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What is this about?

“A theory of an intelligently guided invisible hand”
Economist, 2007

Market design is a field of economics which attempts to devise practical
schemes for resource allocation problems

Mechanism design and matching theories underpin the field as a general
methodological framework. We will review some of the basics and then push
ahead to the frontier.

One of the strengths of this area is its tight connection to actual real-world
systems, so there will be discussion of institutions (“rules of the game”) and
empirical issues.

This course is intended to be an introduction and entryway to this literature.

We would like to make this as interactive as possible.
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Prominent examples of matching market design

Labor market clearinghouses, especially in medicine [Roth, Niederle, etc]

Student assignment systems
I US K-12, Higher ed systems around world [Abdulkadiroğlu, Pathak, Roth,

Sönmez, etc]

Clearinghouses for organ exchange
I Kidneys, now livers and lungs [Ashlagi, Roth, Sönmez, Unver, Ergin, etc]

Hybrid matching/auction systems used for personnel management
I US Military Academy, ROTC [Sönmez]

Refugee resettlement systems
I Not yet designed, but some attempts [Andersson, Kominers, Teytleboym, etc.]
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Course Overview

Co-taught with expert market designers
I Atila Abdulkadiroğlu, Duke
I Nikhil Agarwal, MIT

Emphasis on link between theory and practice

Sunday

1 Overview and foundations

Monday

2 One-Sided Matching (Abdulkadiroğlu)
3 Two-Sided Matching (Pathak)

4/5 School assignment: one-sided meets two-sided (Abdulkadiroğlu/Pathak)
6 Organ Markets (Agarwal)

Tuesday

7 Revealed Preference in Matching Markets (Agarwal)
8 Matching in Richer Domains (Pathak)
9 Causal Inference with Matching Markets (Abdulkadiroğlu)
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Beyond F=ma: Economics to Engineering

Roth (EMA 2002): bridge building analogy

Consider the design of suspension bridges. Their simple physics, in which the
only force is gravity, and all beams are perfectly rigid, is simple, beautiful and
indispensable.

But bridge design also concerns metal fatigue, soil mechanics, and the
sideways forces of waves and wind. Many questions concerning these
complications cant be answered analytically, but must be explored using
physical or computational models.

These complications, and how they interact with that part of the physics
captured by the simple model, are the concern of the engineering literature.
Some of this is less elegant than the simple model, but it allows bridges
designed on the same basic model to be built longer and stronger over time,
as the complexities and how to deal with them become better understood.
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Why design markets?

Invisible hand: markets can organize themselves efficiently

Markets are efficient under broad set of conditions (1st welfare theorem)

X no externalities
Key idea: markets may be incomplete due to lack of prices

Remedies: Taxes, quotas, coasian solution

X perfect information

X perfect competition

Note: akin to asking why we need regulation/gov’t intervention

Even Hayek argued that what makes a market free is that it has rules that
allow it to work freely:

“There is, in particular, all the difference between deliberately creating a
system within which competition will work as beneficially as possible and
passively accepting institutions as they are.” The Road to Serfdom
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Some market design debates

Practical considerations (or ad hoc restrictions?): Market vs. mechanism
design

Modeling, experimentation, computation, empirics tightly integrated (or are
we missing the larger game?)

Details matter (or do they?)

Towards a general theory (or case studies?)

Market design and economic theory vs. plumbing
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Practical considerations: message spaces

Paul Milgrom (2009):

The resource allocation mechanisms used in practice often employ messages that are too

simple to describe preferences completely. For example, in simultaneous first-price auctions

of the sort utilized for wholesale trading of used cars to dealers, the auctioneer typically

accepts individual bids on cars, and allows the bidder no opportunity to describe the extent

to which it might be willing to substitute one car for another.

Similarly, the National Resident Matching Program (NRMP) uses a variant of the celebrated

Gale-Shapley algorithm to assign doctors to hospitals, but accepts reports from hospitals

that consist only of a number of positions and a rank order list of doctors, allowing a

hospital only a meager opportunity to describe its preferences about the composition of its

incoming class.
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Practical considerations

Ilya Segal (2006, ES): A major theme in the market design literature is that
the choice of mechanism is not determined by incentives alone. Full revelation
of agents preferences is often impractical or undesirable for several reasons:

Full revelation may requires prohibitive amounts of communication e.g.,
bidders valuations in combinatorial auctions valuations for all possible bundles
is exponential in number of objects

Agents may have to incur evaluation costs to learn their own preferences.

