.3: Labor force status: alternative definition with non exclusive states


NOTES: This figure presents the average share of the population in different labor market states, by age and SRA-cohort. Individual are classified in a given category if they have a corresponding monthly income above zero.

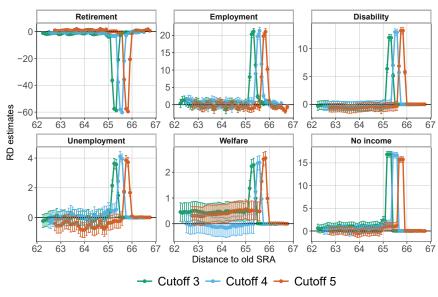
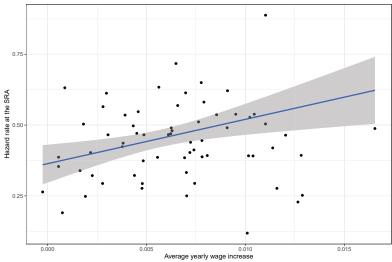
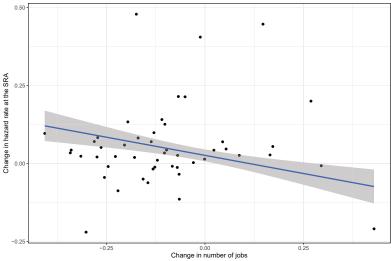

NOTES: This figure presents the average amount for different types of income, by age and SRA-cohort.

Figure A.5: Full RD for pooled sample: sensitivity analysis

NOTES: This figure presents the estimated β coefficients of equation (2) for the pooled RD specification, estimated separately for each month (see Figure 7), using different degrees for the polynomial fits of the control function f().


Figure A.6: Full RD for pooled sample: breakdown by cohort

Notes: This figure presents the estimated β coefficients of equation (2), separately for the different cutoffs of the pooled estimation sample.


Figure A.7: Hazard rate at the SRA by sector's characteristics

(a) Hazard rate vs. steepness of the wage profile

Notes: This figure compares the hazard rate at the SRA (y axis) to the steepness of the wage profile (x axis) by sector. Both values are computed using individuals born between 1950 and 1955. Hazard rate is computed as the probability to retire at the SRA conditionally on being employed until this point. Wage profiles are computed as the yearly increase in total earnings, when individuals are between 57 and 62 of age.

(b) Hazard rate vs. impact of the 2010s crisis

NOTES: This figure compares change in the hazard rate at the SRA (y axis) to the impact of the 2010s economic crisis (x axis) by sector. The change in the hazard rate by sector is computed as the difference between the hazard rate observed before the crisis (years 2007-2009) and at the peak of the crisis (years 2010-2013). The impact of the crisis is computed as the % change in the total number of workers below age 55 by sector, between those two periods.

Table A.1: Descriptive statistics for the different estimation samples

Estimation sample	C_1	T_1 and C_2	T_2	C_3	T_3 and C_4	T_3 and C_4 T_4 and C_5 T_5 and C_6	T_5 and C_6	T_6	C_{pooled} T_{pooled}	T_{pooled}
SRA	65y	65y+1m	65y+2 m	65y+3 m	65y+6m	65y+9m	66y	66y+4m		
Demographic variables										
Share female	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
Share single	0.16	0.16	0.17	0.17	0.17	0.17	0.17	0.18	09.0	0.61
Share foreigners	90.0	0.06	90.0	90.0	0.00	90.0	90.0	90.0	90.0	90.0
Employment status at 60										
Wage earners	0.38	0.42	0.45	0.50	0.52	0.53	0.54	0.54	0.52	0.53
Self employed	90.0	90.0	90.0	90.0	0.00	90.0	90.0	90.0	90.0	90.0
${\bf Unemployed}$	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.04	0.03	0.03
Disabled	0.12	0.12	0.11	0.11	0.11	0.11	0.11	0.10	0.11	0.11
Retired	0.17	0.15	0.13	0.09	0.07	0.07	90.0	90.0	0.07	0.07
Nb of obs. (in thousands)	213.40	183.07	177.68	141.31	139.06	140.71	143.19	128.96	421.08	422.96

NOTE: This table presents general descriptive statistics for the different estimation samples used in the analysis. C_g and T_g respectively refers to the control (left side of the discontinuity) and treatment group (right side of the discontinuity) for the estimation sample g. See subsection II.B for details on the construction of the estimation samples.

