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Abstract

This supplemental appendix contains three separate sections. Section SA collects the proofs
for all the theoretical results discussed in the main part of the paper. Section SB presents an
additional theoretical result, establishing the optimality of the t-test for spot beta. Section SC
presents various robustness checks related to the empirical analysis discussed in the main part

of the paper.
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SA Proofs

Throughout the proofs, we use K to denote a generic positive constant which may change from
line to line. We also sometimes write K, to stress its dependence on some parameter p. We may
further strengthen Assumptions 1 and 2 by assuming that the conditions hold for T7 = oo; this is
without loss of generality due to the standard localization procedure as shown in Section 4.4.1 in

Jacod and Protter (2012).

SA.1 Proofs for Section I

To prove Theorem 1, we need two lemmas that characterize the finite-sample behavior of the
estimators of interest in the “limit” Gaussian linear regression model. Although the proofs for

these lemmas are elementary, we provide them for completeness.

Lemma S1. If X = oW, and Y = X + ¢*/2Ws for some constants v > 0, € R, and ¢ > 0,

then
k—1(8; — Br)

VSt /0t

Proof. Under the parametric model considered in this lemma,

= &s. (SA.1)

ATX =o' 2ATW,, ATY = BATX + J2ATW.

Therefore,
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Combining ¢11, = k~lvéyy with (SA.2) and (SA.3), we deduce that

2
C11,tC22,t — 5%2,1: = Ci14 (52511,15 + 2k~ B0l 2M 2, + k‘_1§§22) - (5@11,t + k_1v1/2<1/2€12)
= ks (G162 — &) - (SA.4)

From the definitions of vy, Bt, and ¢; in the main text, it follows that

B, — B _ % — B __ Ciap— Pl (SA.5)
Vit /o \/‘32% Gy Jeniabay — By,
C11,t é%l,t ’
Plugging (SA.2) and (SA.4) into (SA.5) yields
B, — B _ §12
Vel VEnba — €
which readily implies the assertion of the lemma. Q.E.D.

Lemma S2. {3 has a t-distribution with degree of freedom k — 1.

Proof. Let U and V be two generic independent k-dimensional standard normal vectors. It is

easy to see that (£11, 19, 22) equals to (JU[*,UTV,||[V||?) in distribution. Denote

vu’
= Ik I )
U]

where I} is the k-dimensional identity matrix. Observe that

U'v)’

VIMV = ||V|? - %
1l

Since the matrix M is idempotent with trace k — 1 and V' ~ N (0, I;), the U-conditional distri-
bution of VI MV is Xifl almost surely.
Next, recall that by definition,
€12 a_ U v/ U]
\/(511522 — &) /[ (k—1) \/VTMV/ (k—1)

§p = (SA.6)

It is easy to see that the U-conditional distribution of U'V/||U|| is N (0,1). In addition, con-
ditional on U, (UTV,MV) are jointly normal; since MU = 0, U'V and MV are also con-
ditionally independent. Hence, U'V/ |U| is U-conditionally independent of (MV)' (MV) =
V' 'MYV. We have shown that the U-conditional distribution of V' MV is X:2_,. Combining



these facts, we see that, conditional on U, the variable on the right-hand side of (SA.6) is tx_1-
distributed, which further implies that its unconditional distribution is also ¢j_1. This proves the

assertion of the lemma. Q.E.D.

Proof of Theorem 1. Under Assumption 1(i), the probability that the estimation block 7, ;
contains at least one price jump is O (A,,). Therefore, with probability approaching 1, Z, ; does
not contain any price jump. Since our calculation concentrates on this one block, we can and will
without loss of generality assume in the subsequent analysis that there are no price jumps.

For each i € Z,,;, we set
_1/2 _ 1/2 _ T
Tni = Ut/ A?Wh Yni = /thn,i + S A?W% Zni = (mn,i; yn,i)

We then define
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which we further use to define 9}, 3,, and ¢} as
R N 2
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Lemma S1 implies that
Al
vk — I(Bt — 5t)
V3i/

Next, we show that é&—¢&; = 0,(1), for which we need some preliminary estimates. In particular,

=&p- (SA.7)

observe that for i € Z,, 4,

1An iAn
AP X =y = / b Sds—l—/ U;/Q — vl/Q AWy o+ Ul/2 _ v1/2 AW, (SA.8
7 (i—1)A, b (i—1)An ( (7'_1)An> 1, ( (i—-1)A, — Yt ) 1 ( )

iAnp
/ b1,3d8
(i_l)An

By It0 isometry and the fact that E[|vt1/2 - U(li/_21)An|2] < KAZ?: it follows that

