# Distinguishing Common Ratio Preferences from Common Ratio Effects Using Paired Valuation Tasks 

Christina McGranaghan, Kirby Nielsen, Ted O'Donoghue, Jason Somerville, and Charles D. Sprenger

September 24, 2023

## Online Appendix

## A Proofs

Proof of Proposition 1: By Assumption 1, a person with $m_{A B}^{*}=m_{C D}^{*} \equiv m^{*}$ chooses $A$ over $B$ when $M \geqslant \Gamma\left(m^{*}, \varepsilon_{A B}\right)$, and chooses $C$ over $D$ when $M \geqslant \Gamma\left(m^{*}, \varepsilon_{C D}\right)$. Define $\bar{\varepsilon}(M)$ such that $\Gamma\left(m^{*}, \bar{\varepsilon}(M)\right)=M$. Then $\Gamma(m, 0)=m$ for all $m$ and $\Gamma$ increasing in $\varepsilon$ together imply $\bar{\varepsilon}(M)=0$ when $M=m^{*}$ and $\bar{\varepsilon}$ is increasing in $M$. Finally, using $\bar{\varepsilon}(M)$ and the fact that $\varepsilon_{C D} \stackrel{d}{=} k \varepsilon_{A B}$, the choice probabilities as a function of $M$ are $\operatorname{Pr}(A)=\operatorname{Pr}\left(\varepsilon_{A B}<\bar{\varepsilon}(M)\right)$ and $\operatorname{Pr}(C)=\operatorname{Pr}\left(\varepsilon_{C D}<\right.$ $\bar{\varepsilon}(M))=\operatorname{Pr}\left(\varepsilon_{A B}<\bar{\varepsilon}(M) / k\right)$.
(1) $M-m^{*}>0$ implies $\bar{\varepsilon}(M)>0$ and thus, given $\operatorname{Pr}\left(\varepsilon_{A B}<0\right)=Z, \operatorname{Pr}(A)>Z$ and $\operatorname{Pr}(C)>Z$. Moreover, $k>1$ implies $\bar{\varepsilon}(M) / k<\bar{\varepsilon}(M)$ and thus $\operatorname{Pr}(A)>\operatorname{Pr}(C) ; k<1$ implies $\bar{\varepsilon}(M) / k>$ $\bar{\varepsilon}(M)$ and thus $\operatorname{Pr}(A)<\operatorname{Pr}(C)$; and $k=1$ implies $\bar{\varepsilon}(M) / k=\bar{\varepsilon}(M)$ and thus $\operatorname{Pr}(A)=\operatorname{Pr}(C)$.
(2) $M-m^{*}<0$ implies $\bar{\varepsilon}(M)<0$ and thus, given $\operatorname{Pr}\left(\varepsilon_{A B}<0\right)=Z, \operatorname{Pr}(A)<Z$ and $\operatorname{Pr}(C)<Z$. Moreover, $k>1$ implies $\bar{\varepsilon}(M) / k>\bar{\varepsilon}(M)$ and thus $\operatorname{Pr}(A)<\operatorname{Pr}(C) ; k<1$ implies $\bar{\varepsilon}(M) / k<$ $\bar{\varepsilon}(M)$ and thus $\operatorname{Pr}(A)>\operatorname{Pr}(C)$; and $k=1$ implies $\bar{\varepsilon}(M) / k=\bar{\varepsilon}(M)$ and thus $\operatorname{Pr}(A)=\operatorname{Pr}(C)$.
(3) $M-m^{*}=0$ implies $\bar{\varepsilon}(M)=\bar{\varepsilon}(M) / k=0$ for all $k>0$, and thus $\operatorname{Pr}(A)=\operatorname{Pr}(C)=Z$ for all $k>0$.

Proof of Proposition 2: Proof of part (1): Because $m_{A B}=\Gamma\left(m_{A B}^{*}, \varepsilon_{A B}\right)=m_{A B}^{*}+\varepsilon_{A B}$, we have $E\left(m_{A B}\right)=m_{A B}^{*}+E\left(\varepsilon_{A B}\right)$. Analogously, $E\left(m_{C D}\right)=m_{C D}^{*}+E\left(\varepsilon_{C D}\right)$. Then $E\left(\varepsilon_{A B}\right)=E\left(\varepsilon_{C D}\right)$ implies $E(\Delta m)=E\left(m_{C D}-m_{A B}\right)=m_{C D}^{*}-m_{A B}^{*}=\Delta m^{*}$.

Proof of part (2): By assumption, the joint distribution of ( $\varepsilon_{A B}, \varepsilon_{C D}$ ) has continuous PDF $f$ that satisfies $f\left(\varepsilon^{\prime}+z_{A B}, \varepsilon^{\prime}+z_{C D}\right)=f\left(\varepsilon^{\prime}-z_{A B}, \varepsilon^{\prime}-z_{C D}\right)$ for all $\left(z_{A B}, z_{C D}\right)$. Define $\nu_{A B} \equiv \varepsilon_{A B}-\varepsilon^{\prime}$ and $\nu_{C D} \equiv \varepsilon_{C D}-\varepsilon^{\prime}$. Then the joint distribution of ( $\nu_{A B}, \nu_{C D}$ ) has continuous PDF $g$ that satisfies $g\left(\nu_{A B}, \nu_{C D}\right)=g\left(-\nu_{A B},-\nu_{C D}\right)$ for all $\left(\nu_{A B}, \nu_{C D}\right)$. The marginal distribution for $\nu_{C D}$
is $g_{\nu_{C D}}\left(\nu_{C D}\right) \equiv \int_{\nu_{A B}=-\infty}^{\infty} g\left(\nu_{A B}, \nu_{C D}\right) d \nu_{A B}$, and symmetry around zero implies
$\int_{\nu_{C D}=-\infty}^{0} g_{\nu_{C D}}\left(\nu_{C D}\right) d \nu_{C D}=\int_{\nu_{C D}=0}^{\infty} g_{\nu_{C D}}\left(\nu_{C D}\right) d \nu_{C D}=1 / 2$.
If $m_{A B}^{*}=m_{C D}^{*} \equiv m^{*}$, then $m_{A B}=\Gamma\left(m^{*}, \varepsilon_{A B}\right)$ and $m_{C D}=\Gamma\left(m^{*}, \varepsilon_{C D}\right)$, and thus, given that $\Gamma$ is increasing in its second argument, $m_{C D}>m_{A B}$ if and only if $\varepsilon_{C D}>\varepsilon_{A B}$, which is equivalent to $\nu_{C D}>\nu_{A B}$. Hence:

$$
\begin{aligned}
\operatorname{Pr}(\Delta m>0)= & \operatorname{Pr}\left(\nu_{C D}>\nu_{A B}\right)=\int_{\nu_{C D}=-\infty}^{\infty}\left(\int_{\nu_{A B}=-\infty}^{\nu_{C D}} g\left(\nu_{A B}, \nu_{C D}\right) d \nu_{A B}\right) d \nu_{C D} \\
= & \int_{\nu_{C D}=-\infty}^{0}\left(\int_{\nu_{A B}=-\infty}^{\nu_{C D}} g\left(\nu_{A B}, \nu_{C D}\right) d \nu_{A B}\right) d \nu_{C D} \\
& +\int_{\nu_{C D}=0}^{\infty}\left(\int_{\nu_{A B}=-\infty}^{\nu_{C D}} g\left(\nu_{A B}, \nu_{C D}\right) d \nu_{A B}\right) d \nu_{C D}
\end{aligned}
$$

Note that $\int_{\nu_{A B}=-\infty}^{\nu_{C D}} g\left(\nu_{A B}, \nu_{C D}\right) d \nu_{A B}=g_{\nu_{C D}}\left(\nu_{C D}\right)-\int_{\nu_{A B}=\nu_{C D}}^{\infty} g\left(\nu_{A B}, \nu_{C D}\right) d \nu_{A B}$ (since $\left.\int_{\nu_{A B}=-\infty}^{\infty} g\left(\nu_{A B}, \nu_{C D}\right) d \nu_{A B}=g_{\nu_{C D}}\left(\nu_{C D}\right)\right)$, and note that

$$
\int_{\nu_{A B}=\nu_{C D}}^{\infty} g\left(\nu_{A B}, \nu_{C D}\right) d \nu_{A B}=\int_{\nu_{A B}=-\infty}^{-\nu_{C D}} g\left(-\nu_{A B}, \nu_{C D}\right) d \nu_{A B}=\int_{\nu_{A B}=-\infty}^{-\nu_{C D}} g\left(\nu_{A B},-\nu_{C D}\right) d \nu_{A B}
$$

(the first equality uses a simple change in variables replacing $\nu_{A B}$ with $-\nu_{A B}$, and the second follows from symmetry about zero). Hence,

$$
\begin{aligned}
& \int_{\nu_{C D}=-\infty}^{0}\left(\int_{\nu_{A B}=-\infty}^{\nu_{C D}} g\left(\nu_{A B}, \nu_{C D}\right) d \nu_{A B}\right) d \nu_{C D} \\
= & \int_{\nu_{C D}=-\infty}^{0}\left(g_{\nu_{C D}}\left(\nu_{C D}\right)-\int_{\nu_{A B}=\nu_{C D}}^{\infty} g\left(\nu_{A B}, \nu_{C D}\right) d \nu_{A B}\right) d \nu_{C D} \\
= & \frac{1}{2}-\int_{\nu_{C D}=-\infty}^{0}\left(\int_{\nu_{A B}=-\infty}^{-\nu_{C D}} g\left(\nu_{A B},-\nu_{C D}\right) d \nu_{A B}\right) d \nu_{C D} \\
= & \frac{1}{2}-\int_{\nu_{C D}=0}^{\infty}\left(\int_{\nu_{A B}=-\infty}^{\nu_{C D}} g\left(\nu_{A B}, \nu_{C D}\right) d \nu_{A B}\right) d \nu_{C D}
\end{aligned}
$$

(the first equality merely substitutes from above, the second equality uses another substitution plus the fact that symmetry around zero implies $\int_{\nu_{C D}=-\infty}^{0} g_{\nu_{C D}}\left(\nu_{C D}\right) d \nu_{C D}=1 / 2$, and the third equality uses a simple change in variables replacing $\nu_{C D}$ with $-\nu_{C D}$ ). Combining terms yields

$$
\begin{aligned}
\operatorname{Pr}(\Delta m>0)= & \frac{1}{2}-\int_{\nu_{C D}=0}^{\infty}\left(\int_{\nu_{A B}=-\infty}^{\nu_{C D}} g\left(\nu_{A B}, \nu_{C D}\right) d \nu_{A B}\right) d \nu_{C D} \\
& +\int_{\nu_{C D}=0}^{\infty}\left(\int_{\nu_{A B}=-\infty}^{\nu_{C D}} g\left(\nu_{A B}, \nu_{C D}\right) d \nu_{A B}\right) d \nu_{C D}=\frac{1}{2}
\end{aligned}
$$

An analogous argument can be used to prove that $\operatorname{Pr}(\Delta m<0)=\operatorname{Pr}\left(\nu_{C D}<\nu_{A B}\right)=1 / 2$.

## B Additional Analysis

## B. 1 Predictions for $E(\Delta m)$ when $\Gamma$ is Non-Linear

In Section I.C, we discuss the possibility of testing the null of $\Delta m^{*}=0$ by testing whether the mean of $\Delta m$ is zero. This test is valid under Assumption 2a where the function $\Gamma$ is linear in both $m$ and $\varepsilon$, because then $E(\Delta m)=\Delta m^{*}$. In contrast, if $\Gamma$ is nonlinear, then it need not be the case that $E(\Delta m)=\Delta m^{*}$, and thus a test based on the mean of $\Delta m$ is potentially biased.

To further explore this point, consider the EU model with additive utility noise. Under EU, $m_{A B}^{*}=m_{C D}^{*} \equiv m^{*}$ and therefore $\Delta m^{*}=0$. From Example 1, $m_{A B}=u^{-1}\left(u\left(m^{*}\right)+\epsilon_{A B}\right)$ and $m_{C D}=u^{-1}\left(u\left(m^{*}\right)+\epsilon_{C D} / r\right)$, and thus $\Gamma(m, \varepsilon)=u^{-1}(u(m)+\varepsilon), \varepsilon_{A B}=\epsilon_{A B}$, and $\varepsilon_{C D}=\epsilon_{C D} / r$. Suppose further that $E\left(\epsilon_{A B}\right)=0$ and $\epsilon_{C D} \stackrel{d}{=} k^{\prime} \epsilon_{A B}$ for some $k^{\prime}>0$, and thus $\varepsilon_{C D} \stackrel{d}{=} k \epsilon_{A B}$ where $k=k^{\prime} / r$. Then $E(\Delta m)$ depends on $k$ and the curvature of the utility function $u$ as follows:
(1) If $u(x)$ is linear, then $E\left(m_{A B}\right)=E\left(m_{C D}\right)=m^{*}$, and thus $E(\Delta m)=0$.
(2) If $u(x)$ is strictly concave, then $E\left(m_{A B}\right)>m^{*}$ and $E\left(m_{C D}\right)>m^{*}$, and moreover $k=1$ implies $E(\Delta m)=0, k>1$ implies $E(\Delta m)>0$, and $k<1$ implies $E(\Delta m)<0$.
(3) If $u(x)$ is strictly convex, then $E\left(m_{A B}\right)<m^{*}$ and $E\left(m_{C D}\right)<m^{*}$, and moreover $k=1$ implies $E(\Delta m)=0, k>1$ implies $E(\Delta m)<0$, and $k<1$ implies $E(\Delta m)>0$.

Proof: Given a $m^{*}$, define a function $m(\varepsilon)=u^{-1}\left(u\left(m^{*}\right)+\varepsilon\right.$ ), and note $m(0)=m^{*}$. Then $m_{A B}=m\left(\varepsilon_{A B}\right)$ and $m_{C D}=m\left(\varepsilon_{C D}\right)$.

Proof of part (1): If $u(x)$ is linear-that is, $u(x)=\alpha x+\beta$ for some $\alpha>0$ and any $\beta$-then $m(\varepsilon)=m^{*}+\varepsilon / \alpha$. The results then follow from the same logic as the proof of Proposition 2(1).

Proof of part (2): If $u(x)$ is strictly concave, then $u^{-1}(x)$ is strictly convex and therefore $m(\varepsilon)$ is also strictly convex. By Jensen's inequality, $E_{\varepsilon_{A B}}\left[m\left(\varepsilon_{A B}\right)\right]>m\left(E_{\varepsilon_{A B}}\left[\varepsilon_{A B}\right]\right)=m^{*}$ and $E_{\varepsilon_{C D}}\left[m\left(\varepsilon_{C D}\right)\right]>$ $m\left(E_{\varepsilon_{C D}}\left[\varepsilon_{C D}\right]\right)=m^{*}$. If $k=1$ then $\varepsilon_{C D} \stackrel{d}{=} \varepsilon_{A B}$, and thus $E_{\varepsilon_{C D}}\left[m\left(\varepsilon_{C D}\right)\right]=E_{\varepsilon_{A B}}\left[m\left(\varepsilon_{A B}\right)\right]$. It follows that $E[\Delta m]=0$. If instead $k>1$, then $\varepsilon_{C D}$ is a mean-preserving spread of $\varepsilon_{A B}$, and thus, since $m(\varepsilon)$ is convex, $E_{\varepsilon_{C D}}\left[m\left(\varepsilon_{C D}\right)\right]>E_{\varepsilon_{A B}}\left[m\left(\varepsilon_{A B}\right)\right]$. It follows that $E[\Delta m]>0$. An analogous logic can be used to show that $k<1$ implies $E[\Delta m]<0$.

Proof of part (3): Analogous to the proof of part (2), and so omitted.

Finally, for the case frequently discussed in the literature of EU with i.i.d. additive utility noise, we have $k^{\prime}=1$ and thus $k=1 / r>1$. Hence, the typical assumption of concave utility would imply $E(\Delta m)>0$, and thus a test based on the mean of $\Delta m$ is biased towards rejecting the null of $\Delta m^{*}=0$ in favor of a CRP.

## B. 2 Predictions for Figure 2

We derive predictions for Figure 2 assuming that every individual $i$ has $m_{A B, i}^{*}=m_{C D, i}^{*}=m_{i}^{*}$ and thus $\Delta m_{i}^{*}=0$. We assume that everyone satisfies Assumption 2a and thus has $m_{A B, i}=m_{i}^{*}+\varepsilon_{A B, i}$ and $m_{C D, i}=m_{i}^{*}+\varepsilon_{C D, i}$, where $E\left(\varepsilon_{A B, i}\right)=E\left(\varepsilon_{C D, i}\right)=0$. We further assume that everyone has median-zero noise, so $\operatorname{Pr}\left(\varepsilon_{A B, i}<0\right)=\operatorname{Pr}\left(\varepsilon_{C D, i}<0\right)=1 / 2$. However, we permit heterogeneity in $m_{i}^{*}$ and in the distributions of $\varepsilon_{A B, i}$ and $\varepsilon_{C D, i} .{ }^{1}$

## B.2.1 Predictions for Paired Choice Tasks (Panel A)

For a specific paired choice task, observed behaviors in a population are the observed proportions choosing $A$ over $B$ and $C$ over $D$, which we denote by $\widehat{\operatorname{Pr}}(A)$ and $\widehat{\operatorname{Pr}}(C)$, respectively. Hence, we need predictions for $\operatorname{Pr}(A)$ and $\operatorname{Pr}(C)$.

Starting at the individual level, a person with $m_{i}^{*}<M$ has noise-free preferences that favor $A$ and $C$, and thus, given the assumption of median-zero noise, must have $1 \geqslant \operatorname{Pr}(A) \geqslant 1 / 2$ and $1 \geqslant \operatorname{Pr}(C) \geqslant 1 / 2$. But given the flexibility to choose different distributions for $\varepsilon_{A B, i}$ and $\varepsilon_{C D, i}$, there are no further restrictions on $\operatorname{Pr}(A)$ and $\operatorname{Pr}(C)$. Analogously, a person with $m_{i}^{*}>M$ must have $1 \geqslant \operatorname{Pr}(B) \geqslant 1 / 2$ and $1 \geqslant \operatorname{Pr}(D) \geqslant 1 / 2$, but there are no further restrictions.

