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Abstract

This supplemental appendix contains three separate sections. Section SA collects the proofs
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of the paper.
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SA Proofs

Throughout the proofs, we use K to denote a generic positive constant which may change from

line to line. We also sometimes write Kp to stress its dependence on some parameter p. We may

further strengthen Assumptions 1 and 2 by assuming that the conditions hold for T1 =∞; this is

without loss of generality due to the standard localization procedure as shown in Section 4.4.1 in

Jacod and Protter (2012).

SA.1 Proofs for Section I

To prove Theorem 1, we need two lemmas that characterize the finite-sample behavior of the

estimators of interest in the “limit” Gaussian linear regression model. Although the proofs for

these lemmas are elementary, we provide them for completeness.

Lemma S1. If X = vW1 and Y = βX + ς1/2W2 for some constants v > 0, β ∈ R, and ς > 0,

then √
k − 1

(
β̂t − βt

)√
ς̂t/v̂t

= ξβ. (SA.1)

Proof. Under the parametric model considered in this lemma,

∆n
i X = v1/2∆n

iW1, ∆n
i Y = β∆n

i X + ς1/2∆n
iW2.

Therefore,

ĉ12,t =
1

k∆n

∑
i∈In,t

(∆n
i X) (∆n

i Y )

=
1

k∆n

∑
i∈In,t

(∆n
i X)

(
β∆n

i X + ς1/2∆n
iW2

)
= βĉ11,t + k−1v1/2ς1/2ξ12, (SA.2)

and

ĉ22,t =
1

k∆n

∑
i∈In,t

(∆n
i Y )2

=
1

k∆n

∑
i∈In,t

(
β∆n

i X + ς1/2∆n
iW2

)2

= β2ĉ11,t + 2k−1βv1/2ς1/2ξ12 + k−1ςξ22. (SA.3)
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Combining ĉ11,t = k−1vξ11 with (SA.2) and (SA.3), we deduce that

ĉ11,tĉ22,t − ĉ2
12,t = ĉ11,t

(
β2ĉ11,t + 2k−1βv1/2ς1/2ξ12 + k−1ςξ22

)
−
(
βĉ11,t + k−1v1/2ς1/2ξ12

)2

= k−2vς
(
ξ11ξ22 − ξ2

12

)
. (SA.4)

From the definitions of v̂t, β̂t, and ς̂t in the main text, it follows that

β̂t − β√
ς̂t/v̂t

=

ĉ12,t
ĉ11,t
− β√

ĉ22,t
ĉ11,t
− ĉ212,t

ĉ211,t

=
ĉ12,t − βĉ11,t√
ĉ11,tĉ22,t − ĉ2

12,t

. (SA.5)

Plugging (SA.2) and (SA.4) into (SA.5) yields

β̂t − β√
ς̂t/v̂t

=
ξ12√

ξ11ξ22 − ξ2
12

,

which readily implies the assertion of the lemma. Q.E.D.

Lemma S2. ξβ has a t-distribution with degree of freedom k − 1.

Proof. Let U and V be two generic independent k-dimensional standard normal vectors. It is

easy to see that (ξ11, ξ12, ξ22) equals to (‖U‖2 ,U>V , ‖V ‖2) in distribution. Denote

M = Ik −
UU>

‖U‖2
,

where Ik is the k-dimensional identity matrix. Observe that

V >MV = ‖V ‖2 −
(
U>V

)2
‖U‖2

.

Since the matrix M is idempotent with trace k − 1 and V ∼ N (0, Ik), the U -conditional distri-

bution of V >MV is χ2
k−1 almost surely.

Next, recall that by definition,

ξβ =
ξ12√(

ξ11ξ22 − ξ2
12

)
/ (k − 1)

d
=

U>V / ‖U‖√
V >MV / (k − 1)

. (SA.6)

It is easy to see that the U -conditional distribution of U>V / ‖U‖ is N (0, 1). In addition, con-

ditional on U , (U>V ,MV ) are jointly normal; since MU = 0, U>V and MV are also con-

ditionally independent. Hence, U>V / ‖U‖ is U -conditionally independent of (MV )> (MV ) =

V >MV . We have shown that the U -conditional distribution of V >MV is χ2
k−1. Combining
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these facts, we see that, conditional on U , the variable on the right-hand side of (SA.6) is tk−1-

distributed, which further implies that its unconditional distribution is also tk−1. This proves the

assertion of the lemma. Q.E.D.

Proof of Theorem 1. Under Assumption 1(i), the probability that the estimation block In,t
contains at least one price jump is O (∆n). Therefore, with probability approaching 1, In,t does

not contain any price jump. Since our calculation concentrates on this one block, we can and will

without loss of generality assume in the subsequent analysis that there are no price jumps.

For each i ∈ In,t, we set

xn,i ≡ v1/2
t ∆n

iW1, yn,i ≡ βtxn,i + ς
1/2
t ∆n

iW2, zn,i ≡ (xn,i, yn,i)
> .

We then define

ĉ′t =

 ĉ′11,t ĉ′12,t

ĉ′21,t ĉ′22,t

 ≡ 1

k∆n

∑
i∈In,t

zn,iz
>
n,i,

which we further use to define v̂′t, β̂
′
t, and ς̂ ′t as

v̂′t ≡ ĉ′11,t, β̂
′
t ≡

ĉ′12,t

ĉ′11,t

, ς̂ ′t ≡ ĉ′22,t −
(
ĉ′12,t

)2
ĉ′11,t

.