Also note that
FE

] < KA, =o(AY?). (SA.9)
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and hence,

n 12 1/2 12
/@—mn (”8 VA, ) dW1s = 0p(A,/7). (SA.10)
Since v(ll/Ql)A o Utl/Q = Op(A7) and AW, = Op(Arlz/2), we also have

(v(lz/_?l) N 2) AT, = 0, (AL/2). (SA.11)

Combining (SA.8), (SA.9), (SA.10), and (SA.11), we deduce that A"X — 2, ; = 0,(A/?). By a

similar argument, we can also show that A'Y — vy, ; = 0, (Ay 12 ). Therefore,

JATZ = 20l = 0,(AV?). (SA.12)
It is also easy to see that z,; = O (Al/ 2) Thus, by the triangle inequality,
zmi”Q = 0p (Ayn).

_znz)

|@rz)(ar2)7 - 2042,

Since Z,,; contains a fixed number of elements, we further deduce that

= tH<T > ||[@rz) arz)T - 2z =0 ). (SA.13)

’Lezn t

Finally, since 9, and ¢} are strictly positive almost surely, we can use (SA.13) and the continuous

mapping theorem to conclude that

N ~l

Bt — ﬁt . 515 - Bt

Ve /34
The coupling claim of the theorem then follows from (SA.7) and the above display. The distribu-
tional claim is due to Lemma S2. Q.E.D.

= op(1).

Proof of Theorem 2. The assertions of the theorem follow from (SA.12) and the continuous

mapping theorem. Q.E.D.

Proof of Theorem 3. For simplicity, we write B [1:k] and ¢[1.) as B and ¢, respectively. For each

ie{l,...,k+ h}, we set
1/2 1/2 T
Tni = UO/ AW, Yng = Bon + Co/ AWa,  zpi = (Tng, Yng)

and use (2n,;),<;<, to define B, and ¢’ in the same way as described in the proof of Theorem 1.

As shown in the proof of Theorem 1,

A} Z — an” = 0p<A}L/2)7 B -8B = Op(l)a (-4 = Op(l)- (SA.14)



We further denote

h h h 2 ~/
1 N N (Z‘:l Tn k’—i—j) k¢
CAR, = P — ; , S, = h J : .
h E Unk+s E Tnkets | B sey ( B R

j=1 j=1 i=1"n,

The estimates in (SA.14) imply that
— B — B 1/2 o~
CARj, — CARj, = 0p(A,/7), sep, —se), = op(1),

yielding

A;Y2CAR AL YV2CAR
ﬁ =7, +o0p(l), where 7, = A
sep sej,

It remains to show that 75, defined in the above display is t;_i-distributed. Note that
12538 1/2 A —1/2 & —1/2 (%
APCARy, = ALY (Waeimya, — Wana,) = | D T | Ay (ﬁ - 50) '

Define k-dimensional random vectors U = (zy,)1<i<k and V = (A'Wy//Ap)1<i<k. 1t is easy to

show that 1/2 )
, U'v UTv)
AT —B) =2, k=g (IIVII |-
( ) Lol I

Let Uy denote the information set generated by Fy and the Wi process. Note that U is measurable

with respect to Up. Moreover, conditional on Up, the variables Wy (x1nya,, —Wa kA, _1/ 2 ( B —Bo),
_ —

and ¢’ are independent. This implies that A, 1/ ZCARh is independent of k¢’ conditional on Up.

Moreover, the Up-conditional distributions of these variables satisfy

A, V2CAR, L Tgers)? k!
b Uy ~ N 0, h + (Z]_]i ’k+j) ) = Uy ~ Xk 1-
Vo 21 Ty 0

These properties imply that 7, is t;_1-distributed conditional on Uy. The unconditional distribu-

tion of 73, is thus also t,_; as asserted. Q.E.D.

SA.2 Proofs for Section II

Proof of Lemma 1. Since Z, ; contains a fixed number of elements, the estimate in (SA.12) holds
jointly for all 7 € Z,, ;. From here, the assertion of the lemma readily follows due to the continuous

mapping theorem. Q.E.D.

Proof of Theorem 4. The spot beta estimator Bt may be rewritten as f5 (rx,Ty) = riry /T AT X.

