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Online Appendix

A Proofs

Proof of Proposition 1: By Assumption 1, a person with m˚AB “ m˚CD ” m˚ chooses A over B

when M ě Γpm˚, εABq, and chooses C over D when M ě Γpm˚, εCDq. Define ε̄pMq such that

Γpm˚, ε̄pMqq “ M . Then Γpm, 0q “ m for all m and Γ increasing in ε together imply ε̄pMq “ 0

when M “ m˚ and ε̄ is increasing in M . Finally, using ε̄pMq and the fact that εCD
d
“ kεAB, the

choice probabilities as a function of M are PrpAq “ PrpεAB ă ε̄pMqq and PrpCq “ PrpεCD ă

ε̄pMqq “ PrpεAB ă ε̄pMq{kq.

(1) M ´m˚ ą 0 implies ε̄pMq ą 0 and thus, given PrpεAB ă 0q “ Z, PrpAq ą Z and PrpCq ą Z.

Moreover, k ą 1 implies ε̄pMq{k ă ε̄pMq and thus PrpAq ą PrpCq; k ă 1 implies ε̄pMq{k ą

ε̄pMq and thus PrpAq ă PrpCq; and k “ 1 implies ε̄pMq{k “ ε̄pMq and thus PrpAq “ PrpCq.

(2) M ´m˚ ă 0 implies ε̄pMq ă 0 and thus, given PrpεAB ă 0q “ Z, PrpAq ă Z and PrpCq ă Z.

Moreover, k ą 1 implies ε̄pMq{k ą ε̄pMq and thus PrpAq ă PrpCq; k ă 1 implies ε̄pMq{k ă

ε̄pMq and thus PrpAq ą PrpCq; and k “ 1 implies ε̄pMq{k “ ε̄pMq and thus PrpAq “ PrpCq.

(3) M ´m˚ “ 0 implies ε̄pMq “ ε̄pMq{k “ 0 for all k ą 0, and thus PrpAq “ PrpCq “ Z for all

k ą 0.

�

Proof of Proposition 2: Proof of part (1): Because mAB “ Γpm˚AB, εABq “ m˚AB ` εAB, we have

EpmABq “ m˚AB ` EpεABq. Analogously, EpmCDq “ m˚CD ` EpεCDq. Then EpεABq “ EpεCDq

implies Ep∆mq “ EpmCD ´mABq “ m˚CD ´m
˚
AB “ ∆m˚.

Proof of part (2): By assumption, the joint distribution of pεAB, εCDq has continuous PDF f

that satisfies fpε1`zAB, ε
1`zCDq “ fpε1´zAB, ε

1´zCDq for all pzAB, zCDq. Define νAB ” εAB´ε
1

and νCD ” εCD ´ ε1. Then the joint distribution of pνAB, νCDq has continuous PDF g that

satisfies gpνAB, νCDq “ gp´νAB,´νCDq for all pνAB, νCDq. The marginal distribution for νCD
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is gνCDpνCDq ”
ş8

νAB“´8
gpνAB, νCDqdνAB, and symmetry around zero implies

ş0
νCD“´8

gνCDpνCDqdνCD “
ş8

νCD“0 gνCDpνCDqdνCD “ 1{2.

If m˚AB “ m˚CD ” m˚, then mAB “ Γpm˚, εABq and mCD “ Γpm˚, εCDq, and thus, given that

Γ is increasing in its second argument, mCD ą mAB if and only if εCD ą εAB, which is equivalent

to νCD ą νAB. Hence:

Prp∆m ą 0q “ PrpνCD ą νABq “

ż 8

νCD“´8

ˆ
ż νCD

νAB“´8
gpνAB, νCDqdνAB

˙

dνCD

“

ż 0

νCD“´8

ˆ
ż νCD

νAB“´8
gpνAB, νCDqdνAB

˙

dνCD

`

ż 8

νCD“0

ˆ
ż νCD

νAB“´8
gpνAB, νCDqdνAB

˙

dνCD.

Note that
şνCD
νAB“´8

gpνAB, νCDqdνAB “ gνCDpνCDq ´
ş8

νAB“νCD
gpνAB, νCDqdνAB (since

ş8

νAB“´8
gpνAB, νCDqdνAB “ gνCDpνCDq), and note that

ż 8

νAB“νCD

gpνAB, νCDqdνAB “

ż ´νCD

νAB“´8
gp´νAB, νCDqdνAB “

ż ´νCD

νAB“´8
gpνAB,´νCDqdνAB

(the first equality uses a simple change in variables replacing νAB with ´νAB, and the second

follows from symmetry about zero). Hence,

ż 0

νCD“´8

ˆ
ż νCD

νAB“´8
gpνAB, νCDqdνAB

˙

dνCD

“

ż 0

νCD“´8

ˆ

gνCDpνCDq ´

ż 8

νAB“νCD

gpνAB, νCDqdνAB

˙

dνCD

“
1

2
´

ż 0

νCD“´8

ˆ
ż ´νCD

νAB“´8
gpνAB,´νCDqdνAB

˙

dνCD

“
1

2
´

ż 8

νCD“0

ˆ
ż νCD

νAB“´8
gpνAB, νCDqdνAB

˙

dνCD

(the first equality merely substitutes from above, the second equality uses another substitution plus

the fact that symmetry around zero implies
ş0
νCD“´8

gνCDpνCDqdνCD “ 1{2, and the third equality

uses a simple change in variables replacing νCD with ´νCD). Combining terms yields

Prp∆m ą 0q “
1

2
´

ż 8

νCD“0

ˆ
ż νCD

νAB“´8
gpνAB, νCDqdνAB

˙

dνCD

`

ż 8

νCD“0

ˆ
ż νCD

νAB“´8
gpνAB, νCDqdνAB

˙

dνCD “
1

2
.

An analogous argument can be used to prove that Prp∆m ă 0q “ PrpνCD ă νABq “ 1{2.

�
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B Additional Analysis

B.1 Predictions for Ep∆mq when Γ is Non-Linear

In Section I.C, we discuss the possibility of testing the null of ∆m˚ “ 0 by testing whether the

mean of ∆m is zero. This test is valid under Assumption 2a where the function Γ is linear in both

m and ε, because then Ep∆mq “ ∆m˚. In contrast, if Γ is nonlinear, then it need not be the case

that Ep∆mq “ ∆m˚, and thus a test based on the mean of ∆m is potentially biased.

To further explore this point, consider the EU model with additive utility noise. Under EU,

m˚AB “ m˚CD ” m˚ and therefore ∆m˚ “ 0. From Example 1, mAB “ u´1 pupm˚q ` εABq and

mCD “ u´1 pupm˚q ` εCD{rq, and thus Γpm, εq “ u´1pupmq ` εq, εAB “ εAB, and εCD “ εCD{r.

Suppose further that EpεABq “ 0 and εCD
d
“ k1εAB for some k1 ą 0, and thus εCD

d
“ kεAB where

k “ k1{r. Then Ep∆mq depends on k and the curvature of the utility function u as follows:

(1) If upxq is linear, then EpmABq “ EpmCDq “ m˚, and thus Ep∆mq “ 0.

(2) If upxq is strictly concave, then EpmABq ą m˚ and EpmCDq ą m˚, and moreover k “ 1

implies Ep∆mq “ 0, k ą 1 implies Ep∆mq ą 0, and k ă 1 implies Ep∆mq ă 0.

(3) If upxq is strictly convex, then EpmABq ă m˚ and EpmCDq ă m˚, and moreover k “ 1

implies Ep∆mq “ 0, k ą 1 implies Ep∆mq ă 0, and k ă 1 implies Ep∆mq ą 0.

Proof: Given a m˚, define a function mpεq “ u´1pupm˚q ` εq, and note mp0q “ m˚. Then

mAB “ mpεABq and mCD “ mpεCDq.

Proof of part (1): If upxq is linear—that is, upxq “ αx ` β for some α ą 0 and any β—then

mpεq “ m˚ ` ε{α. The results then follow from the same logic as the proof of Proposition 2(1).

Proof of part (2): If upxq is strictly concave, then u´1pxq is strictly convex and therefore mpεq is also

strictly convex. By Jensen’s inequality, EεAB rmpεABqs ą mpEεAB rεABsq “ m˚ and EεCD rmpεCDqs ą

mpEεCD rεCDsq “ m˚. If k “ 1 then εCD
d
“ εAB, and thus EεCD rmpεCDqs “ EεAB rmpεABqs. It

follows that E r∆ms “ 0. If instead k ą 1, then εCD is a mean-preserving spread of εAB, and thus,

since mpεq is convex, EεCD rmpεCDqs ą EεAB rmpεABqs. It follows that E r∆ms ą 0. An analogous

logic can be used to show that k ă 1 implies E r∆ms ă 0.

Proof of part (3): Analogous to the proof of part (2), and so omitted.

�

Finally, for the case frequently discussed in the literature of EU with i.i.d. additive utility noise,

we have k1 “ 1 and thus k “ 1{r ą 1. Hence, the typical assumption of concave utility would

imply Ep∆mq ą 0, and thus a test based on the mean of ∆m is biased towards rejecting the null

of ∆m˚ “ 0 in favor of a CRP.
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B.2 Predictions for Figure 2

We derive predictions for Figure 2 assuming that every individual i has m˚AB,i “ m˚CD,i “ m˚i and

thus ∆m˚i “ 0. We assume that everyone satisfies Assumption 2a and thus has mAB,i “ m˚i `εAB,i

and mCD,i “ m˚i ` εCD,i, where EpεAB,iq “ EpεCD,iq “ 0. We further assume that everyone has

median-zero noise, so PrpεAB,i ă 0q “ PrpεCD,i ă 0q “ 1{2. However, we permit heterogeneity in

m˚i and in the distributions of εAB,i and εCD,i.
1

B.2.1 Predictions for Paired Choice Tasks (Panel A)

For a specific paired choice task, observed behaviors in a population are the observed proportions

choosing A over B and C over D, which we denote by xPrpAq and xPrpCq, respectively. Hence, we

need predictions for PrpAq and PrpCq.

Starting at the individual level, a person with m˚i ă M has noise-free preferences that favor

A and C, and thus, given the assumption of median-zero noise, must have 1 ě PrpAq ě 1{2 and

1 ě PrpCq ě 1{2. But given the flexibility to choose different distributions for εAB,i and εCD,i,

there are no further restrictions on PrpAq and PrpCq. Analogously, a person with m˚i ą M must

have 1 ě PrpBq ě 1{2 and 1 ě PrpDq ě 1{2, but there are no further restrictions.

At the population level, then, we can parse the population into those who prefer A and C

(AC types) and those who prefer B and D (BD types), and characterize the population by five

parameters:

q = the proportion of the population who are AC types.

λA = the proportion of AC types who actually choose A over B.

λC = the proportion of AC types who actually choose C over D.

λB = the proportion of BD types who actually choose B over A.

λD = the proportion of BD types who actually choose D over C.

As a function of these five parameters, the population’s pPrpAq,PrpCqq will be

PrpAq “ qλA ` p1´ qqp1´ λBq

PrpCq “ qλC ` p1´ qqp1´ λDq.

