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I Optimality of Posted-Price Mechanisms with Uniform Information
We first prove an important lemma, which implies Proposition 1. This lemma per se has nothing to do with
information design, but it implies that, regardless of the value distribution induced by the public experiment,
the seller should later use some posted-price mechanism to maximize her profit; Proposition 1 thus follows.

Lemma OA.1. Suppose that there is a single-unit indivisible object for sale. Let V ⊂R be a bounded
set where buyer’s private value resides. For any selling mechanism, there is a posted-price mechanism
that generates a weakly higher profit.

This lemma follows directly from the next three claims. Let {x(v),t(v)}v∈V be a direct mechanism
where t(v) and x(v) specify the buyer’s payment and his probability of getting the good when he reports v.

Claim OA.1. Let V̂ be the convex hull of the closure of V .29 A direct mechanism {x(·),t(·)}, defined on
V , is incentive compatible, if and only if there is a direct mechanism {x̂(·),̂t(·)}, defined on V̂ , such that
i) it is incentive compatible, and ii) x̂|V =x and t̂|V =t.

Proof. The “if” direction is obvious. So we focus on the “only if” direction.
Let {x(v),t(v)}v∈V be an IC direct mechanism defined on V . We would like to construct an extension,

{x̂(v),t̂(v)}v∈V̂ , which is IC on V̂ . We do such an extension in two steps. In Step 1, we extend the
original mechanism to the closure Vc of V . In Step 2, we further extend it to the convex hull V̂ of Vc.

Step 1: Extending {x(v),t(v)}v∈V to {xc(v),tc(v)}v∈Vc, where Vc is the closure of V .
For any v∈Vc−V , there is a monotone sequence vn ∈V such that vn→ v. Because {x(v),t(v)}

is IC on V , x(·) and t(·) are nondecreasing functions, and thus x(vn) and t(vn) are bounded monotone
sequences. Define xc(v)≡ limnx(vn) and tc(v)≡ limnt(vn).30

We verify that {xc(·),tc(·)} constructed above is IC on Vc.
Case 1: v∈V .
Take any v∈V . Since {x(·),t(·)} is IC on V , the buyer doesn’t want to misreport any type in V . Also,

by misreporting v̂∈Vc−V , the buyer’s payoff is

vxc(v̂)−tc(v̂)=lim
n
[vx(vn)−t(vn)]≤vx(v)−t(v),

where the equality follows from our construction of {xc(·),tc(·)}, and the inequality follows from the IC
of {x(·),t(·)}. Therefore, the buyer of type v does not want to misreport any type in Vc−V either.

29That is, V̂ is the smallest compact interval that contains V .
30It is possible that different {vn}n sequences lead to different limits for x(vn) and t(vn), and when that happens,

our construction simply picks one of them.
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Case 2: v∈Vc−V .
Take any v∈Vc−V . We first check that the buyer cannot profitably deviate by misreporting v̂∈V . Let

{vn}n be the sequence in V used to construct xc(v) and tc(v). Because {x(·),t(·)} is IC on V , we have

vnx(v̂)−t(v̂)≤vnx(vn)−t(vn).

Taking the limit on both sides, we have

vx(v̂)−t(v̂)≤vxc(v)−tc(v).

So the buyer gains nothing by misreporting v̂∈V . Then, following the argument in Case 1, there is no
profitable deviation by misreporting any v̂∈Vc−V either.

Step 2: Extending {xc(v),tc(v)}v∈Vc to {x̂(v),̂t(v)}v∈V̂ , where V̂ is the convex hull of Vc.
For any v ∈ V̂ −Vc, let (v,v̄) be such that i) v ∈ (v,v̄)⊂ V̂ −Vc, and ii) v,v̄ ∈Vc.31 Then, for any

v∈V̂ −Vc, define

(x̂(v),̂t(v))≡
{
(xc(v),tc(v)), if vxc(v)−tc(v)≥vxc(v̄)−tc(v̄)

(xc(v̄),tc(v̄)), if vxc(v)−tc(v)<vxc(v̄)−tc(v̄)
.

