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A. Data and parameterization

In this appendix, we first list the data sources and transformations in Appendix
A.1 that we employ in order to calibrate the parameters affecting the stationary
distribution and to estimate via Bayesian methods those parameters that do not.
Appendix A.2 then discusses the re-parameterization of the RANK model steady
state. In Appendix A.3, we present the posterior estimates of the structural shock
processes. Appendix A.4 contains the variance decompositions of observables not
shown in the main text. In Appendix A.5, we provide the credible intervals for
all variance decompositions of observables. Appendix A.6 contains historical de-
compositions of observables and further variables of interest based on the HANK
and HANK-X models, and Appendix A.7 provides IRFs to all structural shocks
for RANK, HANK, and HANK-X. Finally, Appendix A.8 provides convergence
diagnostics for the MCMC chains.

A.1. Data: Sources and transformations

Data for calibration

The following list contains the data sources for the average data ratios we
target in the calibration of the stationary equilibrium. Unless otherwise noted,
all series are available from 1954 to 2019 from the St.Louis FED - FRED database
(mnemonics in parentheses).

Mean illiquid assets. Fixed assets (K1TTOTL1ES000) over quarterly GDP
(excluding net exports; see below), averaged over 1954 – 2019 (U.S. Bureau
of Economic Analysis, 2023a).

Mean government debt. Gross federal debt held by the public as percent of
GDP (FYPUGDA188S), averaged over 1954 – 2019 (U.S. Office of Manage-
ment and Budget and Federal Reserve Bank of St. Louis, 2023).

∗ Bayer: University of Bonn, CEPR, CESifo, and IZA (email: christian.bayer@uni-bonn.de); Born:
Frankfurt School of Finance & Management, CEPR, CESifo, and ifo Institute (email: b.born@fs.de);
Luetticke: University of Tuebingen, CEPR, and CFM (email: ralph.luetticke@uni-tuebingen.de). Codes
are available at https://github.com/BASEforHANK.
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Average top 10 share of wealth. Source is the World Inequality Database
(2023), averaged over 1954 – 2019.

Data for estimation

Formally, the vector of observable variables is given by:
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where ∆ denotes the temporal difference operator and bars above variables denote
time-series averages.

Unless otherwise noted, all series are available at quarterly frequency from
1954Q3 to 2019Q4 from the St.Louis FED - FRED database (mnemonics in paren-
theses). The data originates from U.S. Bureau of Economic Analysis (2023b); U.S.
Bureau of Labor Statistics (2023a,b); Board of Governors of the Federal Reserve
System (U.S.); Wu and Xia (2016); Bayer et al. (2019) and U.S. Social Security
Administration (2023).

Output, Yt. Sum of gross private domestic investment (GPDI), personal con-
sumption expenditures for nondurable goods (PCND), durable goods (PCDG),
and services (PCESV), and government consumption expenditures and gross
investment (GCE) divided by the GDP deflator (GDPDEF) and the civilian
noninstitutional population (CNP16OV).

Consumption, Ct. Sum of personal consumption expenditures for nondurable
goods (PCND), durable goods (PCDG), and services (PCESV) divided by
the GDP deflator (GDPDEF) and the civilian noninstitutional population
(CNP16OV).

Investment, It. Gross private domestic investment (GPDI) divided by the GDP
deflator (GDPDEF) and the civilian noninstitutional population (CNP16OV).

Real wage, wF
t . Hourly compensation in the nonfarm business sector (COMP-

NFB) divided by the GDP deflator (GDPDEF).
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Hours worked, Nt. Nonfarm business hours worked (HOANBS) divided by
the civilian noninstitutional population (CNP16OV).

Inflation, πt. Computed as the log-difference of the GDP deflator (GDPDEF).

Nominal interest rate, Rb
t . Quarterly average of the effective federal funds

rate
(FEDFUNDS). From 2009Q1 to 2015Q4, we use the Wu and Xia (2016)
shadow federal funds rate.

Wealth inequality, T10WSharet. p90p100 of US net personal wealth from
the World Inequality Database (2023). Available annually 1954 to 2019.

Income inequality, T10ISharet. p90p100 of US pre-tax national income from
the World Inequality Database (2023). Available annually 1954 to 2019.

Idiosyncratic income risk, st. We take the estimated time series for the
variance of idiosyncratic income from Bayer et al. (2019) who use the Survey
of Income and Program Participation. Available from 1983Q1 to 2013Q1.

Tax progressivity, τPt . We follow Ferriere and Navarro (2023) and construct
our measure of tax progressivity using the average and average marginal
tax rate: P = (AMTR - ATR)/(1 - ATR). For a loglinear tax system, this
measure equals the parameter capturing the curvature of the tax function.
Available annually 1954 to 2017.

Details on the construction of the tax-progressivity measure

We extend the Mertens and Montiel Olea (2018)-calculations of average (ATR)
and average marginal tax rates (AMTR) to the years 2013-2017. First, in con-
structing the ATR series, we obtain total tax liabilities for 1929-2017, from the
National Income and Product Accounts (NIPA, U.S. Bureau of Economic Analy-
sis, 2023b), Table 3.2. Federal social insurance contributions, which are added to
total tax liability, come from NIPA, Table 3.6, line 3 and 21. For total income,
we take Piketty and Saez (2003)’s income series, which uses a broader income
concept based on adjusted gross income, excluding taxable social security and
unemployment insurance benefits.

The AMTR is the sum of the average marginal individual income tax rate
(AMIITR) and the average marginal payroll tax rate (AMPRT). We follow Fer-
riere and Navarro (2023) and use Saez (2004)’s income concept.1 This income
concept includes all income items reported on an individual’s tax return before
deductions and excluding capital gains. Income items include salaries and wages,

1For a detailed explanation on the construction of the AMTRs; see Appendix A of Mertens and
Montiel Olea (2018). We follow method 1 for computing the AMIITRs.
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small business/farm income, partnership and fiduciary income, dividends, inter-
est, rents, royalties and other small items reported as other income. Realized
capital gains are excluded in this measure of income.

To construct the AMTR, we first use several tables from the Statistics of Income
(SOI, U.S. Internal Revenue Service, 2023) to construct the discrete distributions
of adjusted gross income by income brackets needed for the AMIITR. Table 1.1 All
Returns of the SOI archives contains information on number of returns, adjusted
gross income (AGI), and taxable income for different ranges of AGI per return.
These ranges define the discretization. Given the distribution is fit for every year
and by filing status, Table 1.2 All Returns: by Marital Status provides the equiv-
alent table distinguishing by filing status, e.g., married filing jointly or separately,
head of household, single, and surviving spouse. Table 1.3 All Returns: Sources
of Income provides information on how many of these returns reported income
from salaries and wages. Table 1.4 All Returns: Sources of Income, Adjustments,
and Tax Items contains data on taxable income and number of corresponding
returns by bracket. Table 3.3 All Returns: Tax Liability, Tax Credits, and Tax
Payments provides information on how many filed for self-employment and their
tax liability. Finally, Table 3.4 contains the number of returns and adjusted gross
income by marginal tax bracket and filing status using.