Let f (rx,ry) be a generic asymptotically unbiased regular estimator for 5;. Recall from the main



text that the asymptotic risk function for f under the quadratic loss is given by, for v > 0, 8 € R,

and ¢ > 0,
R(fiv,B,)=E [(f(vl/Qn,ﬁvl/QnJrcl/ze) —Bﬂ :

where 1 and € are independent k-dimensional standard Gaussian random vectors. This is also the
finite-sample risk of f in the limit experiment with observations being (z,y) = (v'/?n, fv'/?n +
¢1/2¢). In the limit Gaussian experiment (which belongs to the exponential family), the vector

Tx,x"y,y"y) forms the complete sufficient statistic for (v, 3,<), where we use the fact that the

(x
mean is known to be zero in the limit experiment. It is easy to see that fz(«,y) is unbiased and,
because it is a function of the complete sufficient statistic, it is also uniformly minimum-variance
unbiased (see Theorem 2.1.11 in Lehmann and Casella (1998)). That is, R (f3;-) < R(f;) for any
f that satisfies F [f (x,y)] = . This proves that Bt is the asymptotically uniformly minimum-

variance unbiased estimator for S;. Q.E.D.

Finally, we prove Theorem 5. We need some notation and preliminary estimates. For each

je{l,...,my} and i € 7, ;, denote

Unj = VG-DkAn>  Png = BG-DkAns  Snj = SG-1)kAns
- _ 1/2an . - 1/2 An -~ . \T
Tni = vn,j Ai Wi, Yni = Bn,jxn,i + Cn’j Ai Wa, Zni = (xn,ia yn,i)
We define
~/ ~/
~ €115 €12 1 - T
Cc;, = = g Zn,iZn g
J LA en,g
'C~l 5/ n icT, -
21,5 €225 .
o -
and then set @7, 3;, and ’; as
~/ ~/ 2
S =1 Cro5 (012,‘)
— B — 5J — _ J
Vi=luy Pi=g s SjECT g
11,5 11,5

The following lemma collects some useful uniform approximation results.

Lemma S3. Suppose that min{1/2,k} > 2/k. Under Assumption 2, the following statements
holds for any fized constant v > 0:

(a) maxi<jcm, ||&; — & = op(AR™ /217,
(b) maxi<j<m, (|[& + 1&1) = 0p (A1)

1 AfQ/ka

(¢) maxi<j<m, (¢,;) " = op(An ™)

(d) for any constant q € (—00, 1), maxi<j<m, ]é’ij — éaq17j| =0,
min{l/Q,n}—i’)/k‘—L)
n

(Aglin{l/Q,/{}fQ(lfq)/ka) .

)

(e) maxi<jcm, €125/ (E115)"% — &g /(811 ;)P = 0p(A

)
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(f) if min{1/2, k} > 3/k, maxi<;<m,, |€j — i;‘ = op(A?in{l/Q’”}*g‘/k*L);
(9) if min{1/2,k} > 3/k+2/(k — 1),

~ \—1/2 ~/\—1/2 min{1/2,x}—-3/k—3/(k—1)—¢
e |(6)712 = (€)1 = oAt/ 90,

Proof. Part (a). For each i € 7, ;,

iAp iAp 1/2
APX — G = / bsds + / (v;/Q - vn/j) AW, (SA.15)
(i=1)An (i-1)An ’

Since the drift process is bounded under the localized version of Assumption 2, we have

iAn
/ blyst
(i—1)An,

Consider an arbitrary constant p > 2. Observe that

< KA,. (SA.16)

max
1<j<mn

iAn P iAn , |P/?
E / (’U;/Q — v}/f) AW s < K,E / (v;/z - ’U}l/jQ) ds
(i—1)A, ’ (i-1)A, ’
i iAn 9 p/2
= KpAﬁﬂE 1/ <v§/2 - 1)71/]2> ds
Ap (i—-1)An ’
[ it
< K,AP?E | — / V2 )2 " ds
_An (i-1)A, ’

< KpAgﬁ-l/Q)p,

where the first inequality is by the Burkholder-Davis—Gundy inequality, the second inequality is
by Jensen’s inequality, and the last inequality follows from the assumed k-Hoélder continuity of the

volatility process under the L,-norm. This estimate further implies

iAp
/ (02 = 0Z) amn| < KAz, (SA.17)
(i-1)Ap ’ »
Combining (SA.16) and (SA.17), we deduce
JAYX — i ill,, < Kp (An + Aty 2) : (SA.18)

1/2
n

By the triangle inequality, Holder’s inequality, and the fact that Hi'n,inp < KpA;/'”7, the estimate



in (SA.18) implies

1
AP X)? < i (ATX — F) H APX — G 2H
k:A > | mp—mnzox Tnillp ]|,
1€1Ln,, ; 1€L,
Kp n ~ n ~ 2
< i 2 (1l 187X = Zolly, + IATX — 0l3,)
1€Ly,
< Ky Z Al/Q(A +An+1/2>+<A +An+1/2>2
KA nyj

< K, (A}/Q + A;”;) .
Using a similar argument, we can extend this estimate to the multivariate case:

K, (A}/ 24 Ag) .