The only constraints on these parameters are that q P r0, 1s and that each λA, λC , λB, λD P

r1{2, 1s. One can then show (see proof below) that the set of possible predictions for the population

include any pPrpAq,PrpCqq combinations that satisfy

PrpAq ď
1

2
and 0 ď PrpCq ď PrpAq `

1

2
or

1The assumptions of mean-zero and median-zero noise serve to limit the set of possible outcomes; if we were to
relax these assumptions, even more outcomes would be possible even under the null of everyone having ∆m˚i “ 0.
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PrpAq ě
1

2
and PrpAq ´

1

2
ď PrpCq ď 1.

These combinations are depicted by the gray shaded region in panel A of Figure 2. To provide some

intuition, consider one possible extreme point where PrpAq “ 75% and PrpCq “ 25%. This outcome

occurs when the population is equally split between AC types and BD types (i.e., q “ 1{2), where

the AC types make no errors in the AB choice but respond randomly in the CD choice (i.e., λA “ 1

while λC “ 1{2), while the BD types make no errors in the CD choice but respond randomly in

the AB choice (i.e., λB “ 1{2 while λD “ 1).

This example illustrates how the full gray shaded region takes advantage of being able to have

AC types be more impacted by noise on one type of choice (above, on the CD choice) while BD

types are more impacted by noise on the other type of choice (above, on the AB choice). However,

significant deviations from the 45-degree line are still possible even if we impose that both types

must be more impacted by noise in the same choice. For instance, suppose we impose—consistent

with the logic of EU with i.i.d. additive utility noise—that both types must be more impacted by

noise in the CD choice. This restriction creates additional constraints that λA ě λC and λB ě λD.

Even with this additional constraint, one can still show that the set of possible predictions for the

population include any pPrpAq,PrpCqq combinations that satisfy2

PrpAq

2
ď PrpCq ď

1

2
`

PrpAq

2

Hence, significant deviations from the 45-degree line are still possible. For instance, one possibility

is PrpAq “ 2{3 and PrpCq “ 1{3. This outcome occurs when the population has 2{3 AC types and

1{3 BD types (i.e., q “ 2{3), where the AC types make no errors in the AB choice but respond

randomly in the CD choice (i.e., λA “ 1 while λC “ 1{2), while the BD types make no errors in

either choice (i.e., λB “ λC “ 1).

Proof of conditions for gray area in Figure 2 panel A: For any fixed PrpAq “ ω, we find the param-

eters pq, λA, λC , λB, λDq that minimize PrpCq and those that maximize PrpCq. The constraints are

q P r0, 1s and λA, λC , λB, λD P r1{2, 1s.

To minimize PrpCq: First note that, for ω ď 1{2, setting q “ 0, λB “ 1 ´ ω, and λD “ 1

implies PrpAq “ ω and PrpCq “ 0, so the minimum PrpCq “ 0. For ω ě 1{2, we clearly want

λC to be as small as possible and λD to be as large as possible, and thus we set λC “ 1{2 and

λD “ 1. Then PrpCq “ q{2, so we choose λA and λB to minimize q. Because PrpAq “ ω implies

q “ pω ´ p1 ´ λBqq{pλA ´ p1 ´ λBqq, we minimize q by setting λA “ 1 and λB “ 1{2. Hence, the

parameters that minimize PrpCq are q “ 2ω ´ 1, λA “ λD “ 1, and λB “ λC “ 1{2, which imply

the minimum PrpCq “ p2ω ´ 1q{2 “ ω ´ 1{2.

To maximize PrpCq: First note that, for ω ě 1{2, setting q “ 1, λA “ ω, and λC “ 1 implies

2We omit the proof of this condition since we do not use it in the main text, but the approach is similar to the
proof of the prior condition.
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PrpAq “ ω and PrpCq “ 1, so the maximum PrpCq “ 1. For ω ď 1{2, we clearly want λC to be

as large as possible and λD to be as small as possible, and thus we set λC “ 1 and λD “ 1{2.

Then PrpCq “ q ` p1 ´ qq{2, so we choose λA and λB to maximize q. Because PrpAq “ ω implies

q “ pω ´ p1 ´ λBqq{pλA ´ p1 ´ λBqq, we maximize q by setting λA “ 1{2 and λB “ 1. Hence, the

parameters that maximize PrpCq are q “ 2ω, λA “ λD “ 1{2, and λB “ λC “ 1, which imply the

maximum PrpCq “ 2ω ` p1´ 2ωq{2 “ ω ` 1{2.

It follows that (i) for any fixed PrpAq ď 1{2, we must have 0 ď PrpCq ď PrpAq ` 1{2, and (ii)

for any fixed PrpAq ě 1{2, we must have PrpAq ´ 1{2 ď PrpCq ď 1.

�

B.2.2 Predictions for Paired Valuation Tasks (Panel B)

For a specific paired valuation task, observed behaviors in a population are the population averages

for the two reported valuations, which we denote by pEpmABq and pEpmCDq, respectively. Hence,

we need predictions for EpmABq and EpmCDq.

Under Assumption 2a, individual i states valuations mAB,i “ m˚i ` εAB,i and mCD,i “ m˚i `

εCD,i, where EpεAB,iq “ EpεCD,iq “ 0. It follows immediately that, if we let m̄˚ denote the

population average for m˚i , then the predicted population averages for the two reported valuations

are EpmABq “ m̄˚ and EpmCDq “ m̄˚. Hence, the set of possible predictions for the population

include any pEpmABq, EpmCDqq such that EpmABq “ EpmCDq, which is equivalent to the 45-degree

line in panel B of Figure 2.

B.3 Data for Figure 2

B.3.1 Data for Panel A of Figure 2

For the data in panel A, we rely on the meta-study by (Blavatskyy et al., 2023). In their Table 1,

they provide information on 143 CRE paired-choice experiments taken from 39 studies. Specifically,

for each experiment, they provide the total number of participants (N) along with the number of

participants that chose each of the four possible choice patterns (NAC , NBD, NAD, and NBC). We

use this data to construct the empirical choice ratios as

xPrpAq “
NAC `NAD

N
and xPrpCq “

NAC `NBC

N
.

We then depict each of these 143 experiments as one circle in panel A, where the location of the

circle is given by its pxPrpAq,xPrpCqq and the size of the circle is proportional to its N .
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B.3.2 Data for Panel B of Figure 2

For panel B, we are not aware of any analogous meta-study, and Blavatskyy et al. (2023) do not

mention any CRE experiments that use valuations. We therefore conducted our own search. We

identified only six studies that use valuations in the context of the CRE:

(1) Freeman et al. (2019) use a modified form of valuations in the context of the CRE. Specifically,

they elicit probability equivalents in which they hold fixed outcomes H and M and vary the

probability p. Thus, the valuations they elicit do not fit into the framework that we depict

in panel B.

(2) Schneider and Shor (2017) elicit (hypothetical) minimum prices at which participants would

be willing to sell binary lotteries A, B, C, and D using the Kahneman-Tversky parameters

pM “ $3000, H “ $4000, p “ 0.8, r “ .25q. While this pricing task is a type of valuation, it

does not generate data that fit into the framework that we depict in panel B.

(3) Dean and Ortoleva (2019) conduct two paired h-valuations, using pM “ $4, p “ 0.8, r “ 0.25q

and pM “ $8, p “ 0.8, r “ 0.25q. The paper does not report statistics that would permit us

to calculate the average valuations. However, we contacted the authors and they provided

the average valuations: For the first pair, pEphABq “ $5.80 and pEphCDq “ $5.27; for the

second pair, pEphABq “ $10.66 and pEphCDq “ $9.97. Because these are h-valuations while

panel B depicts m-valuations, for presentation purposes we transform these values by setting

pEpmABq “ M and pEpmCDq “ Mp pEphABq{ pEphCDqq. Hence, these two experiments appear

in panel B at the locations p pEpmABq “ $4, pEpmCDq “ $4.40q and p pEpmABq “ $8, pEpmCDq “

$8.55q.

(4) Castillo and Eil (2014) conduct three m-valuations, an AB valuation for pH “ $10, p “ 0.4q

and CD valuations for pH “ $10, p “ 0.4, r “ 0.5q and pH “ $10, p “ 0.4, r “ 0.25q. We treat

these as two paired m-valuation experiments, one for pH “ $10, p “ 0.4, r “ 0.5q and one for

pH “ $10, p “ 0.4, r “ 0.25q (these are not independent experiments because they use the

same AB valuation, but this is not important for our illustrative purposes). The paper does

not report any statistics, but the authors provided the average valuations: In panel B, the

first experiment appears at p pEpmABq “ $3.95, pEpmCDq “ $3.98q, and the second experiment

appears at p pEpmABq “ $3.95, pEpmCDq “ $4.41q.

They also conduct three h-valuations, an AB valuation for pM “ $4, p “ 0.4q and CD

valuations for pM “ $4, p “ 0.4, r “ 0.5q and pM “ $4, p “ 0.4, r “ 0.25q. We treat these as

two paired h-valuation experiments. The average valuations provided by the authors for the

three valuations are $9.77, $9.95, and $10.22. Using the same transformation as we do for

the paired h-valuations in Dean and Ortoleva (2019), these two experiments appear in panel

B at the locations p pEpmABq “ $4, pEpmCDq “ $3.93q and p pEpmABq “ $4, pEpmCDq “ $3.82q.
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(5) Chapman et al. (2022) conduct two paired h-valuations, using pM “ $2.50, p “ 0.8, r “ 0.25q

and pM “ $4, p “ 0.75, r “ 0.2q. The paper does not report any statistics that would permit

us to calculate the four average valuations. We contacted the authors but thus far they have

not provided us with any additional information.

(6) Agranov and Ortoleva (forthcoming) conduct two paired h-valuations, using pM “ $14, p “

0.8, r “ 0.25q and pM “ $16, p “ 0.8, r “ 0.25q. Because the authors use these valuations

primarily as control variables while studying something else, the paper does not report any

statistics for these valuations. We contacted the authors but thus far they have not provided

us with any additional information.

B.4 Development for h-Tasks

In Section I.C, we fix pH, p, rq and focus on behavior as a function of M , which links directly to

our m-tasks. Here, we revisit some of the analysis from Section I.C when we instead fix pM,p, rq

and focus on behavior as a function of H, which links directly to our h-tasks. Note that, while we

use some of the same notation below as we use in Section I.C, we are now referring to different

(though analogous) objects.

Assuming underlying preferences are monotonic and continuous, for each pM,p, rq a person will

have an underlying pair of indifference points ph˚AB, h
˚
CDq such that their underlying (noise-free)

preferences satisfy:

• Prefer A ” pM, 1q over B ” pH, pq if and only if H ď h˚AB, and

• Prefer C ” pM, rq over D ” pH, rpq if and only if H ď h˚CD.

Here, EU implies h˚AB “ h˚CD, whereas a CRP would mean h˚AB ą h˚CD (an individual would

prefer combination AD for any H P ph˚CD, h
˚
ABq), and an RCRP would mean h˚AB ă h˚CD. To

parallel the development in the main text, where ∆m˚ ą 0 reflects a CRP, we define ∆h˚ “

h˚AB ´ h
˚
CD so that ∆h˚ ą 0 reflects a CRP while ∆h˚ ă 0 reflects an RCRP.

