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A model of medium-term wealth taxation

In this Appendix, we present a parsimonious model to characterize optimal wealth taxes
in the presence of pre-existing wealth inequality, as discussed in Section 6.3 of the paper.
Suppose individuals have a fixed labor productivity θ ∼ F(θ). They live for two periods
t = 0, 1: They work, consume and save in the first period and consume out of their (after-
tax) savings in the second (which can be interpreted as retirement). Their preferences are

u(c0)− h(y0/θ) + βu(c1),

where ct is consumption in period t, y0 is the labor income earned in period 0, and β is
a common discount factor. Importantly, these preferences satisfy the Atkinson-Stiglitz as-
sumptions: (i) the disutility of labor h is separable from the utility of consumption, and (ii)
the subutility of consumption u(c0) + βu(c1) is common across individuals.1

There is a linear savings technology with gross rate of return R (again common across
individuals). Individual θ is born with wealth k0(θ) in period 0. Notice that the initial wealth
inequality is perfectly correlated with labor productivity θ. This is assumed to conceptually
weaken the scope of a wealth tax: If the correlation were imperfect, so that there could be
individuals with the same labor income but very different initial wealth levels, we would
be in a situation with two-dimensional heterogeneity and a labor income tax alone would
be insufficient to achieve redistribution across these two dimensions. Here, this well-known
argument for a wealth tax does not apply.

Because we assume that no direct tax on initial wealth is possible, the remaining policy
instruments are a tax on first-period labor income Ty(y0) and a tax on second-period wealth

1With heterogeneity in individuals’ savings propensities, governed by β, in addition to heterogeneity in
labor skills θ, it is well known that the Atkinson-Stiglitz theorem does not apply and there is a case for savings
taxes. We rule this out to stack the cards against a wealth tax.
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Tk(Rk1), which is equivalent to a tax on capital income in this model. Individuals’ budget
constraints are

c0 = y0 − Ty(y0) + k0 − k1 (1)

c1 = Rk1 − Tk(Rk1). (2)

If k0(θ) was common across all θ, the Atkinson-Stiglitz theorem would imply that, at any
Pareto optimum, Tk(Rk1) = 0: We should only use the labor income tax Ty(y0) to achieve
redistribution. Here we ask what happens when k0(θ) varies across individuals: Is the labor
tax Ty still sufficient to deal with both initial wealth inequality and labor income inequality,
or should we (also) use the tax on future wealth accumulation Tk despite its distortionary
effects?2 Proposition 1 shows that the latter is optimal.

Proposition 1. In any Pareto optimum, the optimal marginal wealth tax schedule satisfies

T′k(Rk1(θ)) =
T′y(y0(θ))

1− T′y(y0(θ))

[
σ(θ)

α(θ)η(θ)

(
1 +

1
ε(θ)

)
− 1
]−1

(3)

where σ denotes the intertemporal elasticity of substitution, ε the Frisch elasticity of labor supply,
α = k0/c0 measures the share of period-0 consumption financed out of initial wealth, and η(θ) ≡
k′0(θ)θ/k0(θ) the elasticity of initial wealth with respect to labor productivity.

To gain intuition for the formula, consider first the case with no initial wealth inequality,
so η = 0. Hence, we return to the Atkinson-Stiglitz benchmark with T′k(Rk1) = 0 and all
desired redistribution is achieved through the labor income tax. The same is true when the
intertemporal substitution elasticity σ is infinite (the saving distortions induced by a wealth
tax explode) or when the Frisch elasticity ε is zero (inelastic labor supply implies that the
labor tax is lump-sum, so there is no need for an additional wealth tax).

Second, more generally, formula (3) links the shapes of the wealth and labor income tax
schedules at any optimum (as both are driven by the redistributive motives of the govern-
ment). But the term in square brackets introduces a wedge between the two. For instance,
suppose σ and ε are fixed parameters.3 Then any variation in this term is determined by how
αη varies across the distribution. If αη, which summarizes the importance of initial wealth
relative to labor income inequality, is increasing towards the top, the wealth tax should be
more progressive than the labor income tax, and vice versa.4

2Boadway et al. (2000) and Cremer et al. (2001, 2003) and observe that the Atkinson-Stiglitz uniform com-
modity taxation result breaks down when individuals have heterogeneous endowments and consider optimal
linear capital income taxes in a four-type model.

3This would be the case when u(c) exhibits constant relative risk aversion and the disutility of labor is
iso-elastic.