Z H (AT'Z) (ATZ ) —zmzll
€L, ;

kA
By the triangle inequality, this further implies that

l& - &, < K, (a2 +Ar).

Applying a maximal inequality under the L,-norm, we then have

~ ~/ 1/p Amin{l/2k min{1/2,k}—1/p
3o 16 — &)|||| < Kpmy/Pamntl/2el < o Amin{l/2e3=1/p,

p

Applying this estimate with p sufficiently large (i.e., 1/p < ), we deduce the assertion in part (a).

Part (b). It is easy to see that for each p, Hc] H is bounded uniformly across j € {1,...,m,}.
Applying a maximal inequality under the Ly-norm with p > 1/¢ yields maxi<j<m, HE; H =0, (A").
By the triangle inequality, this estimate and part (a) further imply maxi<j<m,, |||l = 0p (A,").

Part (c). Note that maxi<j<m, (¢, ;)7 < K maxi<j<m, 51_1173- and &1; are i.i.d. x3-distributed
variables. Since 51_11,3' has finite pth moment for any p < k/2, we can use an L, maximal inequality

for such p to deduce that
max 511 =0, (A;l/p> .

By taking p sufficiently close to k/2, we prove the assertion of part (c).
Part (d). By the mean value theorem,

‘Q| ’611,' - 5/11 ‘
- i (SA.19)

~ 1=q’
(clly + Anj (CUJ 011,]'))

where the variable A, ; takes values in [0, 1]. By part (c), there exists a positive real sequence 01y,

~q ~1q
“15 ~ G114

such that 6,1 = O(A;(Q/k)ﬂ) and maxi <j<m, (¢ ;)" < oy} with probability approaching 1. In

9



other words,

A(2/k)+L
P( min &;;>61,) —1land ——— —0. (SA.20)
1<j<mn J 51n
By part (a), there exists a positive real sequence da, = O(Amm{l/ 2} ") such that
P <1<Hjlg§1 |11 — &yl < 52n> — 1. (SA.21)

Under the assumption that min {1/2,x} > 2/k, it is possible to find ¢ > 0 sufficiently small such
that min{1/2,k} — ¢ > 2/k + ¢. Hence, d1,,/d2, — 00. By (SA.20) and (SA.21), we deduce that,
with probability approaching 1,

min &, . > 2 max 11 — )1 5
1<j<my, 1 <j< mn‘ J 11,J|7
which also implies that
1

max <2mes g

LIS gy Ay (G = By ) S g
This estimate and part (c) imply that

1

— 2(1—q)/k—t
1Snj12§1§n - - = =o0,(A, ) (SA.22)
( €115 + )\n] (Cllj Cnyj))

The assertion in part (d) then follows from (SA.19), (SA.22), and part (a).
Part (e). By the triangle inequality,

~ ~/
€12, o, ‘ €12,j = 61279" i 1 1
= + C12’ . = — . (SA23)
\/611,3 /011] V€115 | J’ V€115 /5’11&
Applying the estimate in part (d) with ¢ = —1/2, we deduce
= | =
Amln{l/? Kk}—3/k— L/2> (SA24)
1<]<mn C11,j 0117]
By part (a), part (c), and (SA.24),
‘EuJ B 5/12’3" Amin{1/2,x}—1/2 A-1/k=1/2 Amin{1/2,5}—3/k—1/2
max < o gnn JKE—t . (0 T—L —L +o ( gln K= —L ))
1<j<mn \/ﬁ P( ) P( ) p
= o, (Aglin{l/ln}fl/ka) ’ (SA25)
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where the last line holds because —1/k < min {1/2, k} — 3/k under the maintained assumption on

k. By part (b) and (SA.24), we also have

= op (Aglin{l/?»“}—?’/ 'H) . (SA.26)

~/
max ’C .
1<j<mp | 127

1 1
The assertion of part (e) readily follows from (SA.23), (SA.25), and (SA.26).
Part (f). By the triangle inequality,