Given these underlying preferences, Assumption 1h is the analogue for Assumption 1:

Assumption 1h: Impact of Noise on Choices and Valuations

A person’s realized indifference points phAB, hCDq are hAB ” Γph˚AB, εABq and hCD ” Γph˚CD, εCDq,

where pεAB, εCDq are noise draws from a continuous joint distribution with convex support,

and where Γ is increasing in both arguments and has Γph, 0q “ h for all h. Then:

• In an AB choice task, the person chooses A ” pM, 1q over B ” pH, pq if and only if

H ď hAB ” Γph˚AB, εABq,
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• In a CD choice task, the person chooses C ” pM, rq over D ” pH, rpq if and only if

H ď hCD ” Γph˚CD, εCDq,

• In an AB valuation task, the person states valuation hAB ” Γph˚AB, εABq, and

• In a CD valuation task, the person states valuation hCD ” Γph˚CD, εCDq.

Assumptions 2ah and 2bh are the analogues for Assumptions 2a and 2b:

Assumption 2ah: Γph, εq “ h` ε, εCD
d
“ kεAB for some k ą 0, and EpεABq “ EpεCDq “ 0.

Assumption 2bh: Γph, εq is potentially nonlinear in h and ε, but εCD
d
“ kεAB for some k ą 0,

and εAB is symmetric about 0.

In EU and PT, Assumptions 2ah and 2bh apply under the same assumptions as Assumptions

2a and 2b:

Example 1h: Expected Utility and Prospect Theory

If a person evaluates a lottery px, qq with x ą 0 as πpqqupxq, the underlying indifference points

satisfy

upMq “ πppquph˚ABq ô h˚AB “ u´1

ˆ

1

πppq
upMq

˙

πprqupMq “ πprpquph˚CDq ô h˚CD “ u´1

ˆ

πprq

πprpq
upMq

˙

One way to incorporate noise is by assuming that hAB “ h˚AB ` εAB and hCD “ h˚CD ` εCD.

This formulation satisfies Assumption 2ah as long as εCD
d
“ kεAB for some k ą 0 and EpεABq “

EpεCDq “ 0.

Alternatively, one might incorporate additive utility noise by assuming that the realized in-

difference points satisfy

upMq “ πppquphABq ` εAB ô hAB “ u´1 puph˚ABq ´ εAB{πppqq

πprqupMq “ πprpquphCDq ` εCD ô hCD “ u´1 puph˚CDq ´ εCD{πprpqq

where εAB and εCD reflect additive utility noise.3 This formulation fits Assumption 1h with

Γph, εq “ u´1puphq`εq, εAB “ ´εAB{πppq, and εCD “ ´εCD{πprpq. This formulation further

satisfies Assumption 2bh as long as εAB is symmetric about 0 and εCD
d
“ k1εAB for some k1 ą 0.

Finally, EU with additive utility noise that is i.i.d. across the AB and CD choice tasks implies

εCD “ εAB{r.

3The latter equations use upMq{πppq “ uph˚ABq and πprqupMq{πprpq “ uph˚CDq.
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Because this formulation is exactly parallel to our formulation for m-tasks, analogues for Propo-

sitions 1 and 2 and for Corollary 1 follow straightforwardly, and so are omitted.

Finally, consider analogues to the predictions for stage 2 behavior from Section IV.A. As in

the text, consider the case of Assumption 2ah where a person with underlying indifference values

ph˚AB, h
˚
CDq would choose A over B when H ď h˚AB ` εAB and would choose C over D when

H ď h˚CD ` εCD, where εCD
d
“ kεAB. For this case, the probability of making CRE choices (A and

D) minus the probability of making RCRE choices (B and C) is

CRE ´RCRE ” PrpAq ´ PrpCq “ Pr p´εAB ă ph
˚
AB ´Hqq ´ Pr

ˆ

´εAB ă
1

k
ph˚CD ´Hq

˙

.

Defining Ψ ” ph˚CD ´Hq{k, and substituting h̄˚ ” ph˚AB ` h
˚
CDq{2 and ∆h˚ “ h˚AB ´ h

˚
CD, we can

rewrite this as:

CRE ´RCRE “ Pr

ˆ

´εAB ă Ψ` 0.5

ˆ

1`
1

k

˙

∆h˚ `

ˆ

1´
1

k

˙

ph̄˚ ´Hq

˙

´ Pr p´εAB ă Ψq .

This equation is analogous to equation 3 from Section IV.A. It yields similar intuitions, and could

also be used to construct a figure analogous to Figure 7.

For some of our empirical analysis in Section IV, we increase power by (i) combining data across

different values for p and r and (ii) combining data for both h-tasks and m-tasks. Because these

differences in parameters and the type of task may impact the extent of differential noise (i.e., k),

we make a correction to the scaled value difference and the scaled distance to indifference. To do so

in a disciplined way, we use the correction that would be valid under EU with additive i.i.d. utility

noise.4 If we let ε reflect the additive utility noise, then for the m-tasks εAB
d
“ ε and εCD

d
“ ε{r (see

Example 1), which motivates using 0.5p1`rq∆m for the scaled value difference and p1´rqpM´m̄q

for the scaled distance to indifference (as discussed in Section IV.A).

For the h-tasks, and using the same ε reflect the additive utility noise, we have instead that

εAB
d
“ ´ ε{p and εCD

d
“ ´ ε{prpq (see Example 1h). We can then define Ψ1 ” rpph˚CD ´Hq write:

CRE ´RCRE “ Prp´εAB ă h˚AB ´Hq ´ Prp´εCD ă h˚CD ´Hq

“ Pr
`

ε ă Ψ1 ` 0.5p1` rqp∆h˚ ` p1´ rqpph̄˚ ´Hq
˘

´ Pr
`

εAB ă Ψ1
˘

.

This formulation thus suggests using 0.5p1 ` rqp∆h˚ for the scaled value difference, and using

p1´ rqpph̄˚ ´Hq for the scaled difference to indifference.

4We reiterate the point from footnote 38 that this correction is not perfect because our data are inconsistent with
EU with additive i.i.d. utility noise; nonetheless, we use that case to impose some discipline on what we use for this
correction. See also our discussion in Appendix B.7
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B.5 Revisiting Choices versus Valuations

In this section, we provide a stylized example, within the context of our specific experimental

tasks, the bias in paired choice tasks and how paired valuation tasks are immune to that bias.

Consider for simplicity an expected value maximizer who chooses lottery A over lottery B when

EV pAq ´ EV pBq ą εAB, and chooses lottery C over lottery D when EV pCq ´ EV pDq ą εCD.

Suppose further that εAB and εCD are i.i.d., and specifically each takes on the values 1 and ´1

with equal probability.

Table B.1 illustrates how this person would behave for six rows in an experimental task with

H “ $29 (we use H “ $29 instead of H “ $30 as in our study to eliminate indifference), p “ 0.5,

and r “ 0.5. Columns (2) and (3) present six paired choice tasks (one in each row) for M varying

from $12 to $17. Column (4) presents the expected-value differences for each row. Columns

(5)-(8) present combined behavior for the paired choice task in each row as a function of the

four possible realizations of pεAB, εCDq. Based on these, column (9) presents the prediction for

CRE ´ RCRE “ PrpAq ´ PrpCq for the paired choice task in each row if it were presented in an

isolated paired choice task. This last column reveals that, despite there being no CRP or RCRP, if

we happen to choose experimental parameters such that the participant moderately prefers A and

C—as in row 5—then we will observe a CRE, and if we happen to choose experimental parameters

such that the participant moderately prefers B and D—as in row 2—then we will observe an RCRE.

The bottom panel of the Table B.1 illustrates how valuations can solve the problem. Applying

our approach of taking the average value of M at the switching rows to be our measure of the

realized indifference point, the table presents for each of the four possible realizations of pεAB, εCDq

the measured indifference pointsmAB andmCD along with ∆m ” mCD´mAB. The table illustrates

that, while the noise leads to positive and negative realizations of ∆m, these realizations average

out to zero.

This stylized example highlights how a full understanding of behavior requires observing out-

comes across all six rows of the table. However, the paired-choice-task approach in the prior liter-

ature typically studies behavior from only one row, thus yielding only a partial view of behavior.

Moreover, as discussed in Section I.D, the prior literature has focused on a selected set of param-

eter configurations that are more like row 5 in Table B.1. In contrast, our paired-valuation-task

approach reveals a more complete view of behavior.
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Table B.1: Stylized Example With Additive Noise

εAB
εCD

Row
Lottery A

(Lottery C)
Lottery B

(Lottery D)
EUpAq ´ EUpBq
EUpCq ´ EUpDq

´1
´1

´1
1

1
´1

1
1

PrpAq´
PrpCq

... ... ... ... ... ... ... ... ...

1
100% chance $12
(50% chance $12)

50% chance $29
(25% chance $29)

´2.50
´1.25

BD BD BD BD 0

2
100% chance $13
(50% chance $13)

50% chance $29
(25% chance $29)

´1.50
´0.75

BC BD BC BD ´1
2

3
100% chance $14
(50% chance $14)

50% chance $29
(25% chance $29)

´0.50
´0.25

AC AD BC BD 0

4
100% chance $15
(50% chance $15)

50% chance $29
(25% chance $29)

0.50
0.25

AC AD BC BD 0

5
100% chance $16
(50% chance $16)

50% chance $29
(25% chance $29)

1.50
0.75

AC AD AC AD 1
2

6
100% chance $17
(50% chance $17)

50% chance $29
(25% chance $29)

2.50
1.25

AC AC AC AC 0

... ... ... ... ... ... ... ... ...

Measured mAB 13.5 13.5 15.5 15.5

Measured mCD 12.5 16.5 12.5 16.5

Measured ∆m ´1 3 ´3 1

Note: The pair of choices in row 5 will exhibit a CRE, with PrpAq ą PrpCq. The pair of choices in row 2 will
exhibit an RCRE, with PrpAq ă PrpCq.

B.6 Impact of Distance to Indifference Without Noise

Our analysis in Section IV focuses on the impact of distance to indifference in the presence of choice

noise, where we present theoretical predictions in Figure 7, and we plot empirical relationships in

Figures 8 and 9 that confirm those theoretical predictions. In this section, we support the claims

made in footnote 37 that predictions for Figures 8 and 9 would be very different in the absence of

choice noise, that is, when all variation in the data is due to heterogeneity in preferences.

Suppose that there is heterogeneity in pm˚AB,m
˚
CDq, where we focus on heterogeneity in m̄˚ ”

pm˚AB `m˚CDq{2 and ∆m˚ “ m˚CD ´m˚AB. The development below assumes that m̄˚ and ∆m˚

are independently distributed, motivated by the fact that we observe limited empirical correlations

between the m̄’s and ∆m’s elicited in stage 1 of our experiment—across the 15 combinations of

pp, rq, these correlations range from ´0.04 to 0.10, with a mean of 0.04. Hence, we let Qm̄˚pm̄
˚q

denote the population distribution of m̄˚, and Q∆m˚p∆m
˚q denote the population distribution of

∆m˚, and assume Qm̄˚ and Q∆m˚ are independent of each other.

Consider first the behavior of an individual characterized by pm˚AB,m
˚
CDq with ∆m˚ ą 0 (i.e.,

with a CRP) as a function of an offered M at stage 2. In the absence of noise, this individual will

exhibit a CRE if m˚AB ăM ă m˚CD; otherwise, they will exhibit neither a CRE nor an RCRE. This

12



condition can be rewritten as ´∆m˚ ă 2pM ´ m̄˚q ă ∆m˚, or, equivalently, ∆m˚ ą 2|M ´ m̄˚|.

Notice the symmetry around a zero distance to indifference: Whether the person exhibits a CRE

does not depend on whether M ´ m̄˚ is positive or negative; all that matters is whether the

magnitude of ∆m˚ is larger than the magnitude of 2pM ´ m̄˚q.