To construct the Average Marginal Payroll Tax Rate (AMPTR), we collect data
from the 2019 Annual Statistical supplement (U.S. Social Security Administra-
tion, 2023), Table 2.A3 (columns 1, 2, 3 and 9), to obtain the taxation of labor
and self-employed earnings under the Old Age, Survivors and Disability Insurance
(OASDI) and Hospital Insurance (HI) programs. The columns respectively cover
the number of covered workers and self employed with maximum earnings as well
as total taxable earnings. Their difference allows us to calculate the total taxable
earnings of covered workers with earnings below the maximum. Information on
earnings can be found in Table 4.B from the same source.
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A.2. RANK calibration

Table A.1 shows the steady-state parameterization of the representative-agent
analogue of the HANK model. We adjust the discount factor to match a capital-
to-output ratio of 11.44 (quarterly) and the level of the tax rate to match the
ratio of government-spending-to-output (0.2). All other parameters are externally
chosen and equal to the parameterizaton of the HANK model.

Table A.1—External/calibrated parameters in RANK (quarterly frequency)

Parameter Value Description Target
Households
β 0.996 Discount factor K/Y=11.44
ξ 4.000 Relative risk aversion Kaplan et al. (2018)
γ 2.000 Inverse of Frisch elasticity Chetty et al. (2011)
Firms
α 0.680 Share of labor 62% labor income
δ0 0.018 Depreciation rate 7.0% p.a.
η̄ 11.000 Elasticity of substitution Price markup 10%
ζ̄ 11.000 Elasticity of substitution Wage markup 10%
Government
τ̄L 0.250 Tax rate level G/Y = 0.2
τ̄P 0.120 Tax progressivity SoI 1954 - 2019
R̄b 1.000 Nominal rate Growth ≈ interest rate
π̄ 1.000 Inflation Indexation, w.l.o.g.
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A.3. Estimated structural shock processes

Table A.2 presents prior and posterior distributions of the estimated shock
processes. The RANK and HANK version only include seven standard aggregate
shocks, while the HANK-X version also includes shocks to income risk and tax
progressivity.

Table A.2—Prior and posterior distributions of estimated shocks and measurement errors

Prior Posterior
Parameter Distribution Mean Std. Dev. RANK HANK HANK-X

Structural Shocks

ρA Beta 0.50 0.20 0.943 0.947 0.982
(0.915, 0.969) (0.918, 0.974) (0.960, 0.997)

σA Inv.-Gamma 0.10 2.00 0.222 0.219 0.147
(0.178, 0.271) (0.167, 0.270) (0.118, 0.182)

ρZ Beta 0.50 0.20 0.996 0.996 0.998
(0.994, 0.997) (0.994, 0.998) (0.997, 0.999)

σZ Inv.-Gamma 0.10 2.00 0.576 0.624 0.600
(0.526, 0.629) (0.571, 0.682) (0.553, 0.652)

ρΨ Beta 0.50 0.20 0.721 0.658 0.751
(0.667, 0.772) (0.600, 0.715) (0.692, 0.807)

σΨ Inv.-Gamma 0.10 2.00 16.723 13.397 7.282
(13.019, 20.699) (11.042, 16.03) (6.623, 8.006)

ρµ Beta 0.50 0.20 0.964 0.895 0.894
(0.935, 0.989) (0.871, 0.917) (0.868, 0.917)

σµ Inv.-Gamma 0.10 2.00 1.276 1.250 1.386
(1.116, 1.465) (1.099, 1.425) (1.208, 1.596)

ρµw Beta 0.50 0.20 0.888 0.900 0.892
(0.847, 0.925) (0.874, 0.922) (0.860, 0.918)

σµw Inv.-Gamma 0.10 2.00 3.663 3.452 3.742
(3.105, 4.381) (3.002, 3.996) (3.170, 4.466)

σD Inv.-Gamma 0.10 2.00 0.541 0.534 0.378
(0.457, 0.636) (0.444, 0.628) (0.326, 0.433)

ρP Beta 0.50 0.20 — — 0.919
(—, —) (—, —) (0.883, 0.950)

σP Inv.-Gamma 0.10 2.00 — — 6.865
(—, —) (—, —) (5.839, 8.082)

σs Gamma 65.00 30.00 — — 69.227
(—, —) (—, —) (61.367, 78.082)

Measurement Errors

σme
I10 Inv.-Gamma 0.05 0.01 — — 2.208

(—, —) (—, —) (1.868, 2.600)
σme
W10 Inv.-Gamma 0.05 0.01 — — 7.544

(—, —) (—, —) (6.412, 8.861)
Note: The table displays the estimated shock processes and measurement errors, their priors and posterior
means across three model variants: RANK, HANK, and HANK-X. The 90% credible intervals are shown
in parentheses. Posteriors are obtained by an MCMC method. The standard deviations have been
multiplied by 100 for better readability.
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A.4. Variance decompositions of further observables

Figure A.1 shows the variance decomposition of all observables not shown in
the main text for the estimated models.
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Note: Variance decompositions at business cycle frequency of all observables not contained in the main
text but used in HANK-X. Income risk is constant in RANK and HANK. Tax progressivity as an
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Figure A.1. Variance decompositions of further observables
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A.5. Credible intervals of variance decompositions

Table A.3 shows the credible intervals of all shown variance decomposition of
for the RANK, the HANK, and the HANK-X model. The credible intervals are
obtained by sampling 1000 times from the posterior.

Table A.3—Variance decompositions with credible intervals

tfp inv.-spec. tech. price markup wage markup risk premium mon. policy structural deficit tax progr. income risk
RANK

output growth 14.0 49.9 11.9 17.8 0.9 0.8 4.7 – –
(11.2, 16.3) (46.4, 54.8) (9.5, 15.1) (13.2, 18.4) (0.5, 2.0) (0.5, 1.1) (3.3, 5.7)

consumption growth 27.5 7.9 14.9 38.2 7.3 3.5 0.6 – –
(24.6, 32.3) (7.0, 9.2) (12.7, 17.6) (30.9, 40.0) (6.0, 10.3) (2.9, 4.9) (0.4, 1.1)

investment growth 0.8 95.1 1.2 0.4 0.5 0.1 1.9 – –
(0.6, 1.0) (94.0, 96.2) (0.6, 1.8) (0.3, 0.6) (0.3, 0.7) (0.1, 0.2) (1.5, 2.1)

employment 4.2 28.7 14.2 45.7 3.4 1.5 2.3 – –
(3.8, 5.0) (25.3, 34.1) (11.9, 18.6) (39.0, 45.7) (2.8, 5.2) (1.1, 2.2) (1.8, 2.7)

wage growth 6.5 14.8 40.4 33.9 0.4 0.1 3.8 – –
(4.9, 8.5) (13.1, 18.5) (38.2, 44.0) (29.5, 34.8) (0.4, 1.0) (0.1, 0.5) (2.8, 5.4)

nominal rate 2.6 52.1 3.6 3.1 16.2 13.1 9.2 – –
(2.3, 3.8) (47.6, 57.0) (2.5, 5.8) (2.2, 4.3) (12.3, 20.6) (11.1, 14.9) (6.1, 12.7)

inflation 8.5 38.0 10.5 10.6 18.2 4.3 9.7 – –
(7.1, 11.1) (32.1, 42.7) (7.8, 16.2) (8.5, 12.0) (14.2, 23.0) (3.4, 5.5) (6.3, 13.7)

HANK
output growth 16.7 56.8 7.8 15.3 0.7 0.6 2.1 – –

(13.9, 19.6) (51.8, 62.1) (6.1, 9.6) (12.3, 18.4) (0.3, 1.5) (0.5, 0.9) (1.4, 3.0)
consumption growth 30.2 22.9 14.5 23.6 5.7 2.3 0.8 – –