At the population level, then, we can parse the population into those who prefer $A$ and $C$ ( $A C$ types) and those who prefer $B$ and $D$ ( $B D$ types), and characterize the population by five parameters:
$q=$ the proportion of the population who are $A C$ types.
$\lambda_{A}=$ the proportion of $A C$ types who actually choose $A$ over $B$.
$\lambda_{C}=$ the proportion of $A C$ types who actually choose $C$ over $D$.
$\lambda_{B}=$ the proportion of $B D$ types who actually choose $B$ over $A$.
$\lambda_{D}=$ the proportion of $B D$ types who actually choose $D$ over $C$.
As a function of these five parameters, the population's $(\operatorname{Pr}(A), \operatorname{Pr}(C))$ will be

$$
\begin{aligned}
& \operatorname{Pr}(A)=q \lambda_{A}+(1-q)\left(1-\lambda_{B}\right) \\
& \operatorname{Pr}(C)=q \lambda_{C}+(1-q)\left(1-\lambda_{D}\right) .
\end{aligned}
$$

The only constraints on these parameters are that $q \in[0,1]$ and that each $\lambda_{A}, \lambda_{C}, \lambda_{B}, \lambda_{D} \in$ $[1 / 2,1]$. One can then show (see proof below) that the set of possible predictions for the population include any $(\operatorname{Pr}(A), \operatorname{Pr}(C))$ combinations that satisfy

$$
\operatorname{Pr}(A) \leqslant \frac{1}{2} \text { and } 0 \leqslant \operatorname{Pr}(C) \leqslant \operatorname{Pr}(A)+\frac{1}{2} \text { or }
$$

[^0]$$
\operatorname{Pr}(A) \geqslant \frac{1}{2} \text { and } \operatorname{Pr}(A)-\frac{1}{2} \leqslant \operatorname{Pr}(C) \leqslant 1
$$

These combinations are depicted by the gray shaded region in panel A of Figure 2. To provide some intuition, consider one possible extreme point where $\operatorname{Pr}(A)=75 \%$ and $\operatorname{Pr}(C)=25 \%$. This outcome occurs when the population is equally split between $A C$ types and $B D$ types (i.e., $q=1 / 2$ ), where the $A C$ types make no errors in the $A B$ choice but respond randomly in the $C D$ choice (i.e., $\lambda_{A}=1$ while $\lambda_{C}=1 / 2$ ), while the $B D$ types make no errors in the $C D$ choice but respond randomly in the $A B$ choice (i.e., $\lambda_{B}=1 / 2$ while $\lambda_{D}=1$ ).

This example illustrates how the full gray shaded region takes advantage of being able to have $A C$ types be more impacted by noise on one type of choice (above, on the $C D$ choice) while $B D$ types are more impacted by noise on the other type of choice (above, on the $A B$ choice). However, significant deviations from the 45-degree line are still possible even if we impose that both types must be more impacted by noise in the same choice. For instance, suppose we impose - consistent with the logic of EU with i.i.d. additive utility noise - that both types must be more impacted by noise in the $C D$ choice. This restriction creates additional constraints that $\lambda_{A} \geqslant \lambda_{C}$ and $\lambda_{B} \geqslant \lambda_{D}$. Even with this additional constraint, one can still show that the set of possible predictions for the population include any $(\operatorname{Pr}(A), \operatorname{Pr}(C))$ combinations that satisfy ${ }^{2}$

$$
\frac{\operatorname{Pr}(A)}{2} \leqslant \operatorname{Pr}(C) \leqslant \frac{1}{2}+\frac{\operatorname{Pr}(A)}{2}
$$

Hence, significant deviations from the 45-degree line are still possible. For instance, one possibility is $\operatorname{Pr}(A)=2 / 3$ and $\operatorname{Pr}(C)=1 / 3$. This outcome occurs when the population has $2 / 3 A C$ types and $1 / 3 B D$ types (i.e., $q=2 / 3$ ), where the $A C$ types make no errors in the $A B$ choice but respond randomly in the $C D$ choice (i.e., $\lambda_{A}=1$ while $\lambda_{C}=1 / 2$ ), while the $B D$ types make no errors in either choice (i.e., $\lambda_{B}=\lambda_{C}=1$ ).

Proof of conditions for gray area in Figure 2 panel A: For any fixed $\operatorname{Pr}(A)=\omega$, we find the parameters $\left(q, \lambda_{A}, \lambda_{C}, \lambda_{B}, \lambda_{D}\right)$ that minimize $\operatorname{Pr}(C)$ and those that maximize $\operatorname{Pr}(C)$. The constraints are $q \in[0,1]$ and $\lambda_{A}, \lambda_{C}, \lambda_{B}, \lambda_{D} \in[1 / 2,1]$.

To minimize $\operatorname{Pr}(C)$ : First note that, for $\omega \leqslant 1 / 2$, setting $q=0, \lambda_{B}=1-\omega$, and $\lambda_{D}=1$ implies $\operatorname{Pr}(A)=\omega$ and $\operatorname{Pr}(C)=0$, so the minimum $\operatorname{Pr}(C)=0$. For $\omega \geqslant 1 / 2$, we clearly want $\lambda_{C}$ to be as small as possible and $\lambda_{D}$ to be as large as possible, and thus we set $\lambda_{C}=1 / 2$ and $\lambda_{D}=1$. Then $\operatorname{Pr}(C)=q / 2$, so we choose $\lambda_{A}$ and $\lambda_{B}$ to minimize $q$. Because $\operatorname{Pr}(A)=\omega$ implies $q=\left(\omega-\left(1-\lambda_{B}\right)\right) /\left(\lambda_{A}-\left(1-\lambda_{B}\right)\right)$, we minimize $q$ by setting $\lambda_{A}=1$ and $\lambda_{B}=1 / 2$. Hence, the parameters that minimize $\operatorname{Pr}(C)$ are $q=2 \omega-1, \lambda_{A}=\lambda_{D}=1$, and $\lambda_{B}=\lambda_{C}=1 / 2$, which imply the minimum $\operatorname{Pr}(C)=(2 \omega-1) / 2=\omega-1 / 2$.

To maximize $\operatorname{Pr}(C)$ : First note that, for $\omega \geqslant 1 / 2$, setting $q=1, \lambda_{A}=\omega$, and $\lambda_{C}=1$ implies

[^1]$\operatorname{Pr}(A)=\omega$ and $\operatorname{Pr}(C)=1$, so the maximum $\operatorname{Pr}(C)=1$. For $\omega \leqslant 1 / 2$, we clearly want $\lambda_{C}$ to be as large as possible and $\lambda_{D}$ to be as small as possible, and thus we set $\lambda_{C}=1$ and $\lambda_{D}=1 / 2$. Then $\operatorname{Pr}(C)=q+(1-q) / 2$, so we choose $\lambda_{A}$ and $\lambda_{B}$ to maximize $q$. Because $\operatorname{Pr}(A)=\omega$ implies $q=\left(\omega-\left(1-\lambda_{B}\right)\right) /\left(\lambda_{A}-\left(1-\lambda_{B}\right)\right)$, we maximize $q$ by setting $\lambda_{A}=1 / 2$ and $\lambda_{B}=1$. Hence, the parameters that maximize $\operatorname{Pr}(C)$ are $q=2 \omega, \lambda_{A}=\lambda_{D}=1 / 2$, and $\lambda_{B}=\lambda_{C}=1$, which imply the maximum $\operatorname{Pr}(C)=2 \omega+(1-2 \omega) / 2=\omega+1 / 2$.

It follows that (i) for any fixed $\operatorname{Pr}(A) \leqslant 1 / 2$, we must have $0 \leqslant \operatorname{Pr}(C) \leqslant \operatorname{Pr}(A)+1 / 2$, and (ii) for any fixed $\operatorname{Pr}(A) \geqslant 1 / 2$, we must have $\operatorname{Pr}(A)-1 / 2 \leqslant \operatorname{Pr}(C) \leqslant 1$.

## B.2.2 Predictions for Paired Valuation Tasks (Panel B)

For a specific paired valuation task, observed behaviors in a population are the population averages for the two reported valuations, which we denote by $\hat{E}\left(m_{A B}\right)$ and $\widehat{E}\left(m_{C D}\right)$, respectively. Hence, we need predictions for $E\left(m_{A B}\right)$ and $E\left(m_{C D}\right)$.

Under Assumption 2a, individual $i$ states valuations $m_{A B, i}=m_{i}^{*}+\varepsilon_{A B, i}$ and $m_{C D, i}=m_{i}^{*}+$ $\varepsilon_{C D, i}$, where $E\left(\varepsilon_{A B, i}\right)=E\left(\varepsilon_{C D, i}\right)=0$. It follows immediately that, if we let $\bar{m}^{*}$ denote the population average for $m_{i}^{*}$, then the predicted population averages for the two reported valuations are $E\left(m_{A B}\right)=\bar{m}^{*}$ and $E\left(m_{C D}\right)=\bar{m}^{*}$. Hence, the set of possible predictions for the population include any $\left(E\left(m_{A B}\right), E\left(m_{C D}\right)\right)$ such that $E\left(m_{A B}\right)=E\left(m_{C D}\right)$, which is equivalent to the 45-degree line in panel B of Figure 2.

## B. 3 Data for Figure 2

## B.3.1 Data for Panel A of Figure 2

For the data in panel A, we rely on the meta-study by (Blavatskyy et al., 2023). In their Table 1, they provide information on 143 CRE paired-choice experiments taken from 39 studies. Specifically, for each experiment, they provide the total number of participants $(N)$ along with the number of participants that chose each of the four possible choice patterns $\left(N_{A C}, N_{B D}, N_{A D}\right.$, and $\left.N_{B C}\right)$. We use this data to construct the empirical choice ratios as

$$
\widehat{\operatorname{Pr}}(A)=\frac{N_{A C}+N_{A D}}{N} \quad \text { and } \quad \widehat{\operatorname{Pr}}(C)=\frac{N_{A C}+N_{B C}}{N} .
$$

We then depict each of these 143 experiments as one circle in panel A, where the location of the circle is given by its $(\widehat{\operatorname{Pr}}(A), \widehat{\operatorname{Pr}}(C))$ and the size of the circle is proportional to its $N$.

## B.3.2 Data for Panel B of Figure 2

For panel B, we are not aware of any analogous meta-study, and Blavatskyy et al. (2023) do not mention any CRE experiments that use valuations. We therefore conducted our own search. We identified only six studies that use valuations in the context of the CRE:
(1) Freeman et al. (2019) use a modified form of valuations in the context of the CRE. Specifically, they elicit probability equivalents in which they hold fixed outcomes $H$ and $M$ and vary the probability $p$. Thus, the valuations they elicit do not fit into the framework that we depict in panel B.
(2) Schneider and Shor (2017) elicit (hypothetical) minimum prices at which participants would be willing to sell binary lotteries $A, B, C$, and $D$ using the Kahneman-Tversky parameters ( $M=\$ 3000, H=\$ 4000, p=0.8, r=.25$ ). While this pricing task is a type of valuation, it does not generate data that fit into the framework that we depict in panel B.
(3) Dean and Ortoleva (2019) conduct two paired $h$-valuations, using ( $M=\$ 4, p=0.8, r=0.25$ ) and $(M=\$ 8, p=0.8, r=0.25)$. The paper does not report statistics that would permit us to calculate the average valuations. However, we contacted the authors and they provided the average valuations: For the first pair, $\widehat{E}\left(h_{A B}\right)=\$ 5.80$ and $\widehat{E}\left(h_{C D}\right)=\$ 5.27$; for the second pair, $\widehat{E}\left(h_{A B}\right)=\$ 10.66$ and $\widehat{E}\left(h_{C D}\right)=\$ 9.97$. Because these are $h$-valuations while panel B depicts $m$-valuations, for presentation purposes we transform these values by setting $\widehat{E}\left(m_{A B}\right)=M$ and $\widehat{E}\left(m_{C D}\right)=M\left(\widehat{E}\left(h_{A B}\right) / \widehat{E}\left(h_{C D}\right)\right)$. Hence, these two experiments appear in panel B at the locations $\left(\widehat{E}\left(m_{A B}\right)=\$ 4, \widehat{E}\left(m_{C D}\right)=\$ 4.40\right)$ and $\left(\widehat{E}\left(m_{A B}\right)=\$ 8, \widehat{E}\left(m_{C D}\right)=\right.$ $\$ 8.55)$.
(4) Castillo and Eil (2014) conduct three $m$-valuations, an $A B$ valuation for ( $H=\$ 10, p=0.4$ ) and $C D$ valuations for $(H=\$ 10, p=0.4, r=0.5)$ and $(H=\$ 10, p=0.4, r=0.25)$. We treat these as two paired $m$-valuation experiments, one for ( $H=\$ 10, p=0.4, r=0.5$ ) and one for ( $H=\$ 10, p=0.4, r=0.25$ ) (these are not independent experiments because they use the same $A B$ valuation, but this is not important for our illustrative purposes). The paper does not report any statistics, but the authors provided the average valuations: In panel B, the first experiment appears at $\left(\widehat{E}\left(m_{A B}\right)=\$ 3.95, \widehat{E}\left(m_{C D}\right)=\$ 3.98\right)$, and the second experiment appears at $\left(\widehat{E}\left(m_{A B}\right)=\$ 3.95, \widehat{E}\left(m_{C D}\right)=\$ 4.41\right)$.
They also conduct three $h$-valuations, an $A B$ valuation for ( $M=\$ 4, p=0.4$ ) and $C D$ valuations for $(M=\$ 4, p=0.4, r=0.5)$ and $(M=\$ 4, p=0.4, r=0.25)$. We treat these as two paired $h$-valuation experiments. The average valuations provided by the authors for the three valuations are $\$ 9.77, \$ 9.95$, and $\$ 10.22$. Using the same transformation as we do for the paired $h$-valuations in Dean and Ortoleva (2019), these two experiments appear in panel B at the locations $\left(\widehat{E}\left(m_{A B}\right)=\$ 4, \widehat{E}\left(m_{C D}\right)=\$ 3.93\right)$ and $\left(\widehat{E}\left(m_{A B}\right)=\$ 4, \widehat{E}\left(m_{C D}\right)=\$ 3.82\right)$.
(5) Chapman et al. (2022) conduct two paired $h$-valuations, using ( $M=\$ 2.50, p=0.8, r=0.25$ ) and $(M=\$ 4, p=0.75, r=0.2)$. The paper does not report any statistics that would permit us to calculate the four average valuations. We contacted the authors but thus far they have not provided us with any additional information.
(6) Agranov and Ortoleva (forthcoming) conduct two paired $h$-valuations, using $(M=\$ 14, p=$ $0.8, r=0.25)$ and $(M=\$ 16, p=0.8, r=0.25)$. Because the authors use these valuations primarily as control variables while studying something else, the paper does not report any statistics for these valuations. We contacted the authors but thus far they have not provided us with any additional information.

## B. 4 Development for $h$-Tasks

In Section I.C, we fix $(H, p, r)$ and focus on behavior as a function of $M$, which links directly to our $m$-tasks. Here, we revisit some of the analysis from Section I.C when we instead fix $(M, p, r)$ and focus on behavior as a function of $H$, which links directly to our $h$-tasks. Note that, while we use some of the same notation below as we use in Section I.C, we are now referring to different (though analogous) objects.

Assuming underlying preferences are monotonic and continuous, for each $(M, p, r)$ a person will have an underlying pair of indifference points $\left(h_{A B}^{*}, h_{C D}^{*}\right)$ such that their underlying (noise-free) preferences satisfy:

- Prefer $A \equiv(M, 1)$ over $B \equiv(H, p)$ if and only if $H \leqslant h_{A B}^{*}$, and
- Prefer $C \equiv(M, r)$ over $D \equiv(H, r p)$ if and only if $H \leqslant h_{C D}^{*}$.

Here, EU implies $h_{A B}^{*}=h_{C D}^{*}$, whereas a CRP would mean $h_{A B}^{*}>h_{C D}^{*}$ (an individual would prefer combination $A D$ for any $H \in\left(h_{C D}^{*}, h_{A B}^{*}\right)$ ), and an RCRP would mean $h_{A B}^{*}<h_{C D}^{*}$. To parallel the development in the main text, where $\Delta m^{*}>0$ reflects a CRP, we define $\Delta h^{*}=$ $h_{A B}^{*}-h_{C D}^{*}$ so that $\Delta h^{*}>0$ reflects a CRP while $\Delta h^{*}<0$ reflects an RCRP.

Given these underlying preferences, Assumption 1h is the analogue for Assumption 1:

## Assumption 1h: Impact of Noise on Choices and Valuations

A person's realized indifference points $\left(h_{A B}, h_{C D}\right)$ are $h_{A B} \equiv \Gamma\left(h_{A B}^{*}, \varepsilon_{A B}\right)$ and $h_{C D} \equiv \Gamma\left(h_{C D}^{*}, \varepsilon_{C D}\right)$, where $\left(\varepsilon_{A B}, \varepsilon_{C D}\right)$ are noise draws from a continuous joint distribution with convex support, and where $\Gamma$ is increasing in both arguments and has $\Gamma(h, 0)=h$ for all $h$. Then:

- In an $A B$ choice task, the person chooses $A \equiv(M, 1)$ over $B \equiv(H, p)$ if and only if $H \leqslant h_{A B} \equiv \Gamma\left(h_{A B}^{*}, \varepsilon_{A B}\right)$,
- In a $C D$ choice task, the person chooses $C \equiv(M, r)$ over $D \equiv(H, r p)$ if and only if $H \leqslant h_{C D} \equiv \Gamma\left(h_{C D}^{*}, \varepsilon_{C D}\right)$,
- In an $A B$ valuation task, the person states valuation $h_{A B} \equiv \Gamma\left(h_{A B}^{*}, \varepsilon_{A B}\right)$, and
- In a $C D$ valuation task, the person states valuation $h_{C D} \equiv \Gamma\left(h_{C D}^{*}, \varepsilon_{C D}\right)$.

Assumptions 2ah and 2bh are the analogues for Assumptions 2a and 2b:
Assumption 2ah: $\Gamma(h, \varepsilon)=h+\varepsilon, \varepsilon_{C D} \stackrel{d}{=} k \varepsilon_{A B}$ for some $k>0$, and $E\left(\varepsilon_{A B}\right)=E\left(\varepsilon_{C D}\right)=0$.
Assumption 2bh: $\Gamma(h, \varepsilon)$ is potentially nonlinear in $h$ and $\varepsilon$, but $\varepsilon_{C D} \stackrel{d}{=} k \varepsilon_{A B}$ for some $k>0$, and $\varepsilon_{A B}$ is symmetric about 0 .