4It can also be shown that T′k(Rk1) > 0 under standard redistributive motives.
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The parameters in formula (3) can all be connected to empirical statistics; notably, η can
be backed out from the joint distribution of wealth and income. For example, suppose the
marginal tax rates on wealth and labor income converge to the constants tk and ty at the top,
respectively, and the same holds for the intertemporal substitution elasticity σ, the Frisch
elasticity ε and the importance of initial wealth as captured by the statistic α. Then we have
the following corollary of Proposition 1:

Corollary 1. In any Pareto optimum, the top marginal wealth tax rate is

tk =
ty

1− ty

[
σρk + ερy

εαρy
− 1
]−1

where ty is the top marginal income tax rate and ρk and ρy are the Pareto tail coefficients of the wealth
and labor income distribution, respectively.

It is straightforward to calibrate this formula. For instance, suppose σ = 1, so u(c) =

log(c). Because α ≤ 1+ β, we can use the formula to obtain an upper bound to the marginal
wealth tax rate. Empirical estimates suggest ρk ≈ 1.4 and ρy ≈ 1.6. Moreover, suppose
ε = .3 and ty = 50%. Interpreting the period length in this two-period model as roughly 30
years and assuming a yearly interest rate of 3%, we have β = .9730 = .4. This implies

tk ≤
.5

1− .5

[
1× 1.4 + .3× 1.6

.3× 1.4× 1.6
− 1
]−1

= 56%

over the 30-year horizon, or an annual wealth tax of at most

tannual
k ≤ 1− (1− .56)1/30 = 2.7%.
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Proof of Proposition 1

Because initial wealth k0 cannot be directly targeted, this amounts to the assumption that
both θ and k0 are unobservable to the government. In other words, lump-sum instruments
based on labor productivities or initial wealth are unavailable. This means that the gov-
ernment cannot directly control c0(θ): instead, it can only determine ĉ0(θ) ≡ c0(θ)− k0(θ).
Intuitively, the government can give individuals a transfer in t = 0 of the amount ĉ0, but
their actual consumption will then be given by c0 = ĉ0 + k0, which is unobservable.

By the revelation principle, any allocation (ĉ0(θ), c1(θ), y0(θ)) that is attainable through
some tax system must therefore satisfy the incentive compatibility constraints

u(ĉ0(θ) + k0(θ))− h(y0(θ)/θ) + βu(c1(θ)) ≥ u(ĉ0(θ
′) + k0(θ))− h(y0(θ

′)/θ) + βu(c1(θ
′))

(4)
for all θ, θ′. The aggregate resource constraint is

∫
ĉ0(θ)dF(θ) +

1
R

∫
c1(θ)dF(θ) ≤

∫
y0(θ)dF(θ). (5)

The government maximizes∫
g(θ) [u(ĉ0(θ) + k0(θ))− h(y0(θ)/θ) + βu(c1(θ))] dF(θ)

using some Pareto weights g(θ).
Define

V(θ) ≡ u(ĉ0(θ) + k0(θ))− h(y0(θ)/θ) + βu(c1(θ)).

The necessary envelope condition corresponding to (4) is

V′(θ) = u′(ĉ0(θ) + k0(θ))k′0(θ) + h′
(

y0(θ)

θ

)
y0(θ)

θ2 . (6)

It is useful to formulate the planning problem in terms of (V(θ), c1(θ), y0(θ)) using

ĉ0(θ) = Φ [V(θ) + h(y0(θ)/θ)− βu(c1(θ))]− k0(θ)

where Φ(u) denotes the inverse function of u(c). This allows us to write the Pareto problem
as follows:

max
(V(θ),c1(θ),y0(θ))

∫
g(θ)V(θ)dF(θ)
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s.t.
V′(θ) = u′

[
Φ
(

V(θ) + h
(

y0(θ)

θ

)
− βu(c1(θ))

)]
k′0(θ) + h′

(
y0(θ)

θ

)
y0(θ)

θ2

and∫
Φ
[

V(θ) + h
(

y0(θ)

θ

)
− βu(c1(θ))

]
dF(θ)+

1
R

∫
c1(θ)dF(θ) ≤

∫
y0(θ)dF(θ)+

∫
k0(θ)dF(θ).