(25.7, 35.3) (18.6, 27.5) (12.1, 17.1) (19.3, 27.5) (4.4, 7.5) (1.7, 3.1) (0.6, 1.5)
investment growth 1.7 93.2 0.8 0.6 1.3 0.3 2.1 – –

(1.2, 2.3) (91.5, 94.6) (0.5, 1.2) (0.4, 0.9) (0.7, 2.0) (0.2, 0.4) (1.6, 2.7)
employment 5.2 34.4 9.0 45.7 2.8 1.1 1.7 – –

(4.2, 6.4) (28.6, 41.1) (7.2, 11.0) (39.3, 51.9) (1.9, 4.1) (0.8, 1.6) (1.2, 2.3)
wage 9.3 19.4 49.0 19.5 0.4 0.2 2.3 – –

(7.2, 11.8) (16.3, 24.3) (42.9, 53.2) (15.3, 23.9) (0.2, 1.0) (0.1, 0.5) (1.5, 3.3)
nominal rate 2.3 42.6 1.4 2.7 21.7 17.6 11.8 – –

(1.4, 3.4) (35.3, 51.2) (0.9, 2.2) (1.6, 3.9) (17.6, 26.3) (13.4, 22.0) (6.5, 16.3)
inflation 8.3 34.2 5.4 9.5 23.1 5.6 13.9 – –

(6.2, 10.5) (28.3, 41.9) (3.7, 7.4) (6.9, 11.9) (19.0, 27.7) (4.3, 7.1) (7.9, 19.2)
HANK-X

output growth 15.6 51.6 10.8 15.8 1.6 1.7 1.9 0.4 0.5
(13.0, 18.9) (46.9, 56.7) (8.8, 13.1) (12.6, 18.7) (0.9, 2.6) (1.3, 2.4) (1.2, 2.7) (0.3, 0.5) (0.4, 0.7)

consumption growth 26.6 16.8 14.9 22.4 5.8 4.2 0.9 0.3 8.0
(22.1, 31.5) (13.9, 20.2) (12.4, 17.1) (18.0, 25.8) (4.7, 7.7) (3.4, 5.4) (0.7, 1.6) (0.2, 0.5) (6.4, 10.1)

investment growth 2.1 89.7 1.9 1.3 1.7 0.7 2.4 0.0 0.1
(1.6, 2.7) (87.7, 91.4) (1.4, 2.6) (1.0, 1.7) (1.2, 2.4) (0.5, 1.0) (1.8, 3.1) (0.0, 0.1) (0.0, 0.1)

employment 5.5 29.7 11.6 44.5 2.9 2.5 1.6 1.1 0.6
(4.6, 6.7) (25.9, 34.8) (9.5, 13.8) (38.8, 48.8) (2.1, 4.2) (2.0, 3.4) (1.1, 2.1) (0.8, 1.6) (0.5, 0.9)

wage 7.7 19.4 45.8 23.0 0.9 0.9 1.4 0.6 0.3
(6.0, 9.9) (16.5, 23.3) (40.4, 49.9) (18.4, 28.4) (0.5, 1.7) (0.5, 1.4) (0.9, 2.2) (0.4, 0.9) (0.2, 0.4)

nominal rate 2.4 48.4 2.5 3.7 22.0 15.0 5.2 0.2 0.7
(1.6, 3.3) (40.6, 55.8) (1.7, 3.5) (2.6, 5.1) (17.7, 26.5) (11.8, 19.2) (2.7, 8.4) (0.1, 0.3) (0.5, 1.0)

inflation 8.3 32.6 8.5 11.8 22.1 9.2 6.1 0.5 0.9
(6.4, 10.5) (26.6, 38.8) (6.2, 11.1) (9.0, 14.6) (18.2, 26.6) (7.5, 11.4) (3.3, 9.6) (0.3, 0.7) (0.6, 1.2)

uncertainty 2.7 8.8 1.8 2.8 0.2 0.3 0.3 0.1 82.9
(2.1, 3.5) (6.8, 11.5) (1.3, 2.4) (2.1, 3.7) (0.1, 0.4) (0.2, 0.4) (0.2, 0.4) (0.0, 0.1) (78.4, 86.5)

tax progressivity 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0
(0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (100.0, 100.0) (0.0, 0.0)

T10 wealth share 1.6 47.1 37.4 2.4 4.7 2.2 1.3 3.0 0.3
(1.1, 2.2) (39.2, 54.5) (31.0, 43.0) (1.2, 4.1) (3.3, 7.8) (1.7, 2.9) (0.8, 1.8) (1.9, 4.3) (0.2, 0.5)

T10 income share 6.9 35.1 32.2 19.1 2.5 0.8 1.5 0.4 1.6
(5.8, 8.5) (28.3, 42.8) (26.7, 36.9) (14.8, 23.9) (1.6, 4.1) (0.6, 1.2) (1.2, 2.0) (0.3, 0.5) (1.2, 2.1)

Note: The table displays variance decompositions at business cycle frequencies and their (5,95)-credible
intervals for all observables and shocks in the RANK, HANK, and HANK-X models. The credible
intervals are obtained by sampling 1000 times from the posterior.
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A.6. Historical decompositions of further observables

Figure A.2 shows the historical decomposition of all observables for the es-
timation of the HANK model and Figures A.3 for the HANK-X model. Figure
A.4 shows the historical decomposition of non-observed variables target markups,
profits, and the Top 1 percent share of income in the HANK-X model.

(a) Output growth (b) Consumption growth (c) Investment growth

(d) Wage growth (e) Hours worked (f) Policy rate

(g) Inflation
Note: Historical decompositions of all observables in HANK. Y-axis: Percent deviation from mean.

Figure A.2. Historical decompositions of observables in HANK
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(a) Output growth (b) Consumption growth (c) Investment growth

(d) Wage growth (e) Hours worked (f) Policy rate

(g) Inflation (h) Tax progressivity (i) Income risk

(j) Top 10 income share (k) Top 10 wealth share

Shock 

■ t fp inv .-spec. tech.

mon. policy ■ structural deficit

■ price markup wage markup ■ risk premium 

■ tax prog. ■ incarne risk

Note: Historical decompositions of all observables in HANK-X. Y-axis: Percent deviation from mean.

Figure A.3. Historical decompositions of observables in HANK-X
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(a) Price markup target (b) Wage markup target (c) Profits

(d) Top 1 income share (e) Top 1 wealth share
Note: Historical decompositions of further unobserved variables in HANK-X. Y-axis: Percent deviation
from mean.

Figure A.4. Historical decompositions of further variables in HANK-X

A.7. Impulse Responses

Figures A.5 – A.9 plot the impulse response functions for the estimated RANK,
HANK, and HANK-X model. The first panel on the top left corner of each figure
shows the shock and the remaining panels show the responses of all potential
observables.
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Note: Top: IRF to a structural deficit shock. Bottom: IRF to a monetary policy shock. Blue-dashed
line: RANK; red dashed-dotted line: HANK; black solid line: HANK-X. Y-axis: Percentage points for
the nominal rate and inflation, otherwise percent.

Figure A.5. IRFs to structural deficit and monetary policy shocks



ONLINE APPENDIX: BAYER ET AL., SHOCKS, FRICTIONS, AND INEQUALITY 13

Note: Top: IRF to a price-markup shock. Bottom: IRF to a wage-markup shock. Blue-dashed line:
RANK; red dashed-dotted line: HANK; black solid line: HANK-X. Y-axis: Percentage points for the
nominal rate and inflation, otherwise percent.