5%2 5/22
~ ~/ ~ ~/ J 12,5
’gj — g‘]‘ S ‘0227]' — 0227‘7" + = ] - = . (SAQ?)
€115 €15
Another use of the triangle inequality yields
~2 ~12 ~/ ~ ~/
max G2 _ G124 2 max ‘125 max Clag _ ‘124
<< G117 Oy s <5< /- << SC11 - /-
1<j<my, C11,j 6117] 1<j<mn, Clll,j 1<j<mn, C11,5 clll,j
2
C12,j Ao j
+ max g ’] (SA.28)

I1<jsmn |\ /C11,5 /6/11j

g .
12,5 S K( 5117]' + |€127]| )

/&, ; VZSER,

and the variable &2 ;/+/&11,; is NV (0, 1) distributed. It is then easy to see that for any ¢ > 0,

Note that

€125 | .
(Jnax | —==| =0, (A,°). (SA.29)
11,5

~2 ~12
C : Cio .
max ~127J _ ~/127J =0, (Aglln{l/?,ﬁ}—(3/k)—b) ’
1<j<mn | C11,5 Cll,j

which together with (SA.27) and part (a) implies the assertion in part (f).
Part (g). Note that by Lemma S1 and Lemma S2, k<’ /<y ; is X3_,-distributed. Similar to part

(c), we have, for any ¢ > 0,
max (53»)_1 = 0, (A;2/(=1)=y (SA.30)

1<j<mn

Hence, there exists a positive real sequence d1, such that

—land —&=—— 0.

AQ/(k— 1)+
) 51n

P< min %> dy,
1<j<mn

11



gin{1/2,li}73/k7L)

By part (f), there exists a positive real sequence dz, = o(A such that

P( max ’5]- —5;-‘ < 62n> — 1.

1<j<mn

Since min{1/2,x} — 3/k > 2/(k — 1), it is possible to find a sufficiently small ¢ > 0 such that
min{1/2,k} —=3/k—1>2/(k—1) +,

which implies d1,, /2, — 00. These estimates imply that, with probability approaching 1,

. ~/ ~ ~/
min <: > 2 ma C—C SA.31
1<jm,, T = 1§j§§m‘gj <l ( )
By the mean value theorem,
I 55— 3]

VG T 2@ g G -3

for some variable \,; taking values in [0,1], which together with (SA.31) implies that, with
probability approaching 1,

1
max < K max |§j—§9‘~ max ——— (SA.32)

1 1
Isjsmn \/67-_ \/57 T 1<i<mn 1<j<my, (59)3/2'
J

The assertion of part (g) then follows from this estimate, (SA.30), and part (f). Q.E.D.

To prove the second assertion of Theorem 5, we also need to establish an anti-concentration
property for the maximum of the absolute values of t¢-distributed random variables, given by

Lemma S4 below.

Lemma S4. Let k > 2 and p};, (-) denote the probability density function of maxi<;j<m |£3,;|, where
the &g ; variables are i.i.d. t-distributed with degree of freedom k — 1. Then, there exists a finite
constant K* > 0 such that p}, (x) < K* for allm > 1 and x > 0.

Proof. Denote the probability density function and the cumulative distribution function of [{g ;|

by ¢ (-) and G (-), respectively. Since the (g ;) variables are i.i.d.,

1<j<m

P ( max |5, < :c) = (P(l&] < 2))™ = G (2)™

1<j<m

which implies that
pi (x) =mG ()" g (x). (SA.33)

12



Since G () is an increasing function,

w6 @ [Tg@aus [ pi o= p (w62 ) <1

Therefore,
mG (2)™! < W. (SA.34)
By (SA.33) and (SA.34),
P () < H(z) = %. (SA.35)

Let p(-) denote the probability density of the t-distribution with degree of freedom k — 1 and
note that g (x) = 2p (z) for x > 0. We can then rewrite

p(z)

[ p(u)du

H(x) =

Further recall that, by definition,

2\ ~k/2
2
p(x) =Cy (1 + - > , where Cj = [ (k/2)

k—1 VkE=1)al (k—1)/2)

By applying L’Hopital’s rule, we have

. kx
Jm H(z) = Jm s =0

It is also easy to see that H (-) is continuous with H (0) = 2Cy. This combined with the above
convergence implies that H (-) is uniformly bounded. The assertion of the lemma then follows

from (SA.35). Q.E.D.

Proof of Theorem 5. We first show that

/6 /an B; - Bn,j
1<]<mn \/m \/%

For this purpose, it is convenient to rewrite

=0, (1). (SA.36)

Bj — Bn,j  Any B; —Bni _ Anj

NCI RGN \/g

~
_ C12j o G2 =
Anj = —==—bnjVay Ay = — — Bn.j Cl1,5°
AVASEN] ’11]

where

13



Applying Lemma S3(d) with ¢ = 1/2 yields that for any ¢ > 0,

\/@ B \/@‘ = o, (A?in{l/ln}—l/k—b) .