Table A.2: Full table for robustness analysis

	ref	1a	1b	2a	2b	3a	3b	4a	4b	5a	5b
I_emp	0.212	0.205	0.229	0.211	0.212	0.222	0.204	0.210	0.203	0.212	0.229
	(0.003)	(0.002)	(0.004)	(0.004)	(0.002)	(0.004)	(0.003)	(0.003)	(0.005)	(0.002)	(0.003)
Cluster	No	No	No	No	Individual	No	No	No	No	No	No
Polynomial degree	2	1	3	2	2	2	2	2	2	2	2
Left bandwith	9	9	9	9	9	6	18	9	8	9	9
Right bandwith	9	9	9	9	9	7	18	8	8	9	9
No. obs.	807484	807484	807484	403772	807484	583010	524417	762229	717128	807484	807484

Notes: This table presents the point estimates presented in Figure 6. It shows the treatment effect estimated with a range of alternative specifications. See the main text for a description of the different models.

Table A.3: Full table for RD on the average retirement age

	(1)	(2)	(3)	(4)
Treatment effect	1.058	0.905	0.980	0.592
	(0.159)	(0.253)	(0.193)	(0.306)
Including missing	No	No	Yes	Yes
Polynomial degree	1	2	1	2
No. obs.	614814	614814	844039	844039

NOTES: This table present the estimation of equation (1) for the individual retirement age, using the pooled RD estimation sample. Retirement is defined as the last age for which labor income is the main source of income. In columns (1)-(2) we keep only individuals for which we observe employment above age 57. In columns (3)-(4) we include those observations and set their individual retirement age at 57. Column (4) is the specification presented in Figure 8b.

Table A.4: Comparison with related studies looking at average retirement age^a

Study	Country	Reform	Method	Results
				Ave. retirement age per month ERA/NRA/SRA ^b
Mastrobuoni (2009)	USA	NRA $62 \rightarrow 65$	RKD	♂: +0.8, ♀: +0.6
Manoli & Weber (2018)	AUT	$ \sigma$: ERA 60 → 62.5	RDD,	+0.20 to +0.36
		φ : ERA $55 \rightarrow 58.5$	RKD	+0.39 to +0.55
Lalive et al. (2019)	SWI	$\varsigma\colon \mathrm{FRA}\ 62 \to 64$	RDD	+0.41 to +0.65
This paper	NLD	SRA 65+3m \rightarrow 66+4m	RDD	+0.20

Notes: ^aExact references for the values reported in this table can be found in Table A.6 in the online appendix. ^bThe increase in the average retirement age per month increase in the ERA, NRA or SRA.

Table A.5: Exact references outcomes related studies in Table 6

015)	Employment rate σ : Table 3, column (2)				
(2015)	3, column (2)	Retirement rate	Employment rate Hazard rate Bunching	Hazard rate	Bunching
(2015)		Table 3, column (2)	Figur	Figure 4 (A)	
	q: Table 3, column (6)	Table 3, column (6)	Figur	Figure 5 (A)	
	Table 2, column 'DD estimate'	×	Fig	Figure 2	
	Table 3, column 'Full Sample'	×	♂: Figure	σ : Figure 2, at age 60	
	Table 4	Table 5, "Retired"	Figure	Figure 2, age 59	
De Vos et al. (2019) Page	Page 22	×	Fig	Figure 12	
Rabaté & Rochut (2019) Table 5, column	Table 5, column 'Employment'	Table 5, column 'Retirement'	Figu	Figure 2 (a)	
Geyer & Welteke (2021) Table 1, c	Table 1, column (1)	Table 1, column (5)	Figure 2 (A)	Figure 4	Figure 4
This paper Table 2, column	Table 2, column 'Employment'	Table 2, column 'Retirement'	Figure 3	Figure 3	Figure 3

Table A.6: Exact references outcomes related studies in Table A.4

Study	Results
	Average retirement age
Mastorbuoni (2009)	o³: Table 5, column (2), \Diamond : Table 5, column (2)
Manoli & Weber (2018)	\circ ': Table 4, 'Short contribution years'
	♀: Table 4, 'Short contribution years'
Lalive et al. (2020)	Table 4, columns (1) and (3), panel C
This paper	Figure 8

B. Data description

We hereby present the different datasets we used in this analyses. Table B.1 below presents the version of the files we use. In the replication package made available online, we additionally provide links to the documentation by Statistics Netherlands (in Dutch) for each dataset.

gbapersoontab1

Contains demographic background data (e.g. gender, year of birth, migration background) for the universe of the Dutch population, that is all persons who appear in the registered in the population register (Basic Register of Persons, BRP) since 1 October 1994.

gbaoverlijdentab²

Contains the date of death of all persons who have died since 1 October 1994 and were registered in the population register (Basic Register of Persons, BRP) at the time of death. It also contains the date of death of persons who are not residents but were once residents of the Netherlands since 1 October 1994 and whose information about the death is received in the Register of Non-Residents (RNI). The main source of information for this dataset is the municipal registries (Gemeentelijke Basisadministratie Persoonsgegevens, GBA).

gbamigratiebus³

Contains all migration spells for the full universe of the Dutch population (as defined in the gbapersoontab). For each immigration (resp. emigration) spell, a date of beginning and end is registered, as well as the country of origin (resp. destination). For each individual, we have as many spells as migration events occurring since 1994. The main source of information for this dataset is the municipal registries (Gemeentelijke Basisadministratie Persoonsgegevens, GBA).