Figure A.6. IRFs to markup shocks
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Note: Top: IRF to a TFP shock. Bottom: IRF to an MEI shock. Blue-dashed line: RANK; red
dashed-dotted line: HANK; black solid line: HANK-X. Y-axis: Percentage points for the nominal rate
and inflation, otherwise percent.

Figure A.7. IRFs to technology shocks
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Note: Top: IRF to a risk premium shock. Bottom: IRF to an income risk shock. Blue-dashed line:
RANK; red dashed-dotted line: HANK; black solid line: HANK-X. Y-axis: Percentage points for the
nominal rate and inflation, otherwise percent.

Figure A.8. IRFs to risk premium and income risk shocks
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Note: IRF to a tax progressivity shock. Blue-dashed line: RANK; red dashed-dotted line: HANK; black
solid line: HANK-X. Y-axis: Percentage points for the nominal rate and inflation, otherwise percent.

Figure A.9. IRFs to a tax progressivity shock
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A.8. MCMC diagnostics

We estimate each model using a single RWMH chain after an extensive mode
search. After burn-in, 400,000 draws from the posterior distribution are used
to compute the posterior statistics. The acceptance rates across chains are be-
tween 20% and 30%. Here, we provide Geweke (1992) convergence statistics for
individual parameters of the RANK, HANK, and HANK-X models as well as
traceplots for HANK and HANK-X. Geweke (1992) tests the equality of means of
the first 10% of draws and the last 50% of draws (after burn-in). If the samples
are drawn from the stationary distribution of the chain, the two means are equal
and Geweke’s statistic has an asymptotically standard normal distribution. Ta-
ble A.4 reports the Geweke z-score statistic and the p-value for each parameter.
Taking the evidence from Geweke (1992) and the traceplot graphs together, we
conclude that our chains have converged. No individual Geweke test rejects at
the one percent level and only a small number reject at the five percent level,
which can be expected from the multiple-testing nature of the exercise.
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Table A.4—Geweke (1992) convergence diagnostics

RANK HANK HANK-X
Parameter z-stat p-value z-stat p-value z-stat p-value

δs -0.013 0.989 -2.101 0.036 1.340 0.180
ϕ -0.256 0.798 -2.241 0.025 -0.622 0.534
κ -0.968 0.333 0.712 0.476 -0.374 0.708
κw 1.149 0.251 0.769 0.442 -0.819 0.413
ιΠ — — 0.580 0.562 -0.152 0.879
ρA -0.551 0.582 0.835 0.404 -0.875 0.382
σA 0.594 0.552 -0.873 0.383 1.149 0.251
ρZ 0.600 0.549 0.156 0.876 -0.343 0.732
σZ -0.50 0.617 0.065 0.948 2.193 0.028
ρΨ -0.062 0.950 -2.144 0.032 0.896 0.370
σΨ -0.295 0.768 -0.701 0.483 -0.515 0.606
ρµ -1.178 0.239 0.086 0.932 -1.444 0.149
σµ 0.363 0.716 -0.38 0.704 1.479 0.139
ρµw 1.355 0.175 0.593 0.553 -0.172 0.863
σµw -1.375 0.169 0.065 0.948 0.400 0.689
ρs — — — — 1.458 0.145
σs — — — — -0.483 0.629
Σy — — — — 0.221 0.825
ρR -0.327 0.744 0.214 0.831 -0.284 0.777
σR -0.272 0.786 -0.609 0.542 0.857 0.391
θπ 1.215 0.224 1.024 0.306 -0.392 0.695
θY -0.395 0.693 0.985 0.324 0.598 0.550
γB -0.497 0.619 -0.236 0.813 -0.223 0.823
γπ 0.601 0.548 1.862 0.063 0.360 0.719
γY -0.55 0.582 0.617 0.537 -1.463 0.143
ρD -0.155 0.877 0.607 0.544 1.774 0.076
σD -0.81 0.418 -0.771 0.440 -0.42 0.674
ρτ 0.930 0.352 -0.289 0.773 -0.574 0.566
γτB 1.263 0.206 -0.216 0.829 0.131 0.896
γτY 1.048 0.295 1.827 0.068 -0.513 0.608
ρP — — — — -1.407 0.159
σP — — — — -0.734 0.463

σme
W10 — — — — 0.197 0.844
σme
I10 — — — — 0.011 0.991

Note: Note: Geweke (1992) equality of means test of the first 10% vs. the last 50% of draws. Failure to
reject the null of equal means indicates convergence.
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Figure A.10. MCMC draws of HANK model
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Figure A.11. MCMC draws of HANK model
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Figure A.12. MCMC draws of HANK-X model



22

Figure A.13. MCMC draws of HANK-X model
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Figure A.14. MCMC draws of HANK-X model
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B. Robustness to alternative specifications

We estimate five variants of our model to understand the effect of potentially
important data and modeling choices: 1) sample 1983-2019, 2) risk aversion (2
instead of 4), 3) paying out union profits proportional to idiosyncratic productiv-
ity (no wage compression), 4) systematic response of tax progressivity to income
inequality, 5) King, Plosser and Rebelo (1988) preferences instead of Greenwood,
Hercowitz and Huffman (1988).

Appendix B.1 provides more details on each variant. Appendix B.2 contains the
estimated parameters, Appendix B.3 the variance decompositions for all variants,
and Appendix B.4 the historical decomposition of income and wealth inequality
for the variants with risk aversion 2 and KPR preferences.

B.1. Description of variants

Below we quickly describe the recalibration of the steady state for variants 2)
risk aversion, 3) union profits, and 5) KPR preferences. The other two variants,
1) sample split and 4) fiscal response to inequality, do not require a recalibration
of the steady state. The sample split estimation is run using the same model
and calibration as in the baseline. Allowing for a feedback coefficient of tax
progressivity to the top 10 income share only affects the aggregate model part.

Risk aversion 2

Changing the coefficient of relative risk aversion to 2 (instead of 4) requires a
recalibration of the steady state to match the same targets as listed in Table 1. In
particular, we adjust the discount factor, the asset market participation frequency,
the fraction of entrepreneurs, and the borrowing penalty. The re-calibration yields
β = 0.992, λ = 4.5%, ζ = 1/3750, and R̄ = 2.18%.

Proportional union profits

Paying out union profits proportional to idiosyncratic productivity (instead of
lump sum) affects the steady-state distribution of income and requires a recal-
ibration. Again, we adjust the discount factor, the asset market participation
frequency, the fraction of entrepreneurs, and the borrowing penalty. The re-
calibration yields β = 0.982, λ = 7.0%, ζ = 1/7500, and R̄ = 1.35%.

Fiscal response to inequality

We change the policy rule for the tax progressivity parameter, τPt , in HANK-X
to the following:

(B.1) τPt
τ̄P

=

(
τPt−1

τ̄P

)ρ
τP (

T10ISharet

T10IShare

)(1−ρ
τP

)γτP

W

ϵPt ,
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where the new parameter γτPW captures the response of tax progressivity to income
inequality. Its prior follows a standard normal distribution . We find that tax
progressivity does respond to the top 10 income share with an estimated elasticity
of 0.41. In the US, the fiscal authority responds to higher income inequality by
increasing the progressivity of taxes thereby mitigating the increase in pre-tax
income inequality to post-tax income inequality. However, tax progressivity is
still largerly driven by exogenous shocks ϵPt as the feedback from inequality is
quantitatively small.