Lemma S1 implies that √
k − 1

(
β̂
′
t − βt

)√
ς̂ ′t/v̂

′
t

= ξβ. (SA.7)

Next, we show that ĉt−ĉ′t = op(1), for which we need some preliminary estimates. In particular,

observe that for i ∈ In,t,

∆n
i X−xn,i =

∫ i∆n

(i−1)∆n

b1,sds+

∫ i∆n

(i−1)∆n

(
v1/2
s − v1/2

(i−1)∆n

)
dW1,s+

(
v

1/2
(i−1)∆n

− v1/2
t

)
∆n
iW1. (SA.8)

Also note that

E

[∣∣∣∣∣
∫ i∆n

(i−1)∆n

b1,sds

∣∣∣∣∣
]
≤ K∆n = o(∆1/2

n ). (SA.9)

By Itô isometry and the fact that E[|v1/2
t − v1/2

(i−1)∆n
|2] ≤ K∆2κ

n , it follows that

E

∣∣∣∣∣
∫ i∆n

(i−1)∆n

(
v1/2
s − v1/2

(i−1)∆n

)
dW1,s

∣∣∣∣∣
2
 = E

[∫ i∆n

(i−1)∆n

(
v1/2
s − v1/2

(i−1)∆n

)2
ds

]
≤ K∆1+2κ

n ,
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and hence, ∫ i∆n

(i−1)∆n

(
v1/2
s − v1/2

(i−1)∆n

)
dW1,s = op(∆

1/2
n ). (SA.10)

Since v
1/2
(i−1)∆n

− v1/2
t = Op(∆

κ
n) and ∆n

iW1 = Op(∆
1/2
n ), we also have(

v
1/2
(i−1)∆n

− v1/2
t

)
∆n
iW1 = op(∆

1/2
n ). (SA.11)

Combining (SA.8), (SA.9), (SA.10), and (SA.11), we deduce that ∆n
i X − xn,i = op(∆

1/2
n ). By a

similar argument, we can also show that ∆n
i Y − yn,i = op(∆

1/2
n ). Therefore,

‖∆n
i Z − zn,i‖ = op(∆

1/2
n ). (SA.12)

It is also easy to see that zn,i = Op(∆
1/2
n ). Thus, by the triangle inequality,∥∥∥(∆n

i Z) (∆n
i Z)> − zn,iz>n,i

∥∥∥ ≤ 2
∥∥∥(∆n

i Z − zn,i) z>n,i
∥∥∥+ ‖∆n

i Z − zn,i‖
2 = op (∆n) .

Since In,t contains a fixed number of elements, we further deduce that∥∥ĉt − ĉ′t∥∥ ≤ 1

k∆n

∑
i∈In,t

∥∥∥(∆n
i Z) (∆n

i Z)> − zn,iz>n,i
∥∥∥ = op (1) . (SA.13)

Finally, since v̂′t and ς̂ ′t are strictly positive almost surely, we can use (SA.13) and the continuous

mapping theorem to conclude that

β̂t − βt√
ς̂t/v̂t

− β̂
′
t − βt√
ς̂ ′t/v̂

′
t

= op(1).

The coupling claim of the theorem then follows from (SA.7) and the above display. The distribu-

tional claim is due to Lemma S2. Q.E.D.

Proof of Theorem 2. The assertions of the theorem follow from (SA.12) and the continuous

mapping theorem. Q.E.D.

Proof of Theorem 3. For simplicity, we write β̂[1:k] and ς̂ [1:k] as β̂ and ς̂, respectively. For each

i ∈ {1, . . . , k + h}, we set

xn,i ≡ v1/2
0 ∆n

iW1, yn,i ≡ β0xn,i + ς
1/2
0 ∆n

iW2, zn,i ≡ (xn,i, yn,i)
> ,

and use (zn,i)1≤i≤k to define β̂
′

and ς̂ ′ in the same way as described in the proof of Theorem 1.

As shown in the proof of Theorem 1,

‖∆n
i Z − zn,i‖ = op(∆

1/2
n ), β̂ − β̂′ = op(1), ς̂ − ς̂ ′ = op(1). (SA.14)
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We further denote

ĈAR
′
h =

h∑
j=1

yn,k+j −

 h∑
j=1

xn,k+j

 β̂
′
, ŝe′h =

√√√√(h+
(
∑h

j=1 xn,k+j)2∑k
i=1 x

2
n,i

)
kς̂ ′

k − 1
.

The estimates in (SA.14) imply that

ĈARh − ĈAR
′
h = op(∆

1/2
n ), ŝeh − ŝe′h = op(1),

yielding

∆
−1/2
n ĈARh

ŝeh
= τh + op (1) , where τh ≡

∆
−1/2
n ĈAR

′
h

ŝe′h
.

It remains to show that τh defined in the above display is tk−1-distributed. Note that

∆−1/2
n ĈAR

′
h = ς

1/2
0 ∆−1/2

n

(
W2,(k+h)∆n

−W2,k∆n

)
−

 h∑
j=1

xn,k+j

∆−1/2
n

(
β̂
′ − β0

)
.

Define k-dimensional random vectors U = (xn,i)1≤i≤k and V = (∆n
iW2/

√
∆n)1≤i≤k. It is easy to

show that

∆−1/2
n

(
β̂
′ − β0

)
=
ς

1/2
0 U>V

‖U‖2
, kς̂ ′ = ς0

(
‖V ‖2 −

(
U>V

)2
‖U‖2

)
.

Let U0 denote the information set generated by F0 and the W1 process. Note that U is measurable

with respect to U0. Moreover, conditional on U0, the variables W2,(k+h)∆n
−W2,k∆n , ∆

−1/2
n (β̂

′−β0),

and ς̂ ′ are independent. This implies that ∆
−1/2
n ĈAR

′
h is independent of kς̂ ′ conditional on U0.

Moreover, the U0-conditional distributions of these variables satisfy

∆
−1/2
n ĈAR

′
h√

ς0

∣∣∣∣∣U0 ∼ N

(
0, h+

(
∑h

j=1 xn,k+j)
2∑k

i=1 x
2
n,i

)
,

kς̂ ′

ς0

∣∣∣∣U0 ∼ χ2
k−1.

These properties imply that τh is tk−1-distributed conditional on U0. The unconditional distribu-

tion of τh is thus also tk−1 as asserted. Q.E.D.

SA.2 Proofs for Section II

Proof of Lemma 1. Since In,t contains a fixed number of elements, the estimate in (SA.12) holds

jointly for all i ∈ In,t. From here, the assertion of the lemma readily follows due to the continuous

mapping theorem. Q.E.D.