¹Statistics Netherlands (2022a)

²Statistics Netherlands (2022b)

³Statistics Netherlands (2022c)

gbahuishoudensbus⁴

For the full universe of the Dutch population (as defined in the gbaper-soontab), it contains information about the household composition: their place in the household, and the details of the household they belong to (e.g couple or not, married or not, with or without children, etc.). Retrospective information is available, as the data is presented as spells (one additional line when one characteristic of the household changes). The main source of information for this dataset is the municipal registries (Gemeentelijke Basisad-ministratie Persoonsgegevens, GBA).

aowuitkering1atab⁵

Contains a monthly record of the old age benefits received by eligible individuals, sourced entirely from registries.

$polisbus^6$ and $spolisbus^7$

These datasets contain information on the full universe of job in the Netherlands, available from year 2006. There is one line by employment spells, with information on both the individual (wage, hours worked, contributions, etc) and the firm (sector, collective agreement, etc). We use these datasets in combination with the betab⁸, from which we additionally obtain the Dutch standard company classification numbers (SBI).

secm dataset

The secm datasets contain monthly information on the income receive each month from year 1999 for different types of incomes: employment wage (SECMW-ERKNDGAMNBEDRABUS⁹), profit (SECMZLFMNDBEDRAGBUS¹⁰), other activities (SECMOVACTMNDBEDRAGBUS¹¹), unemployment benefits (SECMW-ERKLMNDBEDRAGBUS¹²), disability benefits (SECMZIEKTAOMNDBEDRAG-

⁴Statistics Netherlands (2022d)

⁵Statistics Netherlands (2022e)

⁶Statistics Netherlands (2022f)

⁷Statistics Netherlands (2022g)

⁸Statistics Netherlands (2022h)

⁹Statistics Netherlands (2022i)

¹⁰Statistics Netherlands (2022j)

¹¹Statistics Netherlands (2022k)

¹²Statistics Netherlands (2022l)

Table B.1: Versions of the datasets used in the analyses

Content	Name of dataset	Source
Date of birth and gender	GBAPERSOON2019TAB (V1)	Population registers
Death	GBAOVERLIJDENTAB2019TAB (V1)	Death records
Migration	GBAMIGRATIE2019BUSV2 (V1)	Migration records
Households characteristics	GBAHUISHOUDENS2019BUS (V1)	SSB
AOW benefits	AOWUITKERING1ATAB 2007-2020	SSB
Individual income		
Wage income	SECMWERKNDGAMNBEDRABUSV20191	SSB
Profits from self-employment	SECMZLFMNDBEDRAGBUSV20191	SSB
Income from other activity	SECMOVACTMNDBEDRAGBUSV20191	SSB
Social welfare benefits	SECMBIJSTMNDBEDRAGBUSV20191	SSB
UI benefits	SECMWERKLMNDBEDRAGBUSV20191	SSB
DI and sickness benefits	SECMZIEKTAOMNDBEDRAGBUSV20191	SSB
Other social security benefits	${\tt SECMSOCVOORZOVMNDBEDRAGBUSV20191}$	SSB
Pension income	SECMPENSIOENMNDBEDRAGBUSV20191	SSB
Activity sector	POLISBUS 2006-2009, SPOLISBUS 2010-2020	SSB
Company classification	BETAB 2006-2020	SSB
Wealth	VEHTAB 2006-2020	Various
Reclassified identifiers	VTVTAB 2020	SSB

BUS¹³), other benefits (SECMSOCVOORZOVMNDBEDRAGBUS¹⁴) welfare (SECMBIJSTMNDBEDRAGBUS¹⁵) and pension income (SECMPENSIOEN-MNDBEDRAGBUS¹⁶).

These datasets are constructed by Statistic Netherlands using different administrative data sources (taxes, social security, pension funds). The initial form of the dataset is spell data, and contains a date of beginning, a date of end, and an associated monthly amount. A new line is added for a given individual every time the monthly amount she perceives changes. The secmbus dataset combines the different sources mentioned above in a single dataset containing the main source of income and associated amount for each spell.