KPR preferences

The assumption of GHH preferences is mainly motivated by the fact that many
estimated DSGE models of business cycles find small aggregate wealth effects in
the labor supply; see, e.g., Schmitt-Grohé and Uribe (2012); Born and Pfeifer
(2014). Unfortunately, it is not feasible to estimate the flexible form of preference
of Jaimovich and Rebelo (2009), which also encompasses King, Plosser and Rebelo
(1988) (KPR) preferences. This would require solving the stationary equilibrium
in every likelihood evaluation, which is substantially more time consuming than
solving for the dynamics around this equilibrium. However, we estimate a version
with KPR preferences; see below for details.

According to the marginal data density, the data clearly prefer the GHH speci-
fication over the KPR specification. What is more, the KPR version of the HANK
model has more difficulty matching business cycle and inequality dynamics simul-
taneously.

The GHH assumption has been criticized by Auclert, Bardóczy and Rognlie
(2023) on the basis of producing “too high” multipliers. In a companion paper
(Bayer, Born and Luetticke, 2023), we show that our model produces multipliers
of reasonable size both in the short and in the long run. The reason for this
lies in the combination of model elements only briefly discussed or even absent
in the stylized Auclert, Bardóczy and Rognlie (2023) economy: sticky wages,
distortionary taxes, capacity utilization, and a Taylor rule. Capacity utilization
allows for output adjustment without adjusting hours; additional wage stickiness
translates increasing labor demand into higher wage markups instead of hours
and consumption; distortionary taxes absorb an additional fraction of income;
and the Taylor rule translates the fiscal shock into to a real interest rate increase.
The back-of-the envelope calculation of the multiplier based on formula (15) in
Auclert, Bardóczy and Rognlie (2023), counter-factually assuming fixed real rates
and ignoring capacity utilization, would be: (1− (1− τ)(η − 1)/η(ζ − 1)/ζ)−1 ≈
2.5. The true multiplier in the model with capacity utilization and interest rate
response is, in line with the data, much smaller.

Changing the preferences to King, Plosser and Rebelo (1988) preferences (in-
stead of Greenwood, Hercowitz and Huffman (1988)) also requires the recalibra-
tion of the steady state. The felicity function u, additively separable in consump-



26

tion and leisure, now reads:

(B.2) u(cit, nit) =
c1−ξ
it − 1

1− ξ
− γshift

n1+γ
it − 1

1 + γ
,

with risk aversion parameter ξ > 0 and inverse Frisch elasticity γ > 0. The
first-order condition for labor supply is:

(B.3) nit =

[
1

γshift
u′(c)(1− τ̄P )(1− τLt )(whit)

(1−τ̄P )

]( 1

γ+τ̄P

)
.

We recalibrate the steady state to match the capital-to-output ratio, the bonds-to-
capital ratio, the fraction of borrowers, and the top 10 wealth share as reported
in Table 1. This yields a discount factor of β = 0.988, a portfolio adjustment
probability of λ = 8.25%, a borrowing penalty of R̄ = 3.56%, and a probability
of becoming an entrepreneur of 1/2000.

B.2. Parameter estimates

Table B.5 displays the estimation results for the model variants. The estimated
parameters are broadly similar across variants with some exceptions. The KPR
estimates feature lower real frictions and a different parameterization of the tax
rule.
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Table B.5—Posterior distributions: model variants

Parameter Posterior

HANK (Post-83) HANK (RA2) HANK (Union) HANK-X (Tax) HANK (KPR)

Frictions

δs 1.060 2.516 0.929 0.871 0.168
(0.981, 1.137) (1.937, 3.135) (0.667, 1.237) (0.588, 1.193) (0.085, 0.268)

ϕ 2.876 3.429 4.277 2.493 0.321
(2.168, 3.576) (2.557, 4.332) (3.427, 5.293) (1.694, 3.334) (0.212, 0.454)

κ 0.082 0.217 0.179 0.151 0.091
(0.057, 0.113) (0.174, 0.264) (0.138, 0.225) (0.117, 0.188) (0.078, 0.105)

κw 0.268 0.318 0.311 0.253 0.314
(0.197, 0.347) (0.249, 0.392) (0.243, 0.383) (0.189, 0.321) (0.241, 0.397)

ιΠ 0.693 0.174 0.298 0.695 0.205
(0.599, 0.786) (0.021, 0.433) (0.044, 0.673) (0.342, 0.949) (0.173, 0.234)

Debt and monetary policy rules

ρR 0.862 0.780 0.781 0.811 0.736
(0.842, 0.881) (0.751, 0.806) (0.754, 0.806) (0.785, 0.835) (0.704, 0.766)

σR 0.136 0.247 0.230 0.226 0.264
(0.122, 0.153) (0.226, 0.269) (0.211, 0.251) (0.208, 0.245) (0.240, 0.289)

θπ 2.933 2.164 1.786 2.024 2.088
(2.636, 3.237) (1.959, 2.389) (1.578, 1.995) (1.784, 2.273) (1.931, 2.259)

θY 0.193 0.197 0.196 0.212 0.335
(0.119, 0.269) (0.128, 0.265) (0.130, 0.265) (0.142, 0.282) (0.275, 0.396)

γB 0.020 0.088 0.026 0.007 0.006
(0.004, 0.042) (0.047, 0.133) (0.003, 0.070) (0.001, 0.023) (0.001, 0.015)

γπ -2.334 -2.803 -3.085 -2.319 -1.90
(-2.671, -2.023) (-3.153, -2.474) (-3.583, -2.674) (-2.642, -2.037) (-2.06, -1.744)

γY -0.63 -0.822 -0.901 -0.533 -0.287
(-0.74, -0.528) (-0.922, -0.726) (-1.099, -0.735) (-0.69, -0.397) (-0.336, -0.241)

ρD 0.968 0.969 0.921 0.950 0.990
(0.938, 0.990) (0.938, 0.991) (0.878, 0.961) (0.912, 0.985) (0.980, 0.997)

σD 0.282 0.481 0.619 0.422 0.322
(0.218, 0.355) (0.402, 0.568) (0.524, 0.732) (0.347, 0.508) (0.286, 0.362)

Tax rules

ρτ 0.411 0.270 0.405 0.422 0.419
(0.276, 0.554) (0.110, 0.429) (0.212, 0.573) (0.256, 0.570) (0.409, 0.429)

γτ
B 3.120 2.270 2.519 3.098 -0.202

(3.068, 3.173) (1.396, 3.233) (1.511, 3.656) (2.199, 4.059) (-0.219, -0.186)
γτ
Y 0.788 2.269 1.976 0.162 -0.455

(0.757, 0.818) (2.160, 2.384) (0.474, 3.357) (-1.404, 1.662) (-0.471, -0.44)
ρP — — — 0.917 —

(—, —) (—, —) (—, —) (0.882, 0.947) (—, —)
σP — — — 6.909 —

(—, —) (—, —) (—, —) (5.870, 8.160) (—, —)
γP
W — — — 0.230 —

(—, —) (—, —) (—, —) (-0.095, 0.532) (—, —)

Structural shocks

ρA 0.942 0.931 0.961 0.991 0.942
(0.910, 0.969) (0.897, 0.962) (0.926, 0.990) (0.973, 0.998) (0.927, 0.956)

σA 0.178 0.230 0.175 0.137 0.164
(0.152, 0.209) (0.187, 0.276) (0.116, 0.244) (0.109, 0.173) (0.147, 0.182)

ρZ 0.995 0.991 0.997 0.998 0.880
(0.992, 0.998) (0.988, 0.995) (0.996, 0.999) (0.997, 0.999) (0.863, 0.896)