Proof of Theorem 4. The spot beta estimator β̂t may be rewritten as fβ (rX , rY ) ≡ r>XrY /r>XrX .

Let f (rX , rY ) be a generic asymptotically unbiased regular estimator for βt. Recall from the main
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text that the asymptotic risk function for f under the quadratic loss is given by, for v > 0, β ∈ R,

and ς > 0,

R (f ; v, β, ς) = E

[(
f(v1/2η, βv1/2η + ς1/2ε)− β

)2
]
,

where η and ε are independent k-dimensional standard Gaussian random vectors. This is also the

finite-sample risk of f in the limit experiment with observations being (x,y) = (v1/2η, βv1/2η +

ς1/2ε). In the limit Gaussian experiment (which belongs to the exponential family), the vector

(x>x,x>y,y>y) forms the complete sufficient statistic for (v, β, ς), where we use the fact that the

mean is known to be zero in the limit experiment. It is easy to see that fβ(x,y) is unbiased and,

because it is a function of the complete sufficient statistic, it is also uniformly minimum-variance

unbiased (see Theorem 2.1.11 in Lehmann and Casella (1998)). That is, R (fβ; ·) ≤ R (f ; ·) for any

f that satisfies E [f (x,y)] = β. This proves that β̂t is the asymptotically uniformly minimum-

variance unbiased estimator for βt. Q.E.D.

Finally, we prove Theorem 5. We need some notation and preliminary estimates. For each

j ∈ {1, . . . ,mn} and i ∈ In,j , denote

vn,j = v(j−1)k∆n
, βn,j ≡ β(j−1)k∆n

, ςn,j ≡ ς(j−1)k∆n
,

x̃n,i ≡ v
1/2
n,j ∆n

iW1, ỹn,i ≡ βn,j x̃n,i + ς
1/2
n,j ∆n

iW2, z̃n,i ≡ (x̃n,i, ỹn,i)
> .

We define

c̃′j =

 c̃′11,j c̃′12,j

c̃′21,j c̃′22,j

 ≡ 1

k∆n

∑
i∈In,j

z̃n,iz̃
>
n,i,

and then set ṽ′j , β̃
′
j , and ς̃ ′j as

ṽ′j ≡ c̃′11,j , β̃
′
j ≡

c̃′12,j

c̃′11,j

, ς̃ ′j ≡ c̃′22,j −
(c̃′12,j)

2

c̃′11,j

.

The following lemma collects some useful uniform approximation results.

Lemma S3. Suppose that min {1/2, κ} > 2/k. Under Assumption 2, the following statements

holds for any fixed constant ι > 0:

(a) max1≤j≤mn

∥∥c̃j − c̃′j∥∥ = op(∆
min{1/2,κ}−ι
n );

(b) max1≤j≤mn

(∥∥c̃′j∥∥+ ‖c̃j‖
)

= op (∆−ιn ) ;

(c) max1≤j≤mn(c̃′11,j)
−1 = op(∆

−2/k−ι
n );

(d) for any constant q ∈ (−∞, 1), max1≤j≤mn |c̃
q
11,j − c̃

′q
11,j | = op(∆

min{1/2,κ}−2(1−q)/k−ι
n );

(e) max1≤j≤mn |c̃12,j/(c̃11,j)
1/2 − c̃′12,j/(c̃

′
11,j)

1/2| = op(∆
min{1/2,κ}−3/k−ι
n );
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(f) if min {1/2, κ} > 3/k, max1≤j≤mn

∣∣ς̃j − ς̃ ′j∣∣ = op(∆
min{1/2,κ}−3/k−ι
n );

(g) if min {1/2, κ} > 3/k + 2/(k − 1),

max
1≤j≤mn

|(ς̃j)−1/2 − (ς̃ ′j)
−1/2| = op(∆

min{1/2,κ}−3/k−3/(k−1)−ι
n ).

Proof. Part (a). For each i ∈ In,j ,

∆n
i X − x̃n,i =

∫ i∆n

(i−1)∆n

b1,sds+

∫ i∆n

(i−1)∆n

(
v1/2
s − v1/2

n,j

)
dW1,s. (SA.15)

Since the drift process is bounded under the localized version of Assumption 2, we have

max
1≤j≤mn

∣∣∣∣∣
∫ i∆n

(i−1)∆n

b1,sds

∣∣∣∣∣ ≤ K∆n. (SA.16)

Consider an arbitrary constant p ≥ 2. Observe that

E

[∣∣∣∣∣
∫ i∆n

(i−1)∆n

(
v1/2
s − v1/2

n,j

)
dW1,s

∣∣∣∣∣
p]
≤ KpE

∣∣∣∣∣
∫ i∆n

(i−1)∆n

(
v1/2
s − v1/2

n,j

)2
ds

∣∣∣∣∣
p/2


= Kp∆
p/2
n E

∣∣∣∣∣ 1

∆n

∫ i∆n

(i−1)∆n

(
v1/2
s − v1/2

n,j

)2
ds

∣∣∣∣∣
p/2


≤ Kp∆
p/2
n E

[
1

∆n

∫ i∆n

(i−1)∆n

∣∣∣v1/2
s − v1/2

n,j

∣∣∣p ds]
≤ Kp∆

(κ+1/2)p
n ,

where the first inequality is by the Burkholder–Davis–Gundy inequality, the second inequality is

by Jensen’s inequality, and the last inequality follows from the assumed κ-Hölder continuity of the

volatility process under the Lp-norm. This estimate further implies∥∥∥∥∥
∫ i∆n

(i−1)∆n

(
v1/2
s − v1/2

n,j

)
dW1,s

∥∥∥∥∥
p

≤ Kp∆
κ+1/2
n . (SA.17)

Combining (SA.16) and (SA.17), we deduce

‖∆n
i X − x̃n,i‖p ≤ Kp

(
∆n + ∆κ+1/2

n

)
. (SA.18)

By the triangle inequality, Hölder’s inequality, and the fact that ‖x̃n,i‖2p ≤ Kp∆
1/2
n , the estimate
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in (SA.18) implies

1

k∆n

∑
i∈In,j

∥∥∥(∆n
i X)2 − x̃2

n,i

∥∥∥
p
≤ 1

k∆n

∑
i∈In,j

(
‖2x̃n,i (∆n

i X − x̃n,i)‖p +
∥∥∥(∆n

i X − x̃n,i)
2
∥∥∥
p

)

≤ Kp

k∆n

∑
i∈In,j

(
‖x̃n,i‖2p ‖∆

n
i X − x̃n,i‖2p + ‖∆n

i X − x̃n,i‖
2
2p

)
≤ Kp

k∆n

∑
i∈In,j

(
∆1/2
n

(
∆n + ∆κ+1/2

n

)
+
(

∆n + ∆κ+1/2
n

)2
)

≤ Kp

(
∆1/2
n + ∆κ

n

)
.