We verify that {x̂(·),̂t(·)} constructed above is IC on V̂ . Note that our construction doesn’t introduce
new (x,t) pairs into the mechanism, so any v∈Vc doesn’t have an incentive to misreport. Now consider
any v ∈ V̂ −Vc. Single-crossing of the buyer’s payoff function implies that among the (x,t) pairs in
{xc(v),tc(v)}v∈Vc, his most preferred one is either (xc(v),tc(v)) or (xc(v̄),tc(v̄)). Since our construction
of x̂(v) and t̂(v) exactly gives him that pair, he doesn’t have an incentive to misreport either.

Claim OA.1 tells us that, when analyzing IC mechanisms, we can without loss think of the type space
as a compact interval (because even when it is not a compact interval, artificially imposing additional IC
constraints on the entire convex hull of it doesn’t change the set of IC mechanisms on the original space.)
From now on, for the purpose of imposing IC constraints, we take V as a compact interval [v,v̄], so
that the revenue equivalence theorem applies That is, a direct mechanism {x(·),t(·)} is IC on V , if and
only if x(·) is nondecreasing, and t(v)=vx(v)−

∫ v
v x(s)ds−C where C is the utility of buyer v.

Let us now introduce the following definition of a random price mechanism.

Definition 1. A (indirect) mechanism is a random price mechanism if the seller posts a price that follows
some probability distribution on V , and the buyer then optimally decides whether to buy at the realized
price, with potential mixing when indifferent.

Claim OA.2. Any IC direct mechanism {x(·),t(·)} that gives zero utility to buyer v can be implemented
by a random price mechanism.

Proof. Take any IC direct mechanism {x(·),t(·)} that gives zero utility to buyer v. This implies that x(·)
is a nondecreasing function. Consider two different cases.

Case 1: x(·) is right-continuous and satisfies x(v̄)=1.

31Because Vc and V̂ are both compact subsets of R, V̂ −Vc is constituted by a union of such open intervals.
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In this case, x(·) itself is a probability distribution function on V . Consider the random price mech-
anism in which the price distribution is defined by

Pr(p≤v)≡x(v),

with all buyer types buying the good with probability 1 when indifferent. It is easy to check that this
random price mechanism induces an allocation rule equal to x(·) and gives zero utility to buyer v.

Case 2: x(·) is not right-continuous or x(v̄)<1 (or both).
In this case, define x̄(·) as

x̄(v)≡
{
x(v+) if v<v̄

1, if v= v̄
.

By construction, x̄(·) is a probability distribution function on V . Consider the random price mechanism
in which the price distribution is defined by

Pr(p≤v)≡ x̄(v),

with each buyer v buying with probability x(v)−x(v−)
x̄(v)−x(v−)when indifferent. It is easy to check that this random

price mechanism induces an allocation rule equal to x(·) and gives zero utility to buyer v.

Claim OA.3. For any random price mechanism, there is a deterministic posted-price mechanism that
generates a weakly higher profit.

Proof. Take any random price mechanism, and denote the price distribution by x̄. Let π(p) be the seller’s
profit from this mechanism if the realized price is p, taking account of the specific tie-breaking rule. The
seller’s expected profit is

∫ v̄
v π(p)dx̄(p). It immediately follows (from a contradiction argument) that there

must exist some p∗∈V such that π(p∗)≥
∫ v̄
v π(p)dx̄(p). So a deterministic posted-price mechanism with

price p∗ generates a weakly higher profit.

Proof of Lemma OA.1. By the revelation principle, we can without loss focus on IC direct mechanisms.
By Claim OA.1, we can without loss impose IC constraints on the smallest compact interval that contains
V . Then by Claims OA.2 and OA.3, for any (IC direct) mechanism, there is a deterministic posted-price
mechanism that generates a weakly higher profit.