In EU and PT, Assumptions 2ah and 2bh apply under the same assumptions as Assumptions 2 a and 2 b :

Example 1h: Expected Utility and Prospect Theory
If a person evaluates a lottery $(x, q)$ with $x>0$ as $\pi(q) u(x)$, the underlying indifference points satisfy

$$
\begin{array}{rll}
u(M)=\pi(p) u\left(h_{A B}^{*}\right) & \Leftrightarrow & h_{A B}^{*}=u^{-1}\left(\frac{1}{\pi(p)} u(M)\right) \\
\pi(r) u(M)=\pi(r p) u\left(h_{C D}^{*}\right) & \Leftrightarrow & h_{C D}^{*}=u^{-1}\left(\frac{\pi(r)}{\pi(r p)} u(M)\right)
\end{array}
$$

One way to incorporate noise is by assuming that $h_{A B}=h_{A B}^{*}+\varepsilon_{A B}$ and $h_{C D}=h_{C D}^{*}+\varepsilon_{C D}$. This formulation satisfies Assumption 2ah as long as $\varepsilon_{C D} \stackrel{d}{=} k \varepsilon_{A B}$ for some $k>0$ and $E\left(\varepsilon_{A B}\right)=$ $E\left(\varepsilon_{C D}\right)=0$.

Alternatively, one might incorporate additive utility noise by assuming that the realized indifference points satisfy

$$
\begin{array}{rll}
u(M)=\pi(p) u\left(h_{A B}\right)+\epsilon_{A B} & \Leftrightarrow & h_{A B}=u^{-1}\left(u\left(h_{A B}^{*}\right)-\epsilon_{A B} / \pi(p)\right) \\
\pi(r) u(M)=\pi(r p) u\left(h_{C D}\right)+\epsilon_{C D} & \Leftrightarrow & h_{C D}=u^{-1}\left(u\left(h_{C D}^{*}\right)-\epsilon_{C D} / \pi(r p)\right)
\end{array}
$$

where $\epsilon_{A B}$ and $\epsilon_{C D}$ reflect additive utility noise. ${ }^{3}$ This formulation fits Assumption 1h with $\Gamma(h, \varepsilon)=u^{-1}(u(h)+\varepsilon), \varepsilon_{A B}=-\epsilon_{A B} / \pi(p)$, and $\varepsilon_{C D}=-\epsilon_{C D} / \pi(r p)$. This formulation further satisfies Assumption 2bh as long as $\epsilon_{A B}$ is symmetric about 0 and $\epsilon_{C D} \stackrel{d}{=} k^{\prime} \epsilon_{A B}$ for some $k^{\prime}>0$. Finally, EU with additive utility noise that is i.i.d. across the $A B$ and $C D$ choice tasks implies $\varepsilon_{C D}=\varepsilon_{A B} / r$.

[^2]Because this formulation is exactly parallel to our formulation for $m$-tasks, analogues for Propositions 1 and 2 and for Corollary 1 follow straightforwardly, and so are omitted.

Finally, consider analogues to the predictions for stage 2 behavior from Section IV.A. As in the text, consider the case of Assumption 2ah where a person with underlying indifference values $\left(h_{A B}^{*}, h_{C D}^{*}\right)$ would choose $A$ over $B$ when $H \leqslant h_{A B}^{*}+\varepsilon_{A B}$ and would choose $C$ over $D$ when $H \leqslant h_{C D}^{*}+\varepsilon_{C D}$, where $\varepsilon_{C D} \stackrel{d}{=} k \varepsilon_{A B}$. For this case, the probability of making CRE choices ( $A$ and $D$ ) minus the probability of making RCRE choices ( $B$ and $C$ ) is

$$
C R E-R C R E \equiv \operatorname{Pr}(A)-\operatorname{Pr}(C)=\operatorname{Pr}\left(-\varepsilon_{A B}<\left(h_{A B}^{*}-H\right)\right)-\operatorname{Pr}\left(-\varepsilon_{A B}<\frac{1}{k}\left(h_{C D}^{*}-H\right)\right) .
$$

Defining $\Psi \equiv\left(h_{C D}^{*}-H\right) / k$, and substituting $\bar{h}^{*} \equiv\left(h_{A B}^{*}+h_{C D}^{*}\right) / 2$ and $\Delta h^{*}=h_{A B}^{*}-h_{C D}^{*}$, we can rewrite this as:

$$
C R E-R C R E=\operatorname{Pr}\left(-\varepsilon_{A B}<\Psi+0.5\left(1+\frac{1}{k}\right) \Delta h^{*}+\left(1-\frac{1}{k}\right)\left(\bar{h}^{*}-H\right)\right)-\operatorname{Pr}\left(-\varepsilon_{A B}<\Psi\right) .
$$

This equation is analogous to equation 3 from Section IV.A. It yields similar intuitions, and could also be used to construct a figure analogous to Figure 7.

For some of our empirical analysis in Section IV, we increase power by (i) combining data across different values for $p$ and $r$ and (ii) combining data for both $h$-tasks and $m$-tasks. Because these differences in parameters and the type of task may impact the extent of differential noise (i.e., $k$ ), we make a correction to the scaled value difference and the scaled distance to indifference. To do so in a disciplined way, we use the correction that would be valid under EU with additive i.i.d. utility noise. ${ }^{4}$ If we let $\epsilon$ reflect the additive utility noise, then for the $m$-tasks $\varepsilon_{A B} \stackrel{d}{=} \epsilon$ and $\varepsilon_{C D} \stackrel{d}{=} \epsilon / r$ (see Example 1), which motivates using $0.5(1+r) \Delta m$ for the scaled value difference and $(1-r)(M-\bar{m})$ for the scaled distance to indifference (as discussed in Section IV.A).

For the $h$-tasks, and using the same $\epsilon$ reflect the additive utility noise, we have instead that $\varepsilon_{A B} \stackrel{d}{=}-\epsilon / p$ and $\varepsilon_{C D} \stackrel{d}{=}-\epsilon /(r p)$ (see Example 1h). We can then define $\Psi^{\prime} \equiv r p\left(h_{C D}^{*}-H\right)$ write:

$$
\begin{aligned}
C R E-R C R E & =\operatorname{Pr}\left(-\varepsilon_{A B}<h_{A B}^{*}-H\right)-\operatorname{Pr}\left(-\varepsilon_{C D}<h_{C D}^{*}-H\right) \\
& =\operatorname{Pr}\left(\epsilon<\Psi^{\prime}+0.5(1+r) p \Delta h^{*}+(1-r) p\left(\bar{h}^{*}-H\right)\right)-\operatorname{Pr}\left(\varepsilon_{A B}<\Psi^{\prime}\right) .
\end{aligned}
$$

This formulation thus suggests using $0.5(1+r) p \Delta h^{*}$ for the scaled value difference, and using $(1-r) p\left(\bar{h}^{*}-H\right)$ for the scaled difference to indifference.

[^3]
## B. 5 Revisiting Choices versus Valuations

In this section, we provide a stylized example, within the context of our specific experimental tasks, the bias in paired choice tasks and how paired valuation tasks are immune to that bias. Consider for simplicity an expected value maximizer who chooses lottery $A$ over lottery $B$ when $E V(A)-E V(B)>\epsilon_{A B}$, and chooses lottery $C$ over lottery $D$ when $E V(C)-E V(D)>\epsilon_{C D}$. Suppose further that $\epsilon_{A B}$ and $\epsilon_{C D}$ are i.i.d., and specifically each takes on the values 1 and -1 with equal probability.

Table B. 1 illustrates how this person would behave for six rows in an experimental task with $H=\$ 29$ (we use $H=\$ 29$ instead of $H=\$ 30$ as in our study to eliminate indifference), $p=0.5$, and $r=0.5$. Columns (2) and (3) present six paired choice tasks (one in each row) for $M$ varying from $\$ 12$ to $\$ 17$. Column (4) presents the expected-value differences for each row. Columns (5)-(8) present combined behavior for the paired choice task in each row as a function of the four possible realizations of $\left(\epsilon_{A B}, \epsilon_{C D}\right)$. Based on these, column (9) presents the prediction for $C R E-R C R E=\operatorname{Pr}(A)-\operatorname{Pr}(C)$ for the paired choice task in each row if it were presented in an isolated paired choice task. This last column reveals that, despite there being no CRP or RCRP, if we happen to choose experimental parameters such that the participant moderately prefers $A$ and $C$-as in row 5 - then we will observe a CRE, and if we happen to choose experimental parameters such that the participant moderately prefers $B$ and $D$-as in row 2 - then we will observe an RCRE.

The bottom panel of the Table B. 1 illustrates how valuations can solve the problem. Applying our approach of taking the average value of $M$ at the switching rows to be our measure of the realized indifference point, the table presents for each of the four possible realizations of $\left(\epsilon_{A B}, \epsilon_{C D}\right)$ the measured indifference points $m_{A B}$ and $m_{C D}$ along with $\Delta m \equiv m_{C D}-m_{A B}$. The table illustrates that, while the noise leads to positive and negative realizations of $\Delta m$, these realizations average out to zero.

This stylized example highlights how a full understanding of behavior requires observing outcomes across all six rows of the table. However, the paired-choice-task approach in the prior literature typically studies behavior from only one row, thus yielding only a partial view of behavior. Moreover, as discussed in Section I.D, the prior literature has focused on a selected set of parameter configurations that are more like row 5 in Table B.1. In contrast, our paired-valuation-task approach reveals a more complete view of behavior.

Table B.1: Stylized Example With Additive Noise


Note: The pair of choices in row 5 will exhibit a CRE, with $\operatorname{Pr}(A)>\operatorname{Pr}(C)$. The pair of choices in row 2 will exhibit an RCRE, with $\operatorname{Pr}(A)<\operatorname{Pr}(C)$.

## B. 6 Impact of Distance to Indifference Without Noise

Our analysis in Section IV focuses on the impact of distance to indifference in the presence of choice noise, where we present theoretical predictions in Figure 7, and we plot empirical relationships in Figures 8 and 9 that confirm those theoretical predictions. In this section, we support the claims made in footnote 37 that predictions for Figures 8 and 9 would be very different in the absence of choice noise, that is, when all variation in the data is due to heterogeneity in preferences.

Suppose that there is heterogeneity in ( $m_{A B}^{*}, m_{C D}^{*}$ ), where we focus on heterogeneity in $\bar{m}^{*} \equiv$ $\left(m_{A B}^{*}+m_{C D}^{*}\right) / 2$ and $\Delta m^{*}=m_{C D}^{*}-m_{A B}^{*}$. The development below assumes that $\bar{m}^{*}$ and $\Delta m^{*}$ are independently distributed, motivated by the fact that we observe limited empirical correlations between the $\bar{m}$ 's and $\Delta m$ 's elicited in stage 1 of our experiment - across the 15 combinations of $(p, r)$, these correlations range from -0.04 to 0.10 , with a mean of 0.04 . Hence, we let $Q_{\bar{m}^{*}}\left(\bar{m}^{*}\right)$ denote the population distribution of $\bar{m}^{*}$, and $Q_{\Delta m^{*}}\left(\Delta m^{*}\right)$ denote the population distribution of $\Delta m^{*}$, and assume $Q_{\bar{m}^{*}}$ and $Q_{\Delta m^{*}}$ are independent of each other.

Consider first the behavior of an individual characterized by $\left(m_{A B}^{*}, m_{C D}^{*}\right)$ with $\Delta m^{*}>0$ (i.e., with a CRP) as a function of an offered $M$ at stage 2 . In the absence of noise, this individual will exhibit a CRE if $m_{A B}^{*}<M<m_{C D}^{*}$; otherwise, they will exhibit neither a CRE nor an RCRE. This
condition can be rewritten as $-\Delta m^{*}<2\left(M-\bar{m}^{*}\right)<\Delta m^{*}$, or, equivalently, $\Delta m^{*}>2\left|M-\bar{m}^{*}\right|$. Notice the symmetry around a zero distance to indifference: Whether the person exhibits a CRE does not depend on whether $M-\bar{m}^{*}$ is positive or negative; all that matters is whether the magnitude of $\Delta m^{*}$ is larger than the magnitude of $2\left(M-\bar{m}^{*}\right)$.

Next consider the behavior of an individual characterized by $\left(m_{A B}^{*}, m_{C D}^{*}\right)$ with $\Delta m^{*}<0$ (i.e., with an RCRP). By an analogous logic, in the absence of noise, the person will exhibit an RCRE when $\Delta m^{*}<2\left(M-\bar{m}^{*}\right)<-\Delta m^{*}$, or, equivalently, $\Delta m^{*}<-2\left|M-\bar{m}^{*}\right|$. Again, note the symmetry around a zero distance to indifference. Moreover, note the symmetry around a zero value difference: For a fixed distance to indifference, a person with $\Delta m^{*}=\delta>0$ exhibits a CRE if and only if a person with $\Delta m^{*}=-\delta$ exhibits an RCRE.

Now consider the behavior of a population as a function of the distance to indifference $M-\bar{m}^{*}$, that is, a prediction to compare to Figure 8. Because this essentially controls for $\bar{m}^{*}$, and because the distribution of $\Delta m^{*}$ is independent of $\bar{m}^{*}$, the distribution $Q_{\bar{m}^{*}}$ of $\bar{m}^{*}$ is irrelevant for this prediction. Given an $M-\bar{m}^{*}=d$, anyone with $\Delta m^{*}>2|d|$ will exhibit a CRE while anyone with $\Delta m^{*}<-2|d|$ will exhibit an RCRE, and thus $C R E-R C R E=\left(1-Q_{\Delta m^{*}}(2|d|)\right)-Q_{\Delta m^{*}}(-2|d|)$. Simplifying, the prediction is

$$
C R E-R C R E=1-Q_{\Delta m^{*}}(2 d)-Q_{\Delta m^{*}}(-2 d) \equiv C(d) .
$$

Hence, predicted behavior for this population depends on the nature of the distribution $Q_{\Delta m^{*}}$. Various possibilities can arise; but we highlight two points. First, if the distribution $Q_{\Delta m^{*}}$ is symmetric around zero-so that $1-Q_{\Delta m^{*}}(2 d)=Q_{\Delta m^{*}}(-2 d)$ for all $d$-then $C(d)=0$ for all $d$. Hence, if all variation in the data is due to heterogeneity in preferences, then $C R E-R C R E$ can depend on the distance to indifference only if the distribution of $\Delta m^{*}$ is asymmetric, which is not what we see in Figure $6(\mathrm{~B})$. Second, even when $Q_{\Delta m^{*}}$ is asymmetric, $C(d)$ must still be symmetric around $d=0$. In other words, if all variation in the data is due to heterogeneity in preferences, then whatever $C R E-R C R E$ we see for some positive value of $M-\bar{m}^{*}$, we ought to see the same $C R E-R C R E$ for that same negative value of $M-\bar{m}^{*}$. This is not what we see in Figure 8.

Finally, consider the behavior of a population as a function of the average distance to indifference $M-E\left(\bar{m}^{*}\right)$, that is, a prediction to compare to Figure 9. Define $z=\bar{m}^{*}-E\left(\bar{m}^{*}\right), H(z) \equiv$ $Q_{\bar{m}^{*}}\left(E\left(\bar{m}^{*}\right)+z\right)$, and assume that distribution $H$ has a PDF $h$. Suppose $M-E\left(\bar{m}^{*}\right)=d$, in which case all people with $\bar{m}^{*}$ have $M-\bar{m}^{*}=\left(d+E\left(\bar{m}^{*}\right)\right)-\left(z+E\left(\bar{m}^{*}\right)\right)=d-z$, and thus that group will have $C R E-R C R E=C(d-z)$. Integrating over $z$, the overall population will have

$$
C R E-R C R E=\int_{z=-\infty}^{\infty} C(d-z) h(z) d z \equiv \bar{C}(d) .
$$

If we then assume $Q_{\bar{m}^{*}}$ is symmetric around $\bar{m}^{*}=E\left(\bar{m}^{*}\right)$, which implies $H$ is symmetric around
$z=0$, we have

$$
\begin{aligned}
\bar{C}(-d) & =\int_{z=-\infty}^{\infty} C(-d-z) h(z) d z=\int_{z^{\prime}=-\infty}^{\infty} C\left(-d+z^{\prime}\right) h\left(-z^{\prime}\right) d z \\
& =\int_{z^{\prime}=-\infty}^{\infty} C\left(d-z^{\prime}\right) h\left(z^{\prime}\right) d z=\bar{C}(d),
\end{aligned}
$$

where the second equality uses a change of variables with $z^{\prime}=-z$ and the third equality uses $C(x)=C(-x)$ and $h\left(-z^{\prime}\right)=h\left(z^{\prime}\right)$ given the symmetry of $H$ around $z=0$. It follows that, if all variation in the data is due to heterogeneity in preferences, and if the distribution of $\bar{m}^{*}$ is symmetric about $\bar{m}^{*}=E\left(\bar{m}^{*}\right)$, then whatever $C R E-R C R E$ we see for some positive value of $M-E\left(\bar{m}^{*}\right)$, we ought to see the same $C R E-R C R E$ for that same negative value of $M-E\left(\bar{m}^{*}\right)$. This is not what we see in Figure 9.

Hence, under the conditions described above, a model in which all variation in the data is due to heterogeneity in preferences would generate very different predictions from what we see in Figures 8 and 9 . Of course, we make some simplifying assumptions above, most notably the assumption that the distributions of $\bar{m}^{*}$ and $\Delta m^{*}$ are independent (used for predictions for Figure 8), and the additional assumption that the distribution of $\bar{m}^{*}$ is symmetric around $\bar{m}^{*}=E\left(\bar{m}^{*}\right)$ (used for predictions for Figure 9). It is possible that, with the appropriate assumptions about correlated heterogeneity and asymmetric distributions, one might be able to generate predictions closer to Figures 8 and 9 .

## B. 7 Assessment of Corrected Regressors in Tables 5, 6, and D. 10

In Table 5, to increase statistical power, we combine data for the three different values of $r$. However, we need to correct for the fact that $r$ may impact the magnitude of the coefficients on $\Delta m$ and $M-\bar{m}$ (via its impact on $k$ in equation 3). Motivated by the EU case where $k=1 / r$, we use the corrected regressors $0.5(1+r) \Delta m$ and $(1-r)(M-\bar{m})$.

As we note in footnote 38, this correction is not perfect. To assess the impact of this correction, Appendix Table B. 2 reports the equivalent of Column (3) of Table 5 broken out by $r$. Panel A merely uses the regressors $\Delta m$ and $M-\bar{m}$. The qualitative results are much the same as in Table 5 -both regressors have a significant positive impact for each $r$, except for $M-\bar{m}$ when $r=0.6$. Moreover, consistent with the need to correct for $r$ and the directional effects in equation 3, the coefficient on $\Delta m$ increases with $r$ while the coefficient on $M-\bar{m}$ decreases with $r$.