Using a similar argument, we can extend this estimate to the multivariate case:

1

k∆n

∑
i∈In,j

∥∥∥(∆n
i Z) (∆n

i Z)> − zn,iz>n,i
∥∥∥
p
≤ Kp

(
∆1/2
n + ∆κ

n

)
.

By the triangle inequality, this further implies that∥∥c̃j − c̃′j∥∥p ≤ Kp

(
∆1/2
n + ∆κ

n

)
.

Applying a maximal inequality under the Lp-norm, we then have∥∥∥∥ max
1≤j≤mn

∥∥c̃j − c̃′j∥∥∥∥∥∥
p

≤ Kpm
1/p
n ∆min{1/2,κ}

n ≤ Kp∆
min{1/2,κ}−1/p
n .

Applying this estimate with p sufficiently large (i.e., 1/p < ι), we deduce the assertion in part (a).

Part (b). It is easy to see that for each p,
∥∥c̃′j∥∥p is bounded uniformly across j ∈ {1, . . . ,mn}.

Applying a maximal inequality under the Lp-norm with p > 1/ι yields max1≤j≤mn

∥∥c̃′j∥∥ = op (∆−ιn ).

By the triangle inequality, this estimate and part (a) further imply max1≤j≤mn ‖c̃j‖ = op (∆−ιn ).

Part (c). Note that max1≤j≤mn(c̃′11,j)
−1 ≤ K max1≤j≤mn ξ

−1
11,j and ξ11,j are i.i.d. χ2

k-distributed

variables. Since ξ−1
11,j has finite pth moment for any p < k/2, we can use an Lp maximal inequality

for such p to deduce that

max
1≤j≤mn

ξ−1
11,j = Op

(
∆−1/p
n

)
.

By taking p sufficiently close to k/2, we prove the assertion of part (c).

Part (d). By the mean value theorem,

∣∣∣c̃q11,j − c̃
′q
11,j

∣∣∣ =
|q|
∣∣∣c̃11,j − c̃′11,j

∣∣∣(
c̃′11,j + λn,j

(
c̃11,j − c̃′11,j

))1−q , (SA.19)

where the variable λn,j takes values in [0, 1]. By part (c), there exists a positive real sequence δ1n

such that δ−1
1n = o(∆

−(2/k)−ι
n ) and max1≤j≤mn(c̃′11,j)

−1 ≤ δ−1
1n with probability approaching 1. In
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other words,

P

(
min

1≤j≤mn

c̃′11,j ≥ δ1n

)
→ 1 and

∆
(2/k)+ι
n

δ1n
→ 0. (SA.20)

By part (a), there exists a positive real sequence δ2n = o(∆
min{1/2,κ}−ι
n ) such that

P

(
max

1≤j≤mn

∣∣c̃11,j − c̃′11,j

∣∣ ≤ δ2n

)
→ 1. (SA.21)

Under the assumption that min {1/2, κ} > 2/k, it is possible to find ι > 0 sufficiently small such

that min {1/2, κ} − ι > 2/k + ι. Hence, δ1n/δ2n → ∞. By (SA.20) and (SA.21), we deduce that,

with probability approaching 1,

min
1≤j≤mn

c̃′11,j ≥ 2 max
1≤j≤mn

∣∣c̃11,j − c̃′11,j

∣∣ ,
which also implies that

max
1≤j≤mn

1

c̃′11,j + λn,j

(
c̃11,j − c̃′11,j

) ≤ 2 max
1≤j≤mn

1

c̃′11,j

.

This estimate and part (c) imply that

max
1≤j≤mn

1(
c̃′11,j + λn,j

(
c̃11,j − c̃′11,j

))1−q = op(∆
−2(1−q)/k−ι
n ). (SA.22)

The assertion in part (d) then follows from (SA.19), (SA.22), and part (a).

Part (e). By the triangle inequality,∣∣∣∣∣∣ c̃12,j√
c̃11,j

−
c̃′12,j√
c̃′11,j

∣∣∣∣∣∣ ≤
∣∣∣c̃12,j − c̃′12,j

∣∣∣√
c̃11,j

+
∣∣c̃′12,j

∣∣ ∣∣∣∣∣∣ 1√
c̃11,j

− 1√
c̃′11,j

∣∣∣∣∣∣ . (SA.23)

Applying the estimate in part (d) with q = −1/2, we deduce

max
1≤j≤mn

∣∣∣∣∣∣ 1√
c̃11,j

− 1√
c̃′11,j

∣∣∣∣∣∣ = op

(
∆min{1/2,κ}−3/k−ι/2
n

)
. (SA.24)

By part (a), part (c), and (SA.24),

max
1≤j≤mn

∣∣∣c̃12,j − c̃′12,j

∣∣∣√
c̃11,j

≤ op(∆
min{1/2,κ}−ι/2
n ) ·

(
op(∆

−1/k−ι/2
n ) + op

(
∆min{1/2,κ}−3/k−ι/2
n

))
= op

(
∆min{1/2,κ}−1/k−ι
n

)
, (SA.25)
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where the last line holds because −1/k < min {1/2, κ}− 3/k under the maintained assumption on

k. By part (b) and (SA.24), we also have

max
1≤j≤mn

∣∣c̃′12,j

∣∣ ∣∣∣∣∣∣ 1√
c̃11,j

− 1√
c̃′11,j

∣∣∣∣∣∣ = op

(
∆min{1/2,κ}−3/k−ι
n

)
. (SA.26)

The assertion of part (e) readily follows from (SA.23), (SA.25), and (SA.26).