Since the f§; process is uniformly bounded under Assumption 2 after localization, the estimate

max
1<j<mn

above and Lemma S3(e) imply that for any ¢ > 0,

max |An; — Al | = op (A;nin{l/z’”}_s/k_v . (SA.37)

1<j<mn

By the triangle inequality,

max 2l 2 < max [ + max |An]| . (SA.38)
1<j<mn | \/S5 AR 3 1<j<m NG g
Combining (SA.30) and (SA.37) yields
A — AL
o ’ »J n,J =0, (A;nin{l/ln}—3/k—1/(k—1)—L> ) (SA39)
1<j<mn o

J
By (SA.29) and Lemma S3(b), it is easy to see that maxi<j<m, [4], ;| = 0y (A,*). Then, by
(SA.37), we have for any ¢ > 0,

lglgx |An il = op (A1),

which together with Lemma S3(g) implies that for any ¢ > 0,

max |A, | (Agpin{1/20)=3/k=3/ (1)) (SA.40)

1 1
— — ——| = Op
1<j<mn \/gj \/g
Since min {1/2,k} — 3/k — 3/ (k — 1) > 0 under the maintained assumption on k, we can take ¢
sufficiently small so that the sequences in (SA.39) and (SA.40) are both o0,(1). The assertion in
(SA.36) then readily follows in view of (SA.38).

Next, we show that

Bt an
VS5l

B — By Vi (Be— Bng)

VSi/0; Vi

= 0,(1). (SA.41)

max sup
L<i<mn te[(—1)kAn,jkAn)

Rewrite

and then observe that

Bt /an
V/Si/0j
AN 1 = Brgl (5A.42)

< — max sup
1<j<mn (/G5 1SGSMn ge[(j—1)kAn,jkAn)

max sup
L<i<mn te[(—1)kAn,jkAn)
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By (SA.30) and Lemma S3(g), we have for any ¢ > 0,

1
max — =
1<j<mn /S

Op(Agl/(k_l)_L)>

which together with Lemma S3(b) implies that for any ¢ > 0,

max @ = op(A, /B2y, (SA-43)
J

1<j<mn \ﬁ

Moreover, it is easy to see that for any p > 2,

S KPA;;

p

sup Bt — Bn.jl
te|(j—1)kAn,jkAR]

and by a maximal inequality, we can show that for any « > 0,

max sup Bt — Bn,j| = o AZ*L/z . SA.44
lsjsmn te[(jq)mn,jmn]' ' ’ p( ) ( )
Combining (SA.42), (SA.43), and (SA.44) yields
515 - an —1/(k—1)—
max sup —=| =0, (A} “. SA.45
LSTSmn tel(j-1)kAn,jkAn] | V/$5/0j ! ( ) ( )

Since k — 1/ (k — 1) > 0 under maintained assumptions, we can take ¢+ > 0 sufficiently small to
make the random sequence in the above display op, (1). This proves (SA.41).
We are now ready to prove the first assertion of Theorem 5. By the definitions of Bt, U, and

St, it is easy to see that

sup /Bt _Bt = max sup lBj _lBt
te0,1] [ V/Se/Te | 1SISTmn (- 1)kAn kAR | VS 05|

which together with (SA.41) implies

sup Bt — O = Lj — Ong +o0p(1).
t€[0,7) | /St /0t 1<j<man | \/$;/0; b
By (SA.36), the estimate displayed above further implies
~ ~/
Bt — B ﬂj B Bn,j
sup —— | = max |——=|+o0,(1).
tef0,7] [ \/St/Ve|  1Sismm | /3517 :

The first assertion in Theorem 5 then follows from this estimate, Lemma S1, and Lemma S2.

To prove the second assertion of the theorem, we write for simplicity
Tp = sup —— ,
te[0,T AV Ct/Ut
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By the first assertion of the theorem, there exists a positive real sequence 6y = o (1) such that

|7 — 7| < 6,, with probability approaching 1. Therefore,

P(Tn>zn1 a) < P(T >zn1 a—Sn)—i-o(l)
= P(T > Zp - a ( —(5 <ty <zZng a)—l—o(l)
= P(T > 2p1- a) +0(5,)+0(1) =a+o0(1), (SA.46)

where the last line follows from Lemma S4. Similarly,

P(fn>zy14,) > P (T; > 2Zp1-at 5n) —o(1)

= P(T >zn1a (nl a<T <Zn1 a+5> (1)
= P(mh>zh1 0)— 0(6,) —o(1) =a —o(1). (SA.47)
The second assertion of the theorem then follows from (SA.46) and (SA.47). Q.E.D.