Next consider the behavior of an individual characterized by pm˚AB,m
˚
CDq with ∆m˚ ă 0 (i.e.,

with an RCRP). By an analogous logic, in the absence of noise, the person will exhibit an RCRE

when ∆m˚ ă 2pM ´ m̄˚q ă ´∆m˚, or, equivalently, ∆m˚ ă ´2|M ´ m̄˚|. Again, note the

symmetry around a zero distance to indifference. Moreover, note the symmetry around a zero

value difference: For a fixed distance to indifference, a person with ∆m˚ “ δ ą 0 exhibits a CRE

if and only if a person with ∆m˚ “ ´δ exhibits an RCRE.

Now consider the behavior of a population as a function of the distance to indifference M ´ m̄˚,

that is, a prediction to compare to Figure 8. Because this essentially controls for m̄˚, and because

the distribution of ∆m˚ is independent of m̄˚, the distribution Qm̄˚ of m̄˚ is irrelevant for this

prediction. Given an M ´ m̄˚ “ d, anyone with ∆m˚ ą 2|d| will exhibit a CRE while anyone with

∆m˚ ă ´2|d| will exhibit an RCRE, and thus CRE ´RCRE “ p1´Q∆m˚p2|d|qq ´Q∆m˚p´2|d|q.

Simplifying, the prediction is

CRE ´RCRE “ 1´Q∆m˚p2dq ´Q∆m˚p´2dq ” Cpdq.

Hence, predicted behavior for this population depends on the nature of the distribution Q∆m˚ .

Various possibilities can arise; but we highlight two points. First, if the distribution Q∆m˚ is

symmetric around zero—so that 1 ´ Q∆m˚p2dq “ Q∆m˚p´2dq for all d—then Cpdq “ 0 for all d.

Hence, if all variation in the data is due to heterogeneity in preferences, then CRE ´ RCRE can

depend on the distance to indifference only if the distribution of ∆m˚ is asymmetric, which is not

what we see in Figure 6(B). Second, even when Q∆m˚ is asymmetric, Cpdq must still be symmetric

around d “ 0. In other words, if all variation in the data is due to heterogeneity in preferences,

then whatever CRE ´RCRE we see for some positive value of M ´ m̄˚, we ought to see the same

CRE ´RCRE for that same negative value of M ´ m̄˚. This is not what we see in Figure 8.

Finally, consider the behavior of a population as a function of the average distance to indifference

M ´ Epm̄˚q, that is, a prediction to compare to Figure 9. Define z “ m̄˚ ´ Epm̄˚q, Hpzq ”

Qm̄˚pEpm̄
˚q`zq, and assume that distribution H has a PDF h. Suppose M´Epm̄˚q “ d, in which

case all people with m̄˚ have M ´ m̄˚ “ pd`Epm̄˚qq ´ pz `Epm̄˚qq “ d´ z, and thus that group

will have CRE ´RCRE “ Cpd´ zq. Integrating over z, the overall population will have

CRE ´RCRE “

ż 8

z“´8
Cpd´ zqhpzqdz ” C̄pdq.

If we then assume Qm̄˚ is symmetric around m̄˚ “ Epm̄˚q, which implies H is symmetric around

13



z “ 0, we have

C̄p´dq “

ż 8

z“´8
Cp´d´ zqhpzqdz “

ż 8

z1“´8
Cp´d` z1qhp´z1qdz

“

ż 8

z1“´8
Cpd´ z1qhpz1qdz “ C̄pdq,

where the second equality uses a change of variables with z1 “ ´z and the third equality uses

Cpxq “ Cp´xq and hp´z1q “ hpz1q given the symmetry of H around z “ 0. It follows that, if

all variation in the data is due to heterogeneity in preferences, and if the distribution of m̄˚ is

symmetric about m̄˚ “ Epm̄˚q, then whatever CRE ´ RCRE we see for some positive value of

M ´Epm̄˚q, we ought to see the same CRE´RCRE for that same negative value of M ´Epm̄˚q.

This is not what we see in Figure 9.

Hence, under the conditions described above, a model in which all variation in the data is due to

heterogeneity in preferences would generate very different predictions from what we see in Figures

8 and 9. Of course, we make some simplifying assumptions above, most notably the assumption

that the distributions of m̄˚ and ∆m˚ are independent (used for predictions for Figure 8), and

the additional assumption that the distribution of m̄˚ is symmetric around m̄˚ “ Epm̄˚q (used for

predictions for Figure 9). It is possible that, with the appropriate assumptions about correlated

heterogeneity and asymmetric distributions, one might be able to generate predictions closer to

Figures 8 and 9.

B.7 Assessment of Corrected Regressors in Tables 5, 6, and D.10

In Table 5, to increase statistical power, we combine data for the three different values of r. However,

we need to correct for the fact that r may impact the magnitude of the coefficients on ∆m and

M ´ m̄ (via its impact on k in equation 3). Motivated by the EU case where k “ 1{r, we use the

corrected regressors 0.5p1` rq∆m and p1´ rqpM ´ m̄q.

As we note in footnote 38, this correction is not perfect. To assess the impact of this correction,

Appendix Table B.2 reports the equivalent of Column (3) of Table 5 broken out by r. Panel A

merely uses the regressors ∆m and M ´ m̄. The qualitative results are much the same as in Table

5—both regressors have a significant positive impact for each r, except for M ´ m̄ when r “ 0.6.

Moreover, consistent with the need to correct for r and the directional effects in equation 3, the

coefficient on ∆m increases with r while the coefficient on M ´ m̄ decreases with r.

Panel B instead uses our corrected regressors, still running separate regressions for each r. Here,

the estimated coefficients are more stable in magnitude across r, and they are similar to those in

column (3) of Table 5 but with larger standard errors. On net, then, it appears that the corrected

regressors perform as intended: They increase precision without changing the qualitative results.

We separately perform analogous analyses for Appendix Table D.10 and Table 6 (although we

do not report the results here). For the former, which is the analogue of Table 5 for h choice tasks,
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this analysis reaches much the same conclusions. For the latter, which is the analogue of Table 5 for

the experiment-level analysis, running separate regressions for each r leads to estimates with large

standard errors due to the low sample sizes (N “ 40 for each r); hence, while a similar message

seems to emerge, we are cautious in concluding too much.

Table B.2: Predicting Individual-Level CRE ´RCRE Separately by r

(1) (2) (3)
Outcome: CRE ´RCRE P t´1, 0, 1u
r “ 0.2 r “ 0.4 r “ 0.6

Panel A: Unscaled Estimates
Value Difference: ∆m 0.64 0.78 0.90

(0.18) (0.15) (0.19)
Distance to Indifference: M ´ m̄ 0.76 0.61 0.06

(0.23) (0.22) (0.23)

Panel B: Scaled Estimates
Scaled Value Difference: 1`r

2 ∆m 1.06 1.11 1.12
(0.31) (0.21) (0.24)

Scaled Distance to Indifference: p1 ´ r)(M ´ smq 0.90 0.89 0.41
(0.26) (0.32) (0.49)

Outcome Mean 3.02 3.76 1.14
Individuals 298 303 299
Observations 1,490 1,515 1,495

Note: OLS regressions using individual-level m-task data with the dependent variable CRE ´RCRE P t´1, 0, 1u
separately for each common ratio r P t0.2, 0.4, 0.6u. Panel A presents estimates using the unscaled regressors, and
panel B presents estimates using the scaled regressors. All specifications include p fixed effects, as well as controls
for gender, education, age, language, student status, employment, and the number of previous Prolific approvals.
All numbers are reported in percentage points; individual-cluster-robust standard errors in parentheses.
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B.8 Our Experiments and Prior Experiments

In Section IV.D, we compare behavior in our stage 2 experiments to that observed in the prior

literature by developing a measure of whether an experiment is more representative of prior studies

or more representative of our study based on the experimenter-chosen values for p, r, and M{ppHq.

This section provides details for this analysis.

We first create a combined data set of 263 observations consisting of our own and prior exper-

iments. We then regress an indicator for an observation coming from a prior study on p, r, and

M{ppHq. Based on inspection, we expect a nonlinear impact of M{ppHq because the vast majority

of prior experiments have M{ppHq P r0.75, 1s while our experiments have more representation for

M{ppHq ă 0.75 and M{ppHq ą 1. Hence, letting yi be a dummy variable for whether experiment

i comes from a prior study, we run a logistic regression based on the following specification:

y˚i “ β0 ` β1pi ` β2ri ` β31 rM{ppHqi P r0.75, 1ss ` β41 rM{ppHqi ą 1s ` εi

yi “

#

1 if y˚i ą 0

0 otherwise

Panel A of Table B.3 presents the estimates. An experiment is more likely to come from a prior

study if it has a larger p, a smaller r, or an M{ppHq P r0.75, 1s. Using the estimated coefficients

from this regression, we can assign to each experiment a predicted likelihood that it comes from a

prior study. Specifically, the predicted likelihood for experiment i is

Prp´εi ă β̂0 ` β̂1pi ` β̂2ri ` β̂31 rM{ppHqi P r0.75, 1ss ` β̂41 rM{ppHqi ą 1sq

using a standard logistic distribution for εi. This predicted likelihood indicates how representative

an experiment is of prior studies. Importantly, this predicted likelihood depends on only an exper-

iment’s experimenter-chosen values for p, r, and M{ppHq, and is independent of the experiment’s

observed realization for CRE ´RCRE.

We next compare experiments based on whether they are more representative of prior studies

(predicted likelihood larger than 0.50) or more representative of our study (predicted likelihood

smaller than 0.50). Panel B of Table B.3 reports the sample-weighted average CRE ´ RCRE

for experiments grouped by different predicted likelihoods and by experiment type. As discussed

in Section IV.D, among the 143 prior experiments, 112 are more representative of prior studies

and have an average CRE ´ RCRE of 25.8 percent, while the other 31 have an average of 4.5

percent. Among our 120 experiments, 40 are more representative of prior studies and have an

average CRE´RCRE of 8.4 percent, while the other 80 have an average of ´0.1 percent. In other

words, when we (or prior studies) use experimental parameters that are more representative of prior

studies, we find more CRE; in contrast, when we (or prior studies) use experimental parameters

that are less representative of prior studies, we find much less CRE.
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Table B.3: Comparing Prior Experiments to Our Experiments Using Predicted Likelihoods

Panel A: Logistic Regression
(DV: Prior Study Indicator)

Variable: p r
1rM{ppHq
P r0.75, 1ss

1rM{ppHq ą 1s Constant

Coefficient 3.516 ´1.463 1.744 0.583 ´2.527
Standard Error (0.738) (0.832) (0.327) (0.676) (0.694)

Panel B: CRE ´RCRE by Predicted Likelihood

More Representative of Prior Studies
(Predicted Likelihood ą 0.50)

More Representative of Our Study
(Predicted Likelihood ă 0.50)

N CRE ´RCRE N CRE ´RCRE

Prior Literature 112 24.7%
Our Experiments 40 8.4%

Prior Literature 31 4.5%
Our Experiments 80 ´0.1%

Note: Panel A reports results from logistic regression using the specification in the text. Panel B presents the
number of experiments and the average CRE ´RCRE for the subset of experiments that are more representative
of prior studies or our study based on the predicted likelihoods. All average CRE ´ RCRE are calculated by
weighting by the number of observations in the experiments.
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C Screenshots from the Online Experiment