σZ 0.551 0.611 0.623 0.597 1.799
(0.491, 0.619) (0.565, 0.661) (0.572, 0.678) (0.551, 0.646) (1.651, 1.958)

ρΨ 0.782 0.703 0.583 0.729 0.960
(0.710, 0.846) (0.651, 0.754) (0.513, 0.653) (0.666, 0.793) (0.953, 0.967)

σΨ 6.869 14.609 14.961 8.831 3.629
(5.482, 8.415) (11.338, 18.073) (12.265, 18.149) (6.444, 11.463) (3.110, 4.225)

ρµ 0.813 0.897 0.924 0.901 0.994
(0.759, 0.859) (0.870, 0.922) (0.903, 0.942) (0.876, 0.923) (0.962, 1.000)

σµ 1.800 1.143 1.163 1.323 0.375
(1.457, 2.247) (1.019, 1.287) (1.028, 1.318) (1.160, 1.516) (0.314, 0.557)

ρµw 0.907 0.921 0.938 0.895 0.789
(0.875, 0.932) (0.897, 0.943) (0.912, 0.961) (0.865, 0.920) (0.745, 0.829)

σµw 3.944 3.302 3.133 3.678 3.032
(3.265, 4.803) (2.900, 3.773) (2.771, 3.566) (3.136, 4.354) (2.547, 3.606)

Income risk process

ρs — — — 0.522 —
(—, —) (—, —) (—, —) (0.451, 0.585) (—, —)

σs — — — 68.278 —
(—, —) (—, —) (—, —) (60.81, 76.774) (—, —)

Σy — — — 22.216 —
(—, —) (—, —) (—, —) (22.14, 22.293) (—, —)

Measurement errors

σme
W10 — — — 1.977 —

(—, —) (—, —) (—, —) (1.620, 2.389) (—, —)
σme
I10 — — — 8.122 —

(—, —) (—, —) (—, —) (6.744, 9.741) (—, —)

Note: The standard deviations of the shocks and measurement errors have been transformed into per-
centages by multiplying by 100. HANK (Post-83): HANK model estimated on post-Volcker data only;
HANK (RA2): HANK model with risk aversion 2 instead of 4; HANK (Union): HANK model in which
union profits are payed out proportionally to idiosyncratic productivity; HANK-X (Tax): HANK-X
model with income-inequality feedback to tax progressivity; HANK (KPR): HANK model with KPR
instead of GHH preferences. For more details see text.
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B.3. Variance decompositions

Figure B.15 shows that the variance decompositions are similar across all vari-
ants. Shocks to investment specific technology are by far the most important
driver of output growth (explaining 40-60%), followed with some distance by
shocks to TFP and wage markups. The same three shocks are prominent in con-
sumption growth but of more equal importance and with TFP being the most
important one. The variance decompositions of top 10 wealth and income shares
are also quite similar. The outliers are KPR preferences and risk aversion 2. The
former variant finds a larger role for TFP shocks in explaining inequality, while
the latter finds a larger role for investment specific technology shocks.
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Figure B.15. Variance decompositions: Output and consumption growth
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B.4. Historical decomposition of inequality

Figure B.16 shows the historical decomposition of inequality for these two vari-
ants, KPR and risk aversion 2, that differ most from the baseline in the previous
section. Estimating the model with risk aversion 2 does not affect the implied
time path of the top 10 income and wealth shares much. KPR preferences, how-
ever, do change the estimated results. Wealth inequality is now rising throughout
the whole period, missing the U-shape. While income inequality is too high from
1970-2010 and too low afterwards such that the top 10 income share does not
display a significant trend over the whole sample.

a) Top 10 wealth share b) Top 10 income share

Note: Kalman smoother in comparison to the data for the top 10 wealth and income shares for the
baseline and the estimated variants risk aversion 2 and KPR. Y-axis: Percent deviation from mean.

Figure B.16. Historical decompositions: Inequality
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C. Further details on the solution technique

C.1. Deviations of functionals from steady state

Our solution technique, following Reiter (2009), is based on writing the se-
quential equilibrium as a non-linear difference equation in function space. For
this purpose, we write the marginal value functions, ∂Wt

∂b and ∂Wt
∂k , as a sum of

the stationary equilibrium function, W̄b/k, and time-t deviations thereof, Ŵb/k,t.
Since we work with Young’s 2010 formulation of off-grid policies as fair gambles
between grid points, we represent all functions as linear interpolants based on a
set of node values for the full tensor grid of b, k, h. However, we represent the
nodal values by their (3-dimensional) DCT coefficients, that is by the coefficients,
θp,q,r, of Chebychev polynomials, Tp/q/r(·), where we assume that the grid nodes
were transformed to the corresponding Chebychev nodes:

(C.1) Ŵb/k,t(bi, kj , hl) =
∑
p,q,r

θp,q,rWb/k,t
Tp(i)Tq(j)Tr(l).

The advantage of this formulation is that we can read off from the stationary
equilibrium solution, which sparse polynomial would have been a good approxi-
mation to the non-sparse solution by comparing the absolute values of θp,q,r. One
way to do this is to look at the function values in the stationary distribution and
fit the polynomials. If we had restricted the stationary equilibrium solution to
the sparse polynomial class that forces the small coefficients to zero, then the
solution would not have changed much. While we do not enforce this restriction
in calculating W̄b/k, we use it to select a baseline set of polynomials, i.e., the
coefficients θp,q,r in (C.1), to be perturbed when we linearize the system.

We add further perturbed coefficients based on how the multidimensional DCTs
of the marginal value functions change, when prices change. For this purpose we
calculate the discounted sum of expected changes in the marginal value functions
and perform a multidimensional DCT on this object. In the next subsection, we
discuss how this term is related to our ideal model reduction. This allows us to
maintain a sparser basis than by just basing the selection on the steady state
shape of the marginal value functions alone.

For the distribution function, we extend the approach of Bayer and Luetticke
(2020). Again following Young (2010), we write the distribution function in terms
of its histogram over the discrete nodes b, k, h. We then re-interpret this histogram
as the histogram of its copula (i.e., the joint-distribution of marginal probabili-
ties) by translating the axes from the b, k, h space to the space of the marginal
distributions F b

t , F
k
t , F

h
t . This allows us to split the joint distribution of b, k, h into

three separate objects: First, marginal distributions at time t, second the copula
in the stationary equilibrium C̄(F b

i,t, F
k
j,t, F

h
l,t), at the grid points of b, k, h with

indices i, j, l evaluated at these marginals and, third, deviations of the copula, Ĉt.
The advantage of this splitting the distribution into three objects is that we can
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work with different degrees of precision for the different objects. Again, we write
all functionals as linear interpolants over a set of nodal values. The nodal values
of C̄ are simply given by the stationary distribution. This means, we define the
node grid {F b

i , F
k
j , F

h
l } in line with the stationary marginal distributions over the

b, k, and h grid, respectively.
The deviation of the copula is again given by a linear interpolant of the pdf dĈ

over nodal values represented by a discrete-cosine transform that uses a subset of
the nodal grid of C̄:

(C.2) dĈt(F
b
i , F

k
j , F

h
l ) =

∑
p,q,r

θp,q,rC,t Tp(i)Tq(j)Tr(l).