Panel B instead uses our corrected regressors, still running separate regressions for each $r$. Here, the estimated coefficients are more stable in magnitude across $r$, and they are similar to those in column (3) of Table 5 but with larger standard errors. On net, then, it appears that the corrected regressors perform as intended: They increase precision without changing the qualitative results.

We separately perform analogous analyses for Appendix Table D. 10 and Table 6 (although we do not report the results here). For the former, which is the analogue of Table 5 for $h$ choice tasks,
this analysis reaches much the same conclusions. For the latter, which is the analogue of Table 5 for the experiment-level analysis, running separate regressions for each $r$ leads to estimates with large standard errors due to the low sample sizes $(N=40$ for each $r)$; hence, while a similar message seems to emerge, we are cautious in concluding too much.

Table B.2: Predicting Individual-Level $C R E-R C R E$ Separately by $r$

|  | $(1)$ Outcom <br> $r=0.2$ | (2) <br> $E-R C$ <br> $r=0.4$ | $\begin{gathered} (3) \\ -1,0,1\} \\ r=0.6 \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| Value Difference: $\Delta m$ | Panel A: Unscaled Estimates |  |  |
|  | $\begin{gathered} 0.64 \\ (0.18) \end{gathered}$ | $\begin{gathered} 0.78 \\ (0.15) \end{gathered}$ | $\begin{gathered} 0.90 \\ (0.19) \end{gathered}$ |
| Distance to Indifference: $M-\bar{m}$ | $\begin{gathered} 0.76 \\ (0.23) \end{gathered}$ | $\begin{gathered} 0.61 \\ (0.22) \end{gathered}$ | $\begin{gathered} 0.06 \\ (0.23) \end{gathered}$ |
| Scaled Value Difference: $\frac{1+r}{2} \Delta m$ | Panel B: Scaled Estimates |  |  |
|  | 1.06 | 1.11 | 1.12 |
|  | (0.31) | (0.21) | (0.24) |
| Scaled Distance to Indifference: $(1-r)(M-\bar{m})$ | 0.90 | 0.89 | $0.41$ |
|  | (0.26) | (0.32) | (0.49) |
| Outcome Mean | 3.02 | 3.76 | 1.14 |
| Individuals | 298 | 303 | 299 |
| Observations | 1,490 | 1,515 | 1,495 |

Note: OLS regressions using individual-level $m$-task data with the dependent variable $C R E-R C R E \in\{-1,0,1\}$ separately for each common ratio $r \in\{0.2,0.4,0.6\}$. Panel A presents estimates using the unscaled regressors, and panel B presents estimates using the scaled regressors. All specifications include $p$ fixed effects, as well as controls for gender, education, age, language, student status, employment, and the number of previous Prolific approvals. All numbers are reported in percentage points; individual-cluster-robust standard errors in parentheses.

## B. 8 Our Experiments and Prior Experiments

In Section IV.D, we compare behavior in our stage 2 experiments to that observed in the prior literature by developing a measure of whether an experiment is more representative of prior studies or more representative of our study based on the experimenter-chosen values for $p, r$, and $M /(p H)$. This section provides details for this analysis.

We first create a combined data set of 263 observations consisting of our own and prior experiments. We then regress an indicator for an observation coming from a prior study on $p, r$, and $M /(p H)$. Based on inspection, we expect a nonlinear impact of $M /(p H)$ because the vast majority of prior experiments have $M /(p H) \in[0.75,1]$ while our experiments have more representation for $M /(p H)<0.75$ and $M /(p H)>1$. Hence, letting $y_{i}$ be a dummy variable for whether experiment $i$ comes from a prior study, we run a logistic regression based on the following specification:

$$
\begin{aligned}
y_{i}^{*} & =\beta_{0}+\beta_{1} p_{i}+\beta_{2} r_{i}+\beta_{3} \mathbb{1}\left[M /(p H)_{i} \in[0.75,1]\right]+\beta_{4} \mathbb{1}\left[M /(p H)_{i}>1\right]+\varepsilon_{i} \\
y_{i} & = \begin{cases}1 & \text { if } y_{i}^{*}>0 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Panel A of Table B. 3 presents the estimates. An experiment is more likely to come from a prior study if it has a larger $p$, a smaller $r$, or an $M /(p H) \in[0.75,1]$. Using the estimated coefficients from this regression, we can assign to each experiment a predicted likelihood that it comes from a prior study. Specifically, the predicted likelihood for experiment $i$ is

$$
\operatorname{Pr}\left(-\varepsilon_{i}<\hat{\beta}_{0}+\hat{\beta}_{1} p_{i}+\hat{\beta}_{2} r_{i}+\hat{\beta}_{3} \mathbb{1}\left[M /(p H)_{i} \in[0.75,1]\right]+\hat{\beta}_{4} \mathbb{1}\left[M /(p H)_{i}>1\right]\right)
$$

using a standard logistic distribution for $\varepsilon_{i}$. This predicted likelihood indicates how representative an experiment is of prior studies. Importantly, this predicted likelihood depends on only an experiment's experimenter-chosen values for $p, r$, and $M /(p H)$, and is independent of the experiment's observed realization for $C R E-R C R E$.

We next compare experiments based on whether they are more representative of prior studies (predicted likelihood larger than 0.50) or more representative of our study (predicted likelihood smaller than 0.50 ). Panel B of Table B. 3 reports the sample-weighted average $C R E-R C R E$ for experiments grouped by different predicted likelihoods and by experiment type. As discussed in Section IV.D, among the 143 prior experiments, 112 are more representative of prior studies and have an average $C R E-R C R E$ of 25.8 percent, while the other 31 have an average of 4.5 percent. Among our 120 experiments, 40 are more representative of prior studies and have an average $C R E-R C R E$ of 8.4 percent, while the other 80 have an average of -0.1 percent. In other words, when we (or prior studies) use experimental parameters that are more representative of prior studies, we find more CRE; in contrast, when we (or prior studies) use experimental parameters that are less representative of prior studies, we find much less CRE.

Table B.3: Comparing Prior Experiments to Our Experiments Using Predicted Likelihoods

| Variable: | Panel A: Logistic Regression (DV: Prior Study Indicator) |  |  |  | Constant |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $p$ | $r$ | $\begin{aligned} & \mathbb{1}[M /(p H) \\ & \in[0.75,1]] \end{aligned}$ | $\mathbb{1}[M /(p H)>1]$ |  |
| Coefficient | 3.516 | -1.463 | 1.744 | 0.583 | -2.527 |
| Standard Error | (0.738) | (0.832) | (0.327) | (0.676) | (0.694) |

Panel B: $C R E-R C R E$ by Predicted Likelihood

| More Representative of Prior Studies (Predicted Likelihood $>0.50$ ) |  |  | More Representative of Our Study (Predicted Likelihood < 0.50) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $N$ | $C R E-R C$ |  | $N$ | $C R E-R C R E$ |
| Prior Literature | 112 | 24.7\% | Prior Literature | 31 | 4.5\% |
| Our Experiments | 40 | 8.4\% | Our Experiments | 80 | -0.1\% |

[^4]
## C Screenshots from the Online Experiment

## C. 1 Screenshots from Stage 1: Valuation Tasks

## C.1.1 $m$-Valuation Tasks

Decision 6 of 40: Please complete the decision problem below.

Reminder: Please indicate which option you prefer on each row by clicking on the row where you would like to switch from choosing the option on the left to choosing the option on the right.
(Note that you cannot click on the submit button until you have selected an answer. In order to progress, your choices must "switch" from Option A to Option B, like shown below. You will have to click once on Option A and once on Option B, in the subsequent row, to proceed. You can also click Option A in all rows, or Option B in all rows.)

## OPTION A:

OPTION B:

| $80 \%$ CHANCE OF $\$ 0$, <br> $20 \%$ CHANCE OF $\$ 30$ | OR |
| :---: | :---: |
| $80 \%$ CHANCE OF $\$ 0$, <br> $20 \%$ CHANCE OF $\$ 30$ | OR |
| $80 \%$ CHANCE OF $\$ 0$, <br> $20 \%$ CHANCE OF $\$ 30$ | OR |
| $80 \%$ CHANCE OF $\$ 0$, <br> $20 \%$ CHANCE OF $\$ 30$ | OR |


| $80 \%$ CHANCE OF \$0, <br> $20 \%$ CHANCE OF $\$ 30$ | OR | $100 \%$ CHANCE OF \$27 |
| :---: | :---: | :---: |
| $80 \%$ CHANCE OF $\$ 0$, <br> $20 \%$ CHANCE OF $\$ 30$ | OR | $100 \%$ CHANCE OF $\$ 28$ |
| $80 \%$ CHANCE OF $\$ 0$, <br> $20 \%$ CHANCE OF $\$ 30$ | OR | $100 \%$ CHANCE OF $\$ 29$ |
| $80 \%$ CHANCE OF $\$ 0$, <br> $20 \%$ CHANCE OF $\$ 30$ | OR | $100 \%$ CHANCE OF $\$ 30$ |

Figure C.1: Example Price List for Stage $1 A B m$-Valuation Task with $p=0.2$

| OPTION A: |  | OPTION B: |
| :---: | :---: | :---: |
| 80\% CHANCE OF \$0, $20 \%$ CHANCE OF $\$ 30$ | OR | 100\% CHANCE OF \$0 |
| 80\% CHANCE OF \$0, $20 \%$ CHANCE OF $\$ 30$ | OR | 100\% CHANCE OF \$1 |
| $80 \%$ CHANCE OF $\$ 0$, 20\% CHANCE OF $\$ 30$ | OR | 100\% CHANCE OF \$2 |
| 80\% CHANCE OF \$0, 20\% CHANCE OF \$30 | OR | 100\% CHANCE OF \$3 |
| 80\% CHANCE OF \$0, 20\% CHANCE OF \$30 | OR | 100\% CHANCE OF \$4 |
| $80 \%$ CHANCE OF \$0, 20\% CHANCE OF \$30 | OR | 100\% CHANCE OF \$5 |
| 80\% CHANCE OF \$0, 20\% CHANCE OF \$30 | OR | 100\% CHANCE OF \$6 |
| 80\% CHANCE OF \$0, 20\% CHANCE OF \$30 | OR | 100\% CHANCE OF \$7 |
| 80\% CHANCE OF \$0, 20\% CHANCE OF \$30 | OR | 100\% CHANCE OF \$8 |
| .... |  |  |
| 80\% CHANCE OF \$0, $20 \%$ CHANCE OF $\$ 30$ | OR | 100\% CHANCE OF \$28 |
| 80\% CHANCE OF \$0, 20\% CHANCE OF $\$ 30$ | OR | 100\% CHANCE OF \$29 |
| 80\% CHANCE OF \$0, 20\% CHANCE OF \$30 | OR | 100\% CHANCE OF \$30 |

Figure C.2: Example Price List for Stage $1 A B m$-Valuation Task with $p=0.2$ (with example completion)

| OPTION A: |  | OPTION B: |
| :---: | :---: | :---: |
| 88\% CHANCE OF \$0, 12\% CHANCE OF \$30 | OR | 40\% CHANCE OF \$0 <br> 60\% CHANCE OF $\$ 0$ |
| 88\% CHANCE OF \$0, 12\% CHANCE OF \$30 | OR | 40\% CHANCE OF \$0 60\% CHANCE OF $\$ 1$ |
| 88\% CHANCE OF \$0, 12\% CHANCE OF \$30 | OR | 40\% CHANCE OF \$0 $60 \%$ CHANCE OF $\$ 2$ |
| 88\% CHANCE OF \$0, <br> 12\% CHANCE OF \$30 | OR | 40\% CHANCE OF \$0 <br> $60 \%$ CHANCE OF $\$ 3$ |
| 88\% CHANCE OF \$0, <br> 12\% CHANCE OF \$30 | OR | 40\% CHANCE OF \$0 60\% CHANCE OF $\$ 4$ |
| .... |  |  |
| $88 \%$ CHANCE OF \$0, $12 \%$ CHANCE OF $\$ 30$ | OR | 40\% CHANCE OF \$0 <br> 60\% CHANCE OF \$27 |
| 88\% CHANCE OF \$0, 12\% CHANCE OF \$30 | OR | 40\% CHANCE OF \$0 <br> 60\% CHANCE OF \$28 |
| $88 \%$ CHANCE OF \$0, $12 \%$ CHANCE OF $\$ 30$ | OR | $40 \%$ CHANCE OF $\$ 0$ <br> 60\% CHANCE OF $\$ 29$ |
| 88\% CHANCE OF \$0, 12\% CHANCE OF \$30 | OR | 40\% CHANCE OF \$0 60\% CHANCE OF \$30 |

Figure C.3: Example Price List for Stage $1 C D m$-Valuation Task with $p=0.2$ and $r=0.6$

## C.1.2 $h$-Valuation Tasks

| OPTION A: |  | OPTION B: |
| :---: | :---: | :---: |
| 100\% CHANCE OF \$6 | OR | $80 \%$ CHANCE OF $\$ 0$, $20 \%$ CHANCE OF $\$ 6$ |
| 100\% CHANCE OF \$6 | OR | 80\% CHANCE OF \$0, $20 \%$ CHANCE OF $\$ 7$ |
| 100\% CHANCE OF \$6 | OR | 80\% CHANCE OF \$0, $20 \%$ CHANCE OF $\$ 8$ |
| 100\% CHANCE OF \$6 | OR | 80\% CHANCE OF \$0, $20 \%$ CHANCE OF $\$ 9$ |
| .... |  |  |
| 100\% CHANCE OF \$6 | OR | 80\% CHANCE OF \$0, <br> 20\% CHANCE OF $\$ 33$ |
| 100\% CHANCE OF \$6 | OR | 80\% CHANCE OF \$0, $20 \%$ CHANCE OF $\$ 34$ |
| 100\% CHANCE OF \$6 | OR | 80\% CHANCE OF \$0, <br> 20\% CHANCE OF $\$ 35$ |
| 100\% CHANCE OF \$6 | OR | $80 \%$ CHANCE OF $\$ 0$, <br> 20\% CHANCE OF $\$ 36$ |

Figure C.4: Example Price List for Stage $1 A B h$-Valuation Task with $p=0.2$

| OPTION A: |  | OPTION B: |
| :---: | :---: | :---: |
| 40\% CHANCE OF \$0 60\% CHANCE OF $\$ 6$ | OR | 88\% CHANCE OF \$0, 12\% CHANCE OF \$6 |
| 40\% CHANCE OF \$0 60\% CHANCE OF $\$ 6$ | OR | 88\% CHANCE OF \$0, 12\% CHANCE OF $\$ 7$ |
| 40\% CHANCE OF \$0 60\% CHANCE OF $\$ 6$ | OR | 88\% CHANCE OF \$0, 12\% CHANCE OF \$8 |
| 40\% CHANCE OF \$0 60\% CHANCE OF $\$ 6$ | OR | 88\% CHANCE OF \$0, 12\% CHANCE OF \$9 |
| .... |  |  |
| 40\% CHANCE OF \$0 60\% CHANCE OF \$6 | OR | 88\% CHANCE OF \$0, 12\% CHANCE OF \$33 |
| 40\% CHANCE OF \$0 60\% CHANCE OF $\$ 6$ | OR | 88\% CHANCE OF \$0, 12\% CHANCE OF \$34 |
| 40\% CHANCE OF \$0 60\% CHANCE OF $\$ 6$ | OR | 88\% CHANCE OF \$0, 12\% CHANCE OF \$35 |
| 40\% CHANCE OF \$0 60\% CHANCE OF \$6 | OR | 88\% CHANCE OF \$0, 12\% CHANCE OF \$36 |

Figure C.5: Example Price List for Stage $1 C D h$-Valuation Task with $p=0.2$ and $r=0.6$

## C. 2 Screenshots from Stage 2: Binary-Choice Tasks

## C.2.1 m-Choice Tasks

Decision 36 of 40: Please choose your preferred option.

| Option A |
| :---: |
| $80 \%$ chance of $\$ 0$ |
| $20 \%$ chance of $\$ 30$ |


| Option A | Option B |
| :---: | :---: |

Figure C.6: Example Stage 2 Binary $A B(M)$ Choice Task with $p=0.2$ and $M=\$ 4$

Decision 33 of 40: Please choose your preferred option.

| Option A | Option B |
| :---: | :---: |
| $40 \%$ chance of $\$ 0$ | $88 \%$ chance of $\$ 0$ |
| $60 \%$ chance of $\$ 4$ | $12 \%$ chance of $\$ 30$ |



Figure C.7: Example Stage 2 Binary $C D(M)$ Choice Task with $p=0.2, r=0.6$, and $M=\$ 4$

## C.2.2 $h$-Choice Tasks

Decision 28 of 40: Please choose your preferred option.

| Option A | Option B |
| :---: | :---: |
| $100 \%$ chance of $\$ 6$ | $80 \%$ chance of $\$ 0$ <br> $20 \%$ chance of $\$ 20$ |


| Option A | Option B |
| :---: | :---: |

## >>

Figure C.8: Example Stage 2 Binary $A B(H)$ Choice Task with $p=0.2$ and $H=\$ 20$

Decision 28 of 40: Please choose your preferred option.

| Option A | Option B |
| :---: | :---: |
| $100 \%$ chance of $\$ 6$ | $80 \%$ chance of $\$ 0$ |
|  | $20 \%$ chance of $\$ 20$ |

$\square$

Figure C.9: Example Stage 2 Binary $A B(H)$ Choice Task with $p=0.2$, and $H=\$ 20$ (with example completion)

Decision 29 of 40: Please choose your preferred option.

| Option A | Option B |
| :---: | :---: |
| $40 \%$ chance of $\$ 0$ | $88 \%$ chance of $\$ 0$ |
| $60 \%$ chance of $\$ 6$ | $12 \%$ chance of $\$ 20$ |



Figure C.10: Example Stage 2 Binary $C D(H)$ Choice Task with $p=0.2, r=0.6$, and $H=\$ 20$

## C. 3 Screenshots from Comprehension Checks and Visual Puzzle Task

Quiz Question \#1:
Imagine a person who values the lottery shown in Option A below at exactly $\$ 24.50$.
That is, he would rather have the lottery than any sure amount less than $\$ 24.50$, but would rather have the sure amount for any amount greater than $\$ 24.50$.