The more information is revealed, the more deviations exploiting the revealed
information become available to agents or the designer

The market design literature has examined a variety of mechanisms that aim
to achieve the desired goals without fully revealing agents preferences.
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Practical considerations

Preston McAfee, John McMillan, and Simon Wilkie (2008): “Greatest
Auction in History”

A second aspect of simplicity, and one harder to implement, requires that a simple strategy

be optimal, or nearly optimal, behavior ... Economists were very much concerned that they

could articulate simple bidding strategies for bidders that would perform well. It was

expected that novice bidders would probably adopt such strategies.

Alvin Roth and Axel Ockenfels (AER 2002) on empirical patterns on
last-minute bidding on online auctions (i.e. sniping):

In designing new markets, it will be important to consider not only the equilibrium behavior

that we might expect experienced and sophisticated players eventually to exhibit, but also

how the design will influence the behavior of inexperienced participants, and the interaction

between sophisticated and unsophisticated players.
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Practical considerations and the “real-world”

Restrictions on mechanisms

X Based on complexity / bounded rationality
X Information revelation (privacy)
X These can (and should) be modeled formally

Policy recommendations: almost never Pareto dominance, so what criteria are
we using?

Political process involves compromises and timeline is often beyond our
control: what do we do in these situations?
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Market design and game theory

Roth (2002):

...in the long term, the real test of our success (as economists) will be not merely how well
we understand the general principles that govern economic interactions, but how well we
can bring this knowledge to bear on practical questions of microeconomic engineering. Just
as chemical engineers are called upon not merely to understand the principles that govern
chemical plants, but to design them, and just as physicians aim not merely to understand
the biological causes of disease, but their treatment and prevention, a measure of the
success of microeconomics will be the extent to which it becomes the source of practical
advice, solidly grounded in well tested theory, on designing the institutions through which
we interact with one another.
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Duflo: Economist as Plumber (AER, 2017)

Is Plumbing Science?

Plumbing experiments are useful by themselves

Plumbing experiments have generated insights useful to pure science

X Shine spotlight on understudied problems

“Scientists design general frames, engineers turn them into relevant machinery, and
plumbers finally make them work in a complicated, messy policy environment. As a
discipline, we are sometimes a little overwhelmed by “physics envy,” searching for the
ultimate scientific answer to all questions – and this will lead us to question the legitimacy
of plumbing. This essay is an attempt to argue that plumbing should be an inherent part of
our profession.”
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Peyton Young (1995), Equity: In Theory and
Practice

Classification of Allocation schemes

Forced equality

X Leonardo’s painting of Last Supper
X Forced conscription, even during peace

Lotteries

X Immigration visas, jury duty
X Fishing rights, emissions rights, import quotas
X Land reforms (e.g., Oklahoma Land Rush, developing countries)
X Draft during Vietnam War

Rotation / Taking turns

X Chore assignment in communes
X Children are time-shared between
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Oklahoma Land Rush of 1889
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Young’s taxonomy (cont.)

X Queuing: using time as in an auction; time in line is wasted

X Priority Lists (queue in advance)

e.g., unions have criteria for determining who gets laid off first

I Need equity judgement about who deserves the good the most

X Compensation / transfers / prices

Basic tradeoff

Prices: allow people to express preferences, but if market clearing price used
then income determines everything

Rationing: may lead to over-delivery of goods to those who really do not
value them, but allows “true needs” to be met (fairness/equity)
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When to allow prices?

“Conscription to man the military services in peacetime: The appropriate free
market arrangement is volunteer military forces; which is to say, hiring men to
serve. There is no justification for not paying whatever price is necessary to
attract the required number of men. Present arrangements are inequitable
and arbitrary, seriously interfere with the freedom of young men to shape their
lives, and probably are even more costly than the market alternative.
(Universal military training to provide a reserve for war time is a different
problem and may be justified on liberal grounds.).”