A sparser grid for Ĉ implies that we need to perturb less coefficients. Working
with the multidimensional DCT-transformation on top, allows us to easily formu-
late the constraints that are posed by making sure that the combined copula C̄+Ĉ
remains a copula (fulfills the restrictions on partial integrals).2 This constraint
translates into parameter restrictions on θp,q,rC , where θp,q,rC = 0 for p = q = 1,
q = r = 1, or p = r = 1. This restriction ensures that

∫
dCt = 0 and reflects that∑

s Ts(m) = 0 for s > 1 where m is the Chebychev node index. The excluded
coefficients are the only tensor basis elements that have non-zero marginals. We
do not restrict the perturbed coefficients any further than this before running the
second-step model reduction.

C.2. Intuition for the possibility of a strong model reduction

The procedure above gives us the first-stage model reduction. It is based only
on objects calculated from the stationary equilibrium. While this renders solving
for a sequential equlibrium feasible, because the model becomes sufficiently small
in terms of the number of variables involved, this number is still large and would
thus yield long estimation times. Our second-stage model reduction leverages
the Bayesian setup, using prior knowledge about the dynamics to derive a factor
representation of the idiosyncratic model part. We find that it reduces the model
dramatically in the number of variables, making estimation feasible.

To gain some intuition for why such strong further model reduction is possible,
it is useful to draw insights from the sequence-space solution techniques (Auclert
et al., 2021). The key idea, which sequence-space techniques leverage, is that the
household’s decision problem depends only on the expected sequence of a small
set of “prices” Pt.3 We can use the envelop theorem, to calculate recursively the
response of the value functions (or derivatives thereof) to a change in an expected
future price Pt+h. Assuming that we wrote the problem such that prices do only

2Note, that different to Bayer and Luetticke (2020) we do not use the DCT on the copula for a
first-stage model reduction but instead work with a coarser set of nodes and linear interpolations.

3These are: level and progressivity of taxes, income risk, wage rate, real interest rate on liquid assets,
price of capital, return on capital, entrepreneurial profits, and union profits; see equation (36) for example.
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show up contemporaneously in the Bellman equation, we have for h > 0:

(C.3) ∂Wt

∂Pt+h
=

(
∂u

∂xt+1
+ βΓ

∂Wt+1

∂xt+1

)
∂xt+1

∂Pt+h
+ βΓ

∂Wt+1

∂Pt+h
,

where Γ is the transition matrix induced by stationary equilibrium policies and
income shocks (i.e., it includes the expectations operator). Here, xt+1 are the
endogenous idiosyncratic states. Importantly, the sum of the first two terms is
zero when the choice of xt+1 is not constrained because the borrowing constraint
does not bind. When it binds, however, ∂xt+1

∂Pt+h
= 0. This implies that the product

of the two terms is always zero and we can write ∂Wt
∂Pt+h

recursively as

(C.4) ∂Wt

∂Pt+h
= βhΓh ∂Wt

∂Pt︸ ︷︷ ︸
=:wP

.

The sequence-space method assumes that it is possible to approximate the
impact of a shock by a finite T period sequence of prices. Given this assumption,
we know that we can write the equilibrium sequence of prices as an impulse
response

(C.5) EtdPt+h = Φhϵt.

Stability requires that limh→∞Φh = 0 and if the sequence-space solution is exact
at horizon T , Φh ≈ 0 ∀h ≥ T .

If we now consider infinitesimally small shocks, we can write the deviations of
the value functions (in a total differential notation) as

dWt = Et

T∑
h=0

∂Wt

∂Pt+h
dPt+h = Et

T∑
h=0

(βΓ)hwPdPt+h

=

T∑
h=0

(βΓ)hwP

T∑
s=0

Φs+hϵt−s =

T∑
s=0

T−s∑
h=0

(βΓ)hwPΦs+h︸ ︷︷ ︸
=:Cs

ϵt−s.
(C.6)

The second equality uses the envelope result from (C.4). The third equality first
replaces the change in future prices by the impulse responses to contemporaneous
and past shocks according to (C.5). The last equality rearranges the sums using
the truncation of the impulse responses at the horizon T .

This implies a structure for the variance covariance matrix of deviations in the
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value functions:

EdWtdW′
t =

[
C0 · · · CT

] Σϵ · · · 0

0
. . . 0

0 · · · Σϵ


C

′
0
...

C ′
T

 =
T∑

s=0

CsΣϵC
′
s.(C.7)

Since the rank of a sum of matrices is bounded from above by the sum of the
ranks, and each summand in (C.7) has rank J , the variance covariance matrix of
the value functions has at most rank T × J , where J is the number of shocks.
This means that, under the assumption that a T -period approximation is good
enough (for a sequence-space solution), there are at most T × J factors in the
value functions.

This upper bound is, however, loose: The increments in the matrix sums
Cs shrink in s towards zero because of discounting in the planning problem,
lims→∞ βs = 0, and the stability of the price process, limh→∞Φh = 0. This effec-
tively means that Cs converges more quickly to a constant than Φs or βs alone
and the sum (C.7) can be approximated well using a smaller T than the actual
truncation horizon.

The special case where we can write the impulse-response of the prices in terms
of a VAR(1) in F prices (potentially in companion form) is particularly illustrative
for the strength of the model reduction. In that case, we obtain the impulse
responses as Φh = Φh and (C.6) and (C.7) can be further simplified to

dWt =
T∑

h=0

(βΓ)hwP

T∑
s=0

Φs+hϵt−s =
T∑

h=0

(βΓ)hwPΦ
h

︸ ︷︷ ︸
=:C̄

T∑
s=0

Φsϵt−s

EdWtdW′
t = C̄

[
T∑

s=0

ΦsΣϵΦ
′s
]
C̄ ′.

(C.8)

Since the inner term in brackets is of size F × F , the variance-covariance matrix
of the value functions has at most rank F . This explains why in practice the
reduction retains only few more factors than the number of prices and thus is far
below T × J .

Of course, in actually solving the model, we work with the marginal values
instead of the value functions, but the arguments for the number of factors in the
value functions carry over to their marginals. Applying the chain rule, we observe
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for h > 0:

∂

∂x

∂Wt

∂Pt+h
(b, k, h) =

∂

∂x
βE

∂Wt+1

∂Pt+h
(b′, k′, h′)

= βλ

[
∂b∗a
∂x

E
∂

∂b

∂Wt+1

∂Pt+h
(b∗a, k

∗, h′) +
∂k∗

∂x
E

∂

∂k

∂Wt+1

∂Pt+h
(b∗a, k

∗, h′)

]
+ β(1− λ)

[
∂b∗n
∂x

E
∂

∂b

∂Wt+1

∂Pt+h
(b∗n, k, h

′) +
∂k

∂x
E

∂

∂k

∂Wt+1

∂Pt+h
(b∗n, k, h

′)

],
(C.9)

where x is either b or k and ∂b′

∂x and ∂k′

∂x show how the policy functions change.

This, we can bring again in matrix notation in a recursive form

[
∂
∂b

∂Wt
∂Pt+h

∂
∂k

∂Wt
∂Pt+h

]
= β

(
λ

[
Dba,bΓa Dka,bΓa

Dba,kΓa Dka,kΓa

]
+ (1− λ)

[
Dbn,bΓn 0
Dbn,kΓn Γn

])
︸ ︷︷ ︸

=:Γ̃

[
∂
∂b

∂Wt+1

∂Pt+h
∂
∂k

∂Wt+1

∂Pt+h

]

= βΓ̃

[
∂
∂b

∂Wt+1

∂Pt+h
∂
∂k

∂Wt+1

∂Pt+h

]
=
(
βΓ̃
)h [ ∂

∂b
∂Wt
∂Pt

∂
∂k

∂Wt
∂Pt

] ,

(C.10)

where Dx,y are diagonal matrices that contain the derivatives of the policy func-
tion x to argument y at each point (b, k, h). The matrices Γa and Γn are the
transition matrices conditional on adjustment and non-adjustment, respectively.
The structure of (C.10) is the same as (C.4). This we can use to obtain an ap-
proximation to the analogue to C̄ to select additional DCT-coefficients for the
first stage reduction as discussed in the preceding subsection. Here, we calculate
ˆ̄C = (I−ϕβΓ̃)−1

[
∂
∂b

∂Wt
∂Pt

∂
∂k

∂Wt
∂Pt

]
where we assume an auxiliary ad-hoc AR(1) structure

for prices with an AR(1) coefficient ϕ = 0.999.