SB Optimality of Spot Beta Testing

In this section, we establish an optimality result for the test based on the spot beta estimator.

The testing problem concerns the null hypothesis
Hy : Bt = B7,

for some constant 5* against the alternative hypothesis

Hy: B # B*.
Theorem 1 in the main text suggests rejecting the null hypothesis at significance level « if and
only if
k—1\8—p"

— > 11 a/2,k-1s (SB.1)

\V Ct/vt
where t;_ /91 denotes the 1 — a/2 quantile of the #;_; distribution. Below, we establish the
optimality of this test.

Recall that the vector of observed high-frequency returns in the local estimation window is

denoted by
ry = (A?X/‘/A")ieln,t’ ry = (A?Y/‘/A”)ieIm'

Parallel to the definition of a regular estimator considered in Section II.B, we identify a test with

its critical function ¢ (rx,ry) and refer to it as being regular if ¢ (-) is continuous (Lebesgue)
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almost everywhere. By Lemma 1, any regular test admits the following coupling
1/2 1/2 1/2
é(rx,ry) = ¢(vt/ n,ﬂtvt/ n+ gt/ €) + op(1), (SB.2)
where the coupling variable on the right-hand side of (SB.2) can be viewed as a test in the limit

Gaussian linear regression experiment. We then define the asymptotic power function of ¢ (-) as

V(S5 Bry) = F [(ﬁ(vtl/??"l, B *n + 91/26) ’ ]-'t} . (SB.3)

Since (n, €) is independent of F;, the asymptotic power depends on the conditioning information
only through (v, B¢, <t). As such, the asymptotic power function can be readily computed for any
given critical function ¢ (-).

We call a regular test ¢ (-) asymptotically unbiased if it is unbiased in the limit experiment,

that is, for any v > 0, 8 € R, and ¢ > 0,

Y (¢;v,B,s) < aunder Hy : = (7,

and

Y (p;v,8,5) > aunder H, : § # [*.
Theorem S1, below, establishes the optimality of the test determined by (SB.1), namely,
VEk—1 ‘ B, — ﬁ*‘
— >t_a/2,k—1 (
Ve o /

¢* (Tx,T'y) =1 (SB4)

among asymptotically unbiased tests.

Theorem S1. The test ¢* defined by (SB.4) is asymptotically uniformly most powerful among

asymptotically unbiased tests, that is,

Y (¢%50,8,¢) 2 ¥ (¢5v,8,¢) for allv>0, BER, ¢ >0,
and any regular asymptotically unbiased test ¢ (-).
Proof. The key step is to show that the critical function ¢* (-) constitutes the uniformly most
powerful (UMP) unbiased test in the limit Gaussian linear regression model given by

vi = i + €, xiNN(O7U)76iNN(ng)a1§i§k>

where the variables xz;, ¢;, 1 < i < k, are mutually independent. It is useful to note that, to test

the null hypothesis Hy : 5 = 8* for any given 5%, we may replace y; with y; — z;5* and equivalently

17



test whether the slope coefficient is zero. Therefore, we may and will assume that * = 0 without

loss of generality. Under the limit model, the ¢* test can be written explicitly as

VE =113 ziyil

¢* (x,y) =1

>l a/2k-1 (>

where we write ) . in place of Zle for simplicity.

The joint density of (z;,i);<;<; belongs to the exponential family with the following repre-

sentation:
1 ox _Zi (i — xzﬂ)2 _ > 7}
(@m)F k/2gh/2 0 2 20
1 B gr o1 s 1 2
= —— - iYi— | 5= T 5 i T oo i
(QW)kgk/ka:/2 P <g ZZ:"T 4 <2§ 21}) zz:x 26 zz:y
1
where

U = szyz, U = Z:Ul, Uy = Z?Jw

B B2 1 1
0 = —, h=—-|=—+— Uy = ——.
) 1 2g+2v ) 2 9%

Since ¢ > 0, testing Hy : = 0 is equivalent to testing Hp : # = 0. We can thus apply Theorem
4.4.1 in Lehmann and Romano (2005) to show that ¢* is the UMP unbiased test.

