The Comparative Statics of Sorting Axel Anderson and Lones Smith Online Appendix

D Nowhere Decreasing Optimizers

The space of matching cdf's is not a lattice, since the meet and the join are not defined for arbitrary matchings. ${ }^{\text {[23 }}$ The matching problem (3) does not have a lattice constraint or an objective function that is quasi-supermodular in the control: standard monotone comparative static results (e.g. Milgrom and Shannon ([1994)) do not apply. The next section presents a general comparative static result for single-crossing functions on partially ordered sets (posets) without assuming a well-defined meet or join. ${ }^{[\boxed{T a} \text { We }}$ then apply this result to our sorting model to get a nowhere decreasing sorting result.

D. 1 Nowhere Decreasing Optimizers for Arbitrary Posets

Let Z and Θ be posets. The correspondence $\varsigma: \Theta \rightarrow Z$ is nowhere decreasing if $z_{1} \in \varsigma\left(\theta_{1}\right)$ and $z_{2} \in \varsigma\left(\theta_{2}\right)$ with $z_{1} \succeq z_{2}$ and $\theta_{2} \succeq \theta_{1}$ imply $z_{2} \in \varsigma\left(\theta_{1}\right)$ and $z_{1} \in \varsigma\left(\theta_{2}\right)$.

Notably, any partial order \succeq induces a complete (nowhere decreasing) order \succeq^{*} such that $B \succeq^{*} A$ if $B=A$ or it is not true that $A \succeq B$. Since the domain of any complete order is a lattice, we can apply standard monotone logic, which we next do.

Theorem 3 (Nowhere Decreasing Optimizers). Let $F: Z \times \Theta \mapsto \mathbb{R}$, where Z and Θ are posets, and let $Z^{\prime} \subseteq Z$. If $\max _{z \in Z^{\prime}} F(z, \theta)$ exists for all θ and F is single crossing in (z, θ), then $\mathcal{Z}\left(\theta \mid Z^{\prime}\right) \equiv \arg \max _{z \in Z^{\prime}} F(z, \theta)$ is nowhere decreasing in θ for all Z^{\prime}. If $\mathcal{Z}\left(\theta \mid Z^{\prime}\right)$ is nowhere decreasing in θ for all $Z^{\prime} \subseteq Z$, then $F(z, \theta)$ is single crossing.
$(\Rightarrow):$ If $\theta_{2} \succeq \theta_{1}, z_{1} \in \mathcal{Z}\left(\theta_{1}\right), z_{2} \in \mathcal{Z}\left(\theta_{2}\right)$, and $z_{1} \succeq z_{2}$, optimality and single crossing give:

$$
F\left(z_{1}, \theta_{1}\right) \geq F\left(z_{2}, \theta_{1}\right) \quad \Rightarrow \quad F\left(z_{1}, \theta_{2}\right) \geq F\left(z_{2}, \theta_{2}\right) \quad \Rightarrow \quad z_{1} \in \mathcal{Z}\left(\theta_{2}\right)
$$

Now assume $z_{2} \notin \mathcal{Z}\left(\theta_{1}\right)$. By optimality and single crossing, we get the contradiction:

$$
F\left(z_{1}, \theta_{1}\right)>F\left(z_{2}, \theta_{1}\right) \quad \Rightarrow \quad F\left(z_{1}, \theta_{2}\right)>F\left(z_{2}, \theta_{2}\right) \quad \Rightarrow \quad z_{2} \notin \mathcal{Z}\left(\theta_{2}\right)
$$