C.1 Screenshots from Stage 1: Valuation Tasks

C.1.1 m-Valuation Tasks

Figure C.1: Example Price List for Stage 1 AB m-Valuation Task with p “ 0.2
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Figure C.2: Example Price List for Stage 1 AB m-Valuation Task with p “ 0.2 (with example
completion)
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Figure C.3: Example Price List for Stage 1 CD m-Valuation Task with p “ 0.2 and r “ 0.6
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C.1.2 h-Valuation Tasks

Figure C.4: Example Price List for Stage 1 AB h-Valuation Task with p “ 0.2
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Figure C.5: Example Price List for Stage 1 CD h-Valuation Task with p “ 0.2 and r “ 0.6
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C.2 Screenshots from Stage 2: Binary-Choice Tasks

C.2.1 m-Choice Tasks

Figure C.6: Example Stage 2 Binary ABpMq Choice Task with p “ 0.2 and M “ $4

Figure C.7: Example Stage 2 Binary CDpMq Choice Task with p “ 0.2, r “ 0.6, and M “ $4
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C.2.2 h-Choice Tasks

Figure C.8: Example Stage 2 Binary ABpHq Choice Task with p “ 0.2 and H “ $20

Figure C.9: Example Stage 2 Binary ABpHq Choice Task with p “ 0.2, and H “ $20 (with example
completion)
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Figure C.10: Example Stage 2 Binary CDpHq Choice Task with p “ 0.2, r “ 0.6, and H “ $20
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C.3 Screenshots from Comprehension Checks and Visual Puzzle Task

Figure C.11: Incentivized Comprehension Check 1: Multiple Price List
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Figure C.12: Incentivized Comprehension Check 2: Binary-Choice Task
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Figure C.13: Example: Camouflaged Animal Task
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D Supplementary Figures and Tables

Table D.1: Participant Demographics

Full
Sample

r “ 0.2 r “ 0.4 r “ 0.6

Number of Participants 900 298 303 299
Time Taken (in minutes) 27.3 27.3 27.8 26.9
Age 22.4 22.5 22.2 22.5
Prolific Score 99.9 99.9 99.9 99.9
Number of Approvals 32.2 30.3 34.5 31.9
Female 50.0 50.7 49.8 49.5
Current Student 64.8 61.1 71.6 61.5
College Degree 49.3 48.0 49.2 50.8
Working (full- or part-time) 44.2 45.0 40.9 46.8
English First Language 52.0 48.7 49.5 57.9
Attention Checks

Incentive Question Correct 92.3 93.3 92.1 91.6
Passed Attention Check 83.7 82.2 85.1 83.6

Comprehension Questions
MPL Question Correct 83.9 81.5 84.8 85.3
Bin Question Correct 86.2 85.9 86.1 86.6
Both Questions Correct 74.0 70.8 75.2 75.9

Current Residency
United States 51.4 47.7 49.2 57.5
United Kingdom 6.3 7.0 5.9 6.0
Portugal 22.1 22.1 24.4 19.7
Spain 5.4 6.4 4.0 6.0
Germany 4.7 5.4 4.6 4.0

Note: Participant demographics for all 900 participants. Each participant assigned to a single value of r.

29



Table D.2: Summary Statistics: m-Valuations

Percentile
p Mean SD 10th 25th 50th 75th 90th

Panel A: r = 0.2 (298 participants)
mAB 0.1 8.86 6.56 0.50 4.50 9.50 10.50 15.50
mCD 0.1 7.31 6.67 0.50 2.50 5.50 9.50 15.50
mAB 0.2 10.75 6.59 2.50 5.50 9.50 14.50 19.50
mCD 0.2 9.46 7.05 0.50 4.50 9.50 11.50 19.50
mAB 0.5 15.95 6.34 9.50 13.50 15.00 19.50 24.50
mCD 0.5 15.99 7.01 7.50 10.50 15.50 20.50 24.50
mAB 0.8 19.54 7.06 9.50 15.50 19.50 24.50 29.50
mCD 0.8 20.55 7.46 9.50 15.50 22.50 25.50 29.50
mAB 0.9 22.78 7.32 10.50 19.50 24.50 29.50 29.50
mCD 0.9 21.31 8.00 9.50 14.50 24.50 28.50 29.50

Panel B: r = 0.4 (303 participants)
mAB 0.1 7.29 5.83 0.50 3.50 5.50 9.50 14.50
mCD 0.1 6.66 6.15 0.50 2.50 4.50 9.50 14.50
mAB 0.2 9.33 6.12 0.50 4.50 9.50 13.50 15.50
mCD 0.2 8.20 5.88 0.50 4.50 7.50 10.50 15.50
mAB 0.5 14.48 6.37 6.50 10.50 14.50 19.50 20.50
mCD 0.5 13.27 6.71 4.50 9.50 14.50 15.50 20.50
mAB 0.8 19.22 7.43 9.50 14.50 19.50 24.50 29.50
mCD 0.8 18.63 7.41 9.50 14.50 19.50 24.50 27.50
mAB 0.9 21.55 7.59 9.50 19.50 24.50 26.50 29.50
mCD 0.9 21.39 8.10 9.50 18.50 24.50 27.50 29.50

Panel C: r = 0.6 (299 participants)
mAB 0.1 6.76 5.46 0.50 2.50 5.50 9.50 14.50
mCD 0.1 6.27 5.61 0.50 2.50 4.50 9.50 12.50
mAB 0.2 8.57 5.59 0.50 4.50 9.50 10.50 15.50
mCD 0.2 8.70 5.99 0.50 4.50 9.50 10.50 15.50
mAB 0.5 14.36 6.37 5.50 10.50 14.50 18.50 20.50
mCD 0.5 12.32 6.25 4.50 9.50 13.50 15.50 19.50
mAB 0.8 19.36 7.12 9.50 14.50 19.50 24.50 29.50
mCD 0.8 18.11 7.05 9.50 13.50 19.50 23.50 25.50
mAB 0.9 23.05 6.94 11.50 19.50 24.50 28.50 29.50
mCD 0.9 21.01 7.04 10.50 15.50 22.50 26.50 29.50

Note: Summary statistics for all 30 m-valuations. Each participant was assigned a single r, and completed all 10
m-valuations for that value of r. Each valuation is equal to the average value of M at the participant’s switching
rows in a multiple-price list (MPL). Each MPL permits the valuations to range from ´0.50 to 30.50.
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Table D.3: Adjusting the Sign Test for Ties (m-Valuation Tasks)

(1) (2) (3) (4) (5) (6) (7)
Number of Cases Sign Tests

p
∆m ą 0

∆m “ 0
∆m ă 0 Default Equal Split Prop. Split

pCREq pRCREq (p-value) (p-value) (p-value)

Panel A: r “ 0.2 (298 participants)
0.1 79 75 144 0.000 0.000 0.000
0.2 80 73 145 0.000 0.000 0.000
0.5 123 60 115 0.650 0.685 0.524
0.8 140 54 104 0.025 0.042 0.013
0.9 127 42 129 0.950 0.954 0.862

Panel B: r “ 0.4 (303 participants)
0.1 103 71 129 0.101 0.135 0.051
0.2 97 65 141 0.005 0.011 0.001
0.5 104 62 137 0.039 0.066 0.016
0.8 127 41 135 0.665 0.646 0.566
0.9 124 52 127 0.900 0.909 0.818

Panel C: r “ 0.6 (299 participants)
0.1 94 90 115 0.166 0.247 0.083
0.2 111 84 104 0.682 0.729 0.563
0.5 89 65 145 0.000 0.001 0.000
0.8 113 57 129 0.335 0.355 0.247
0.9 79 60 160 0.000 0.000 0.000

Note: Columns (2)-(4) report raw frequencies of ∆m ą 0, ∆m “ 0, and ∆m ă 0 (identical to those
reported in columns (4)-(6) in Table 3). Column (5) reports the p-values for the default sign tests
(identical to those reported in column (7) in Table 3) that exclude all ties (instances of ∆m “ 0). The
adjusted sign tests in column (6) split ties equally between ∆m ą 0 and ∆m ă 0. The adjusted sign
tests in column (7) split ties in proportion to the observed share of ∆m ą 0 and ∆m ă 0.
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Table D.4: Predictions for ∆m under PT Versus Observed ∆m in Data

(1) (2) (3) (4)
Current Estimates:

Lower
Bound

Point
Estimate

Upper
Bound

Data

Panel A: r “ 0.2
p = 0.1 4.07 4.76 5.45 ´1.55
p = 0.2 5.66 6.40 7.15 ´1.29
p = 0.5 7.82 8.54 9.26 0.04
p = 0.8 7.20 7.84 8.48 1.00
p = 0.9 5.78 6.36 6.94 ´1.47

Panel B: r “ 0.4
p = 0.1 4.02 4.69 5.36 ´0.63
p = 0.2 5.62 6.34 7.06 ´1.14
p = 0.5 7.94 8.63 9.31 ´1.22
p = 0.8 7.56 8.19 8.82 ´0.60
p = 0.9 6.17 6.75 7.33 ´0.16

Panel C: r “ 0.6
p = 0.1 2.66 3.15 3.64 ´0.49
p = 0.2 3.89 4.45 5.01 0.14
p = 0.5 5.89 6.49 7.09 ´2.05
p = 0.8 5.89 6.47 7.05 ´1.26
p = 0.9 4.84 5.37 5.90 ´2.03

Note: Columns (1)-(4) present predictions for ∆m˚ ” m˚CD ´ m˚AB under a PT model with πpqq “
qγ{ rqγ ` p1´ qqγs1{γ and vpxq “ xα. Columns (1)-(3) use parameter estimates based on our stage 1 mAB-
valuations reported in Appendix Table E.1, with separate estimates for each r. Column (2) reports predictions
using the point estimates, while columns (1) and (3) report lower and upper bounds of the 95 percent confi-
dence interval computed using the delta method. Column (4) reports mean ∆m values in our data from the
m-valuation tasks.
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Table D.5: Summary Statistics: h-Valuations

Percentile
p Mean SD 10th 25th 50th 75th 90th

Panel A: r = 0.2 (298 participants)
hAB 0.1 19.99 9.50 7.50 10.50 19.50 29.50 32.50
hCD 0.1 21.66 9.72 9.50 12.50 23.50 30.50 33.50
hAB 0.2 22.54 8.26 11.50 15.50 21.50 29.50 34.50
hCD 0.2 24.49 8.78 12.50 18.50 25.50 30.50 36.50
hAB 0.5 30.59 8.26 19.50 24.50 29.50 35.50 44.50
hCD 0.5 28.95 7.68 19.50 24.50 29.50 32.50 39.50
hAB 0.8 36.54 8.74 26.50 29.50 34.50 40.50 51.50
hCD 0.8 32.22 6.83 24.50 28.50 30.00 35.50 41.50
hAB 0.9 35.92 8.54 27.50 29.50 34.50 39.50 49.50
hCD 0.9 33.82 7.43 27.50 28.50 30.50 36.50 44.50