How would this person fill out the list below?

| OPTION A: | OPTION B: |
| :---: | :---: |
| $25 \%$ CHANCE OF $\$ 0$, <br> $75 \%$ CHANCE OF $\$ 30$ | OR |
| $25 \%$ CHANCE OF $\$ 0$, <br> $75 \%$ CHANCE OF $\$ 30$ | OR |
| $25 \%$ CHANCE OF $\$ 0$, <br> $75 \%$ CHANCE OF $\$ 30$ | OR |

...

| $25 \%$ CHANCE OF $\$ 0$, <br> $75 \%$ CHANCE OF \$30 | OR |
| :---: | :---: |
| $25 \%$ CHANCE OF $\$ 0$, <br> $75 \%$ CHANCE OF $\$ 30$ | OR |
| $25 \%$ CHANCE OF $\$ 0$, <br> $75 \%$ CHANCE OF $\$ 30$ | OR |

Figure C.11: Incentivized Comprehension Check 1: Multiple Price List

Quiz Question \#2:
Imagine a person who filled out the list like shown below.

| 60\% CHANCE OF $\$ 0$, $40 \%$ CHANCE OF $\$ 30$ | OR | 50\% CHANCE OF $\$ 0$ $50 \%$ CHANCE OF $\$ 10$ |
| :---: | :---: | :---: |
| 60\% CHANCE OF $\$ 0$, <br> $40 \%$ CHANCE OF $\$ 30$ | OR | 50\% CHANCE OF \$0 50\% CHANCE OF $\$ 11$ |
| $60 \%$ CHANCE OF $\$ 0$, $40 \%$ CHANCE OF $\$ 30$ | OR | 50\% CHANCE OF $\$ 0$ $50 \%$ CHANCE OF $\$ 12$ |
| $60 \%$ CHANCE OF $\$ 0$, $40 \%$ CHANCE OF $\$ 30$ | OR | $50 \%$ CHANCE OF $\$ 0$ $50 \%$ CHANCE OF $\$ 13$ |
| $60 \%$ CHANCE OF $\$ 0$, 40\% CHANCE OF $\$ 30$ | OR | $50 \%$ CHANCE OF $\$ 0$ $50 \%$ CHANCE OF $\$ 14$ |
| 60\% CHANCE OF $\$ 0$, $40 \%$ CHANCE OF $\$ 30$ | OR | 50\% CHANCE OF \$0 $50 \%$ CHANCE OF $\$ 15$ |
| 60\% CHANCE OF \$0, $40 \%$ CHANCE OF $\$ 30$ | OR | $50 \%$ CHANCE OF $\$ 0$ $50 \%$ CHANCE OF $\$ 16$ |

....


Given these responses in the list, what would this person choose in the single decision below?


Figure C.12: Incentivized Comprehension Check 2: Binary-Choice Task click on the image where you think the animal is.


Figure C.13: Example: Camouflaged Animal Task

## D Supplementary Figures and Tables

Table D.1: Participant Demographics

|  | Full <br> Sample | $r=0.2$ | $r=0.4$ | $r=0.6$ |
| :--- | :---: | :---: | :---: | :---: |
| Number of Participants | 900 | 298 | 303 | 299 |
| Time Taken (in minutes) | 27.3 | 27.3 | 27.8 | 26.9 |
| Age | 22.4 | 22.5 | 22.2 | 22.5 |
| Prolific Score | 99.9 | 99.9 | 99.9 | 99.9 |
| Number of Approvals | 32.2 | 30.3 | 34.5 | 31.9 |
| Female | 50.0 | 50.7 | 49.8 | 49.5 |
| Current Student | 64.8 | 61.1 | 71.6 | 61.5 |
| College Degree | 49.3 | 48.0 | 49.2 | 50.8 |
| Working (full- or part-time) | 44.2 | 45.0 | 40.9 | 46.8 |
| English First Language | 52.0 | 48.7 | 49.5 | 57.9 |
| Attention Checks |  |  |  |  |
| $\quad$ Incentive Question Correct | 92.3 | 93.3 | 92.1 | 91.6 |
| $\quad$ Passed Attention Check | 83.7 | 82.2 | 85.1 | 83.6 |
| Comprehension Questions |  |  |  |  |
| $\quad$ MPL Question Correct | 83.9 | 81.5 | 84.8 | 85.3 |
| $\quad$ Bin Question Correct | 86.2 | 85.9 | 86.1 | 86.6 |
| $\quad$ Both Questions Correct | 74.0 | 70.8 | 75.2 | 75.9 |
| Current Residency |  |  |  |  |
| $\quad$ United States | 51.4 | 47.7 | 49.2 | 57.5 |
| $\quad$ United Kingdom | 6.3 | 7.0 | 5.9 | 6.0 |
| $\quad$ Portugal | 22.1 | 22.1 | 24.4 | 19.7 |
| $\quad$ Spain | 6.4 | 4.0 | 6.0 |  |
| $\quad$ Germany | 4.7 | 5.4 | 4.6 | 4.0 |

Note: Participant demographics for all 900 participants. Each participant assigned to a single value of $r$.

Table D.2: Summary Statistics: $m$-Valuations

|  | $p$ | Mean | SD | Percentile |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 10th | 25th | 50th | 75th | 90th |
|  |  |  | Panel A: $r=0.2$ (298 participants) |  |  |  | 10.50 | 15.50 |
| $m_{A B}$ | 0.1 | 8.86 | 6.56 | 0.50 | 4.50 | 9.50 |  |  |
| $m_{C D}$ | 0.1 | 7.31 | 6.67 | 0.50 | 2.50 | 5.50 | 9.50 | 15.50 |
| $m_{A B}$ | 0.2 | 10.75 | 6.59 | 2.50 | 5.50 | 9.50 | 14.50 | 19.50 |
| $m_{C D}$ | 0.2 | 9.46 | 7.05 | 0.50 | 4.50 | 9.50 | 11.50 | 19.50 |
| $m_{A B}$ | 0.5 | 15.95 | 6.34 | 9.50 | 13.50 | 15.00 | 19.50 | 24.50 |
| $m_{C D}$ | 0.5 | 15.99 | 7.01 | 7.50 | 10.50 | 15.50 | 20.50 | 24.50 |
| $m_{A B}$ | 0.8 | 19.54 | 7.06 | 9.50 | 15.50 | 19.50 | 24.50 | 29.50 |
| $m_{C D}$ | 0.8 | 20.55 | 7.46 | 9.50 | 15.50 | 22.50 | 25.50 | 29.50 |
| $m_{A B}$ | 0.9 | 22.78 | 7.32 | 10.50 | 19.50 | 24.50 | 29.50 | 29.50 |
| $m_{C D}$ | 0.9 | 21.31 | 8.00 | 9.50 | 14.50 | 24.50 | 28.50 | 29.50 |
|  |  |  | Panel B: $r=0.4$ (303 participants) |  |  |  | 9.50 | 14.50 |
| $m_{A B}$ | 0.1 | 7.29 | 5.83 | 0.50 | 3.50 | 5.50 |  |  |
| $m_{C D}$ | 0.1 | 6.66 | 6.15 | 0.50 | 2.50 | 4.50 | 9.50 | 14.50 |
| $m_{A B}$ | 0.2 | 9.33 | 6.12 | 0.50 | 4.50 | 9.50 | 13.50 | 15.50 |
| $m_{C D}$ | 0.2 | 8.20 | 5.88 | 0.50 | 4.50 | 7.50 | 10.50 | 15.50 |
| $m_{A B}$ | 0.5 | 14.48 | 6.37 | 6.50 | 10.50 | 14.50 | 19.50 | 20.50 |
| $m_{C D}$ | 0.5 | 13.27 | 6.71 | 4.50 | 9.50 | 14.50 | 15.50 | 20.50 |
| $m_{A B}$ | 0.8 | 19.22 | 7.43 | 9.50 | 14.50 | 19.50 | 24.50 | 29.50 |
| $m_{C D}$ | 0.8 | 18.63 | 7.41 | 9.50 | 14.50 | 19.50 | 24.50 | 27.50 |
| $m_{A B}$ | 0.9 | 21.55 | 7.59 | 9.50 | 19.50 | 24.50 | 26.50 | 29.50 |
| $m_{C D}$ | 0.9 | 21.39 | 8.10 | 9.50 | 18.50 | 24.50 | 27.50 | 29.50 |
|  |  |  | Panel C: $r=0.6$ (299 participants) |  |  |  | 9.50 | 14.50 |
| $m_{A B}$ | 0.1 | 6.76 | 5.46 | 0.50 | 2.50 | 5.50 |  |  |
| $m_{C D}$ | 0.1 | 6.27 | 5.61 | 0.50 | 2.50 | 4.50 | 9.50 | 12.50 |
| $m_{A B}$ | 0.2 | 8.57 | 5.59 | 0.50 | 4.50 | 9.50 | 10.50 | 15.50 |
| $m_{C D}$ | 0.2 | 8.70 | 5.99 | 0.50 | 4.50 | 9.50 | 10.50 | 15.50 |
| $m_{A B}$ | 0.5 | 14.36 | 6.37 | 5.50 | 10.50 | 14.50 | 18.50 | 20.50 |
| $m_{C D}$ | 0.5 | 12.32 | 6.25 | 4.50 | 9.50 | 13.50 | 15.50 | 19.50 |
| $m_{A B}$ | 0.8 | 19.36 | 7.12 | 9.50 | 14.50 | 19.50 | 24.50 | 29.50 |
| $m_{C D}$ | 0.8 | 18.11 | 7.05 | 9.50 | 13.50 | 19.50 | 23.50 | 25.50 |
| $m_{A B}$ | 0.9 | 23.05 | 6.94 | 11.50 | 19.50 | 24.50 | 28.50 | 29.50 |
| $m_{C D}$ | 0.9 | 21.01 | 7.04 | 10.50 | 15.50 | 22.50 | 26.50 | 29.50 |

Note: Summary statistics for all $30 m$-valuations. Each participant was assigned a single $r$, and completed all 10 $m$-valuations for that value of $r$. Each valuation is equal to the average value of $M$ at the participant's switching rows in a multiple-price list (MPL). Each MPL permits the valuations to range from -0.50 to 30.50 .

Table D.3: Adjusting the Sign Test for Ties ( $m$-Valuation Tasks)

| (1) | (2) | (3) | (4) | (5) | (6) | (7) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Number of Cases |  |  | Sign Tests |  |
| $p$ | $\begin{gathered} \Delta m>0 \\ (C R E) \end{gathered}$ | $\Delta m=0$ | $\begin{gathered} \Delta m<0 \\ (R C R E) \end{gathered}$ | $\begin{gathered} \text { Default } \\ (p \text {-value }) \end{gathered}$ | Equal Split ( $p$-value) | Prop. Split ( $p$-value) |
|  |  | Panel A: $r=0.2$ (298 participants) |  |  |  | 0.000 |
| 0.1 | 79 | 75 | 144 | 0.000 | 0.000 |  |
| 0.2 | 80 | 73 | 145 | 0.000 | 0.000 | 0.000 |
| 0.5 | 123 | 60 | 115 | 0.650 | 0.685 | 0.524 |
| 0.8 | 140 | 54 | 104 | 0.025 | 0.042 | 0.013 |
| 0.9 | 127 | 42 | 129 | 0.950 | 0.954 | 0.862 |
|  |  | Panel B: $r=0.4$ (303 participants) |  |  |  | 0.051 |
| 0.1 | 103 | 71 | 129 | 0.101 | 0.135 |  |
| 0.2 | 97 | 65 | 141 | 0.005 | 0.011 | 0.001 |
| 0.5 | 104 | 62 | 137 | 0.039 | 0.066 | 0.016 |
| 0.8 | 127 | 41 | 135 | 0.665 | 0.646 | 0.566 |
| 0.9 | 124 | 52 | 127 | 0.900 | 0.909 | 0.818 |
|  |  | Panel C: $r=0.6$ (299 participants) |  |  |  | 0.083 |
| 0.1 | 94 | 90 | 115 | 0.166 | 0.247 |  |
| 0.2 | 111 | 84 | 104 | 0.682 | 0.729 | 0.563 |
| 0.5 | 89 | 65 | 145 | 0.000 | 0.001 | 0.000 |
| 0.8 | 113 | 57 | 129 | 0.335 | 0.355 | 0.247 |
| 0.9 | 79 | 60 | 160 | 0.000 | 0.000 | 0.000 |

Note: Columns (2)-(4) report raw frequencies of $\Delta m>0, \Delta m=0$, and $\Delta m<0$ (identical to those reported in columns (4)-(6) in Table 3). Column (5) reports the $p$-values for the default sign tests (identical to those reported in column (7) in Table 3) that exclude all ties (instances of $\Delta m=0$ ). The adjusted sign tests in column (6) split ties equally between $\Delta m>0$ and $\Delta m<0$. The adjusted sign tests in column (7) split ties in proportion to the observed share of $\Delta m>0$ and $\Delta m<0$.

Table D.4: Predictions for $\Delta m$ under PT Versus Observed $\Delta m$ in Data

|  | (1) | (2) | (3) | (4) |
| :---: | :---: | :---: | :---: | :---: |
|  | Current Estimates: |  |  |  |
|  | Lower | Point | Upper | Data |
|  | Bound | Estimate | Bound | Data |
|  | Panel A: $r=0.2$ |  |  |  |
| $p=0.1$ | 4.07 | 4.76 | 5.45 | $-1.55$ |
| $p=0.2$ | 5.66 | 6.40 | 7.15 | -1.29 |
| $p=0.5$ | 7.82 | 8.54 | 9.26 | 0.04 |
| $p=0.8$ | 7.20 | 7.84 | 8.48 | 1.00 |
| $p=0.9$ | 5.78 | 6.36 | 6.94 | $-1.47$ |
|  | Panel B: $r=0.4$ |  |  |  |
| $p=0.1$ | 4.02 | 4.69 | 5.36 | -0.63 |
| $p=0.2$ | 5.62 | 6.34 | 7.06 | -1.14 |
| $p=0.5$ | 7.94 | 8.63 | 9.31 | $-1.22$ |
| $p=0.8$ | 7.56 | 8.19 | 8.82 | -0.60 |
| $p=0.9$ | 6.17 | 6.75 | 7.33 | -0.16 |
|  | Panel C: $r=0.6$ |  |  |  |
| $p=0.1$ | 2.66 | 3.15 | 3.64 | -0.49 |
| $p=0.2$ | 3.89 | 4.45 | 5.01 | 0.14 |
| $p=0.5$ | 5.89 | 6.49 | 7.09 | -2.05 |
| $p=0.8$ | 5.89 | 6.47 | 7.05 | -1.26 |
| $p=0.9$ | 4.84 | 5.37 | 5.90 | -2.03 |

Note: Columns (1)-(4) present predictions for $\Delta m^{*} \equiv m_{C D}^{*}-m_{A B}^{*}$ under a PT model with $\pi(q)=$ $q^{\gamma} /\left[q^{\gamma}+(1-q)^{\gamma}\right]^{1 / \gamma}$ and $v(x)=x^{\alpha}$. Columns (1)-(3) use parameter estimates based on our stage $1 m_{A B^{-}}$ valuations reported in Appendix Table E.1, with separate estimates for each $r$. Column (2) reports predictions using the point estimates, while columns (1) and (3) report lower and upper bounds of the 95 percent confidence interval computed using the delta method. Column (4) reports mean $\Delta m$ values in our data from the $m$-valuation tasks.

Table D.5: Summary Statistics: $h$-Valuations

|  | $p$ | Mean | SD | Percentile |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 10th | 25th | 50th | 75th | 90th |
|  |  |  | Panel A: $r=0.2$ (298 participants) |  |  |  | 29.50 | 32.50 |
| $h_{A B}$ | 0.1 | 19.99 | 9.50 | 7.50 | 10.50 | 19.50 |  |  |
| $h_{C D}$ | 0.1 | 21.66 | 9.72 | 9.50 | 12.50 | 23.50 | 30.50 | 33.50 |
| $h_{A B}$ | 0.2 | 22.54 | 8.26 | 11.50 | 15.50 | 21.50 | 29.50 | 34.50 |
| $h_{C D}$ | 0.2 | 24.49 | 8.78 | 12.50 | 18.50 | 25.50 | 30.50 | 36.50 |
| $h_{A B}$ | 0.5 | 30.59 | 8.26 | 19.50 | 24.50 | 29.50 | 35.50 | 44.50 |
| $h_{C D}$ | 0.5 | 28.95 | 7.68 | 19.50 | 24.50 | 29.50 | 32.50 | 39.50 |
| $h_{A B}$ | 0.8 | 36.54 | 8.74 | 26.50 | 29.50 | 34.50 | 40.50 | 51.50 |
| $h_{C D}$ | 0.8 | 32.22 | 6.83 | 24.50 | 28.50 | 30.00 | 35.50 | 41.50 |
| $h_{A B}$ | 0.9 | 35.92 | 8.54 | 27.50 | 29.50 | 34.50 | 39.50 | 49.50 |
| $h_{C D}$ | 0.9 | 33.82 | 7.43 | 27.50 | 28.50 | 30.50 | 36.50 | 44.50 |
|  |  |  | Panel B: $r=0.4$ (303 participants) |  |  |  | 29.50 | 33.50 |
| $h_{A B}$ | 0.1 | 21.48 | 9.37 | 9.50 | 14.50 | 20.50 |  |  |
| $h_{C D}$ | 0.1 | 24.01 | 8.86 | 9.50 | 18.50 | 26.50 | 31.50 | 33.50 |
| $h_{A B}$ | 0.2 | 24.46 | 7.95 | 13.50 | 19.50 | 24.50 | 30.50 | 36.50 |
| $h_{C D}$ | 0.2 | 26.04 | 8.48 | 13.50 | 19.50 | 29.50 | 32.50 | 36.50 |
| $h_{A B}$ | 0.5 | 30.34 | 7.34 | 20.50 | 25.50 | 29.50 | 33.50 | 40.50 |
| $h_{C D}$ | 0.5 | 31.39 | 7.06 | 22.50 | 28.50 | 30.50 | 35.50 | 40.50 |
| $h_{A B}$ | 0.8 | 36.07 | 8.57 | 26.50 | 29.50 | 34.50 | 39.50 | 49.50 |
| $h_{C D}$ | 0.8 | 34.22 | 7.21 | 27.50 | 29.50 | 31.50 | 39.50 | 45.50 |
| $h_{A B}$ | 0.9 | 35.66 | 8.66 | 27.50 | 29.50 | 33.50 | 39.50 | 50.50 |
| $h_{C D}$ | 0.9 | 34.53 | 7.37 | 27.50 | 29.50 | 32.50 | 37.50 | 43.50 |
|  |  |  | Panel C: $r=0.6$ (299 participants) |  |  |  | 30.50 | 33.50 |
| $h_{A B}$ | 0.1 | 22.54 | 9.09 | 9.50 | 14.50 | 24.50 |  |  |
| $h_{C D}$ | 0.1 | 23.27 | 9.51 | 9.50 | 14.50 | 26.50 | 30.50 | 33.50 |
| $h_{A B}$ | 0.2 | 25.07 | 8.00 | 14.50 | 19.50 | 25.50 | 30.50 | 36.50 |
| $h_{C D}$ | 0.2 | 24.24 | 8.47 | 12.50 | 17.50 | 24.50 | 30.50 | 36.50 |
| $h_{A B}$ | 0.5 | 30.16 | 7.20 | 20.50 | 24.50 | 29.50 | 33.50 | 40.50 |
| $h_{C D}$ | 0.5 | 30.88 | 7.43 | 20.50 | 25.50 | 29.50 | 35.50 | 40.50 |
| $h_{A B}$ | 0.8 | 35.13 | 8.18 | 24.50 | 29.50 | 33.50 | 39.50 | 48.50 |
| $h_{C D}$ | 0.8 | 34.29 | 7.67 | 26.50 | 29.50 | 31.50 | 39.50 | 45.50 |
| $h_{A B}$ | 0.9 | 35.29 | 8.38 | 27.50 | 29.50 | 32.50 | 39.50 | 49.50 |
| $h_{C D}$ | 0.9 | 34.52 | 6.82 | 27.50 | 29.50 | 32.50 | 38.50 | 44.50 |

Note: Summary statistics for all $30 h$-valuations. Each participant was assigned a single $r$, and completed all 10 $h$-valuations for that value of $r$. Each valuation is equal to the average value of $H$ at the participant's switching rows in a multiple-price list (MPL). Each MPL permits the valuations to range from $p 30-0.50$ to $p 30+30.50$.