[^0](\Leftarrow) : If F is not single crossing, then for some $z_{2} \succeq z_{1}$ and $\theta_{2} \succeq \theta_{1}$, either: $(i) F\left(z_{2}, \theta_{1}\right) \geq$ $F\left(z_{1}, \theta_{1}\right)$ and $F\left(z_{2}, \theta_{2}\right)<F\left(z_{1}, \theta_{2}\right)$; or, $(i i) F\left(z_{2}, \theta_{1}\right)>F\left(z_{1}, \theta_{1}\right)$ and $F\left(z_{2}, \theta_{2}\right) \leq F\left(z_{1}, \theta_{2}\right)$. Let $Z^{\prime}=\left\{z_{1}, z_{2}\right\}$. In case $(i), z_{2} \in \mathcal{Z}\left(\theta_{1} \mid Z^{\prime}\right)$ and $z_{1}=\mathcal{Z}\left(\theta_{2} \mid Z^{\prime}\right)$ precludes $\mathcal{Z}\left(\theta \mid Z^{\prime}\right)$ nowhere decreasing in θ, since $z_{2} \notin \mathcal{Z}\left(\theta_{2} \mid Z^{\prime}\right)$. In case $(i i), z_{2}=\mathcal{Z}\left(\theta_{1} \mid Z^{\prime}\right)$ and $z_{1} \in$ $\mathcal{Z}\left(\theta_{2} \mid Z^{\prime}\right)$ precludes $\mathcal{Z}\left(\theta \mid Z^{\prime}\right)$ nowhere decreasing in θ, since $z_{1} \notin \mathcal{Z}\left(\theta_{1} \mid Z^{\prime}\right)$.

D. 2 Nowhere Decreasing Sorting

Sorting is nowhere decreasing in θ if the matching never falls in the PQD order. So for all $\theta_{2} \succeq \theta_{1}$, if $M_{1} \in \mathcal{M}^{*}\left(\theta_{1}\right)$ and $M_{2} \in \mathcal{M}^{*}\left(\theta_{2}\right)$ are ranked $M_{1} \succeq_{P Q D} M_{2}$, then we have $M_{2} \in \mathcal{M}^{*}\left(\theta_{1}\right)$ and $M_{1} \in \mathcal{M}^{*}\left(\theta_{2}\right)$. We say that weighted synergy is upcrossing ${ }^{[23]}$ in θ if the following is upcrossing in θ :

- $\int \phi_{12}(x, y \mid \theta) \lambda(x, y) d x d y$ for all nonnegative (measurable) ${ }^{26 \pi}$ functions λ on $[0,1]^{2}$
- $\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} s_{i j}(\theta) \lambda_{i j}$ for all positive weights $\lambda \in \mathbb{R}_{+}^{(n-1)^{2}}$

We first present the continuum analogue of the finite match output formula (國) ${ }^{[2]}$
Lemma 3 (Continuum Types). Given type intervals $\mathcal{I} \equiv[0,1]$ and $\mathcal{J} \equiv(0,1]$, then:
$\int_{\mathcal{I}^{2}} \phi(x, y) M(d x, d y)=\int_{\mathcal{I}} \phi(x, 1) G(d x)-\int_{\mathcal{J}} \phi_{2}(1, y) H(y) d y+\int_{\mathcal{J}^{2}} \phi_{12}(x, y) M(x, y) d x d y$
Proof: If ψ is C^{1} on $[0,1]$ and Γ is a cdf on $[0,1]$, integration by parts yields:

$$
\begin{equation*}
\int_{[0,1]} \psi(z) \Gamma(d z)=\psi(1) \Gamma(1)-\int_{(0,1]} \psi^{\prime}(z) \Gamma(z) d z \tag{29}
\end{equation*}
$$

where the interval $(0,1]$ accounts for the possibility that Γ may have a mass point at 0 . Since $M(d x, y) \equiv M(y \mid x) G(d x)$ for a conditional matching cdf $M(y \mid x)$, we have:

$$
\begin{equation*}
M(x, y) \equiv \int_{[0, x]} M\left(y \mid x^{\prime}\right) G\left(d x^{\prime}\right) \tag{30}
\end{equation*}
$$

By Theorem 34.5 in Billingsley ([99.5) and then in sequence (29), (30) and Fubini's

[^1]Theorem, (29), the objective function $\int_{[0,1]^{2}} \phi(x, y) M(d x, d y)$ in (3) equals:

$$
\begin{aligned}
& \int_{[0,1]} \int_{[0,1]} \phi(x, y) M(d y \mid x) G(d x) \\
= & \int_{[0,1]} \phi(x, 1) G(d x)-\int_{[0,1]} \int_{(0,1]} \phi_{2}(x, y) M(y \mid x) d y G(d x) \\
= & \int_{[0,1]} \phi(x, 1) G(d x)-\int_{(0,1]}\left[\phi_{2}(1, y) M(1, y)-\int_{(0,1]} \phi_{12}(x, y) M(x, y) d x\right] d y
\end{aligned}
$$

which easily reduces to the desired expression, using $M(1, y)=H(y)$.
Theorem 4. Sorting is nowhere decreasing in θ if weighted synergy is upcrossing in θ, and thus if synergy is nondecreasing in θ. Also, if sorting is nowhere decreasing in θ for all type distributions G, H, then any rectangular synergy is upcrossing in θ.