Panel B: r = 0.4 (303 participants)
hAB 0.1 21.48 9.37 9.50 14.50 20.50 29.50 33.50
hCD 0.1 24.01 8.86 9.50 18.50 26.50 31.50 33.50
hAB 0.2 24.46 7.95 13.50 19.50 24.50 30.50 36.50
hCD 0.2 26.04 8.48 13.50 19.50 29.50 32.50 36.50
hAB 0.5 30.34 7.34 20.50 25.50 29.50 33.50 40.50
hCD 0.5 31.39 7.06 22.50 28.50 30.50 35.50 40.50
hAB 0.8 36.07 8.57 26.50 29.50 34.50 39.50 49.50
hCD 0.8 34.22 7.21 27.50 29.50 31.50 39.50 45.50
hAB 0.9 35.66 8.66 27.50 29.50 33.50 39.50 50.50
hCD 0.9 34.53 7.37 27.50 29.50 32.50 37.50 43.50

Panel C: r = 0.6 (299 participants)
hAB 0.1 22.54 9.09 9.50 14.50 24.50 30.50 33.50
hCD 0.1 23.27 9.51 9.50 14.50 26.50 30.50 33.50
hAB 0.2 25.07 8.00 14.50 19.50 25.50 30.50 36.50
hCD 0.2 24.24 8.47 12.50 17.50 24.50 30.50 36.50
hAB 0.5 30.16 7.20 20.50 24.50 29.50 33.50 40.50
hCD 0.5 30.88 7.43 20.50 25.50 29.50 35.50 40.50
hAB 0.8 35.13 8.18 24.50 29.50 33.50 39.50 48.50
hCD 0.8 34.29 7.67 26.50 29.50 31.50 39.50 45.50
hAB 0.9 35.29 8.38 27.50 29.50 32.50 39.50 49.50
hCD 0.9 34.52 6.82 27.50 29.50 32.50 38.50 44.50

Note: Summary statistics for all 30 h-valuations. Each participant was assigned a single r, and completed all 10
h-valuations for that value of r. Each valuation is equal to the average value of H at the participant’s switching
rows in a multiple-price list (MPL). Each MPL permits the valuations to range from p30´ 0.50 to p30` 30.50.
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Table D.6: Adjusting the Sign Test for Ties (h-Valuation Tasks)

(1) (2) (3) (4) (5) (6) (7)
Number of Cases Sign Tests

p
∆h ą 0

∆h “ 0
∆h ă 0 Default Equal Split Prop. Split

pCREq pRCREq (p-value) (p-value) (p-value)

Panel A: r “ 0.2 (298 participants)
0.1 100 60 138 0.016 0.032 0.006
0.2 94 53 151 0.000 0.001 0.000
0.5 136 81 81 0.000 0.001 0.000
0.8 174 45 79 0.000 0.000 0.000
0.9 143 64 91 0.001 0.003 0.000

Panel B: r “ 0.4 (303 participants)
0.1 82 59 162 0.000 0.000 0.000
0.2 92 65 146 0.001 0.002 0.000
0.5 101 70 132 0.049 0.085 0.021
0.8 148 47 108 0.015 0.021 0.006
0.9 138 47 118 0.235 0.251 0.168

Panel C: r “ 0.6 (299 participants)
0.1 100 71 128 0.074 0.105 0.037
0.2 131 65 103 0.077 0.105 0.037
0.5 93 85 121 0.065 0.105 0.021
0.8 136 47 116 0.231 0.247 0.165
0.9 126 54 119 0.702 0.729 0.644

Note: Columns (2)-(4) report raw frequencies of ∆h ą 0, ∆h “ 0, and ∆h ă 0 (identical to those
reported in columns (4)-(6) in Table 4). Column (5) reports the p-values for the default sign tests
(identical to those reported in column (7) in Table 4) that exclude all ties (instances of ∆h “ 0).
The adjusted sign tests in column (6) split ties equally between ∆h ą 0 and ∆h ă 0. The adjusted
sign tests in column (7) split ties in proportion to the observed share of ∆h ą 0 and ∆h ă 0.

Table D.7: Correlations of Risk Premia across Corresponding m- and h-Valuations

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Variant r
Panel A: Pearson’s Correlation Panel B: Spearman’s Rank Correlation

p “ 0.1 p “ 0.2 p “ 0.5 p “ 0.8 p “ 0.9 p “ 0.1 p “ 0.2 p “ 0.5 p “ 0.8 p “ 0.9

AB 0.2 0.19˚ 0.30˚ 0.42˚ 0.31˚ 0.34˚ 0.30˚ 0.28˚ 0.36˚ 0.34˚ 0.35˚

CD 0.2 0.21˚ 0.26˚ 0.25˚ 0.21˚ 0.30˚ 0.23˚ 0.26˚ 0.18˚ 0.22˚ 0.30˚

AB 0.4 0.19˚ 0.25˚ 0.34˚ 0.34˚ 0.25˚ 0.34˚ 0.41˚ 0.30˚ 0.30˚ 0.27˚

CD 0.4 0.03 0.11 0.04 0.28˚ 0.16˚ 0.23˚ 0.30˚ 0.14˚ 0.22˚ 0.20˚

AB 0.6 0.15˚ 0.25˚ 0.44˚ 0.27˚ 0.33˚ 0.33˚ 0.33˚ 0.37˚ 0.27˚ 0.33˚

CD 0.6 0.19˚ 0.16˚ 0.12˚ 0.30˚ 0.22˚ 0.40˚ 0.32˚ 0.17˚ 0.27˚ 0.22˚

Note: Correlations between mz{H and M{hz (where H “ 30 and M “ p30) for each of the 30 combinations of pp, rq and
x P tAB,CDu. Panel A reports Pearson’s correlations; panel B reports Spearman’s rank correlations. ˚ denotes that a
correlation is statistically significant at the 5 percent level.
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Table D.8: Correlations across p for Paired m-Valuation Tasks

Panel A: Correlations of pH ´ sm across p
p “

0.1 0.2 0.5 0.8 0.9

(i) r “ 0.2

p “ 0.1 1.00
p “ 0.2 0.61˚ 1.00
p “ 0.5 0.42˚ 0.43˚ 1.00
p “ 0.8 0.12 0.20˚ 0.33˚ 1.00
p “ 0.9 0.09 0.11 0.26˚ 0.53˚ 1.00

(ii) r “ 0.4

p “ 0.1 1.00
p “ 0.2 0.56˚ 1.00
p “ 0.5 0.33˚ 0.37˚ 1.00
p “ 0.8 0.08 0.15˚ 0.37˚ 1.00
p “ 0.9 0.05 0.15 0.32˚ 0.54˚ 1.00

(iii) r “ 0.6

p “ 0.1 1.00
p “ 0.2 0.61˚ 1.00
p “ 0.5 0.40˚ 0.49˚ 1.00
p “ 0.8 0.09 0.26˚ 0.40˚ 1.00
p “ 0.9 0.06 0.13 0.28˚ 0.49˚ 1.00

Panel B: Correlations of ∆m across p
p “

0.1 0.2 0.5 0.8 0.9

(i) r “ 0.2

1.00
0.16˚ 1.00
0.01 0.15˚ 1.00
0.06 0.11 0.11 1.00
0.03 0.13 0.16˚ 0.25˚ 1.00

(ii) r “ 0.4

1.00
0.05 1.00
0.10 0.16˚ 1.00
0.08 0.16˚ 0.31˚ 1.00
0.08 0.07 0.21˚ 0.28˚ 1.00

(iii) r “ 0.6

1.00
0.09 1.00
0.04 ´0.04 1.00
0.10 0.00 0.04 1.00
0.10 ´0.09 0.09 0.19˚ 1.00

Note: Spearman’s rank correlations of pH ´ sm across p (panel A) and of ∆m across p (panel B) for the 15 paired
m-valuation tasks. ˚ denotes that a correlation is statistically significant at the 5 percent level.

Table D.9: Correlations of Value Differences across Corresponding m- and h-Valuations

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

r
Panel A: Pearson’s Correlation Panel B: Spearman’s Rank Correlation

p “ 0.1 p “ 0.2 p “ 0.5 p “ 0.8 p “ 0.9 p “ 0.1 p “ 0.2 p “ 0.5 p “ 0.8 p “ 0.9

0.2 0.10 0.16˚ 0.19˚ 0.29˚ 0.28˚ 0.13˚ 0.10 0.12˚ 0.32˚ 0.30˚

0.4 ´0.01 0.08 0.17˚ 0.26˚ 0.16˚ 0.12˚ 0.15˚ 0.15˚ 0.24˚ 0.14˚

0.6 ´0.02 0.01 0.28˚ 0.20˚ 0.20˚ 0.02 ´0.00 0.24˚ 0.14˚ 0.14˚

Note: Correlations between pmCD{H ´ mAB{Hq and pM{hCD ´M{hABq (where H “ 30 and M “ p30) for each of
the 15 combinations of pp, rq. Panel A reports Pearson’s correlations; panel B reports Spearman’s rank correlations. ˚

denotes that a correlation is statistically significant at the 5 percent level.
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Table D.10: Predicting Individual-Level CRE ´RCRE (h tasks)

(1) (2) (3) (4)
Outcome: CRE ´RCRE P t´1, 0, 1u

OLS OLS OLS 2SLS

Value Difference
1`r

2 p∆h 2.02 1.96 7.62
(0.22) (0.22) (1.35)

Distance to Indifference
p1 ´ r)p(sh ´ Hq 1.06 0.84 0.21

(0.24) (0.24) (0.44)

Outcome Mean 2.73 2.73 2.73 2.73
Individuals 900 900 900 900
Observations 4,500 4,500 4,500 4,500

Note: OLS regressions using individual-level h-task data with dependent variable CRE´RCRE P t´1, 0, 1u.
Specifications include p and r fixed effects, as well as controls for gender, education, age, language, student
status, employment, and the number of previous Prolific approvals. All numbers reported in percentage
points; individual-cluster-robust standard errors in parentheses. For column (4), instruments are p1 ´ rq sm,
0.5p1` rq∆m, and p1´ rqpH.
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Table D.11: Summary of Choice Patterns: Experiments Linked to m-Valuations

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

r p M Mean sm Mean ∆m AC
AD
pCREq

BC
pRCREq

BD CRE ´ RCRE
Conlisk
p-value

N

0.2 0.1 1 8.41 ´0.46 9.0 7.7 6.4 76.9 1.3 0.764 78
0.2 0.1 3 7.93 ´2.27 30.7 16.0 9.3 44.0 6.7 0.250 75
0.2 0.1 5 8.38 ´1.15 70.6 11.8 10.3 7.4 1.5 0.798 68
0.2 0.1 8 7.64 ´2.30 87.0 6.5 3.9 2.6 2.6 0.481 77
0.2 0.2 1 10.26 ´1.49 2.6 6.5 2.6 88.3 3.9 0.256 77
0.2 0.2 4 9.80 ´1.68 31.6 7.9 27.6 32.9 ´19.7 0.002 76
0.2 0.2 7 10.25 ´0.83 40.3 9.7 27.8 22.2 ´18.1 0.009 72
0.2 0.2 10 10.12 ´1.10 84.9 4.1 8.2 2.7 ´4.1 0.317 73
0.2 0.5 5 16.42 0.69 3.4 10.3 9.2 77.0 1.1 0.809 87
0.2 0.5 8 15.68 0.19 10.2 18.6 16.9 54.2 1.7 0.829 59
0.2 0.5 11 16.57 0.09 24.7 13.6 21.0 40.7 ´7.4 0.256 81
0.2 0.5 14 14.98 ´0.93 39.4 22.5 21.1 16.9 1.4 0.858 71
0.2 0.8 8 20.49 ´0.16 1.5 9.0 13.4 76.1 ´4.5 0.440 67
0.2 0.8 12 19.83 0.58 9.9 22.5 4.2 63.4 18.3 0.002 71
0.2 0.8 16 19.95 2.46 14.8 18.5 11.1 55.6 7.4 0.219 81
0.2 0.8 20 19.96 0.89 25.3 39.2 15.2 20.3 24.1 0.002 79
0.2 0.9 10 21.70 ´0.91 6.3 8.9 6.3 78.5 2.5 0.565 79
0.2 0.9 14 23.20 ´1.61 2.4 13.1 7.1 77.4 6.0 0.224 84
0.2 0.9 18 21.08 ´2.41 7.1 24.3 14.3 54.3 10.0 0.175 70
0.2 0.9 22 22.02 ´0.94 16.9 36.9 9.2 36.9 27.7 0.000 65

