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D Nowhere Decreasing Optimizers

The space of matching cdf’s is not a lattice, since the meet and the join are not defined

for arbitrary matchings.23 The matching problem (3) does not have a lattice constraint

or an objective function that is quasi-supermodular in the control: standard monotone

comparative static results (e.g. Milgrom and Shannon (1994)) do not apply. The next

section presents a general comparative static result for single-crossing functions on

partially ordered sets (posets) without assuming a well-defined meet or join.24 We

then apply this result to our sorting model to get a nowhere decreasing sorting result.

D.1 Nowhere Decreasing Optimizers for Arbitrary Posets

Let Z and Θ be posets. The correspondence ς : Θ → Z is nowhere decreasing if

z1 ∈ ς(θ1) and z2 ∈ ς(θ2) with z1 ⪰ z2 and θ2 ⪰ θ1 imply z2 ∈ ς(θ1) and z1 ∈ ς(θ2).

Notably, any partial order ⪰ induces a complete (nowhere decreasing) order ⪰∗

such that B ⪰∗ A if B = A or it is not true that A ⪰ B. Since the domain of any

complete order is a lattice, we can apply standard monotone logic, which we next do.

Theorem 3 (Nowhere Decreasing Optimizers). Let F : Z × Θ 7→ R, where Z and Θ

are posets, and let Z ′ ⊆ Z. If maxz∈Z′ F (z, θ) exists for all θ and F is single crossing

in (z, θ), then Z(θ|Z ′) ≡ argmaxz∈Z′ F (z, θ) is nowhere decreasing in θ for all Z ′. If

Z(θ|Z ′) is nowhere decreasing in θ for all Z ′ ⊆ Z, then F (z, θ) is single crossing.

(⇒): If θ2 ⪰ θ1, z1∈Z(θ1), z2∈Z(θ2), and z1 ⪰ z2, optimality and single crossing give:

F (z1, θ1) ≥ F (z2, θ1) ⇒ F (z1, θ2) ≥ F (z2, θ2) ⇒ z1 ∈ Z(θ2)

Now assume z2 /∈ Z(θ1). By optimality and single crossing, we get the contradiction:

F (z1, θ1) > F (z2, θ1) ⇒ F (z1, θ2) > F (z2, θ2) ⇒ z2 /∈ Z(θ2)

23As shown in Proposition 4.12 in Müller and Scarsini (2006): If M dominates PAM2 and PAM4,
then M(2, 1) ≥ 1/3 and M(1, 2) ≥ 1/3, but M(1, 1) = 0 if NAM1 and NAM3 dominate M . So then
M(2, 2) = 2/3, but then NAM1 cannot PQD dominate M .

24This may be a known result. We include it for completeness, and as we cannot find any reference.



(⇐): If F is not single crossing, then for some z2 ⪰ z1 and θ2 ⪰ θ1, either: (i) F (z2, θ1)≥
F (z1, θ1) and F (z2, θ2)<F (z1, θ2); or, (ii) F (z2, θ1)>F (z1, θ1) and F (z2, θ2)≤F (z1, θ2).
Let Z ′ = {z1, z2}. In case (i), z2 ∈ Z(θ1|Z ′) and z1 = Z(θ2|Z ′) precludes Z(θ|Z ′)

nowhere decreasing in θ, since z2 /∈ Z(θ2|Z ′). In case (ii), z2 = Z(θ1|Z ′) and z1 ∈
Z(θ2|Z ′) precludes Z(θ|Z ′) nowhere decreasing in θ, since z1 /∈ Z(θ1|Z ′). □

D.2 Nowhere Decreasing Sorting

Sorting is nowhere decreasing in θ if the matching never falls in the PQD order. So for

all θ2 ⪰ θ1, if M1 ∈ M∗(θ1) and M2 ∈ M∗(θ2) are ranked M1 ⪰PQD M2, then we have

M2 ∈ M∗(θ1) and M1 ∈ M∗(θ2). We say that weighted synergy is upcrossing25 in θ if

the following is upcrossing in θ:

•
∫
ϕ12(x, y|θ)λ(x, y)dxdy for all nonnegative (measurable)26 functions λ on [0, 1]2

•
∑n−1

i=1

∑n−1
j=1 sij(θ)λij for all positive weights λ ∈ R(n−1)2

+

We first present the continuum analogue of the finite match output formula (5).27

Lemma 3 (Continuum Types). Given type intervals I ≡ [0, 1] and J ≡ (0, 1], then:∫
I2 ϕ(x, y)M(dx, dy) =

∫
I ϕ(x, 1)G(dx)−

∫
J ϕ2(1, y)H(y)dy+

∫
J 2 ϕ12(x, y)M(x, y)dxdy

Proof: If ψ is C1 on [0, 1] and Γ is a cdf on [0, 1], integration by parts yields:∫
[0,1]

ψ(z)Γ(dz) = ψ(1)Γ(1)−
∫
(0,1]

ψ′(z)Γ(z)dz (29)

where the interval (0, 1] accounts for the possibility that Γ may have a mass point at 0.

Since M(dx, y) ≡M(y|x)G(dx) for a conditional matching cdf M(y|x), we have:

M(x, y) ≡
∫
[0,x]

M(y|x′)G(dx′) (30)

By Theorem 34.5 in Billingsley (1995) and then in sequence (29), (30) and Fubini’s

25Let Z be a partially ordered set. The function σ : Z 7→ R is upcrossing if σ(z) ≥ (>)0 implies
σ(z′) ≥ (>)0 for z′ ⪰ z, downcrossing if −σ is upcrossing. Similarly, σ is strictly upcrossing if σ(z) ≥ 0
implies σ(z′) > 0 for all z′ ≻ z, with strictly downcrossing defined analoguously.

26To save space, we henceforth assume measurable sets for integrals whenever needed.
27Equation (9) in Cambanis, Simons, and Stout (1976) reduces to our formula when output is C2.

We present our simpler proof for the C2 case for completeness.
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Theorem, (29), the objective function
∫
[0,1]2

ϕ(x, y)M(dx, dy) in (3) equals:∫
[0,1]

∫
[0,1]

ϕ(x, y)M(dy|x)G(dx)

=

∫
[0,1]

ϕ(x, 1)G(dx)−
∫
[0,1]

∫
(0,1]

ϕ2(x, y)M(y|x)dyG(dx)

=

∫
[0,1]

ϕ(x, 1)G(dx)−
∫
(0,1]

[
ϕ2(1, y)M(1, y)−

∫
(0,1]

ϕ12(x, y)M(x, y)dx

]
dy

which easily reduces to the desired expression, using M(1, y) = H(y). □

Theorem 4. Sorting is nowhere decreasing in θ if weighted synergy is upcrossing in θ,

and thus if synergy is nondecreasing in θ. Also, if sorting is nowhere decreasing in θ

for all type distributions G,H, then any rectangular synergy is upcrossing in θ.

Proof of (a): First, M ′⪰PQDM iff λ≡M ′−M ≥ 0. As weighted synergy upcrosses:∑n−1
i=1

∑n−1
j=1 sij(θ)(M

′
ij −Mij) ≥ (>) 0 ⇒

∑n−1
i=1

∑n−1
j=1 sij(θ

′)(M ′
ij −Mij) ≥ (>) 0∫

(0,1]2
ϕ12(·|θ)(M ′ −M) ≥ (>) 0 ⇒

∫
(0,1]2

ϕ12(·|θ′)(M ′ −M) ≥ (>) 0
(31)

Thus, match output is single crossing in (M, θ) by (5) (for finite types) and Lemma 3

for continuum types. Then the optimal matching M∗(θ) (in the space of feasible

matchings M(G,H)) is nowhere decreasing in the state θ, by Theorem 3.