II General Valuation Functions
Definition of Bounds Recall that v(θ,ω)≡u(θ,ω)− 1−G(θ)

g(θ) uθ(θ,ω)−c, defined in (9). Notice that

vθ=uθ−
(
1−G

g

)′
uθ−

1−G

g
uθθ>0, (OA.1)

vω=uω−
1−G

g
uθω, (OA.2)

where the inequality follows from uθ>0,
(
1−G
g

)′
<0 and uθθ≤0. Recall also the definition of bounds

M̄ and M in (11) and (12).
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An Auxiliary Benchmark Similar to Section 3.1, we first look at an auxiliary benchmark in which
the quality is perfectly observable to both the seller and the buyer. In this case, a direct mechanism,
{q(θ,ω),t(θ,ω)}, specifies that, if a buyer reports type θ and if the seller observes quality ω, then the buyer
gets the good with probability q(θ,ω) and makes a payment of t(θ,ω) to the seller.

Define

U(θ,θ̂)≡
∫ ω̄

ω

[
u(θ,ω)q(θ̂,ω)−t(θ̂,ω)

]
dF(ω)=C(θ̂)+D(θ,θ̂), (OA.3)

V (θ)≡U(θ,θ), (OA.4)

where C(θ̂)=−
∫ ω̄
ω t(θ̂,ω)dF(ω) and D(θ,θ̂)=

∫ ω̄
ω u(θ,ω)q(θ̂,ω)dF(ω). Here, U(θ,θ̂) is buyer θ’s interim

payoff if he reports θ̂.

Claim OA.4. In the auxiliary benchmark, truthful reporting of θ is optimal, i.e.,V (θ)≥U(θ,θ̂),∀θ,θ̂, only if

V (θ)=V (θ)+

∫ θ

θ
D1(s,s)ds, (OA.5)

where D1(θ,θ̂)=
∂D(θ,θ̂)

∂θ . Moreover, if a mechanism satisfies (OA.5) and that D1(θ,θ̂) is nondecreasing
in θ̂, for all θ,θ̂∈Θ, then truthful report of θ is optimal.

Proof. Suppose first that V (θ)≥U(θ,θ̂),∀θ,θ̂. Recall that D(θ,θ̂)=
∫ ω̄
ω u(θ,ω)q(ω,θ̂)dF(ω). Since u

is C1 and uθ(θ,ω)q(ω,θ̂)f(θ)≤max(θ,ω)∈Θ×Ω[uθ(θ,ω)f(θ)], by the Dominated Convergence Theorem
D1(θ,θ̂)=

∫ ω̄
ω uθ(θ,ω)q(ω,θ̂)dF(ω). Then, |D1(θ,θ̂)|≤

∫ ω̄
ω uθ(θ,ω)dF(ω)≤max(θ,ω)∈Θ×Ωuθ(θ,ω). By

Milgrom and Segal (2002, Theorem 2), V (θ)=V (θ)+
∫ θ
θ D1(s,s)ds.

Suppose now that (OA.5) is satisfied and that D1(θ,θ̂) is nondecreasing in θ̂, for all θ,θ̂∈Θ. We want
to show that truthful reporting is optimal. Take any θ,θ̂∈Θ. We have

V (θ)−U(θ,θ̂)=U(θ,θ)−U(θ,θ̂)

=V (θ)−V (θ̂)+D(θ̂,θ̂)−D(θ,θ̂)

=

∫ θ

θ̂
D1(s,s)ds−

∫ θ

θ̂
D1(s,θ̂)ds

=

∫ θ

θ̂
[D1(s,s)−D1(s,θ̂)]ds

≥0,

where the second line follows from equations (OA.3) and (OA.4), the third line follows from condition
(OA.5), and the last line follows from D1 being nondecreasing in its second variable.