Part (f). By the triangle inequality,

∣∣ς̃j − ς̃ ′j∣∣ ≤ ∣∣c̃22,j − c̃′22,j

∣∣+

∣∣∣∣∣ c̃2
12,j

c̃11,j
−
c̃′212,j

c̃′11,j

∣∣∣∣∣ . (SA.27)

Another use of the triangle inequality yields

max
1≤j≤mn

∣∣∣∣∣ c̃2
12,j

c̃11,j
−
c̃′212,j

c̃′11,j

∣∣∣∣∣ ≤ 2 max
1≤j≤mn

∣∣∣∣∣∣ c̃
′
12,j√
c̃′11,j

∣∣∣∣∣∣ max
1≤j≤mn

∣∣∣∣∣∣ c̃12,j√
c̃11,j

−
c̃′12,j√
c̃′11,j

∣∣∣∣∣∣
+ max

1≤j≤mn

∣∣∣∣∣∣ c̃12,j√
c̃11,j

−
c̃′12,j√
c̃′11,j

∣∣∣∣∣∣
2

. (SA.28)

Note that ∣∣∣∣∣∣ c̃
′
12,j√
c̃′11,j

∣∣∣∣∣∣ ≤ K
(√

ξ11,j +
|ξ12,j |√
ξ11,j

)

and the variable ξ12,j/
√
ξ11,j is N (0, 1) distributed. It is then easy to see that for any ι > 0,

max
1≤j≤mn

∣∣∣∣∣∣ c̃
′
12,j√
c̃′11,j

∣∣∣∣∣∣ = op
(
∆−ιn

)
. (SA.29)

By (SA.28), (SA.29), and part (e),

max
1≤j≤mn

∣∣∣∣∣ c̃2
12,j

c̃11,j
−
c̃′212,j

c̃′11,j

∣∣∣∣∣ = op

(
∆min{1/2,κ}−(3/k)−ι
n

)
,

which together with (SA.27) and part (a) implies the assertion in part (f).

Part (g). Note that by Lemma S1 and Lemma S2, kς̃ ′j/ςn,j is χ2
k−1-distributed. Similar to part

(c), we have, for any ι > 0,

max
1≤j≤mn

(ς̃ ′j)
−1 = op(∆

−2/(k−1)−ι
n ). (SA.30)

Hence, there exists a positive real sequence δ1n such that

P

(
min

1≤j≤mn

ς̃ ′j ≥ δ1n

)
→ 1 and

∆
2/(k−1)+ι
n

δ1n
→ 0.
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By part (f), there exists a positive real sequence δ2n = o(∆
min{1/2,κ}−3/k−ι
n ) such that

P

(
max

1≤j≤mn

∣∣ς̃j − ς̃ ′j∣∣ ≤ δ2n

)
→ 1.

Since min {1/2, κ} − 3/k > 2/(k − 1), it is possible to find a sufficiently small ι > 0 such that

min {1/2, κ} − 3/k − ι > 2/(k − 1) + ι,

which implies δ1n/δ2n →∞. These estimates imply that, with probability approaching 1,

min
1≤j≤mn

ς̃ ′j ≥ 2 max
1≤j≤mn

∣∣ς̃j − ς̃ ′j∣∣ . (SA.31)

By the mean value theorem,∣∣∣∣∣∣ 1√
ς̃j
− 1√

ς̃ ′j

∣∣∣∣∣∣ ≤
∣∣ς̃j − ς̃ ′j∣∣

2
(
ς̃ ′j + λn,j

(
ς̃j − ς̃ ′j

))3/2
for some variable λn,j taking values in [0, 1], which together with (SA.31) implies that, with

probability approaching 1,

max
1≤j≤mn

∣∣∣∣∣∣ 1√
ς̃j
− 1√

ς̃ ′j

∣∣∣∣∣∣ ≤ K max
1≤j≤mn

∣∣ς̃j − ς̃ ′j∣∣ · max
1≤j≤mn

1(
ς̃ ′j
)3/2 . (SA.32)

The assertion of part (g) then follows from this estimate, (SA.30), and part (f). Q.E.D.

To prove the second assertion of Theorem 5, we also need to establish an anti-concentration

property for the maximum of the absolute values of t-distributed random variables, given by

Lemma S4 below.

Lemma S4. Let k ≥ 2 and p∗m (·) denote the probability density function of max1≤j≤m |ξβ,j |, where

the ξβ,j variables are i.i.d. t-distributed with degree of freedom k − 1. Then, there exists a finite

constant K∗ > 0 such that p∗m (x) ≤ K∗ for all m ≥ 1 and x ≥ 0.

Proof. Denote the probability density function and the cumulative distribution function of |ξβ,j |
by g (·) and G (·), respectively. Since the (ξβ,j)1≤j≤m variables are i.i.d.,

P

(
max

1≤j≤m
|ξβ,j | ≤ x

)
= (P (|ξβ,j | ≤ x))m = G (x)m ,

which implies that

p∗m (x) = mG (x)m−1 g (x) . (SA.33)

12



Since G (x) is an increasing function,

mG (x)m−1
∫ ∞
x

g (u) du ≤
∫ ∞
x

p∗m (u) du = P

(
max

1≤j≤m
|ξβ,j | ≥ x

)
≤ 1.

Therefore,

mG (x)m−1 ≤ 1∫∞
x g (u) du

. (SA.34)

By (SA.33) and (SA.34),

p∗m (x) ≤ H (x) ≡ g (x)∫∞
x g (u) du

. (SA.35)

Let p (·) denote the probability density of the t-distribution with degree of freedom k − 1 and

note that g (x) = 2p (x) for x ≥ 0. We can then rewrite

H (x) =
p (x)∫∞

x p (u) du
.