Proof of (b): Assume two women (x1, x2) and men (y1, y2), and that S(R|θ) is

not upcrossing in θ, i.e. for some θ′′ ⪰ θ′ and rectangle R = (x1, y1, x2, y2), we have

S(R|θ′′) ≤ 0 ≤ S(R|θ′) with one inequality strict. These inequalities imply that NAM

optimal at θ′′ and PAM optimal at θ′, and either NAM is uniquely optimal at θ′′ or

PAM is uniquely optimal at θ′. Either case precludes nowhere decreasing sorting. □

Easily, weighted synergy is upcrossing in θ if synergy is non-decreasing in θ. Thus:

Corollary 2 (Cambanis, Simons, and Stout (1976)). Sorting is nowhere decreasing

in θ if synergy is non-decreasing in θ.

E Omitted Proofs for Economic Applications in §7
1. Diminishing Returns: Let R(z|θ) ≡ −zψ′′(z|θ)/ψ′(z|θ). Synergy is then:

ϕ12(x, y|θ) = ψ′(xy|θ)
[
ψ′′(xy|θ)xy
ψ′(xy|θ)

+ 1

]
≡ ψ′(xy|θ)(1−R(xy|θ)) (32)
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By assumption ψ′ > 0 and R(xy|θ) is decreasing in x, y, and t = 1− θ. Thus, synergy

strictly upcrosses in x, y, and t. Further, ψ′(xy|1− t) is LSPM in (x, y, t), since

[log (ψ′(xy|1− t))]x =
yψ′′(xy|1− t)

ψ′(xy|1− t)
= −x−1R(xy|1− t)

is increasing in y and t by R(z|θ) decreasing in z and increasing in θ. Altogether,

synergy (32) is the product of a strictly positive LSPM function and an increasing

function; and thus, sorting increases in t = 1− θ by Proposition 5, and so falls in θ.

2. Weakest to Strongest Link: We verify the premise of Proposition 4 to prove

that sorting sorting increases in ρ for ϕ(x, y) = ψ(q(x, y)) as in §7.2. Symmetric steps

generalize this result for any ψ′′ < 0 < ψ′, obeying 2ψ′′(q) + qψ′′′(q) ≤ 0.

ϕ12(x, y) =
q1(x, y)q2(x, y)

q(x, y)
[(1 + ρ)(α− 2βq(x, y))− 2βq(x, y)] (33)

Step 1. Marginal rectangular synergy is strictly downcrossing in types.

Proof: Since q(x, y) increases in (x, y) and falls in ρ, the bracketed term in (33) falls

in (x, y) and rises in ρ. Thus, synergy (33) is upcrossing in ρ and is strictly down-

crossing in (x, y). Further, since q1(x, y)q2(x, y)/q(x, y) is LSPM in (x, y) when ρ ≥ 0,

synergy is proportionately downcrossing in (x, y). So, marginal rectangular synergy is

downcrossing in types, by Theorem 1. Finally, marginal rectangular synergy is strictly

downcrossing in (x, y) by the proof logic after inequality (28) in Appendix C.5. □

Step 2. Summed rectangular synergy is upcrossing in ρ.

Proof: Since ϕ12(x, y) = ϕ12(y, x), weighted synergy
∫
[0,1]2

ϕ12λ̂ is upcrossing in ρ for all

weighting functions λ̂, iff
∫ 1

0

∫ x

0
ϕ12(x, y)λ(x, y)dxdy is upcrossing in ρ for all weighting

functions λ. Now use change of variable y = kx to get:∫ 1

0

∫ x

0
ϕ12(x, y)λ(x, y)dydx = 2

∫ 1

0

∫ 1

0
xϕ12(x, kx)λ(x, kx)dkdx

Let xϕ12(x, kx) = σA(k, ρ)σB(x, k, ρ), where σA ≡ xq1(x, kx)q2(x, kx)/q(x, kx) and