The general argument for reduction can be made for the variance covariance
matrix of the distribution, too. Here, the upper bound is 2 × T × J . As with
the value function, in each period shocks of up to T periods in the past affect the
households’ decision and thus the distribution directly. Additionally, because the
distribution itself is a state with memory that can be truncated at T periods, it
accumulates these direct effects of past shocks for T periods. As a result, only
shocks further in the past than t− 2T have no impact on the distribution.
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This can be expressed formally as follows:

dΘt =

T∑
h=0

Γh′dΓ′
t−hΘ̄ =

T∑
h=0

Γh′
[
∂Γ′Θ̄

∂P
dPt−h +

∂Γ′Θ̄

∂W+1
Et−hdWt−h+1

]

=

T∑
h=0

Γh′

∂Γ′Θ̄

∂P

T∑
j=0

Φjϵt−h−j +
∂Γ′Θ̄

∂W+1

T∑
j=0

Cj+1ϵt−h−j


=

T∑
h=0

T∑
j=0

Γh′
[
∂Γ′Θ̄

∂P
Φj +

∂Γ′Θ̄

∂W+1
Cj+1

]
ϵt−h−j

=
2T∑
s=0

s∑
h=0

Γh′
s−h∑
j=0

[
∂Γ′Θ̄

∂P
Φj +

∂Γ′Θ̄

∂W+1
Cj+1

]
︸ ︷︷ ︸

=:Ds

ϵt−s =
2T∑
s=0

Dsϵt−s,

(C.11)

where the first equation expresses changes in the distribution dΘt as changes
in the transition matrix, dΓt−h, h periods before t that translate into period t
changes through the repeated steady state transition matrix Γh. There are no
cross terms, where marginal changes in the transition matrix interact with past
marginal changes in the distribution because we look at a linearized solution.
The second equation replaces the changes in the transition matrix in t − h by
the partial direct effect of prices in that period ∂Γ′Θ̄

∂P dPt−h plus an indirect effect,
where ∂W+1 denotes the partial derivative with respect to the continuation value.
The next equation makes use of the impulse response representation of prices and
(C.6) to express changes in the continuation value as a function of past shocks.
The next equations simply reorder the sums. The variance-covariance matrix of
dΘt therefore has, along the lines of the argument made for (C.7) a rank below
2× T × J .

As before, the bound is loose, because of three reasons: first the stability of the
price process, second the convergence of Γh to a matrix with identical rows, Θ̄, and
third the fact that when summing over grid points

∑ ∂Γ′Θ̄
∂P =

∑ ∂Γ′Θ̄
∂W+1

= 0 because
the total mass of the distribution cannot change. However, as the discount factor
does not appear directly, we can expect slower convergence of Ds than Cs.

C.3. Intuition for local invariance of model reduction

What is important, in both (C.7) and (C.11) the parameters we estimate only
enter through their effect on price dynamics Φh. They affect neither the stationary
equilibrium transition matrix Γ, nor the response of the value functions to price
changes wP , and they also have no effect on how the optimal household policy
responds to price or continuation value changes, ∂Γ′Θ̄

∂Pt
and ∂Γ′Θ̄

∂W+1
.

While the price dynamics change in parameters, their changes are bounded.
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The priors, the model structure, and the data impose a restriction on how much
the price process (C.5) changes between two likelihood evaluations. This implies
that an ideal reduction basis, that is ultimately linked to the Cs and Ds of the
preceding subsection, obtained under one set of parameters can be expected to
remain a good basis in their vicinity. This is indeed what we observe in our
application and the quality of the reduction basis can be verified ex post along
the lines described in the main text.

C.4. Direct IRF comparison across solution techniques

Figures C.17 to C.20 compare the impulse responses of the observables used in
the estimation of the HANK model obtained from our solution method to those
obtained from a sequence-space method assuming a 300 period transition. The
terminal values are assumed to be given by the state-space solution instead of
the stationary equilibrium. The figures are organized by observable variables and
show the responses to the various shocks in one figure. Figures C.21 to C.26
repeat this exercise for the HANK-X estimates.

The figures show that the differences in the IRFs are almost zero. What the IRFs
also show is that the TFP shock leads to a persistent change in the capital stock
(which can be seen in the persistent increase of employment). We also compared
the sequence space solution with a 300 period transition to itself using the state-
space solution as terminal outcome and the stationary equilibrium. Given the
persistent change in the capital stock after a TFP shock, a 300 periods transition
is not a good approximation and we find that the approximation error between
the two solutions is for persistent variables more than one order of magnitude
larger than between sequence and state-space solution. Results are available
upon request.
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Note: The figure shows the impulse response to the various shocks in the HANK model, comparing a
sequence-space solution (red dashed line) to our state-space solution (blue solid).

Figure C.17. Comparison of IRFs across solution methods (HANK model)
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Note: The figure shows the impulse response to the various shocks in the HANK model, comparing a
sequence-space solution (red dashed line) to our state-space solution (blue solid).

Figure C.18. Comparison of IRFs across solution methods (HANK model)
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Note: The figure shows the impulse response to the various shocks in the HANK model, comparing a
sequence-space solution (red dashed line) to our state-space solution (blue solid).

Figure C.19. Comparison of IRFs across solution methods (HANK model)
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Note: The figure shows the impulse response to the various shocks in the HANK model, comparing a
sequence-space solution (red dashed line) to our state-space solution (blue solid).

Figure C.20. Comparison of IRFs across solution methods (HANK model)
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Note: The figure shows the impulse response to the various shocks in the HANK-X model, comparing a
sequence-space solution (red dashed line) to our state-space solution (blue solid).

Figure C.21. Comparison of IRFs across solution methods (HANK-X model)
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Note: The figure shows the impulse response to the various shocks in the HANK-X model, comparing a
sequence-space solution (red dashed line) to our state-space solution (blue solid).

Figure C.22. Comparison of IRFs across solution methods (HANK-X model)
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Note: The figure shows the impulse response to the various shocks in the HANK-X model, comparing a
sequence-space solution (red dashed line) to our state-space solution (blue solid).

Figure C.23. Comparison of IRFs across solution methods (HANK-X model)
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Note: The figure shows the impulse response to the various shocks in the HANK-X model, comparing a
sequence-space solution (red dashed line) to our state-space solution (blue solid).

Figure C.24. Comparison of IRFs across solution methods (HANK-X model)
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Note: The figure shows the impulse response to the various shocks in the HANK-X model, comparing a
sequence-space solution (red dashed line) to our state-space solution (blue solid).

Figure C.25. Comparison of IRFs across solution methods (HANK-X model)
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Note: The figure shows the impulse response to the various shocks in the HANK-X model, comparing a
sequence-space solution (red dashed line) to our state-space solution (blue solid).

Figure C.26. Comparison of IRFs across solution methods (HANK-X model)
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