Claim OA.4 implies that the seller’s profit maximization problem in the auxiliary benchmark can be
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written as

max
{q(θ,ω),V (θ)}

−V (θ)+

∫ θ̄

θ

[
D(θ,θ)−

∫ θ

θ
D1(s,s)ds−c

∫ ω̄

ω
q(θ,ω)dF(ω)

]
dG(θ)

s.t. D1(θ,θ̂) is nondecreasing in θ̂, and V (θ)≥0

. (OA.6)

Note that ∫ θ̄

θ

[
D(θ,θ)−

∫ θ

θ
D1(s,s)ds−c

∫ ω̄

ω
q(θ,ω)dF(ω)

]
dG(θ)

=

∫ θ̄

θ

∫ ω̄

ω

(
u(θ,ω)−c−1−G(θ)

g(θ)
uθ(θ,ω)

)
q(θ,ω)g(θ)dF(ω)dθ

=

∫ θ̄

θ

∫ ω̄

ω
v(θ,ω)q(θ,ω)g(θ)dF(ω)dθ,

(OA.7)

where the second line is obtained by integration by parts and substituting the expressions of D and D1

into the equation, and the last line uses the definition of v in (9).
From (OA.1), (OA.2) and the assumption that uθω<M̄ , we know that

vθ,vω>0, whenever v≥0. (OA.8)

So for any given θ, there exists at most one ω∈Ω such that v(θ,ω)=0. Wherever it exists, let k(θ) be
such that v(θ,k(θ))=0, and let k(θ)≡ω̄ (ω) if v(θ,ω) is negative (positive) for all ω.

Condition (OA.8) implies that

dk(θ)

dθ
=− vθ

vω
<0, (OA.9)

for all θ s.t. v(θ,·) admits a zero point in Ω.
The objective in (OA.7) suggests the following candidate solution:

q∗∗(ω,θ)=

{
1, if ω≥k(θ)

0, if ω<k(θ)
. (OA.10)

Under such a candidate solution, D∗(θ,θ̂)=
∫ ω̄
k(θ̂)u(θ,ω)dF(ω), so that ∂2D∗

∂θ∂θ̂
=−uθ(θ,ω)

dk(θ̂)
dθ >0,

which verifies that D∗
1(θ,θ̂) is nondecreasing in θ̂. Hence, q∗∗ defined in (OA.10) solves program (OA.6).

With an abuse of notation, define θ1≡ infΘ{θ :k(θ)<ω̄} and θ2=supΘ{θ :k(θ)>ω}. Since we
have assumed u(θ̄,ω̄)>c and u(θ,ω)≤c, it is easy to check that θ≤θ1<θ2≤ θ̄.32 As in the additively
separable case, all buyer types between θ1 and θ2 buy with probability strictly between 0 and 1.

Implementation As argued in Section 3.2, the profit obtained in the auxiliary benchmark in an upper
bound on the seller’s profit in our problem with endogenous information about quality, private signal
realizations, and an RPIR constraint. We now show that this profit can be obtained in our setting with a
recommendation mechanism, that is, a menu of price-experiment pairs with binary signals.

32That u(θ̄,ω̄)>c (u(θ,ω)≤c) implies that k(θ̄)<ω̄ (k(θ)>ω), so that θ1 (θ2) is well-defined.
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Consider the following recommendation mechanism. If a buyer reports θ, then he will be recommended
to buy if and only if q(θ,ω)=1, i.e., ω≥k(θ). Moreover, the price he faces is

p∗∗(θ)=

u(θ1,ω̄,) if θ∈ [θ,θ1)
D∗(θ,θ)−

∫ θ
θ1
D∗

1(s,s)ds

1−F(k(θ)) , if θ∈ [θ1,θ̄]
. (OA.11)

Claim OA.5. p∗∗(θ) is decreasing in θ.