σB is the bracketed term in (33) evaluated at y = kx. Routine algebra yields σA(k, ρ)

LSPM in (k, ρ), while σB(x, k, ρ) is decreasing in (x, k) and increasing in ρ. Altogether,

σAσB is proportionately upcrossing in (x, k, ρ). As synergy is also upcrossing in ρ by

Step 1, so is weighted synergy, by Theorem 1 — as is summed rectangular synergy. □

3. Nowhere Decreasing Sorting in Kremer and Maskin (1996):

We prove (13): sorting is nowhere decreasing in θ and nowhere increasing in ϱ = −ρ.

4



Step 1. PAM is not optimal if ϱ>(1−2θ)−1, and is uniquely optimal for ϱ<(1−2θ)−1.

Proof: In a unisex model, PAM is optimal iff the symmetric rectangular synergy

S(x, x, y, y) is globally positive. Its sign is constant along any ray y = kx, and propor-

tional to:

s(k) ≡ 2
1−2θ

ϱ (1 + k)− 2kθ(1 + kϱ)
1−2θ

ϱ (34)

Since s(1) = s′(1) = 0, s′′(1) ∝ (1+ ϱ(2θ− 1)), and θ ∈ [0, 1/2], we have s(k) < 0 close

to k = 1 precisely when ϱ > (1 − 2θ)−1 ≥ 1. In this case, the symmetric rectangular

synergy is negative in a cone around the diagonal, and PAM fails.

Conversely, posit ϱ < (1− 2θ)−1. Then s(k) > 0 for all k ∈ [0, 1]. Since S(x, x, y, y)

is symmetric about y = x, it is globally positive and PAM is uniquely optimal. □

Step 2. If ϱ≥(1− 2θ)−1 then weighted synergy is upcrossing in θ, downcrossing in ϱ.

Proof: Change variables y = kx. If ∆(k) =
∫ 1

0
λ(x, kx)dx, weighted synergy is∫ ∫

ϕ12(x, y)λ(x, y)dydx = 2
∫ 1

0

∫ 1

0
xϕ12(x, kx)λ(x, kx)dkdx =

∫ 1

0
σ(k, θ, ϱ)∆(k)dk

where σ = σAσB for σA ≡ 2kθ−1(1 + kϱ)
1−2θ−2ϱ

ϱ and σB ≡ θ(1− θ)(1 + k2ϱ) + (1− ϱ +

2θ(θ − 1 + ϱ))kϱ. As ϱ ≥ (1 − 2θ)−1, σA > 0 is LSPM in (k, θ, ϱ), σB is increasing in

(θ,−k,−ϱ) for k ∈ [0, 1]. So σ = σAσB is proportionately downcrossing in (k, θ) and

(k,−ϱ). Weighted synergy is upcrossing in θ, downcrossing in ϱ, by Theorem 1. □

Step 3. Sorting is nowhere decreasing in θ and nowhere increasing in ϱ.

Proof: Pick θ′′ > θ′. If ϱ < (1− 2θ′′)−1, then PAM is uniquely optimal at θ′′ (Step 1)

and sorting increases from θ′ to θ′′. If ϱ ≥ (1−2θ′′)−1, then ϱ > (1−2θ′)−1 and weighted

synergy is upcrossing on [θ′, θ′′] (Step 2) and sorting is non-decreasing (Proposition 4).

Now pick any θ and ϱ′′ > ϱ′. If ϱ′ < (1 − 2θ)−1, then PAM is uniquely optimal at

ϱ′ (Step 1) and sorting is decreasing from ϱ′ to ϱ′′. If, instead, ϱ′ ≥ (1 − 2θ)−1, then,

necessarily, ϱ′′ > (1 − 2θ)−1, weighted synergy is downcrossing from ϱ′ to ϱ′′ (Step 2)

and sorting is non-increasing in ϱ, by Proposition 4. □
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