Further recall that, by definition,

p (x) ≡ Ck
(

1 +
x2

k − 1

)−k/2
, where Ck ≡

Γ (k/2)√
(k − 1)πΓ ((k − 1) /2)

.

By applying L’Hôpital’s rule, we have

lim
x→∞

H (x) = lim
x→∞

kx

k − 1 + x2
= 0.

It is also easy to see that H (·) is continuous with H (0) = 2Ck. This combined with the above

convergence implies that H (·) is uniformly bounded. The assertion of the lemma then follows

from (SA.35). Q.E.D.

Proof of Theorem 5. We first show that

max
1≤j≤mn

∣∣∣∣∣∣ β̃j − βn,j√
ς̃j/ṽj

−
β̃
′
j − βn,j√
ς̃ ′j/ṽ

′
j

∣∣∣∣∣∣ = op (1) . (SA.36)

For this purpose, it is convenient to rewrite

β̃j − βn,j√
ς̃j/ṽj

=
An,j√
ς̃j
,

β̃
′
j − βn,j√
ς̃ ′j/ṽ

′
j

=
A′n,j√
ς̃ ′j

,

where

An,j ≡
c̃12,j√
c̃11,j

− βn,j
√
c̃11,j , A′n,j ≡

c̃′12,j√
c̃′11,j

− βn,j
√
c̃′11,j .
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Applying Lemma S3(d) with q = 1/2 yields that for any ι > 0,

max
1≤j≤mn

∣∣∣√c̃11,j −
√
c̃′11,j

∣∣∣ = op

(
∆min{1/2,κ}−1/k−ι
n

)
.

Since the βt process is uniformly bounded under Assumption 2 after localization, the estimate

above and Lemma S3(e) imply that for any ι > 0,

max
1≤j≤mn

∣∣An,j −A′n,j∣∣ = op

(
∆min{1/2,κ}−3/k−ι
n

)
. (SA.37)

By the triangle inequality,

max
1≤j≤mn

∣∣∣∣∣∣An,j√
ς̃j
−
A′n,j√
ς̃ ′j

∣∣∣∣∣∣ ≤ max
1≤j≤mn

∣∣∣An,j −A′n,j∣∣∣√
ς̃ ′j

+ max
1≤j≤mn

|An,j |

∣∣∣∣∣∣ 1√
ς̃j
− 1√

ς̃ ′j

∣∣∣∣∣∣ . (SA.38)

Combining (SA.30) and (SA.37) yields

max
1≤j≤mn

∣∣∣An,j −A′n,j∣∣∣√
ς̃ ′j

= op

(
∆min{1/2,κ}−3/k−1/(k−1)−ι
n

)
. (SA.39)

By (SA.29) and Lemma S3(b), it is easy to see that max1≤j≤mn |A′n,j | = op (∆−ιn ). Then, by

(SA.37), we have for any ι > 0,

max
1≤j≤mn

|An,j | = op
(
∆−ιn

)
,

which together with Lemma S3(g) implies that for any ι > 0,

max
1≤j≤mn

|An,j |

∣∣∣∣∣∣ 1√
ς̃j
− 1√

ς̃ ′j

∣∣∣∣∣∣ = op

(
∆min{1/2,κ}−3/k−3/(k−1)−ι
n

)
. (SA.40)

Since min {1/2, κ} − 3/k − 3/ (k − 1) > 0 under the maintained assumption on k, we can take ι

sufficiently small so that the sequences in (SA.39) and (SA.40) are both op(1). The assertion in

(SA.36) then readily follows in view of (SA.38).

Next, we show that

max
1≤j≤mn

sup
t∈[(j−1)k∆n,jk∆n]

∣∣∣∣∣βt − βn,j√
ς̃j/ṽj

∣∣∣∣∣ = op(1). (SA.41)

Rewrite
βt − βn,j√
ς̃j/ṽj

=

√
c̃11,j (βt − βn,j)√

ς̃j
,

and then observe that

max
1≤j≤mn

sup
t∈[(j−1)k∆n,jk∆n]

∣∣∣∣∣βt − βn,j√
ς̃j/ṽj

∣∣∣∣∣
≤ max

1≤j≤mn

√
c̃11,j√
ς̃j
· max

1≤j≤mn

sup
t∈[(j−1)k∆n,jk∆n]

|βt − βn,j | . (SA.42)
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By (SA.30) and Lemma S3(g), we have for any ι > 0,

max
1≤j≤mn

1√
ς̃j

= op(∆
−1/(k−1)−ι
n ),

which together with Lemma S3(b) implies that for any ι > 0,

max
1≤j≤mn

√
c̃11,j√
ς̃j

= op(∆
−1/(k−1)−ι/2
n ). (SA.43)

Moreover, it is easy to see that for any p ≥ 2,∥∥∥∥∥ sup
t∈[(j−1)k∆n,jk∆n]

|βt − βn,j |

∥∥∥∥∥
p

≤ Kp∆
κ
n,

and by a maximal inequality, we can show that for any ι > 0,

max
1≤j≤mn

sup
t∈[(j−1)k∆n,jk∆n]

|βt − βn,j | = op

(
∆κ−ι/2
n

)
. (SA.44)

Combining (SA.42), (SA.43), and (SA.44) yields

max
1≤j≤mn

sup
t∈[(j−1)k∆n,jk∆n]

∣∣∣∣∣βt − βn,j√
ς̃j/ṽj

∣∣∣∣∣ = op

(
∆κ−1/(k−1)−ι
n

)
. (SA.45)

Since κ − 1/ (k − 1) > 0 under maintained assumptions, we can take ι > 0 sufficiently small to

make the random sequence in the above display op (1). This proves (SA.41).

We are now ready to prove the first assertion of Theorem 5. By the definitions of β̃t, ṽt, and

ς̃t, it is easy to see that

sup
t∈[0,T ]

∣∣∣∣∣ β̃t − βt√
ς̃t/ṽt

∣∣∣∣∣ = max
1≤j≤mn

sup
t∈[(j−1)k∆n,jk∆n)

∣∣∣∣∣ β̃j − βt√
ς̃j/ṽj

∣∣∣∣∣ ,
which together with (SA.41) implies

sup
t∈[0,T ]

∣∣∣∣∣ β̃t − βt√
ς̃t/ṽt

∣∣∣∣∣ = max
1≤j≤mn

∣∣∣∣∣ β̃j − βn,j√
ς̃j/ṽj

∣∣∣∣∣+ op (1) .