0.4 0.1 1 7.71 ´0.80 11.4 13.9 7.6 67.1 6.3 0.224 79
0.4 0.1 3 6.53 ´0.27 63.6 6.5 6.5 23.4 0.0 1.000 77
0.4 0.1 5 6.69 ´0.62 75.3 9.0 6.7 9.0 2.2 0.594 89
0.4 0.1 8 7.02 ´0.90 93.1 0.0 5.2 1.7 ´5.2 0.078 58
0.4 0.2 1 8.86 ´0.61 9.0 10.1 3.4 77.5 6.7 0.080 89
0.4 0.2 4 8.95 ´2.20 32.9 14.5 18.4 34.2 ´3.9 0.550 76
0.4 0.2 7 9.74 ´0.78 70.1 7.5 11.9 10.4 ´4.5 0.406 67
0.4 0.2 10 7.52 ´1.00 88.7 8.5 2.8 0.0 5.6 0.154 71
0.4 0.5 5 13.89 0.48 17.9 4.8 16.7 60.7 ´11.9 0.015 84
0.4 0.5 8 13.52 ´1.26 13.8 12.5 27.5 46.2 ´15.0 0.030 80
0.4 0.5 11 14.90 ´2.32 32.2 13.6 27.1 27.1 ´13.6 0.098 59
0.4 0.5 14 13.46 ´2.14 46.2 11.2 21.2 21.2 ´10.0 0.113 80
0.4 0.8 8 19.13 ´1.78 2.5 16.5 1.3 79.7 15.2 0.001 79
0.4 0.8 12 19.15 ´0.77 6.3 19.0 12.7 62.0 6.3 0.317 79
0.4 0.8 16 18.47 ´0.97 10.3 26.9 12.8 50.0 14.1 0.044 78
0.4 0.8 20 18.94 1.45 31.3 40.3 7.5 20.9 32.8 0.000 67
0.4 0.9 10 21.75 0.54 5.6 13.5 2.2 78.7 11.2 0.006 89
0.4 0.9 14 22.30 0.12 4.6 12.3 4.6 78.5 7.7 0.128 65
0.4 0.9 18 20.51 ´0.29 4.0 17.3 6.7 72.0 10.7 0.055 75
0.4 0.9 22 21.37 ´1.09 36.5 32.4 13.5 17.6 18.9 0.013 74

0.6 0.1 1 6.82 ´0.25 15.5 15.5 9.9 59.2 5.6 0.346 71
0.6 0.1 3 6.68 ´0.94 51.5 8.8 11.8 27.9 ´2.9 0.595 68
0.6 0.1 5 6.23 ´1.17 72.7 7.8 5.2 14.3 2.6 0.529 77
0.6 0.1 8 6.37 0.30 78.3 9.6 8.4 3.6 1.2 0.797 83
0.6 0.2 1 8.39 1.15 6.1 7.6 1.5 84.8 6.1 0.098 66
0.6 0.2 4 9.12 ´1.15 37.7 11.5 16.4 34.4 ´4.9 0.469 61
0.6 0.2 7 8.68 0.17 72.8 10.9 6.5 9.8 4.3 0.317 92
0.6 0.2 10 8.41 0.24 88.8 5.0 2.5 3.8 2.5 0.415 80
0.6 0.5 5 14.54 ´2.62 14.3 5.2 22.1 58.4 ´16.9 0.003 77
0.6 0.5 8 12.79 ´2.14 15.3 16.7 30.6 37.5 ´13.9 0.082 72
0.6 0.5 11 13.27 ´2.13 38.9 13.3 24.4 23.3 ´11.1 0.083 90
0.6 0.5 14 12.57 ´1.07 45.0 10.0 21.7 23.3 ´11.7 0.104 60
0.6 0.8 8 18.29 ´1.49 4.3 7.6 5.4 82.6 2.2 0.565 92
0.6 0.8 12 18.37 ´1.35 10.1 16.5 8.9 64.6 7.6 0.177 79
0.6 0.8 16 19.33 ´2.19 11.8 19.1 17.6 51.5 1.5 0.843 68
0.6 0.8 20 19.23 0.28 45.0 21.7 15.0 18.3 6.7 0.395 60
0.6 0.9 10 20.74 ´3.40 8.3 6.9 2.8 81.9 4.2 0.256 72
0.6 0.9 14 22.65 ´0.14 7.6 11.4 8.9 72.2 2.5 0.619 79
0.6 0.9 18 21.99 ´2.23 7.7 26.9 9.0 56.4 17.9 0.006 78
0.6 0.9 22 22.70 ´2.54 17.1 34.3 15.7 32.9 18.6 0.024 70



Table D.12: Summary of Choice Patterns: Experiments Linked to h-Valuations

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

r p H Mean sh Mean ∆h AC
AD
pCREq

BC
pRCREq

BD CRE ´ RCRE
Conlisk
p-value

N

0.2 0.1 13 20.99 ´1.85 63.5 14.9 13.5 8.1 1.4 0.828 74
0.2 0.1 20 21.10 ´1.31 38.6 13.3 16.9 31.3 ´3.6 0.550 83
0.2 0.1 25 20.57 ´0.85 39.7 19.1 10.3 30.9 8.8 0.177 68
0.2 0.1 30 20.59 ´2.67 35.6 9.6 17.8 37.0 ´8.2 0.177 73
0.2 0.2 20 22.54 ´2.57 52.2 23.2 20.3 4.3 2.9 0.717 69
0.2 0.2 25 23.35 ´1.18 49.3 8.2 20.5 21.9 ´12.3 0.045 73
0.2 0.2 30 23.58 ´1.65 51.4 8.3 18.1 22.2 ´9.7 0.104 72
0.2 0.2 35 24.41 ´2.35 35.7 13.1 22.6 28.6 ´9.5 0.141 84
0.2 0.5 30 30.80 3.46 57.7 22.5 11.3 8.5 11.3 0.098 71
0.2 0.5 35 29.90 1.60 37.2 14.1 14.1 34.6 0.0 1.000 78
0.2 0.5 40 29.65 0.83 12.5 23.6 19.4 44.4 4.2 0.592 72
0.2 0.5 45 28.79 0.77 15.6 10.4 23.4 50.6 ´13.0 0.046 77
0.2 0.8 33 34.58 5.23 30.0 41.7 13.3 15.0 28.3 0.001 60
0.2 0.8 38 33.72 5.70 26.9 32.8 11.9 28.4 20.9 0.008 67
0.2 0.8 45 34.86 3.74 11.9 31.7 8.9 47.5 22.8 0.000 101
0.2 0.8 52 34.15 3.01 10.0 17.1 8.6 64.3 8.6 0.154 70
0.2 0.9 35 33.31 0.17 22.2 30.6 18.1 29.2 12.5 0.125 72
0.2 0.9 40 35.30 2.26 9.2 19.7 15.8 55.3 3.9 0.565 76
0.2 0.9 47 34.70 4.03 6.7 25.3 5.3 62.7 20.0 0.001 75
0.2 0.9 54 36.10 1.89 4.0 17.3 8.0 70.7 9.3 0.105 75

0.4 0.1 13 21.38 ´2.97 72.7 10.2 5.7 11.4 4.5 0.285 88
0.4 0.1 20 23.86 ´0.48 61.7 13.3 8.3 16.7 5.0 0.407 60
0.4 0.1 25 23.56 ´3.84 56.7 8.9 11.1 23.3 ´2.2 0.639 90
0.4 0.1 30 22.45 ´2.00 33.8 12.3 16.9 36.9 ´4.6 0.493 65
0.4 0.2 20 25.97 ´1.75 73.9 10.1 10.1 5.8 0.0 1.000 69
0.4 0.2 25 25.68 ´1.54 57.9 10.5 15.8 15.8 ´5.3 0.440 57
0.4 0.2 30 25.81 ´2.37 62.7 8.4 12.0 16.9 ´3.6 0.468 83
0.4 0.2 35 23.97 ´0.80 51.1 12.8 11.7 24.5 1.1 0.836 94
0.4 0.5 30 30.67 ´3.69 65.4 12.8 17.9 3.8 ´5.1 0.415 78
0.4 0.5 35 30.14 ´0.57 41.5 17.1 22.0 19.5 ´4.9 0.481 82
0.4 0.5 40 31.00 ´0.24 41.2 13.2 25.0 20.6 ´11.8 0.113 68
0.4 0.5 45 31.76 0.44 33.3 9.3 29.3 28.0 ´20.0 0.003 75
0.4 0.8 33 35.02 1.99 43.2 31.1 2.7 23.0 28.4 0.000 74
0.4 0.8 38 35.37 4.00 16.9 46.5 8.5 28.2 38.0 0.000 71
0.4 0.8 45 35.96 1.08 14.9 24.1 19.5 41.4 4.6 0.518 87
0.4 0.8 52 34.05 0.48 11.3 15.5 9.9 63.4 5.6 0.346 71
0.4 0.9 35 35.76 0.41 26.0 28.8 8.2 37.0 20.5 0.002 73
0.4 0.9 40 33.84 1.95 13.2 26.3 7.9 52.6 18.4 0.004 76
0.4 0.9 47 35.18 0.39 4.2 23.6 9.7 62.5 13.9 0.037 72
0.4 0.9 54 35.59 1.65 8.5 23.2 6.1 62.2 17.1 0.003 82