Table D.6: Adjusting the Sign Test for Ties ( $h$-Valuation Tasks)

| (1) | (2) | (3) | (4) | (5) | (6) | (7) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Number of Cases |  |  |  | Sign Tests |  |
| $p$ | $\begin{aligned} & \Delta h>0 \\ & (C R E) \\ & \hline \end{aligned}$ | $\Delta h=0$ | $\begin{gathered} \Delta h<0 \\ (R C R E) \\ \hline \end{gathered}$ | Default $(p$-value $)$ | Equal Split ( $p$-value) | Prop. Split ( $p$-value) |
|  |  | Panel A: $r=0.2$ (298 participants) |  |  |  |  |
| 0.1 | 100 | 60 | 138 | 0.016 | 0.032 | 0.006 |
| 0.2 | 94 | 53 | 151 | 0.000 | 0.001 | 0.000 |
| 0.5 | 136 | 81 | 81 | 0.000 | 0.001 | 0.000 |
| 0.8 | 174 | 45 | 79 | 0.000 | 0.000 | 0.000 |
| 0.9 | 143 | 64 | 91 | 0.001 | 0.003 | 0.000 |
|  |  | Panel B: $r=0.4$ (303 participants) |  |  |  |  |
| 0.1 | 82 | 59 | 162 | 0.000 | 0.000 | 0.000 |
| 0.2 | 92 | 65 | 146 | 0.001 | 0.002 | 0.000 |
| 0.5 | 101 | 70 | 132 | 0.049 | 0.085 | 0.021 |
| 0.8 | 148 | 47 | 108 | 0.015 | 0.021 | 0.006 |
| 0.9 | 138 | 47 | 118 | 0.235 | 0.251 | 0.168 |
|  |  | Panel C: $r=0.6$ (299 participants) |  |  |  |  |
| 0.1 | 100 | 71 | 128 | 0.074 | 0.105 | 0.037 |
| 0.2 | 131 | 65 | 103 | 0.077 | 0.105 | 0.037 |
| 0.5 | 93 | 85 | 121 | 0.065 | 0.105 | 0.021 |
| 0.8 | 136 | 47 | 116 | 0.231 | 0.247 | 0.165 |
| 0.9 | 126 | 54 | 119 | 0.702 | 0.729 | 0.644 |

Note: Columns (2)-(4) report raw frequencies of $\Delta h>0, \Delta h=0$, and $\Delta h<0$ (identical to those reported in columns (4)-(6) in Table 4). Column (5) reports the $p$-values for the default sign tests (identical to those reported in column (7) in Table 4) that exclude all ties (instances of $\Delta h=0$ ). The adjusted sign tests in column (6) split ties equally between $\Delta h>0$ and $\Delta h<0$. The adjusted sign tests in column (7) split ties in proportion to the observed share of $\Delta h>0$ and $\Delta h<0$.

Table D.7: Correlations of Risk Premia across Corresponding $m$ - and $h$-Valuations

| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variant |  |  | nel A: | arson | Correlat |  | Panel | B: Spea | man's R | ank Corr | elation |
| Varian | $r$ | $p=0.1$ | $p=0.2$ | $p=0.5$ | $p=0.8$ | $p=0.9$ | $p=0.1$ | $p=0.2$ | $p=0.5$ | $p=0.8$ | $p=0.9$ |
| $A B$ | 0.2 | 0.19* | 0.30* | 0.42* | 0.31* | 0.34* | 0.30* | 0.28* | 0.36* | 0.34* | 0.35* |
| $C D$ | 0.2 | 0.21* | 0.26 * | 0.25* | 0.21* | 0.30* | 0.23* | 0.26* | 0.18* | 0.22* | 0.30* |
| $A B$ | 0.4 | 0.19* | 0.25* | 0.34* | 0.34* | 0.25* | 0.34* | 0.41* | 0.30* | 0.30* | 0.27* |
| $C D$ | 0.4 | 0.03 | 0.11 | 0.04 | 0.28* | 0.16* | 0.23* | 0.30* | 0.14* | 0.22* | 0.20* |
| $A B$ | 0.6 | 0.15* | 0.25* | 0.44* | 0.27* | 0.33* | 0.33* | 0.33* | 0.37* | 0.27* | 0.33* |
| $C D$ | 0.6 | 0.19* | 0.16* | 0.12* | 0.30* | 0.22* | 0.40* | 0.32* | 0.17* | 0.27* | 0.22* |

Note: Correlations between $m_{z} / H$ and $M / h_{z}$ (where $H=30$ and $M=p 30$ ) for each of the 30 combinations of $(p, r)$ and $x \in\{A B, C D\}$. Panel A reports Pearson's correlations; panel B reports Spearman's rank correlations. * denotes that a correlation is statistically significant at the 5 percent level.

Table D.8: Correlations across $p$ for Paired $m$-Valuation Tasks

|  | Panel A: Correlations of $p H-\bar{m}$ across $p$ $p=$ |  |  |  |  | Panel B: Correlations of $\Delta m$ across $p$$p=$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.1 | 0.2 |  | 0.8 | 0.9 |  |  |  |  |  |
|  | (i) $r=0.2$ |  |  |  |  | (i) $r=0.2$ |  |  |  |  |
| $p=0.1$ | 1.00 |  |  |  |  | 1.00 |  |  |  |  |
| $p=0.2$ | 0.61* | 1.00 |  |  |  | 0.16* | 1.00 |  |  |  |
| $p=0.5$ | 0.42* | 0.43* | 1.00 |  |  | 0.01 | 0.15* | 1.00 |  |  |
| $p=0.8$ | 0.12 | 0.20* | 0.33* | 1.00 |  | 0.06 | 0.11 | 0.11 | 1.00 |  |
| $p=0.9$ | 0.09 | 0.11 | 0.26* | 0.53* | 1.00 | 0.03 | 0.13 | 0.16* | 0.25* | 1.00 |
|  | (ii) $r=0.4$ |  |  |  |  | (ii) $r=0.4$ |  |  |  |  |
| $p=0.1$ | 1.00 |  |  |  |  | 1.00 |  |  |  |  |
| $p=0.2$ | 0.56* | 1.00 |  |  |  | 0.05 | 1.00 |  |  |  |
| $p=0.5$ | 0.33* | 0.37* | 1.00 |  |  | 0.10 | 0.16* | 1.00 |  |  |
| $p=0.8$ | 0.08 | 0.15* | 0.37* | 1.00 |  | 0.08 | 0.16* | 0.31* | 1.00 |  |
| $p=0.9$ | 0.05 | 0.15 | 0.32* | 0.54* | 1.00 | 0.08 | 0.07 | 0.21* | 0.28* | 1.00 |
|  | (iii) $r=0.6$ |  |  |  |  | (iii) $r=0.6$ |  |  |  |  |
| $p=0.1$ | 1.00 |  |  |  |  | 1.00 |  |  |  |  |
| $p=0.2$ | 0.61* | 1.00 |  |  |  | 0.09 | 1.00 |  |  |  |
| $p=0.5$ | 0.40* | 0.49* | 1.00 |  |  | 0.04 | -0.04 | 1.00 |  |  |
| $p=0.8$ | 0.09 | 0.26* | 0.40* | 1.00 |  | 0.10 | 0.00 | 0.04 | 1.00 |  |
| $p=0.9$ | 0.06 | 0.13 | 0.28* | 0.49* | 1.00 | 0.10 | -0.09 | 0.09 | 0.19* | 1.00 |

Note: Spearman's rank correlations of $p H-\bar{m}$ across $p$ (panel A) and of $\Delta m$ across $p$ (panel B) for the 15 paired $m$-valuation tasks. ${ }^{*}$ denotes that a correlation is statistically significant at the 5 percent level.

Table D.9: Correlations of Value Differences across Corresponding $m$ - and $h$-Valuations

| $(1)$ | $(2)$ | $(3)$ | $(4)$ | $(5)$ | $(6)$ | $(7)$ | $(8)$ | $(9)$ | $(10)$ | $(11)$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $r$ | Panel A: Pearson's Correlation |  |  |  |  |  |  |  |  |  |  |  |  |  | Panel B: Spearman's Rank Correlation |  |  |
|  | $p=0.1$ | $p=0.2$ | $p=0.5$ | $p=0.8$ | $p=0.9$ | $p=0.1$ | $p=0.2$ | $p=0.5$ | $p=0.8$ | $p=0.9$ |  |  |  |  |  |  |  |
| 0.2 | 0.10 | $0.16^{*}$ | $0.19^{*}$ | $0.29^{*}$ | $0.28^{*}$ | $0.13^{*}$ | 0.10 | $0.12^{*}$ | $0.32^{*}$ | $0.30^{*}$ |  |  |  |  |  |  |  |
| 0.4 | -0.01 | 0.08 | $0.17^{*}$ | $0.26^{*}$ | $0.16^{*}$ | $0.12^{*}$ | $0.15^{*}$ | $0.15^{*}$ | $0.24^{*}$ | $0.14^{*}$ |  |  |  |  |  |  |  |
| 0.6 | -0.02 | 0.01 | $0.28^{*}$ | $0.20^{*}$ | $0.20^{*}$ | 0.02 | -0.00 | $0.24^{*}$ | $0.14^{*}$ | $0.14^{*}$ |  |  |  |  |  |  |  |

Note: Correlations between $\left(m_{C D} / H-m_{A B} / H\right)$ and $\left(M / h_{C D}-M / h_{A B}\right)$ (where $H=30$ and $M=p 30$ ) for each of the 15 combinations of $(p, r)$. Panel A reports Pearson's correlations; panel B reports Spearman's rank correlations. * denotes that a correlation is statistically significant at the 5 percent level.

Table D.10: Predicting Individual-Level $C R E-R C R E$ ( $h$ tasks)

|  | ${ }^{(1)}$ Outcome: $\stackrel{(2)}{C R E}-R C R E \in\{-1,0,1\}^{(4)}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
|  | OLS | OLS | OLS | 2SLS |
| Value Difference |  |  |  |  |
| $\frac{1+r}{2} p \Delta h$ | $\begin{gathered} 2.02 \\ (0.22) \end{gathered}$ |  | $\begin{gathered} 1.96 \\ (0.22) \end{gathered}$ | $\begin{gathered} 7.62 \\ (1.35) \end{gathered}$ |
| Distance to Indifference $(1-r) p(\bar{h}-H)$ |  | $\begin{gathered} 1.06 \\ (0.24) \end{gathered}$ | $\begin{gathered} 0.84 \\ (0.24) \end{gathered}$ | $\begin{gathered} 0.21 \\ (0.44) \end{gathered}$ |
| Outcome Mean | 2.73 | 2.73 | 2.73 | 2.73 |
| Individuals | 900 | 900 | 900 | 900 |
| Observations | 4,500 | 4,500 | 4,500 | 4,500 |

Note: OLS regressions using individual-level $h$-task data with dependent variable $C R E-R C R E \in\{-1,0,1\}$. Specifications include $p$ and $r$ fixed effects, as well as controls for gender, education, age, language, student status, employment, and the number of previous Prolific approvals. All numbers reported in percentage points; individual-cluster-robust standard errors in parentheses. For column (4), instruments are ( $1-r$ ) $\bar{m}$, $0.5(1+r) \Delta m$, and $(1-r) p H$.