Proof of (a) : First, $M^{\prime} \succeq_{P Q D} M$ iff $\lambda \equiv M^{\prime}-M \geq 0$. As weighted synergy upcrosses:

$$
\begin{gather*}
\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} s_{i j}(\theta)\left(M_{i j}^{\prime}-M_{i j}\right) \geq(>) 0 \Rightarrow \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} s_{i j}\left(\theta^{\prime}\right)\left(M_{i j}^{\prime}-M_{i j}\right) \geq(>) 0 \tag{31}\\
\int_{(0,1]^{2}} \phi_{12}(\cdot \mid \theta)\left(M^{\prime}-M\right) \geq(>) 0 \Rightarrow \int_{(0,1]^{2}} \phi_{12}\left(\cdot \mid \theta^{\prime}\right)\left(M^{\prime}-M\right) \geq(>) 0
\end{gather*}
$$

 for continuum types. Then the optimal matching $\mathcal{M}^{*}(\theta)$ (in the space of feasible matchings $\mathcal{M}(G, H))$ is nowhere decreasing in the state θ, by Theorem [3].

Proof of (b): Assume two women $\left(x_{1}, x_{2}\right)$ and men $\left(y_{1}, y_{2}\right)$, and that $S(R \mid \theta)$ is not upcrossing in θ, i.e. for some $\theta^{\prime \prime} \succeq \theta^{\prime}$ and rectangle $R=\left(x_{1}, y_{1}, x_{2}, y_{2}\right)$, we have $S\left(R \mid \theta^{\prime \prime}\right) \leq 0 \leq S\left(R \mid \theta^{\prime}\right)$ with one inequality strict. These inequalities imply that NAM optimal at $\theta^{\prime \prime}$ and PAM optimal at θ^{\prime}, and either NAM is uniquely optimal at $\theta^{\prime \prime}$ or PAM is uniquely optimal at θ^{\prime}. Either case precludes nowhere decreasing sorting.

Easily, weighted synergy is upcrossing in θ if synergy is non-decreasing in θ. Thus:
Corollary 2 (Cambanis, Simons, and Stout (1976)). Sorting is nowhere decreasing in θ if synergy is non-decreasing in θ.

E Omitted Proofs for Economic Applications in §7

1. Diminishing Returns: Let $R(z \mid \theta) \equiv-z \psi^{\prime \prime}(z \mid \theta) / \psi^{\prime}(z \mid \theta)$. Synergy is then:

$$
\begin{equation*}
\phi_{12}(x, y \mid \theta)=\psi^{\prime}(x y \mid \theta)\left[\frac{\psi^{\prime \prime}(x y \mid \theta) x y}{\psi^{\prime}(x y \mid \theta)}+1\right] \equiv \psi^{\prime}(x y \mid \theta)(1-R(x y \mid \theta)) \tag{32}
\end{equation*}
$$

By assumption $\psi^{\prime}>0$ and $R(x y \mid \theta)$ is decreasing in x, y, and $t=1-\theta$. Thus, synergy strictly upcrosses in x, y, and t. Further, $\psi^{\prime}(x y \mid 1-t)$ is LSPM in (x, y, t), since

$$
\left[\log \left(\psi^{\prime}(x y \mid 1-t)\right)\right]_{x}=\frac{y \psi^{\prime \prime}(x y \mid 1-t)}{\psi^{\prime}(x y \mid 1-t)}=-x^{-1} R(x y \mid 1-t)
$$

is increasing in y and t by $R(z \mid \theta)$ decreasing in z and increasing in θ. Altogether, synergy (322) is the product of a strictly positive LSPM function and an increasing function; and thus, sorting increases in $t=1-\theta$ by Proposition 回, and so falls in θ.
2. Weakest to Strongest Link: We verify the premise of Proposition $\mathbb{\theta}$ to prove that sorting sorting increases in ρ for $\phi(x, y)=\psi(q(x, y))$ as in $\S[\mathcal{L}$. Symmetric steps generalize this result for any $\psi^{\prime \prime}<0<\psi^{\prime}$, obeying $2 \psi^{\prime \prime}(q)+q \psi^{\prime \prime \prime}(q) \leq 0$.