After integration by parts (and dropping boundary terms), the corresponding Lagrangian
becomes

L =
∫

g(θ)V(θ)dF(θ)−
∫

µ′(θ)V(θ)dθ

−
∫

µ(θ)

{
u′
[

Φ
(

V(θ) + h
(

y0(θ)

θ

)
− βu(c1(θ))

)]
k′0(θ) + h′

(
y0(θ)

θ

)
y0(θ)

θ2

}
dθ

+λ

{∫
y0(θ)dF(θ) +

∫
k0(θ)dF(θ)

}
−λ

{∫
Φ
[

V(θ) + h
(

y0(θ)

θ

)
− βu(c1(θ))

]
dF(θ) +

1
R

∫
c1(θ)dF(θ)

}
(7)

where µ(θ) and λ denote the multipliers on the incentive and resource constraints, respec-
tively. The first-order condition for c1(θ) is

µ(θ)
u′′(c0(θ))

u′(c0(θ))
βu′(c1(θ))k′0(θ)− λ f (θ)

[
1
R
− β

u′(c1(θ))

u′(c0(θ))

]
= 0

where we used Φ′(u) = 1/u′(c). Define the savings wedge as

T′k(Rk1) ≡ 1− u′(c0)

βRu′(c1)
.

Substituting this yields

T′k(Rk1(θ)) = −
µ(θ)

λ f (θ)
u′′(c0(θ))k′0(θ). (8)

This already reveals that there is a savings wedge at the optimum whenever k′0(θ) 6= 0 and
µ(θ) 6= 0.

The first-order condition for y0(θ) is (dropping arguments to simplify notation)

−µ

[
u′′(c0)

u′(c0)
h′
(y0

θ

) 1
θ

k′0(θ) + h′′
(y0

θ

) y0

θ3 + h′
(y0

θ

) 1
θ2

]
+ λ f

[
1− h′(y0/θ)

θu′(c0)

]
= 0.

5



Rearranging,

µ =
λ f
[
1− h′(y0/θ)

θu′(c0)

]
h′(y0/θ)
θu′(c0)

[
u′′(c0)k′0(θ) +

u′(c0)
θ

(
h′′(y0/θ)
h′(y0/θ)

y0
θ + 1

)] .

Define the labor wedge as

T′y(y0) ≡ 1− h′(y0/θ)

θu′(c0)
.

Moreover, the Frisch elasticity is

ε ≡ dy0

d(1− T′y)

∣∣∣∣∣
u′(c0)

1− T′y
y0

=
h′(y0/θ)θ

h′′ (y0/θ) y0
.

Substituting both yields

µ =
λ f T′y(y0)

(1− T′y(y0))
[
u′′(c0)k′0(θ) +

u′(c0)
θ

(
1
ε + 1

)] .

Finally, substituting this in (8) delivers

T′k(Rk1(θ)) = −
T′y(y0)

1− T′y(y0)

1

1 + u′(c0)
θu′′(c0)k′0(θ)

(
1
ε + 1

) .

The intertemporal elasticity of substitution is

σ = − u′(c)
cu′′(c)

,

so we can write this as

T′k(Rk1(θ)) =
T′y(y0)

1− T′y(y0)

1
σc0

θk′0(θ)

(
1
ε + 1

)
− 1

.

Together with the definition of α(θ) = k0(θ)/c0(θ) and η(θ) ≡ k′0(θ)θ/k0(θ), this delivers
the result in (3).

Proof of Corollary 1

The individuals’ Euler equation is

u′(c0) = βR(1− tk)u′
(
(1− tk)R

(
(1− ty)y0 + k0 − c0

))
.
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With a constant intertemporal elasticity of substitution σ, this can be written as

c0 = γ
(
(1− ty)y0 + k0 − c0

)
with

γ = β−σR1−σ(1− tk)
1−σ.

Rearranging yields
1 + γ

γ
= (1− ty)

y0

c0
+

k0

c0

and hence α ≤ 1 + 1/γ.
With a constant Frisch elasticity ε, the first-order condition for y0 is

y0 = (1− ty)
εθ1+εc−

ε
σ

0 .

If α(θ)→ α > 0 and η(θ)→ η as θ grows large, then for high-earners

y0(θ)→ κyθ1+ε(1−η/σ)

for some constant κy. Second-period wealth is

Rk1(θ) = R
(
(1− ty)y0(θ) + k0(θ)− c0(θ)

)
,

which under the same conditions becomes

Rk1(θ)→ κ̃yθ1+ε(1−η/σ) + κkθη

for some constants κ̃y and κk. Because the Pareto tail coefficient of the empirical income
distribution ρy is typically higher than that of the empirical wealth distribution ρk (because
wealth is more unequally distributed than income) and in this model both are driven by
the same underlying skill parameter θ, this implies that the Pareto tail coefficient of the
distribution of θ must satisfy both

ρθ =
(

1 + ε
(

1− η

σ

))
ρy and ρθ = ηρk,

which can be used to solve for η:

η =
σ(1 + ε)ρy

σρk + ερy
.

Substituting this in (3) delivers the sufficient-statistics formula in Corollary 1.
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