¹³Statistics Netherlands (2022m)

¹⁴Statistics Netherlands (2022n)

¹⁵Statistics Netherlands (2022o)

¹⁶Statistics Netherlands (2022p)

$vehtab^{17}$

The vehtab data provide information about the wealth of the full universe of the Dutch household. It is available from year 2006, and contains on a yearly basis the value of asset and debt owned, for different types of wealth (e.g financial assets, business assets, housing). The vehtab data do not cover all wealth in the national accounts, as pension wealth is not included. Depending on the type of wealth, the value is either observed (from tax data) or computed by Statistic Netherlands.

$vtvtab^{18}$

These data are used to obtain reclassified anonymous identifiers for individuals that are or have been observed in the municipal records.

¹⁷Statistics Netherlands (2022q)

¹⁸Statistics Netherlands (2022r)

References

- Statistics Netherlands. Gbapersoontab: Persoonskenmerken van personen in de brp. Technical Report GBAPERSOON2020TABV3, Microdata Service of Statistics Netherlands, 2022a.
- Statistics Netherlands. Gbaoverlijdentab: Datum van overlijden van personen ingeschreven in het gba. Technical Report GBAOVERLIJDENTAB2020V1, Microdata Service of Statistics Netherlands, 2022b.
- Statistics Netherlands. Gbamigratiebus: Migratiekenmerken van personen. Technical Report GBAMIGRATIE2020BUSV1, Microdata Service of Statistics Netherlands, 2022c.
- Statistics Netherlands. Gbahuishoudensbus: Huishoudenskenmerken. Technical Report GBAHUISHOUDENS2021BUSV1, Microdata Service of Statistics Netherlands, 2022d.
- Statistics Netherlands. Aowuitkering1atab: Kenmerken van aow-uitkeringen. Technical report, Microdata Service of Statistics Netherlands, 2022e.
- Statistics Netherlands. Polisbus: Polisbus:banen en lonen van werknemers in nederland. Technical Report POLISBUS, Microdata Service of Statistics Netherlands, 2022f.
- Statistics Netherlands. Spolisbus: Banen en lonen volgens polisadministratie. Technical Report SPOLISBUS, Microdata Service of Statistics Netherlands, 2022g.
- Statistics Netherlands. Betab: Activiteiten en grootteklasse van bedrijven. Technical report, Microdata Service of Statistics Netherlands, 2022h.
- Statistics Netherlands. secmwerkndgamndbedragbus: Personen met loon maand. Technical Report SECMWERKNDGAMNBEDRABUSV20201, Microdata Service of Statistics Netherlands, 2022i.
- Statistics Netherlands. Secmzlfmndbedragbus: winstbedrag van zelfstandigen. Technical Report SECMZLFMNDBEDRAGBUSV20201, Microdata Service of Statistics Netherlands, 2022j.

- Statistics Netherlands. Secmovactmndbedragbus: Personen overige arbeid. Technical Report SECMOVACTMNDBEDRAGBUSV20201, Microdata Service of Statistics Netherlands, 2022k.
- Statistics Netherlands. Secmbijstmndbedragbus: Personen bijstand verslagmaand. Technical Report SECMBIJSTMNDBEDRAGBUSV20201, Microdata Service of Statistics Netherlands, 2022l.
- Statistics Netherlands. Secmwerklmndbedragbus: Personen werkloosheidsuitkering. Technical Report SECMWERKLMNDBEDRAGBUSV20201, Microdata Service of Statistics Netherlands, 2022m.
- Statistics Netherlands. Secmziekteaomndbedragbus: Personen uitkering bij ziekte. Technical Report SECMZIEKTAOMNDBEDRAGBUSV20201, Microdata Service of Statistics Netherlands, 2022n.
- Statistics Netherlands. Secmsocvoorzovmndbedragbus: Soc. econ. cat. ov. soc voorzien. Technical Report SECMSOCVOORZOVMNDBEDRAG-BUSV20201, Microdata Service of Statistics Netherlands, 2022o.
- Statistics Netherlands. Secmpensioenmndbedragbus: Personen met pensioenbedragen. Technical Report SECMPENSIOENMNDBEDRAG-BUSV20201, Microdata Service of Statistics Netherlands, 2022p.
- Statistics Netherlands. Vehtab: Vermogens van huishoudens. Technical report, Microdata Service of Statistics Netherlands, 2022q.
- Statistics Netherlands. vtvpersoontab: Volgtijdelijk vergelijkbare persoon_id's van personen. Technical Report VTVPERSOONTABV20201, Microdata Service of Statistics Netherlands, 2022r.