$$
\begin{equation*}
\phi_{12}(x, y)=\frac{q_{1}(x, y) q_{2}(x, y)}{q(x, y)}[(1+\rho)(\alpha-2 \beta q(x, y))-2 \beta q(x, y)] \tag{33}
\end{equation*}
$$

Step 1. Marginal rectangular synergy is strictly downcrossing in types.
Proof: Since $q(x, y)$ increases in (x, y) and falls in ρ, the bracketed term in (B33) falls in (x, y) and rises in ρ. Thus, synergy (B3]) is upcrossing in ρ and is strictly downcrossing in (x, y). Further, since $q_{1}(x, y) q_{2}(x, y) / q(x, y)$ is LSPM in (x, y) when $\rho \geq 0$, synergy is proportionately downcrossing in (x, y). So, marginal rectangular synergy is downcrossing in types, by Theorem \mathbb{I}. Finally, marginal rectangular synergy is strictly downcrossing in (x, y) by the proof logic after inequality (28) in Appendix [C.5.

Step 2. Summed rectangular synergy is upcrossing in ρ.
Proof: Since $\phi_{12}(x, y)=\phi_{12}(y, x)$, weighted synergy $\int_{[0,1]^{2}} \phi_{12} \hat{\lambda}$ is upcrossing in ρ for all weighting functions $\hat{\lambda}$, iff $\int_{0}^{1} \int_{0}^{x} \phi_{12}(x, y) \lambda(x, y) d x d y$ is upcrossing in ρ for all weighting functions λ. Now use change of variable $y=k x$ to get:

$$
\int_{0}^{1} \int_{0}^{x} \phi_{12}(x, y) \lambda(x, y) d y d x=2 \int_{0}^{1} \int_{0}^{1} x \phi_{12}(x, k x) \lambda(x, k x) d k d x
$$

Let $x \phi_{12}(x, k x)=\sigma_{A}(k, \rho) \sigma_{B}(x, k, \rho)$, where $\sigma_{A} \equiv x q_{1}(x, k x) q_{2}(x, k x) / q(x, k x)$ and σ_{B} is the bracketed term in (B33) evaluated at $y=k x$. Routine algebra yields $\sigma_{A}(k, \rho)$ LSPM in (k, ρ), while $\sigma_{B}(x, k, \rho)$ is decreasing in (x, k) and increasing in ρ. Altogether, $\sigma_{A} \sigma_{B}$ is proportionately upcrossing in (x, k, ρ). As synergy is also upcrossing in ρ by Step \mathbb{I}, so is weighted synergy, by Theorem (I) as is summed rectangular synergy.
3. Nowhere Decreasing Sorting in Kremer and Maskin (1996):

We prove ([3]): sorting is nowhere decreasing in θ and nowhere increasing in $\varrho=-\rho$.

Step 1. PAM is not optimal if $\varrho>(1-2 \theta)^{-1}$, and is uniquely optimal for $\varrho<(1-2 \theta)^{-1}$.
Proof: In a unisex model, PAM is optimal iff the symmetric rectangular synergy $S(x, x, y, y)$ is globally positive. Its sign is constant along any ray $y=k x$, and proportional to:

$$
\begin{equation*}
s(k) \equiv 2^{\frac{1-2 \theta}{\varrho}}(1+k)-2 k^{\theta}\left(1+k^{\varrho}\right)^{\frac{1-2 \theta}{\varrho}} \tag{34}
\end{equation*}
$$

Since $s(1)=s^{\prime}(1)=0, s^{\prime \prime}(1) \propto(1+\varrho(2 \theta-1))$, and $\theta \in[0,1 / 2]$, we have $s(k)<0$ close to $k=1$ precisely when $\varrho>(1-2 \theta)^{-1} \geq 1$. In this case, the symmetric rectangular synergy is negative in a cone around the diagonal, and PAM fails.

Conversely, posit $\varrho<(1-2 \theta)^{-1}$. Then $s(k)>0$ for all $k \in[0,1]$. Since $S(x, x, y, y)$ is symmetric about $y=x$, it is globally positive and PAM is uniquely optimal.