Table D.11: Summary of Choice Patterns: Experiments Linked to m-Valuations

| $(1)$$r$ | $\begin{gathered} (2) \\ p \end{gathered}$ | (3)$M$ | (4) <br> Mean $\bar{m}$ | (5) <br> Mean $\Delta m$ | $\begin{aligned} & \hline(6) \\ & A C \end{aligned}$ | $\begin{gathered} (7) \\ A D \\ (C R E) \end{gathered}$ | $(8)$$B C$$(R C R E)$ | $\begin{aligned} & (9) \\ & B D \end{aligned}$ | (10)$C R E-R C R E$ | (11) <br> Conlisk <br> $p$-value | $\begin{gathered} (12) \\ N \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| 0.2 | 0.1 | 1 | 8.41 | -0.46 | 9.0 | 7.7 | 6.4 | 76.9 | 1.3 | 0.764 | 78 |
| 0.2 | 0.1 | 3 | 7.93 | -2.27 | 30.7 | 16.0 | 9.3 | 44.0 | 6.7 | 0.250 | 75 |
| 0.2 | 0.1 | 5 | 8.38 | -1.15 | 70.6 | 11.8 | 10.3 | 7.4 | 1.5 | 0.798 | 68 |
| 0.2 | 0.1 | 8 | 7.64 | -2.30 | 87.0 | 6.5 | 3.9 | 2.6 | 2.6 | 0.481 | 77 |
| 0.2 | 0.2 | 1 | 10.26 | -1.49 | 2.6 | 6.5 | 2.6 | 88.3 | 3.9 | 0.256 | 77 |
| 0.2 | 0.2 | 4 | 9.80 | -1.68 | 31.6 | 7.9 | 27.6 | 32.9 | -19.7 | 0.002 | 76 |
| 0.2 | 0.2 | 7 | 10.25 | -0.83 | 40.3 | 9.7 | 27.8 | 22.2 | -18.1 | 0.009 | 72 |
| 0.2 | 0.2 | 10 | 10.12 | -1.10 | 84.9 | 4.1 | 8.2 | 2.7 | -4.1 | 0.317 | 73 |
| 0.2 | 0.5 | 5 | 16.42 | 0.69 | 3.4 | 10.3 | 9.2 | 77.0 | 1.1 | 0.809 | 87 |
| 0.2 | 0.5 | 8 | 15.68 | 0.19 | 10.2 | 18.6 | 16.9 | 54.2 | 1.7 | 0.829 | 59 |
| 0.2 | 0.5 | 11 | 16.57 | 0.09 | 24.7 | 13.6 | 21.0 | 40.7 | -7.4 | 0.256 | 81 |
| 0.2 | 0.5 | 14 | 14.98 | -0.93 | 39.4 | 22.5 | 21.1 | 16.9 | 1.4 | 0.858 | 71 |
| 0.2 | 0.8 | 8 | 20.49 | -0.16 | 1.5 | 9.0 | 13.4 | 76.1 | -4.5 | 0.440 | 67 |
| 0.2 | 0.8 | 12 | 19.83 | 0.58 | 9.9 | 22.5 | 4.2 | 63.4 | 18.3 | 0.002 | 71 |
| 0.2 | 0.8 | 16 | 19.95 | 2.46 | 14.8 | 18.5 | 11.1 | 55.6 | 7.4 | 0.219 | 81 |
| 0.2 | 0.8 | 20 | 19.96 | 0.89 | 25.3 | 39.2 | 15.2 | 20.3 | 24.1 | 0.002 | 79 |
| 0.2 | 0.9 | 10 | 21.70 | -0.91 | 6.3 | 8.9 | 6.3 | 78.5 | 2.5 | 0.565 | 79 |
| 0.2 | 0.9 | 14 | 23.20 | -1.61 | 2.4 | 13.1 | 7.1 | 77.4 | 6.0 | 0.224 | 84 |
| 0.2 | 0.9 | 18 | 21.08 | -2.41 | 7.1 | 24.3 | 14.3 | 54.3 | 10.0 | 0.175 | 70 |
| 0.2 | 0.9 | 22 | 22.02 | -0.94 | 16.9 | 36.9 | 9.2 | 36.9 | 27.7 | 0.000 | 65 |
| 0.4 | 0.1 | 1 | 7.71 | -0.80 | 11.4 | 13.9 | 7.6 | 67.1 | 6.3 | 0.224 | 79 |
| 0.4 | 0.1 | 3 | 6.53 | -0.27 | 63.6 | 6.5 | 6.5 | 23.4 | 0.0 | 1.000 | 77 |
| 0.4 | 0.1 | 5 | 6.69 | -0.62 | 75.3 | 9.0 | 6.7 | 9.0 | 2.2 | 0.594 | 89 |
| 0.4 | 0.1 | 8 | 7.02 | -0.90 | 93.1 | 0.0 | 5.2 | 1.7 | -5.2 | 0.078 | 58 |
| 0.4 | 0.2 | 1 | 8.86 | -0.61 | 9.0 | 10.1 | 3.4 | 77.5 | 6.7 | 0.080 | 89 |
| 0.4 | 0.2 | 4 | 8.95 | -2.20 | 32.9 | 14.5 | 18.4 | 34.2 | -3.9 | 0.550 | 76 |
| 0.4 | 0.2 | 7 | 9.74 | -0.78 | 70.1 | 7.5 | 11.9 | 10.4 | -4.5 | 0.406 | 67 |
| 0.4 | 0.2 | 10 | 7.52 | -1.00 | 88.7 | 8.5 | 2.8 | 0.0 | 5.6 | 0.154 | 71 |
| 0.4 | 0.5 | 5 | 13.89 | 0.48 | 17.9 | 4.8 | 16.7 | 60.7 | -11.9 | 0.015 | 84 |
| 0.4 | 0.5 | 8 | 13.52 | -1.26 | 13.8 | 12.5 | 27.5 | 46.2 | -15.0 | 0.030 | 80 |
| 0.4 | 0.5 | 11 | 14.90 | -2.32 | 32.2 | 13.6 | 27.1 | 27.1 | -13.6 | 0.098 | 59 |
| 0.4 | 0.5 | 14 | 13.46 | -2.14 | 46.2 | 11.2 | 21.2 | 21.2 | -10.0 | 0.113 | 80 |
| 0.4 | 0.8 | 8 | 19.13 | -1.78 | 2.5 | 16.5 | 1.3 | 79.7 | 15.2 | 0.001 | 79 |
| 0.4 | 0.8 | 12 | 19.15 | -0.77 | 6.3 | 19.0 | 12.7 | 62.0 | 6.3 | 0.317 | 79 |
| 0.4 | 0.8 | 16 | 18.47 | -0.97 | 10.3 | 26.9 | 12.8 | 50.0 | 14.1 | 0.044 | 78 |
| 0.4 | 0.8 | 20 | 18.94 | 1.45 | 31.3 | 40.3 | 7.5 | 20.9 | 32.8 | 0.000 | 67 |
| 0.4 | 0.9 | 10 | 21.75 | 0.54 | 5.6 | 13.5 | 2.2 | 78.7 | 11.2 | 0.006 | 89 |
| 0.4 | 0.9 | 14 | 22.30 | 0.12 | 4.6 | 12.3 | 4.6 | 78.5 | 7.7 | 0.128 | 65 |
| 0.4 | 0.9 | 18 | 20.51 | -0.29 | 4.0 | 17.3 | 6.7 | 72.0 | 10.7 | 0.055 | 75 |
| 0.4 | 0.9 | 22 | 21.37 | -1.09 | 36.5 | 32.4 | 13.5 | 17.6 | 18.9 | 0.013 | 74 |
| 0.6 | 0.1 | 1 | 6.82 | -0.25 | 15.5 | 15.5 | 9.9 | 59.2 | 5.6 | 0.346 | 71 |
| 0.6 | 0.1 | 3 | 6.68 | -0.94 | 51.5 | 8.8 | 11.8 | 27.9 | -2.9 | 0.595 | 68 |
| 0.6 | 0.1 | 5 | 6.23 | -1.17 | 72.7 | 7.8 | 5.2 | 14.3 | 2.6 | 0.529 | 77 |
| 0.6 | 0.1 | 8 | 6.37 | 0.30 | 78.3 | 9.6 | 8.4 | 3.6 | 1.2 | 0.797 | 83 |
| 0.6 | 0.2 | 1 | 8.39 | 1.15 | 6.1 | 7.6 | 1.5 | 84.8 | 6.1 | 0.098 | 66 |
| 0.6 | 0.2 | 4 | 9.12 | -1.15 | 37.7 | 11.5 | 16.4 | 34.4 | -4.9 | 0.469 | 61 |
| 0.6 | 0.2 | 7 | 8.68 | 0.17 | 72.8 | 10.9 | 6.5 | 9.8 | 4.3 | 0.317 | 92 |
| 0.6 | 0.2 | 10 | 8.41 | 0.24 | 88.8 | 5.0 | 2.5 | 3.8 | 2.5 | 0.415 | 80 |
| 0.6 | 0.5 | 5 | 14.54 | -2.62 | 14.3 | 5.2 | 22.1 | 58.4 | -16.9 | 0.003 | 77 |
| 0.6 | 0.5 | 8 | 12.79 | -2.14 | 15.3 | 16.7 | 30.6 | 37.5 | -13.9 | 0.082 | 72 |
| 0.6 | 0.5 | 11 | 13.27 | -2.13 | 38.9 | 13.3 | 24.4 | 23.3 | -11.1 | 0.083 | 90 |
| 0.6 | 0.5 | 14 | 12.57 | -1.07 | 45.0 | 10.0 | 21.7 | 23.3 | -11.7 | 0.104 | 60 |
| 0.6 | 0.8 | 8 | 18.29 | -1.49 | 4.3 | 7.6 | 5.4 | 82.6 | 2.2 | 0.565 | 92 |
| 0.6 | 0.8 | 12 | 18.37 | -1.35 | 10.1 | 16.5 | 8.9 | 64.6 | 7.6 | 0.177 | 79 |
| 0.6 | 0.8 | 16 | 19.33 | -2.19 | 11.8 | 19.1 | 17.6 | 51.5 | 1.5 | 0.843 | 68 |
| 0.6 | 0.8 | 20 | 19.23 | 0.28 | 45.0 | 21.7 | 15.0 | 18.3 | 6.7 | 0.395 | 60 |
| 0.6 | 0.9 | 10 | 20.74 | -3.40 | 8.3 | 6.9 | 2.8 | 81.9 | 4.2 | 0.256 | 72 |
| 0.6 | 0.9 | 14 | 22.65 | -0.14 | 7.6 | 11.4 | 8.9 | 72.2 | 2.5 | 0.619 | 79 |
| 0.6 | 0.9 | 18 | 21.99 | -2.23 | 7.7 | 26.9 | 9.0 | 56.4 | 17.9 | 0.006 | 78 |
| 0.6 | 0.9 | 22 | 22.70 | -2.54 | 17.1 | 34.3 | 15.7 | 32.9 | 18.6 | 0.024 | 70 |

Table D.12: Summary of Choice Patterns: Experiments Linked to $h$-Valuations

| (1)$r$ | $(2)$$p$ | $(3)$$H$ | (4) <br> Mean $\bar{h}$ | (5) <br> Mean $\Delta h$ | $\begin{aligned} & (6) \\ & A C \end{aligned}$ | $\begin{gathered} (7) \\ A D \\ (C R E) \end{gathered}$ |  | $\begin{gathered} (9) \\ B D \end{gathered}$ | (10)$C R E-R C R E$ | (11) Conlisk $p$-value | $\begin{gathered} (12) \\ N \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| 0.2 | 0.1 | 13 | 20.99 | -1.85 | 63.5 | 14.9 | 13.5 | 8.1 | 1.4 | 0.828 | 74 |
| 0.2 | 0.1 | 20 | 21.10 | -1.31 | 38.6 | 13.3 | 16.9 | 31.3 | -3.6 | 0.550 | 83 |
| 0.2 | 0.1 | 25 | 20.57 | -0.85 | 39.7 | 19.1 | 10.3 | 30.9 | 8.8 | 0.177 | 68 |
| 0.2 | 0.1 | 30 | 20.59 | -2.67 | 35.6 | 9.6 | 17.8 | 37.0 | -8.2 | 0.177 | 73 |
| 0.2 | 0.2 | 20 | 22.54 | -2.57 | 52.2 | 23.2 | 20.3 | 4.3 | 2.9 | 0.717 | 69 |
| 0.2 | 0.2 | 25 | 23.35 | -1.18 | 49.3 | 8.2 | 20.5 | 21.9 | -12.3 | 0.045 | 73 |
| 0.2 | 0.2 | 30 | 23.58 | -1.65 | 51.4 | 8.3 | 18.1 | 22.2 | -9.7 | 0.104 | 72 |
| 0.2 | 0.2 | 35 | 24.41 | -2.35 | 35.7 | 13.1 | 22.6 | 28.6 | -9.5 | 0.141 | 84 |
| 0.2 | 0.5 | 30 | 30.80 | 3.46 | 57.7 | 22.5 | 11.3 | 8.5 | 11.3 | 0.098 | 71 |
| 0.2 | 0.5 | 35 | 29.90 | 1.60 | 37.2 | 14.1 | 14.1 | 34.6 | 0.0 | 1.000 | 78 |
| 0.2 | 0.5 | 40 | 29.65 | 0.83 | 12.5 | 23.6 | 19.4 | 44.4 | 4.2 | 0.592 | 72 |
| 0.2 | 0.5 | 45 | 28.79 | 0.77 | 15.6 | 10.4 | 23.4 | 50.6 | -13.0 | 0.046 | 77 |
| 0.2 | 0.8 | 33 | 34.58 | 5.23 | 30.0 | 41.7 | 13.3 | 15.0 | 28.3 | 0.001 | 60 |
| 0.2 | 0.8 | 38 | 33.72 | 5.70 | 26.9 | 32.8 | 11.9 | 28.4 | 20.9 | 0.008 | 67 |
| 0.2 | 0.8 | 45 | 34.86 | 3.74 | 11.9 | 31.7 | 8.9 | 47.5 | 22.8 | 0.000 | 101 |
| 0.2 | 0.8 | 52 | 34.15 | 3.01 | 10.0 | 17.1 | 8.6 | 64.3 | 8.6 | 0.154 | 70 |
| 0.2 | 0.9 | 35 | 33.31 | 0.17 | 22.2 | 30.6 | 18.1 | 29.2 | 12.5 | 0.125 | 72 |
| 0.2 | 0.9 | 40 | 35.30 | 2.26 | 9.2 | 19.7 | 15.8 | 55.3 | 3.9 | 0.565 | 76 |
| 0.2 | 0.9 | 47 | 34.70 | 4.03 | 6.7 | 25.3 | 5.3 | 62.7 | 20.0 | 0.001 | 75 |
| 0.2 | 0.9 | 54 | 36.10 | 1.89 | 4.0 | 17.3 | 8.0 | 70.7 | 9.3 | 0.105 | 75 |
| 0.4 | 0.1 | 13 | 21.38 | -2.97 | 72.7 | 10.2 | 5.7 | 11.4 | 4.5 | 0.285 | 88 |
| 0.4 | 0.1 | 20 | 23.86 | -0.48 | 61.7 | 13.3 | 8.3 | 16.7 | 5.0 | 0.407 | 60 |
| 0.4 | 0.1 | 25 | 23.56 | -3.84 | 56.7 | 8.9 | 11.1 | 23.3 | -2.2 | 0.639 | 90 |
| 0.4 | 0.1 | 30 | 22.45 | -2.00 | 33.8 | 12.3 | 16.9 | 36.9 | -4.6 | 0.493 | 65 |
| 0.4 | 0.2 | 20 | 25.97 | -1.75 | 73.9 | 10.1 | 10.1 | 5.8 | 0.0 | 1.000 | 69 |
| 0.4 | 0.2 | 25 | 25.68 | -1.54 | 57.9 | 10.5 | 15.8 | 15.8 | -5.3 | 0.440 | 57 |
| 0.4 | 0.2 | 30 | 25.81 | -2.37 | 62.7 | 8.4 | 12.0 | 16.9 | -3.6 | 0.468 | 83 |
| 0.4 | 0.2 | 35 | 23.97 | -0.80 | 51.1 | 12.8 | 11.7 | 24.5 | 1.1 | 0.836 | 94 |
| 0.4 | 0.5 | 30 | 30.67 | -3.69 | 65.4 | 12.8 | 17.9 | 3.8 | -5.1 | 0.415 | 78 |
| 0.4 | 0.5 | 35 | 30.14 | -0.57 | 41.5 | 17.1 | 22.0 | 19.5 | -4.9 | 0.481 | 82 |
| 0.4 | 0.5 | 40 | 31.00 | -0.24 | 41.2 | 13.2 | 25.0 | 20.6 | -11.8 | 0.113 | 68 |
| 0.4 | 0.5 | 45 | 31.76 | 0.44 | 33.3 | 9.3 | 29.3 | 28.0 | -20.0 | 0.003 | 75 |
| 0.4 | 0.8 | 33 | 35.02 | 1.99 | 43.2 | 31.1 | 2.7 | 23.0 | 28.4 | 0.000 | 74 |
| 0.4 | 0.8 | 38 | 35.37 | 4.00 | 16.9 | 46.5 | 8.5 | 28.2 | 38.0 | 0.000 | 71 |
| 0.4 | 0.8 | 45 | 35.96 | 1.08 | 14.9 | 24.1 | 19.5 | 41.4 | 4.6 | 0.518 | 87 |
| 0.4 | 0.8 | 52 | 34.05 | 0.48 | 11.3 | 15.5 | 9.9 | 63.4 | 5.6 | 0.346 | 71 |
| 0.4 | 0.9 | 35 | 35.76 | 0.41 | 26.0 | 28.8 | 8.2 | 37.0 | 20.5 | 0.002 | 73 |
| 0.4 | 0.9 | 40 | 33.84 | 1.95 | 13.2 | 26.3 | 7.9 | 52.6 | 18.4 | 0.004 | 76 |
| 0.4 | 0.9 | 47 | 35.18 | 0.39 | 4.2 | 23.6 | 9.7 | 62.5 | 13.9 | 0.037 | 72 |
| 0.4 | 0.9 | 54 | 35.59 | 1.65 | 8.5 | 23.2 | 6.1 | 62.2 | 17.1 | 0.003 | 82 |
| 0.6 | 0.1 | 13 | 21.05 | 0.34 | 73.5 | 4.4 | 10.3 | 11.8 | -5.9 | 0.204 | 68 |
| 0.6 | 0.1 | 20 | 22.85 | -1.01 | 60.6 | 9.9 | 11.3 | 18.3 | -1.4 | 0.798 | 71 |
| 0.6 | 0.1 | 25 | 23.33 | -0.56 | 49.4 | 13.6 | 13.6 | 23.5 | 0.0 | 1.000 | 81 |
| 0.6 | 0.1 | 30 | 24.09 | -1.57 | 54.4 | 12.7 | 10.1 | 22.8 | 2.5 | 0.639 | 79 |
| 0.6 | 0.2 | 20 | 25.94 | 0.79 | 74.6 | 11.3 | 7.0 | 7.0 | 4.2 | 0.406 | 71 |
| 0.6 | 0.2 | 25 | 23.64 | 1.07 | 66.3 | 8.4 | 12.0 | 13.3 | -3.6 | 0.468 | 83 |
| 0.6 | 0.2 | 30 | 25.51 | 0.80 | 60.6 | 15.2 | 7.6 | 16.7 | 7.6 | 0.194 | 66 |
| 0.6 | 0.2 | 35 | 23.85 | 0.63 | 48.1 | 17.7 | 13.9 | 20.3 | 3.8 | 0.550 | 79 |
| 0.6 | 0.5 | 30 | 30.22 | -1.77 | 64.2 | 17.3 | 11.1 | 7.4 | 6.2 | 0.297 | 81 |
| 0.6 | 0.5 | 35 | 31.13 | -2.06 | 50.7 | 6.0 | 29.9 | 13.4 | -23.9 | 0.000 | 67 |
| 0.6 | 0.5 | 40 | 30.57 | 0.47 | 32.9 | 8.9 | 27.8 | 30.4 | -19.0 | 0.004 | 79 |
| 0.6 | 0.5 | 45 | 30.23 | 0.40 | 36.1 | 8.3 | 20.8 | 34.7 | -12.5 | 0.045 | 72 |
| 0.6 | 0.8 | 33 | 34.55 | 2.20 | 53.3 | 16.0 | 18.7 | 12.0 | -2.7 | 0.697 | 75 |
| 0.6 | 0.8 | 38 | 33.66 | 1.13 | 33.9 | 12.9 | 27.4 | 25.8 | -14.5 | 0.067 | 62 |
| 0.6 | 0.8 | 45 | 35.81 | 0.32 | 14.8 | 12.5 | 19.3 | 53.4 | -6.8 | 0.256 | 88 |
| 0.6 | 0.8 | 52 | 34.44 | -0.15 | 9.5 | 17.6 | 8.1 | 64.9 | 9.5 | 0.104 | 74 |
| 0.6 | 0.9 | 35 | 34.92 | 0.57 | 25.3 | 24.1 | 21.7 | 28.9 | 2.4 | 0.747 | 83 |
| 0.6 | 0.9 | 40 | 35.09 | 0.89 | 13.6 | 18.5 | 9.9 | 58.0 | 8.6 | 0.142 | 81 |
| 0.6 | 0.9 | 47 | 34.42 | 1.49 | 5.5 | 16.4 | 9.6 | 68.5 | 6.8 | 0.250 | 73 |
| 0.6 | 0.9 | 54 | 35.21 | 0.00 | 3.2 | 11.3 | 6.5 | 79.0 | 4.8 | 0.366 | 62 |



Figure D.1: Prior experiment-level observations for paired choice tasks (panel A) and our experiment-level results (panel B). In each panel, points below the 45 -degree line exhibit a CRE, while points above the 45 -degree line exhibit an RCRE. The shaded grey regions in both panels denote predicted $(\operatorname{Pr}(A), \operatorname{Pr}(C))$ combinations consistent with $\Delta m^{*}=0$ under Assumption 2a. The black circles in panel A depict the 143 experiments surveyed by Blavatskyy et al. (2023) scaled by the number of observations; the black circles in panel B depict the 120 experiments that we run: 60 combinations of ( $p, r, M$ ) in the $m$-choice tasks and 60 combinations of $(p, r, H)$ for the $h$-choice tasks.

## E Estimating a PT Model

In this section, we develop a structural PT model and estimate its key parameters. Following our development in Example 1, under PT a person will have underlying indifference valuations $m_{A B}^{*}$ and $m_{C D}^{*}$ that satisfy

$$
\begin{aligned}
u\left(m_{A B}^{*}\right) & =\pi(p) u(H) \quad \text { and } \\
\pi(r) u\left(m_{C D}^{*}\right) & =\pi(r p) u(H) .
\end{aligned}
$$

For our estimation, we use the functional forms from Tversky and Kahneman (1992): $\pi(q)=$ $q^{\gamma} /\left[q^{\gamma}+(1-q)^{\gamma}\right]^{1 / \gamma}$ and $u(x)=x^{\alpha}$. The goal is to estimate $\alpha$ and $\gamma$.