To proceed, we express the test ¢* (x,y) using the sufficient statistics as

VE=1lU| _,

From here, it is easy to see that the test rejects the null hypothesis if and only if U falls outside a

¢*(m,y)=1{

closed interval determined by (U], U}), namely,

ti—a/2,k—1V/ U1U

\/k -1+ t%—a/2,k—1

which fulfills condition (4.16) in Lehmann and Romano (2005). To apply the said theorem, it

UI>C (U1, U) =

(SB.5)

remains to check the following conditions:

Ey [U¢* (z,y)|U7, Ué] = akFjy [U‘U{, Ué] , (SB.7)
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where Ej denotes the expectation operator under the null hypothesis (i.e., 5 = 0).
To prove (SB.6), we note that the variable vk — 1U/\/U{U} — U? is ty_;-distributed when

B = 0, and so, its distribution does not depend on (¢1,v3). Therefore, by Corollary 5.1.1 in
Lehmann and Romano (2005), U/+/U U} — U? is independent of (U], U}). Hence,

VE—1|U|
Pl e Sy e | ULUS

VE—1|U]|
Po| L >t opn | =a

This proves (SB.6) as desired. By symmetry, it is easy to see that the conditional distribution of

Ey [¢* (z,y) U], Us)]

U given (U7, U) is symmetric around zero. From here, it follows that
Eo [U¢* (z,y) U1, Uy| = Eo [UL{|U| > C (U1, Us) } |U1, Us] = oy [U|UY, Uy =0,

which proves (SB.7).

By Theorem 4.4.1 in Lehmann and Romano (2005), ¢* (x,y) is the UMP unbiased test for
Hy : B = p* versus H, : B # * under the limit Gaussian linear regression model. Hence, the
asymptotic power function of ¢* (rx,ry) dominates the power functions of all unbiased tests in
the limit experiment. Since the latter collection includes all asymptotic power functions of regular

asymptotically unbiased tests, ¢* (rx,ry) is asymptotically UMP unbiased. Q.E.D.

SC Empirical Robustness Checks

SC.1 Robustness checks for Section IV.A

Figures 2 and 3 in the main text present empirical results based on k = 15. Figures S1, S2, and S3
below provide analogous results for £k = 10 and k£ = 5. As discussed in more detail in the main part
of the paper, the adoption of a smaller window size helps mitigate nonparametric biases, while
generally resulting in “noisier” inference. Meanwhile, underscoring the robustness of our empirical
findings, as the figures show, all of our key results and corresponding conclusions remain intact to

these alternative smaller choices of k.
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Figure S1: The figure is constructed in a similar way as Figure 2 in the main text, except that the

window size is set to k =5 (top) or k = 10 (bottom).

SC.2 Robustness checks for Section IV.B

Figure 4 in the main text shows the estimates obtained with k = 15. Figures S4 and S5 below
provide robustness checks for £ = 10 and k = 5, respectively. In parallel to the results discussed in
the main part of the paper, these additional results are based on the use of the SPY ETF as the
proxy for the market portfolio. As a further robustness check, we also repeat the same empirical
analysis with the QQQ ETF in place of the SPY. These results are shown in Figures S6, S7, and
S8. The key empirical findings and main conclusions from all of these additional robustness checks

again remain qualitatively the same as the results discussed in the main part of the paper.
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Figure S2: The figure is constructed in a similar way as Figure 3 in the main text, except that the

window size is set to k = 10.
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Figure S3: The figure is constructed in a similar way as Figure 3 in the main text, except that the

window size is set to kK = 5.
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Figure S4: The figure is constructed in a similar way as Figure 4 in the main text, except that the

window size is set to k = 10.
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Figure S5: The figure is constructed in a similar way as Figure 4 in the main text, except that the

window size is set to kK = 5.
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Figure S6: The figure is constructed in a similar way as Figure 4 in the main text, except that

QQQ is used as the proxy for the market portfolio.

25 Pre-Event <+ Copilot in Microsoft 365 APPs Post-Event
< Introducing Microsoft 365 Copilot
2= < Satya Nadella announces new Al tool
1.5+
&
S
g 1
2
o
= 051 <+ Approach to Responsible Al
g < Introducing Business Chat
(=}
2 0 < Copilot in Teams and Business Process
05 < The Copilot system
1
-1.5 4 ! ! \
10:45 11:00 11:15 11:30 11:45 12:00

Time

Figure S7: The figure is constructed in a similar way as Figure 4 in the main text, except that
QQQ is used as the proxy for the market portfolio and k£ = 10.
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Figure S8: The figure is constructed in a similar way as Figure 4 in the main text, except that

QQQ is used as the proxy for the market portfolio and k& = 5.
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