Step 2. If $\varrho \geq(1-2 \theta)^{-1}$ then weighted synergy is upcrossing in θ, downcrossing in ϱ.
Proof: Change variables $y=k x$. If $\Delta(k)=\int_{0}^{1} \lambda(x, k x) d x$, weighted synergy is

$$
\iint \phi_{12}(x, y) \lambda(x, y) d y d x=2 \int_{0}^{1} \int_{0}^{1} x \phi_{12}(x, k x) \lambda(x, k x) d k d x=\int_{0}^{1} \sigma(k, \theta, \varrho) \Delta(k) d k
$$

where $\sigma=\sigma_{A} \sigma_{B}$ for $\sigma_{A} \equiv 2 k^{\theta-1}\left(1+k^{\varrho}\right)^{\frac{1-2 \theta-2 \varrho}{\varrho}}$ and $\sigma_{B} \equiv \theta(1-\theta)\left(1+k^{2 \varrho}\right)+(1-\varrho+$ $2 \theta(\theta-1+\varrho)) k^{\varrho}$. As $\varrho \geq(1-2 \theta)^{-1}, \sigma_{A}>0$ is LSPM in $(k, \theta, \varrho), \sigma_{B}$ is increasing in $(\theta,-k,-\varrho)$ for $k \in[0,1]$. So $\sigma=\sigma_{A} \sigma_{B}$ is proportionately downcrossing in (k, θ) and $(k,-\varrho)$. Weighted synergy is upcrossing in θ, downcrossing in ϱ, by Theorem \mathbb{D}.

Step 3. Sorting is nowhere decreasing in θ and nowhere increasing in ϱ.
Proof: Pick $\theta^{\prime \prime}>\theta^{\prime}$. If $\varrho<\left(1-2 \theta^{\prime \prime}\right)^{-1}$, then PAM is uniquely optimal at $\theta^{\prime \prime}$ (Step 1) and sorting increases from θ^{\prime} to $\theta^{\prime \prime}$. If $\varrho \geq\left(1-2 \theta^{\prime \prime}\right)^{-1}$, then $\varrho>\left(1-2 \theta^{\prime}\right)^{-1}$ and weighted synergy is upcrossing on $\left[\theta^{\prime}, \theta^{\prime \prime}\right]$ (Step 2) and sorting is non-decreasing (Proposition π^{\prime}).

Now pick any θ and $\varrho^{\prime \prime}>\varrho^{\prime}$. If $\varrho^{\prime}<(1-2 \theta)^{-1}$, then PAM is uniquely optimal at ϱ^{\prime} (Step 1) and sorting is decreasing from ϱ^{\prime} to $\varrho^{\prime \prime}$. If, instead, $\varrho^{\prime} \geq(1-2 \theta)^{-1}$, then, necessarily, $\varrho^{\prime \prime}>(1-2 \theta)^{-1}$, weighted synergy is downcrossing from ϱ^{\prime} to $\varrho^{\prime \prime}$ (Step 2) and sorting is non-increasing in ϱ, by Proposition 四.

[^0]: ${ }^{23}$ As shown in Proposition 4.12 in Müller and Scarsinil (2006): If M dominates PAM2 and PAM4, then $M(2,1) \geq 1 / 3$ and $M(1,2) \geq 1 / 3$, but $M(1,1)=0$ if NAM1 and NAM3 dominate M. So then $M(2,2)=2 / 3$, but then NAM1 cannot PQD dominate M.
 ${ }^{24}$ This may be a known result. We include it for completeness, and as we cannot find any reference.

[^1]: ${ }^{25}$ Let Z be a partially ordered set. The function $\sigma: Z \mapsto \mathbb{R}$ is upcrossing if $\sigma(z) \geq(>) 0$ implies $\sigma\left(z^{\prime}\right) \geq(>) 0$ for $z^{\prime} \succeq z$, downcrossing if $-\sigma$ is upcrossing. Similarly, σ is strictly upcrossing if $\sigma(z) \geq 0$ implies $\sigma\left(z^{\prime}\right)>0$ for all $z^{\prime} \succ z$, with strictly downcrossing defined analoguously.
 ${ }^{26}$ To save space, we henceforth assume measurable sets for integrals whenever needed.
 ${ }^{27}$ Equation (9) in Cambanis, Simons, and Stout (ITY76) reduces to our formula when output is C^{2}. We present our simpler proof for the C^{2} case for completeness.