Proof. By its definition in (OA.11), p∗∗ is constant on [θ,θ1] and [θ2,θ̄], and is continuous at θ2. For the
possible case where θ1>θ, we first show that p∗∗ is continuous at θ1. Note that

lim
θ↓θ1

p∗∗(θ)= lim
θ↓θ1

[
D∗(θ,θ)−

∫ θ
θ1
D∗

1(s,s)ds

1−F(k(θ))

]

=
D∗

1(θ1,θ1)+D∗
2(θ1,θ1)−D∗

1(θ1,θ1)

−f(k(θ1))k′(θ1)

=u(θ1,ω̄),

where the second line follows from L’Hopital’s rule, and the third line follows from D∗
2(θ, θ) =

−u(θ,k(θ))f(k(θ))k′(θ).
Now we show that p∗∗ is strictly decreasing on (θ1,θ2). Taking derivative with respect to θ, we have

dp∗(θ)

dθ
=

d

dθ

[
E[u(θ,ω)|ω≥k(θ)]−

∫ θ
θ1
D∗

1(s,s)ds

1−F(k(θ))

]

=

∫ ω̄
k(θ)uθ(θ,ω)dF(ω)

1−F(k(θ))
+
f(k(θ))

∫ ω̄
k(θ)(1−F(ω))uω(θ,ω)dω

[1−F(k(θ))]2
k′(θ)

−
[

D∗
1(θ,θ)

1−F(k(θ))
+
f(k(θ))

∫ θ
θ1
D∗

1(s,s)ds

[1−F(k(θ))]2
k′(θ)

]

=− f(k(θ))k′(θ)

[1−F(k(θ))]2

[∫ θ

θ1

D∗
1(s,s)ds−

∫ ω̄

k(θ)
(1−F(ω))uω(θ,ω)dω

]
,

where the second line follows from the observation (analogous to Lemma A1) that

d

dy
E[u(θ,x)|x≥y]=

f(y)
∫ x̄
y (1−F(x))ux(θ,x)dx

(1−F(y))2
,

and the last line follows from D∗
1(θ,θ)=

∫ ω̄
k(θ)uθ(θ,ω)dF(ω).

To show dp∗/dθ<0, since k′(θ)<0, we are done if
∫ θ
θ1
D∗

1(s,s)ds−
∫ ω̄
k(θ)(1−F(ω))uω(θ,ω)dω<0
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for all θ∈(θ1,θ2). Since k(θ1)≤ω̄, these integrals are weakly less than 0 at θ=θ1. For all θ∈ [θ1,θ2],

d

dθ

[∫ θ

θ1

D∗
1(s,s)ds−

∫ ω̄

k(θ)
(1−F(ω))uω(θ,ω)dω

]

=D∗
1(θ,θ)−

(∫ ω̄

k(θ)
(1−F(ω))uθω(θ,ω)dω−[1−F(k(θ))]uω(θ,k(θ))k

′(θ)

)
=[1−F(k(θ))]

[
uθ(θ,k(θ))+k′(θ)uω(θ,k(θ))

]
=[1−F(k(θ))][uθ(θ,k(θ))−vθuω(θ,k(θ))/vω]

=[1−F(k(θ))]

−uθ
1−G
g uθω+uω

((
1−G
g

)′
uθ+

1−G
g uθθ

)
uω− 1−G

g uθω


<0,

where the second equality follows from integrating D∗
1 by parts, the third and fourth equalities follow from

(OA.8) and (OA.9), and the strict inequality at the end follows from uθω>M . Therefore, we have∫ θ

θ1

D∗
1(s,s)ds−

∫ ω̄

k(θ)
(1−F(ω))uω(θ,ω)dω<0, for all θ∈(θ1,θ̄),

as desired.

Proof of Theorem 3. We now verify that this recommendation mechanism indeed allows the seller to
obtain the same profit as in the auxiliary benchmark. First, by construction, a buyer in a recommendation
mechanism can walk away from the transaction without paying anything after observing any signal
realization, so it satisfies RPIR. Also, it is easy to verify that, if every buyer type reports truthfully and
follows the recommendation, then {p∗∗,q∗∗} will generate the same profit as in the auxiliary benchmark.
Therefore, it remains to check that under {p∗∗,q∗∗}, every buyer type finds it optimal to report truthfully
and follow the recommendation.