By (SA.36), the estimate displayed above further implies

sup
t∈[0,T ]

∣∣∣∣∣ β̃t − βt√
ς̃t/ṽt

∣∣∣∣∣ = max
1≤j≤mn

∣∣∣∣∣∣ β̃
′
j − βn,j√
ς̃ ′j/ṽ

′
j

∣∣∣∣∣∣+ op(1).

The first assertion in Theorem 5 then follows from this estimate, Lemma S1, and Lemma S2.

To prove the second assertion of the theorem, we write for simplicity

τ̃n ≡ sup
t∈[0,T ]

∣∣∣∣∣∣
√
k − 1

(
β̃t − βt

)
√
ς̃t/ṽt

∣∣∣∣∣∣ , τ∗n ≡ max
1≤j≤mn

|ξβ,j | .
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By the first assertion of the theorem, there exists a positive real sequence δ̃n = o (1) such that

|τ̃n − τ∗n| ≤ δ̃n with probability approaching 1. Therefore,

P
(
τ̃n > z∗n,1−α

)
≤ P

(
τ∗n > z∗n,1−α − δ̃n

)
+ o(1)

= P
(
τ∗n > z∗n,1−α

)
+ P

(
z∗n,1−α − δ̃n < τ∗n ≤ z∗n,1−α

)
+ o(1)

= P
(
τ∗n > z∗n,1−α

)
+O(δ̃n) + o(1) = α+ o (1) , (SA.46)

where the last line follows from Lemma S4. Similarly,

P
(
τ̃n > z∗n,1−α

)
≥ P

(
τ∗n > z∗n,1−α + δ̃n

)
− o(1)

= P
(
τ∗n > z∗n,1−α

)
− P

(
z∗n,1−α < τ∗n ≤ z∗n,1−α + δ̃n

)
− o(1)

= P
(
τ∗n > z∗n,1−α

)
−O(δ̃n)− o(1) = α− o (1) . (SA.47)

The second assertion of the theorem then follows from (SA.46) and (SA.47). Q.E.D.

SB Optimality of Spot Beta Testing

In this section, we establish an optimality result for the test based on the spot beta estimator.

The testing problem concerns the null hypothesis

H0 : βt = β∗,

for some constant β∗ against the alternative hypothesis

Ha : βt 6= β∗.

Theorem 1 in the main text suggests rejecting the null hypothesis at significance level α if and

only if √
k − 1

∣∣∣β̂t − β∗∣∣∣√
ς̂t/v̂t

> t1−α/2,k−1, (SB.1)

where t1−α/2,k−1 denotes the 1 − α/2 quantile of the tk−1 distribution. Below, we establish the

optimality of this test.

Recall that the vector of observed high-frequency returns in the local estimation window is

denoted by

rX ≡
(
∆n
i X/

√
∆n

)
i∈In,t

, rY ≡
(
∆n
i Y/

√
∆n

)
i∈In,t

.

Parallel to the definition of a regular estimator considered in Section II.B, we identify a test with

its critical function φ (rX , rY ) and refer to it as being regular if φ (·) is continuous (Lebesgue)
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almost everywhere. By Lemma 1, any regular test admits the following coupling

φ (rX , rY ) = φ
(
v

1/2
t η, βtv

1/2
t η + ς

1/2
t ε

)
+ op(1), (SB.2)

where the coupling variable on the right-hand side of (SB.2) can be viewed as a test in the limit

Gaussian linear regression experiment. We then define the asymptotic power function of φ (·) as

ψ (φ; vt, βt, ςt) ≡ E
[
φ
(
v

1/2
t η, βtv

1/2
t η + ς

1/2
t ε

)∣∣∣Ft] . (SB.3)

Since (η, ε) is independent of Ft, the asymptotic power depends on the conditioning information

only through (vt, βt, ςt). As such, the asymptotic power function can be readily computed for any

given critical function φ (·).
We call a regular test φ (·) asymptotically unbiased if it is unbiased in the limit experiment,

that is, for any v > 0, β ∈ R, and ς > 0,

ψ (φ; v, β, ς) ≤ α under H0 : β = β∗,

and

ψ (φ; v, β, ς) ≥ α under Ha : β 6= β∗.

Theorem S1, below, establishes the optimality of the test determined by (SB.1), namely,

φ∗ (rX , rY ) ≡ 1


√
k − 1

∣∣∣β̂t − β∗∣∣∣√
ς̂t/v̂t

> t1−α/2,k−1

 , (SB.4)

among asymptotically unbiased tests.

Theorem S1. The test φ∗ defined by (SB.4) is asymptotically uniformly most powerful among

asymptotically unbiased tests, that is,

ψ (φ∗; v, β, ς) ≥ ψ (φ; v, β, ς) for all v > 0, β ∈ R, ς > 0,

and any regular asymptotically unbiased test φ (·).

Proof. The key step is to show that the critical function φ∗ (·) constitutes the uniformly most

powerful (UMP) unbiased test in the limit Gaussian linear regression model given by

yi = xiβ + εi, xi ∼ N (0, v) , εi ∼ N (0, ς) , 1 ≤ i ≤ k,

where the variables xi, εi, 1 ≤ i ≤ k, are mutually independent. It is useful to note that, to test

the null hypothesis H0 : β = β∗ for any given β∗, we may replace yi with yi−xiβ∗ and equivalently
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test whether the slope coefficient is zero. Therefore, we may and will assume that β∗ = 0 without

loss of generality. Under the limit model, the φ∗ test can be written explicitly as

φ∗ (x,y) = 1


√
k − 1 |

∑
i xiyi|√(∑

i x
2
i

) (∑
i y

2
i

)
− (
∑

i xiyi)
2
> t1−α/2,k−1

 ,

where we write
∑

i in place of
∑k

i=1 for simplicity.