0.6 0.1 13 21.05 0.34 73.5 4.4 10.3 11.8 ´5.9 0.204 68
0.6 0.1 20 22.85 ´1.01 60.6 9.9 11.3 18.3 ´1.4 0.798 71
0.6 0.1 25 23.33 ´0.56 49.4 13.6 13.6 23.5 0.0 1.000 81
0.6 0.1 30 24.09 ´1.57 54.4 12.7 10.1 22.8 2.5 0.639 79
0.6 0.2 20 25.94 0.79 74.6 11.3 7.0 7.0 4.2 0.406 71
0.6 0.2 25 23.64 1.07 66.3 8.4 12.0 13.3 ´3.6 0.468 83
0.6 0.2 30 25.51 0.80 60.6 15.2 7.6 16.7 7.6 0.194 66
0.6 0.2 35 23.85 0.63 48.1 17.7 13.9 20.3 3.8 0.550 79
0.6 0.5 30 30.22 ´1.77 64.2 17.3 11.1 7.4 6.2 0.297 81
0.6 0.5 35 31.13 ´2.06 50.7 6.0 29.9 13.4 ´23.9 0.000 67
0.6 0.5 40 30.57 0.47 32.9 8.9 27.8 30.4 ´19.0 0.004 79
0.6 0.5 45 30.23 0.40 36.1 8.3 20.8 34.7 ´12.5 0.045 72
0.6 0.8 33 34.55 2.20 53.3 16.0 18.7 12.0 ´2.7 0.697 75
0.6 0.8 38 33.66 1.13 33.9 12.9 27.4 25.8 ´14.5 0.067 62
0.6 0.8 45 35.81 0.32 14.8 12.5 19.3 53.4 ´6.8 0.256 88
0.6 0.8 52 34.44 ´0.15 9.5 17.6 8.1 64.9 9.5 0.104 74
0.6 0.9 35 34.92 0.57 25.3 24.1 21.7 28.9 2.4 0.747 83
0.6 0.9 40 35.09 0.89 13.6 18.5 9.9 58.0 8.6 0.142 81
0.6 0.9 47 34.42 1.49 5.5 16.4 9.6 68.5 6.8 0.250 73
0.6 0.9 54 35.21 0.00 3.2 11.3 6.5 79.0 4.8 0.366 62
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Figure D.1: Prior experiment-level observations for paired choice tasks (panel A) and our
experiment-level results (panel B). In each panel, points below the 45-degree line exhibit a CRE,
while points above the 45-degree line exhibit an RCRE. The shaded grey regions in both panels
denote predicted pPrpAq,PrpCqq combinations consistent with ∆m˚ “ 0 under Assumption 2a. The
black circles in panel A depict the 143 experiments surveyed by Blavatskyy et al. (2023) scaled by
the number of observations; the black circles in panel B depict the 120 experiments that we run:
60 combinations of pp, r,Mq in the m-choice tasks and 60 combinations of pp, r,Hq for the h-choice
tasks.
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E Estimating a PT Model

In this section, we develop a structural PT model and estimate its key parameters. Following our

development in Example 1, under PT a person will have underlying indifference valuations m˚AB

and m˚CD that satisfy

upm˚ABq “ πppqupHq and

πprqupm˚CDq “ πprpqupHq.

For our estimation, we use the functional forms from Tversky and Kahneman (1992): πpqq “

qγ{ rqγ ` p1´ qqγs1{γ and upxq “ xα. The goal is to estimate α and γ.

E.1 Estimating a PT Model Using Stage 1 m Valuations

Given the functional forms, the underlying indifference valuations are given by:

pm˚ABq
α “

«

pγ

ppγ ` p1´ pqγq
1
γ

ff

pHqα ô
m˚AB
H

“

«

pγ

ppγ ` p1´ pqγq
1
γ

ff
1
α

pm˚CDq
α “

»

—

—

—

–

prpqγ

pprpqγ ` p1´ rpqγq
1
γ

rγ

prγ ` p1´ rqγq
1
γ

fi

ffi

ffi

ffi

fl

pHqα ô
m˚CD
H

“

«

pγ
ˆ

rγ ` p1´ rqγ

prpqγ ` p1´ rpqγ

˙
1
γ

ff

1
α

.

Incorporating noise in a way that permits using the standard approach of nonlinear least squares

estimation, we model the observed valuations of individual i on trial t as

mAB,it

H
“

«

pγit

ppγit ` p1´ pitq
γq

1
γ

ff
1
α

` εit (E.1)

mCD,it

H
“

«

pγit

ˆ

rγi ` p1´ riq
γ

pripitqγ ` p1´ ripitqγ

˙

1
γ

ff

1
α

` εit (E.2)

where ri is the common ratio for individual i, pit is the probability that individual i faces on trial

t, and εit is a least-squares error term.

The typical approach in the literature is to use data on mAB valuations and equation (E.1)

to estimate the parameters ppα, pγq (Tversky and Kahneman, 1992). Table E.1 presents estimates

using our data on mAB valuations. Column (1) contains parameter estimates when using all

mAB-valuations and imposing the same ppα, pγq for all r. Our estimate of pγ “ 0.60 implies strong

overweighting of low probabilities and underweighting of large probabilities. This estimate is in line

with the typical values in the literature and is similar in magnitude to the estimate of pγ “ 0.61 in
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Table E.1: PT Estimates Using Data on m-Valuations

(1) (2) (3) (4)
Overall r = 0.2 r = 0.4 r = 0.6

Probability Weighting: pγ 0.600 0.580 0.587 0.636
(0.008) (0.014) (0.014) (0.014)

Utility Curvature: pα 1.209 1.351 1.179 1.112
(0.019) (0.040) (0.030) (0.028)

Note: Nonlinear least squares estimation. The model assumes functional forms πpqq “

qγ{ rqγ ` p1´ qqγs1{γ and upxq “ xα. Individual-cluster-robust standard errors in parentheses. Panel
A estimates use data on mAB-valuations and the structural equation (E.1).

Tversky and Kahneman (1992). Our estimate of pα “ 1.209 is significantly greater than one, which

implies risk seeking in the absence of any probability distortions.

Columns (2)-(4) present separate estimates for each common-ratio factor r. We find qualita-

tively similar estimates of ppα, pγq across the three values for r, which is reassuring given that r

does not enter into equation (E.1). We use the estimates in columns (2)-(4) to construct the PT

predictions denoted by the dashed blue and dashed-and-dotted red lines in Figure 5 of the main

text.

To formally test for differences in probability weighting between the mAB valuations versus the

mCD valuations, we estimate the following joint specification:

mjit “ 1pj “ ABq

»

–

pγABit

ppγABit ` p1´ pitqγAB q
1

γAB

fi

fl

1
αAB

` 1pj “ CDq

«

pγCDit

ˆ

rγCDi ` p1´ riq
γCD

pripitqγCD ` p1´ ripitqγCD

˙

1
γCD

ff

1
αCD

` εit, (E.3)

where j P tAB,CDu denotes the valuation type. Table E.2 presents the results under different

parameter restrictions. Columns (2) and (3) show that we reject the null of a stable γ across the

mAB and mCD valuations.
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Table E.2: Testing for a Stable Probability Weighting Function

(1) (2) (3)
Restrictions:

γAB “ γCD “ γ,
αAB “ αCD “ α

αAB “ αCD “ α None

Probability Weighting
γ 0.773

(0.007)
γAB 0.603 0.600

(0.008) (0.008)
γCD 1.162 0.368

(0.017) (0.006)

Utility Curvature
α 0.916 1.198

(0.014) (0.019)
αAB 1.209

(0.019)
αCD 0.193

(0.009)

F-Test: γAB “ γCD p ă 0.001 p ă 0.001
Individuals 900 900 900
Observations 9000 9000 9000

Note: Nonlinear least squares estimation. The model assumes functional forms πpqq “

qγ{ rqγ ` p1´ qqγs1{γ and upxq “ xα. Individual-cluster-robust standard errors in parentheses. The
estimation uses data on both mAB and mCD valuations and the structural equation (E.3).

E.2 Estimating a PT Model Using Stage 2 Choice Data

To estimate the model use stage 2 choice data, we assume additive utility noise. Analogous to our

approach in the prior subsection, we posit a model with differential probability weighting across

the AB and CD choices, and then test whether they are the same. Hence, a person will choose A

over B when upMq ´ πppqupHq ą εAB, which becomes

εAB ăMαAB ´

«

pγAB

ppγAB ` p1´ pqγAB q
1

γAB

ff

pHqαAB ” DABpM,H, pq.

Similarly, the person will choose C over D when πprqupMq ´ πprpqupHq ą εCD, which becomes

εCD ă

«

rγCD

prγCD ` p1´ rqγCDq
1

γCD

ff

MαCD´

«

prpqγCD

pprpqγCD ` p1´ rpqγCDq
1

γCD

ff

pHqαCD ” DCDpM,H, p, rq.

As in the prior subsection, we first estimate the parameters pαAB, γABq using only the AB
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choice data. We denote an AB observation by dAB,i ” pai;Mi, Hi, piq, where ai P tA,Bu is

the person’s choice. We further assume that εAB „ Np0, σ2
ABq. Then given parameter vector

θ ” pαAB, γAB, σABq, the likelihood of observation dAB,i is

`ABpdAB,i; θq ” 1pai “ AqΦ

ˆ

DABpMi, Hi, piq

σAB

˙

` 1pai “ Bq

ˆ

1´ Φ

ˆ

DABpMi, Hi, piq

σAB

˙˙

,

and the overall likelihood function is

Lpθq ”
ÿ

dAB,i

logp`ABpdAB,i; θqq.

Column (1) of Table E.3 presents the parameter estimates. Much as for our estimates using

valuations data, our estimate of yγAB “ 0.71 implies strong overweighting of low probabilities and

underweighting of large probabilities, and is similar in magnitude to that in column (1) of Table

E.1.5

We next test for differences in probability weighting between the AB choices and the CD

choices. We denote a CD observation by dCD,i ” pai;Mi, Hi, pi, riq, where ai P tC,Du is the

person’s choice. We further assume that εCD „ Np0, σ2
CDq, and thus the parameter vector is now

θ ” pαAB, γAB, αCD, γCD, σAB, σCDq. The likelihood of a CD observation dCD,i is

`CDpdCD,i; θq ” 1pai “ CqΦ

ˆ

DCDpMi, Hi, pi, riq

σCD

˙

` 1pai “ Dq

ˆ

1´ Φ

ˆ

DCDpMi, Hi, pi, riq

σCD

˙˙

.

The overall likelihood function is then

Lpθq ”
ÿ

dAB,i

logp`ABpdAB,i; θqq `
ÿ

dCD,i

logp`CDpdCD,i; θqq.

Columns (2)-(4) of Table E.3 presents estimates analogous to those in columns (1)-(3) in Table

E.2. Columns (3) and (4) show that we again reject the null of a stable γ across the mAB and mCD

valuations.6

5Our estimate of zαAB “ 0.70, in contrast to that in column (1) of Table E.1, is significantly less than one. While
not reported here, we also conduct both estimations while imposing that α “ 1, and both estimated γ parameters
are still less than one, again consistent with inverse-S-shaped probability weighting.

6While not reported here, we also conduct the estimations in both Tables E.2 and E.3 while imposing that α “ 1,
and we again reject the null of a stable γ across the mAB and mCD valuations.
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Table E.3: PT Estimates Using Stage 2 Choice Data

(1) (2) (3) (4)
Restrictions:

AB Choices
Only

γAB “ γCD “ γ,
αAB “ αCD “ α

αAB “ αCD “ α None

Probability Weighting
γ 0.809

(0.011)
γAB 0.710 0.737 0.710

(0.013) (0.014) (0.013)
γCD 0.886 0.461

(0.020) (0.014)
Utility Curvature

α 0.615 0.653
(0.008) (0.010)

αAB 0.697 0.697
(0.011) (0.011)

αCD 0.252
(0.015)

Utility Noise
σAB 2.250 1.974 2.000 2.250

(0.110) (0.088) (0.086) (0.110)
σCD 0.906 1.069 0.104

(0.044) (0.058) (0.013)

H0: γAB “ γCD p ă 0.001 p ă 0.001
Individuals 900 900 900 900

Observations 4500 9000 9000 9000

Note: Maximum likelihood estimation using stage 2 choice data. The model assumes functional forms
πpqq “ qγ{ rqγ ` p1´ qqγs1{γ and upxq “ xα. The estimation in column (1) uses data on mAB choices,
and the estimation in columns (2)-(4) uses data on both mAB and mCD choices. In columns (3) and
(4), the null hypothesis of γAB “ γCD is tested via a Wald test.
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