Note that buyer θ’s payoff in the proposed recommendation mechanism if he reports truthfully and
follows the recommendation is

V ∗∗(θ)≡C∗∗(θ)+D∗∗(θ,θ),

where C∗∗(θ̂)=−p∗∗(θ̂)
∫ ω̄
ω q∗∗(θ̂,ω)dF(ω) and D∗∗(θ,θ̂)=

∫ ω̄
ω u(θ,ω)q∗∗(θ̂,ω)dF(ω). Buyer θ’s payoff

if he reports θ̂ and then follows the recommendation is

U∗∗(θ,θ̂)≡C∗∗(θ̂)+D∗∗(θ,θ̂)

Buyer θ’s payoff is 0 if he reports θ̂ and never buys the good regardless of the recommendation (i.e.,
disobeying the positive recommendation). Buyer θ’s payoff is

∫ ω̄
ω u(θ,ω)dF(ω)−p(θ̂) if he reports θ̂ and

always buys the good regardless of the recommendation (i.e., disobeying the negative recommendation).
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Therefore, buyer θ finds it optimal to report truthfully and follow the recommendation if and only if

V ∗∗(θ)≥max

{
U∗∗(θ,θ̂), 0,

∫ ω̄

ω
u(θ,ω)dF(ω)−p∗∗(θ̂)

}
, ∀θ̂∈ [θ,θ̄]. (OA.12)

Indeed, V ∗∗(θ)≥U∗∗(θ,θ̂) because V ∗∗ by construction satisfies the envelope condition V ∗∗(θ)=∫ θ
θ D

∗∗
1 (s,s)ds; V ∗∗(θ)≥0 because V ∗∗(θ) is increasing and V ∗∗(θ)=0 by construction. It remains to ver-

ify V ∗∗(θ)≥maxθ̂
∫ ω̄
ω u(θ,ω)dF(ω)−p∗∗(θ̂). To do so, we first show that, E[u(θ,ω)|ω<k(θ)]−p∗∗(θ)≤

0 for all θ; that is, when recommended not to buy, each type finds it optimal to follow. Note that, for
θ∈ [θ1,θ̄],

E[u(θ,ω)|ω<k(θ)]−p∗∗(θ)≤u(θ,k(θ))−p∗∗(θ)

=u(θ,k(θ))−
[
E[u(θ,ω)|ω≥k(θ)]−

∫ θ
θ1
D∗

1(s,s)ds

1−F(k(θ))

]

=
1

1−F(k(θ))

(∫ θ

θ1

D∗
1(s,s)ds−

∫ ω̄

k(θ)
(1−F(ω))uw(θ,ω)dω

)
≤0 (OA.13)

where the last inequality follows from our analysis of the terms in the parenthesis in the proof of Claim OA.5.
Any θ∈ [θ,θ1) are always recommended not to buy, which they optimally follow because type θ1 does so.

Now, recall that minθ̂p(θ̂)=p(θ̄) by Claim OA.5. So for any θ∈ [θ,θ̄], we have

max
θ̂

Eω[u(θ,ω)]−p(θ̂)=Eω[u(θ,ω)]−p(θ̄)

=[1−F(k(θ̄))]
[
Eω[u(θ,ω)|ω≥k(θ̄)]−p(θ̄)

]
+F(k(θ̄))

[
Eω[u(θ,ω)|ω<k(θ̄)]−p(θ̄)

]
≤ [1−F(k(θ̄))]

[
Eω[u(θ,ω)|ω≥k(θ̄)]−p(θ̄)

]
+F(k(θ̄))

[
Eω[u(θ̄,ω)|ω<k(θ̄)]−p(θ̄)

]
≤ [1−F(k(θ̄))]

[
Eω[u(θ,ω)|ω≥k(θ̄)]−p(θ̄)

]
=U(θ,θ̄)

where the first inequality is from θ≤ θ̄, and the second one from (OA.13). So, (OA.12) is satisfied.
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