## E. 1 Estimating a PT Model Using Stage $1 m$ Valuations

Given the functional forms, the underlying indifference valuations are given by:

$$
\begin{aligned}
& \left(m_{A B}^{*}\right)^{\alpha}=\left[\frac{p^{\gamma}}{\left(p^{\gamma}+(1-p)^{\gamma}\right)^{\frac{1}{\gamma}}}\right](H)^{\alpha} \quad \Leftrightarrow \quad \frac{m_{A B}^{*}}{H}=\left[\frac{p^{\gamma}}{\left(p^{\gamma}+(1-p)^{\gamma}\right)^{\frac{1}{\gamma}}}\right]^{\frac{1}{\alpha}} \\
& \left(m_{C D}^{*}\right)^{\alpha}=\left[\frac{\left((r p)^{\gamma}+(1-r p)^{\gamma}\right)^{\frac{1}{\gamma}}}{\frac{r^{\gamma}}{\left(r^{\gamma}+(1-r)^{\gamma}\right)^{\frac{1}{\gamma}}}}\right](H)^{\alpha} \quad \Leftrightarrow \quad \frac{m_{C D}^{*}}{H}=\left[p^{\gamma}\left(\frac{r^{\gamma}+(1-r)^{\gamma}}{(r p)^{\gamma}+(1-r p)^{\gamma}}\right)^{\frac{1}{\gamma}}\right]^{\frac{1}{\alpha}} .
\end{aligned}
$$

Incorporating noise in a way that permits using the standard approach of nonlinear least squares estimation, we model the observed valuations of individual $i$ on trial $t$ as

$$
\begin{align*}
\frac{m_{A B, i t}}{H} & =\left[\frac{p_{i t}^{\gamma}}{\left(p_{i t}^{\gamma}+\left(1-p_{i t}\right)^{\gamma}\right)^{\frac{1}{\gamma}}}\right]^{\frac{1}{\alpha}}+\varepsilon_{i t}  \tag{E.1}\\
\frac{m_{C D, i t}}{H} & =\left[p_{i t}^{\gamma}\left(\frac{r_{i}^{\gamma}+\left(1-r_{i}\right)^{\gamma}}{\left(r_{i} p_{i t}\right)^{\gamma}+\left(1-r_{i} p_{i t}\right)^{\gamma}}\right)^{\frac{1}{\gamma}}\right]^{\frac{1}{\alpha}}+\varepsilon_{i t} \tag{E.2}
\end{align*}
$$

where $r_{i}$ is the common ratio for individual $i, p_{i t}$ is the probability that individual $i$ faces on trial $t$, and $\varepsilon_{i t}$ is a least-squares error term.

The typical approach in the literature is to use data on $m_{A B}$ valuations and equation (E.1) to estimate the parameters ( $\widehat{\alpha}, \hat{\gamma}$ ) (Tversky and Kahneman, 1992). Table E. 1 presents estimates using our data on $m_{A B}$ valuations. Column (1) contains parameter estimates when using all $m_{A B}$-valuations and imposing the same ( $\hat{\alpha}, \hat{\gamma}$ ) for all $r$. Our estimate of $\hat{\gamma}=0.60$ implies strong overweighting of low probabilities and underweighting of large probabilities. This estimate is in line with the typical values in the literature and is similar in magnitude to the estimate of $\widehat{\gamma}=0.61$ in

Table E.1: PT Estimates Using Data on $m$-Valuations

|  | $(1)$ | $(2)$ | $(3)$ | $(4)$ |
| :--- | :---: | :---: | :---: | :---: |
|  | Overall | $r=0.2$ | $r=0.4$ | $r=0.6$ |
|  |  |  |  |  |
| Probability Weighting: $\hat{\gamma}$ | 0.600 | 0.580 | 0.587 | 0.636 |
|  | $(0.008)$ | $(0.014)$ | $(0.014)$ | $(0.014)$ |
|  |  |  |  |  |
| Utility Curvature: $\hat{\alpha}$ | 1.209 | 1.351 | 1.179 | 1.112 |
|  | $(0.019)$ | $(0.040)$ | $(0.030)$ | $(0.028)$ |

Note: Nonlinear least squares estimation. The model assumes functional forms $\pi(q)=$ $q^{\gamma} /\left[q^{\gamma}+(1-q)^{\gamma}\right]^{1 / \gamma}$ and $u(x)=x^{\alpha}$. Individual-cluster-robust standard errors in parentheses. Panel A estimates use data on $m_{A B}$-valuations and the structural equation (E.1).

Tversky and Kahneman (1992). Our estimate of $\widehat{\alpha}=1.209$ is significantly greater than one, which implies risk seeking in the absence of any probability distortions.

Columns (2)-(4) present separate estimates for each common-ratio factor $r$. We find qualitatively similar estimates of ( $\widehat{\alpha}, \hat{\gamma}$ ) across the three values for $r$, which is reassuring given that $r$ does not enter into equation (E.1). We use the estimates in columns (2)-(4) to construct the PT predictions denoted by the dashed blue and dashed-and-dotted red lines in Figure 5 of the main text.

To formally test for differences in probability weighting between the $m_{A B}$ valuations versus the $m_{C D}$ valuations, we estimate the following joint specification:

$$
\begin{align*}
m_{j i t} & =\mathbb{1}(j=A B)\left[\frac{p_{i t}^{\gamma_{A B}}}{\left(p_{i t}^{\gamma_{A B}}+\left(1-p_{i t}\right)^{\gamma_{A B}}\right)^{\frac{1}{\gamma_{A B}}}}\right]^{\frac{1}{\alpha_{A B}}} \\
& +\mathbb{1}(j=C D)\left[p_{i t}^{\gamma_{C D}}\left(\frac{r_{i}^{\gamma_{C D}}+\left(1-r_{i}\right)^{\gamma_{C D}}}{\left(r_{i} p_{i t}\right)^{\gamma_{C D}}+\left(1-r_{i} p_{i t}\right)^{\gamma_{C D}}}\right)^{\frac{1}{\gamma_{C D}}}\right]^{\frac{1}{\alpha_{C D}}}+\varepsilon_{i t}, \tag{E.3}
\end{align*}
$$

where $j \in\{A B, C D\}$ denotes the valuation type. Table E. 2 presents the results under different parameter restrictions. Columns (2) and (3) show that we reject the null of a stable $\gamma$ across the $m_{A B}$ and $m_{C D}$ valuations.

Table E.2: Testing for a Stable Probability Weighting Function

|  | (1) | (2) <br> Restrictions: | (3) |
| :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \gamma_{A B}=\gamma_{C D}=\gamma, \\ & \alpha_{A B}=\alpha_{C D}=\alpha \\ & \hline \end{aligned}$ | $\alpha_{A B}=\alpha_{C D}=\alpha$ | None |
| Probability Weighting |  |  |  |
| $\gamma$ | $\begin{gathered} 0.773 \\ (0.007) \end{gathered}$ |  |  |
| $\gamma_{A B}$ |  | $\begin{gathered} 0.603 \\ (0.008) \end{gathered}$ | $\begin{gathered} 0.600 \\ (0.008) \end{gathered}$ |
| $\gamma_{C D}$ |  | $\begin{gathered} 1.162 \\ (0.017) \end{gathered}$ | $\begin{gathered} 0.368 \\ (0.006) \end{gathered}$ |
| Utility Curvature |  |  |  |
| $\alpha$ | $\begin{gathered} 0.916 \\ (0.014) \end{gathered}$ | $\begin{gathered} 1.198 \\ (0.019) \end{gathered}$ |  |
| $\alpha_{A B}$ |  |  | $\begin{gathered} 1.209 \\ (0.019) \end{gathered}$ |
| $\alpha_{C D}$ |  |  | $\begin{gathered} 0.193 \\ (0.009) \end{gathered}$ |
| F-Test: $\gamma_{A B}=\gamma_{C D}$ |  | $p<0.001$ | $p<0.001$ |
| Individuals | 900 | 900 | 900 |
| Observations | 9000 | 9000 | 9000 |

Note: Nonlinear least squares estimation. The model assumes functional forms $\pi(q)=$ $q^{\gamma} /\left[q^{\gamma}+(1-q)^{\gamma}\right]^{1 / \gamma}$ and $u(x)=x^{\alpha}$. Individual-cluster-robust standard errors in parentheses. The estimation uses data on both $m_{A B}$ and $m_{C D}$ valuations and the structural equation (E.3).

## E. 2 Estimating a PT Model Using Stage 2 Choice Data

To estimate the model use stage 2 choice data, we assume additive utility noise. Analogous to our approach in the prior subsection, we posit a model with differential probability weighting across the $A B$ and $C D$ choices, and then test whether they are the same. Hence, a person will choose $A$ over $B$ when $u(M)-\pi(p) u(H)>\epsilon_{A B}$, which becomes

$$
\epsilon_{A B}<M^{\alpha_{A B}}-\left[\frac{p^{\gamma_{A B}}}{\left(p^{\gamma_{A B}}+(1-p)^{\gamma_{A B}}\right)^{\frac{1}{\gamma_{A B}}}}\right](H)^{\alpha_{A B}} \equiv D_{A B}(M, H, p) .
$$

Similarly, the person will choose $C$ over $D$ when $\pi(r) u(M)-\pi(r p) u(H)>\epsilon_{C D}$, which becomes
$\epsilon_{C D}<\left[\frac{r^{\gamma_{C D}}}{\left(r^{\gamma_{C D}}+(1-r)^{\gamma_{C D}}\right)^{\frac{1}{\gamma_{C D}}}}\right] M^{\alpha_{C D}}-\left[\frac{(r p)^{\gamma_{C D}}}{\left((r p)^{\gamma_{C D}}+(1-r p)^{\gamma_{C D}}\right)^{\frac{1}{\gamma_{C D}}}}\right](H)^{\alpha_{C D}} \equiv D_{C D}(M, H, p, r)$.
As in the prior subsection, we first estimate the parameters $\left(\alpha_{A B}, \gamma_{A B}\right)$ using only the $A B$
choice data. We denote an $A B$ observation by $d_{A B, i} \equiv\left(a_{i} ; M_{i}, H_{i}, p_{i}\right)$, where $a_{i} \in\{A, B\}$ is the person's choice. We further assume that $\epsilon_{A B} \sim N\left(0, \sigma_{A B}^{2}\right)$. Then given parameter vector $\theta \equiv\left(\alpha_{A B}, \gamma_{A B}, \sigma_{A B}\right)$, the likelihood of observation $d_{A B, i}$ is

$$
\ell_{A B}\left(d_{A B, i} ; \theta\right) \equiv \mathbb{1}\left(a_{i}=A\right) \Phi\left(\frac{D_{A B}\left(M_{i}, H_{i}, p_{i}\right)}{\sigma_{A B}}\right)+\mathbb{1}\left(a_{i}=B\right)\left(1-\Phi\left(\frac{D_{A B}\left(M_{i}, H_{i}, p_{i}\right)}{\sigma_{A B}}\right)\right)
$$

and the overall likelihood function is

$$
L(\theta) \equiv \sum_{d_{A B, i}} \log \left(\ell_{A B}\left(d_{A B, i} ; \theta\right)\right)
$$

Column (1) of Table E. 3 presents the parameter estimates. Much as for our estimates using valuations data, our estimate of $\widehat{\gamma_{A B}}=0.71$ implies strong overweighting of low probabilities and underweighting of large probabilities, and is similar in magnitude to that in column (1) of Table E.1. ${ }^{5}$

We next test for differences in probability weighting between the $A B$ choices and the $C D$ choices. We denote a $C D$ observation by $d_{C D, i} \equiv\left(a_{i} ; M_{i}, H_{i}, p_{i}, r_{i}\right)$, where $a_{i} \in\{C, D\}$ is the person's choice. We further assume that $\epsilon_{C D} \sim N\left(0, \sigma_{C D}^{2}\right)$, and thus the parameter vector is now $\theta \equiv\left(\alpha_{A B}, \gamma_{A B}, \alpha_{C D}, \gamma_{C D}, \sigma_{A B}, \sigma_{C D}\right)$. The likelihood of a $C D$ observation $d_{C D, i}$ is

$$
\ell_{C D}\left(d_{C D, i} ; \theta\right) \equiv \mathbb{1}\left(a_{i}=C\right) \Phi\left(\frac{D_{C D}\left(M_{i}, H_{i}, p_{i}, r_{i}\right)}{\sigma_{C D}}\right)+\mathbb{1}\left(a_{i}=D\right)\left(1-\Phi\left(\frac{D_{C D}\left(M_{i}, H_{i}, p_{i}, r_{i}\right)}{\sigma_{C D}}\right)\right)
$$

The overall likelihood function is then

$$
L(\theta) \equiv \sum_{d_{A B, i}} \log \left(\ell_{A B}\left(d_{A B, i} ; \theta\right)\right)+\sum_{d_{C D, i}} \log \left(\ell_{C D}\left(d_{C D, i} ; \theta\right)\right)
$$

Columns (2)-(4) of Table E. 3 presents estimates analogous to those in columns (1)-(3) in Table E.2. Columns (3) and (4) show that we again reject the null of a stable $\gamma$ across the $m_{A B}$ and $m_{C D}$ valuations. ${ }^{6}$

[^5]Table E.3: PT Estimates Using Stage 2 Choice Data

|  | (1) |  | (3) | (4) |
| :---: | :---: | :---: | :---: | :---: |
|  | Restrictions: |  |  |  |
|  | $\begin{gathered} A B \text { Choices } \\ \text { Only } \end{gathered}$ | $\begin{aligned} & \gamma_{A B}=\gamma_{C D}=\gamma, \\ & \alpha_{A B}=\alpha_{C D}=\alpha \end{aligned}$ | $\alpha_{A B}=\alpha_{C D}=\alpha$ | None |
| Probability Weighting |  |  |  |  |
| $\gamma$ |  | $\begin{gathered} 0.809 \\ (0.011) \end{gathered}$ |  |  |
| $\gamma_{A B}$ | $\begin{gathered} 0.710 \\ (0.013) \end{gathered}$ |  | $\begin{gathered} 0.737 \\ (0.014) \end{gathered}$ | $\begin{gathered} 0.710 \\ (0.013) \end{gathered}$ |
| $\gamma_{C D}$ |  |  | $\begin{gathered} 0.886 \\ (0.020) \end{gathered}$ | $\begin{gathered} 0.461 \\ (0.014) \end{gathered}$ |
| Utility Curvature <br> $\alpha$ |  | $\begin{gathered} 0.615 \\ (0.008) \end{gathered}$ | $\begin{gathered} 0.653 \\ (0.010) \end{gathered}$ |  |
| $\alpha_{A B}$ | $\begin{gathered} 0.697 \\ (0.011) \end{gathered}$ |  |  | $\begin{gathered} 0.697 \\ (0.011) \end{gathered}$ |
| $\alpha_{C D}$ |  |  |  | $\begin{gathered} 0.252 \\ (0.015) \end{gathered}$ |
| Utility Noise |  |  |  |  |
| $\sigma_{A B}$ | $\begin{gathered} 2.250 \\ (0.110) \end{gathered}$ | $\begin{gathered} 1.974 \\ (0.088) \end{gathered}$ | $\begin{gathered} 2.000 \\ (0.086) \end{gathered}$ | $\begin{gathered} 2.250 \\ (0.110) \end{gathered}$ |
| $\sigma_{C D}$ |  | $\begin{gathered} 0.906 \\ (0.044) \end{gathered}$ | $\begin{gathered} 1.069 \\ (0.058) \end{gathered}$ | $\begin{gathered} 0.104 \\ (0.013) \end{gathered}$ |
| $H_{0}: \gamma_{A B}=\gamma_{C D}$ |  |  | $p<0.001$ | $p<0.001$ |
| Individuals | 900 | 900 | 900 | 900 |
| Observations | 4500 | 9000 | 9000 | 9000 |

Note: Maximum likelihood estimation using stage 2 choice data. The model assumes functional forms $\pi(q)=q^{\gamma} /\left[q^{\gamma}+(1-q)^{\gamma}\right]^{1 / \gamma}$ and $u(x)=x^{\alpha}$. The estimation in column (1) uses data on $m_{A B}$ choices, and the estimation in columns (2)-(4) uses data on both $m_{A B}$ and $m_{C D}$ choices. In columns (3) and (4), the null hypothesis of $\gamma_{A B}=\gamma_{C D}$ is tested via a Wald test.

## References

Agranov, M. and Ortoleva, P. (forthcoming). Ranges of randomization. Review of Economics and Statistics.

Blavatskyy, P., Panchenko, V., and Ortmann, A. (2023). How common is the common-ratio effect? Experimental Economics, 26(2):253-272.

Castillo, M. and Eil, D. (2014). Taring the multiple price list: Imperceptive preferences and the reversing of the common ratio effect. Working Paper.

Chapman, J., Dean, M., Ortoleva, P., Snowberg, E., and Camerer, C. (2022). Econographics. Journal of Political Economy Microeconomics.

Dean, M. and Ortoleva, P. (2019). The empirical relationship between nonstandard economic behaviors. Proceedings of the National Academy of Sciences, 116(33):16262-16267.

Freeman, D. J., Halevy, Y., and Kneeland, T. (2019). Eliciting risk preferences using choice lists. Quantitative Economics, 10(1):217-237.

Schneider, M. and Shor, M. (2017). The common ratio effect in choice, pricing, and happiness tasks. Journal of Behavioral Decision Making, 30(4):976-986.

Tversky, A. and Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5(4):297-323.


[^0]:    ${ }^{1}$ The assumptions of mean-zero and median-zero noise serve to limit the set of possible outcomes; if we were to relax these assumptions, even more outcomes would be possible even under the null of everyone having $\Delta m_{i}^{*}=0$.

[^1]:    ${ }^{2}$ We omit the proof of this condition since we do not use it in the main text, but the approach is similar to the proof of the prior condition.

[^2]:    ${ }^{3}$ The latter equations use $u(M) / \pi(p)=u\left(h_{A B}^{*}\right)$ and $\pi(r) u(M) / \pi(r p)=u\left(h_{C D}^{*}\right)$.

[^3]:    ${ }^{4}$ We reiterate the point from footnote 38 that this correction is not perfect because our data are inconsistent with EU with additive i.i.d. utility noise; nonetheless, we use that case to impose some discipline on what we use for this correction. See also our discussion in Appendix B. 7

[^4]:    Note: Panel A reports results from logistic regression using the specification in the text. Panel B presents the number of experiments and the average $C R E-R C R E$ for the subset of experiments that are more representative of prior studies or our study based on the predicted likelihoods. All average $C R E-R C R E$ are calculated by weighting by the number of observations in the experiments.

[^5]:    ${ }^{5}$ Our estimate of $\widehat{\alpha_{A B}}=0.70$, in contrast to that in column (1) of Table E.1, is significantly less than one. While not reported here, we also conduct both estimations while imposing that $\alpha=1$, and both estimated $\gamma$ parameters are still less than one, again consistent with inverse-S-shaped probability weighting.
    ${ }^{6}$ While not reported here, we also conduct the estimations in both Tables E. 2 and E. 3 while imposing that $\alpha=1$, and we again reject the null of a stable $\gamma$ across the $m_{A B}$ and $m_{C D}$ valuations.