The joint density of (xi, yi)1≤i≤k belongs to the exponential family with the following repre-

sentation:

1

(2π)k ςk/2vk/2
exp

(
−
∑

i (yi − xiβ)2

2ς
−
∑

i x
2
i

2v

)

=
1

(2π)k ςk/2vk/2
exp

(
β

ς

∑
i

xiyi −
(
β2

2ς
+

1

2v

)∑
i

x2
i −

1

2ς

∑
i

y2
i

)

=
1

(2π)k ςk/2vk/2
exp

(
θU + ϑ1U

′
1 + ϑ2U

′
2

)
,

where

U ≡
∑
i

xiyi, U ′1 ≡
∑
i

x2
i , U ′2 ≡

∑
i

y2
i ,

θ ≡ β

ς
, ϑ1 ≡ −

(
β2

2ς
+

1

2v

)
, ϑ2 ≡ −

1

2ς
.

Since ς > 0, testing H0 : β = 0 is equivalent to testing H0 : θ = 0. We can thus apply Theorem

4.4.1 in Lehmann and Romano (2005) to show that φ∗ is the UMP unbiased test.

To proceed, we express the test φ∗ (x,y) using the sufficient statistics as

φ∗ (x,y) = 1

{ √
k − 1 |U |√
U ′1U

′
2 − U2

> t1−α/2,k−1

}
.

From here, it is easy to see that the test rejects the null hypothesis if and only if U falls outside a

closed interval determined by (U ′1, U
′
2), namely,

|U | > C
(
U ′1, U

′
2

)
≡

t1−α/2,k−1

√
U ′1U

′
2√

k − 1 + t21−α/2,k−1

, (SB.5)

which fulfills condition (4.16) in Lehmann and Romano (2005). To apply the said theorem, it

remains to check the following conditions:

E0

[
φ∗ (x,y) |U ′1, U ′2

]
= α, (SB.6)

E0

[
Uφ∗ (x,y) |U ′1, U ′2

]
= αE0

[
U |U ′1, U ′2

]
, (SB.7)
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where E0 denotes the expectation operator under the null hypothesis (i.e., β = 0).

To prove (SB.6), we note that the variable
√
k − 1U/

√
U ′1U

′
2 − U2 is tk−1-distributed when

β = 0, and so, its distribution does not depend on (ϑ1, ϑ2). Therefore, by Corollary 5.1.1 in

Lehmann and Romano (2005), U/
√
U ′1U

′
2 − U2 is independent of (U ′1, U

′
2). Hence,

E0

[
φ∗ (x,y) |U ′1, U ′2

]
= P0

( √
k − 1 |U |√
U ′1U

′
2 − U2

> t1−α/2,k−1

∣∣∣∣∣U ′1, U ′2
)

= P0

( √
k − 1 |U |√
U ′1U

′
2 − U2

> t1−α/2,k−1

)
= α.

This proves (SB.6) as desired. By symmetry, it is easy to see that the conditional distribution of

U given (U ′1, U
′
2) is symmetric around zero. From here, it follows that

E0

[
Uφ∗ (x,y) |U ′1, U ′2

]
= E0

[
U1
{
|U | > C

(
U ′1, U

′
2

)}
|U ′1, U ′2

]
= αE0

[
U |U ′1, U ′2

]
= 0,

which proves (SB.7).

By Theorem 4.4.1 in Lehmann and Romano (2005), φ∗ (x,y) is the UMP unbiased test for

H0 : β = β∗ versus Ha : β 6= β∗ under the limit Gaussian linear regression model. Hence, the

asymptotic power function of φ∗ (rX , rY ) dominates the power functions of all unbiased tests in

the limit experiment. Since the latter collection includes all asymptotic power functions of regular

asymptotically unbiased tests, φ∗ (rX , rY ) is asymptotically UMP unbiased. Q.E.D.

SC Empirical Robustness Checks

SC.1 Robustness checks for Section IV.A

Figures 2 and 3 in the main text present empirical results based on k = 15. Figures S1, S2, and S3

below provide analogous results for k = 10 and k = 5. As discussed in more detail in the main part

of the paper, the adoption of a smaller window size helps mitigate nonparametric biases, while

generally resulting in “noisier” inference. Meanwhile, underscoring the robustness of our empirical

findings, as the figures show, all of our key results and corresponding conclusions remain intact to

these alternative smaller choices of k.
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Figure S1: The figure is constructed in a similar way as Figure 2 in the main text, except that the

window size is set to k = 5 (top) or k = 10 (bottom).

SC.2 Robustness checks for Section IV.B

Figure 4 in the main text shows the estimates obtained with k = 15. Figures S4 and S5 below

provide robustness checks for k = 10 and k = 5, respectively. In parallel to the results discussed in

the main part of the paper, these additional results are based on the use of the SPY ETF as the

proxy for the market portfolio. As a further robustness check, we also repeat the same empirical

analysis with the QQQ ETF in place of the SPY. These results are shown in Figures S6, S7, and

S8. The key empirical findings and main conclusions from all of these additional robustness checks

again remain qualitatively the same as the results discussed in the main part of the paper.
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Figure S2: The figure is constructed in a similar way as Figure 3 in the main text, except that the

window size is set to k = 10.
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Figure S3: The figure is constructed in a similar way as Figure 3 in the main text, except that the

window size is set to k = 5.
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Figure S4: The figure is constructed in a similar way as Figure 4 in the main text, except that the

window size is set to k = 10.

Figure S5: The figure is constructed in a similar way as Figure 4 in the main text, except that the

window size is set to k = 5.
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Figure S6: The figure is constructed in a similar way as Figure 4 in the main text, except that

QQQ is used as the proxy for the market portfolio.

Figure S7: The figure is constructed in a similar way as Figure 4 in the main text, except that

QQQ is used as the proxy for the market portfolio and k = 10.
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Figure S8: The figure is constructed in a similar way as Figure 4 in the main text, except that

QQQ is used as the proxy for the market portfolio and k = 5.
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