Milton Friedman, in Capitalism and Freedom
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Weitzman (1977): Price System vs. Rationing

Heterogeneity: v is value for (divisible) commodity
λ is marginal utility of income

Under specific functional forms (quadratic utility, independent densities), and
a loss function measuring how far we are giving good to those who value it
the most, he obtains this relationship on the effectiveness of price system over
uniform rationing:

∆ = var(v)︸ ︷︷ ︸
taste heterogeneity

−p̂ var(λ)︸ ︷︷ ︸
income heterogeneity

where p̂ is the market-clearing price

Prices preferred: when taste distribution is dispersed, or society has more
equal income distribution

Rationing preferred: when taste distribution is more uniform, or there is
greater income inequality
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Coase with Liquidity Constraints: Che-Gale-Kim
(RES 2013)

A unit mass of risk-neutral buyers, each who demand one unit, mass m ≥ 0 of
non-buyers (“rest of population”)

Buyer has type (w , v)

X w = wealth ∈ [0, 1] ∼ G(w)
X v = valuation ∈ [0, 1] ∼ F (v)

Non-buyer has same w distribution and v = 0

Quasi-linear preferences: if consume good with probability x ,

u(w , v) = vx + w − p,

cannot spend more than w ; w < v means wealth constrained

Indivisible good is supplied elastically at zero marginal cost, up to capacity
S ∈ (0, 1)
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Welfare Criteria

Utilitarian efficient: total realized value (or average value realized per unit)

X Ex ante perspective (“Vickrey/Harsanyi test”): what would an individual
choose should she have an equal chance of landing in the shoes of each
member of society?

First-best benchmark: buyers with v ≥ v∗ are served, where v∗ satisfies
S = 1− F (v∗)

Average value realized:
E [v |v ≥ v∗]
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v* 
v 

w 

First-best Allocation 
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Three Mechanisms

1. Competitive market - resale right does not matter

2. Nonmarket (random) assignment without resale - price is capped and lottery
assigns good; resale prohibited

3. Nonmarket with resale: same as above except resale is permitted after
assignment

Note: not solving mechanism design problem.. wait till recitation

when budget constraint binds, optimal mechanism is random assignment with
regulated resale and cash subsidy

resale market is taxed to limit speculation for low-value agents, who accept a
cash subsidy for not participating
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Competitive Market

Demand = number of buyers willing and able to pay price

D(p) = [1− F (p)][1− G (p)]

Supply = S

Equilibrium price pe satisfies
D(pe) = SCompetitive Market Equilibrium 

w 

v 

pe 

  Average value realized: E[v¦ v ≥ pe]. 

pe 
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Nonmarket without Resale
Price is capped at q < pe and excess demand is assigned randomly (i.e.,
lottery, with one entry per participating agent)

Buyers with (w , v) ≥ (q, q) participate in the rationing and are successful
with probability

S

[(1− F (q))(1− G (q))]

Less efficient than market: random assignment allows buyers with low wealth
to consume, but also with low valuations

q 

Nonmarket without Resale 

w 

v 

  Average value realized: E[v¦ v ≥ q] < E[v¦ v ≥ pe].   

pe 
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Nonmarket (random) with resale

Price is capped at q < pe and excess demand is rationed randomly; resale is
permitted

Suppose the resale price, r , is higher than q (if not, there would not be
rationing)

All buyers and even “non-buyers” with w ≥ q will participate in rationing

All buyers with (w , v) > (q, 0) participate; each gets good with probability

ρ(q,m) =
S

(1 + m)(1− G (q))

Note that ρ(q,m)→ 0 as m→∞
Resale market:

X Demand side: unsuccessful buyers purchase at the resale price r if
(w , v) ≥ (r , r)

X Supply side: successful buyers/non-buyers with v < r sell
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Resale Market Equilibrium

Measure of buyers: [1− F (r)][1− G (r)](1− ρ(q,m))

Measure of sellers: S ∗ (F (r) + m)/(1 + m)

Setting equal, its possible to show that the equilibrium resale price:

r∗(q,m) > pe

Average value comparison:

E [v |v ≥ r∗] > E [v |v ≥ pe ]

Lower q and lower m raise average value realized

As m→∞, r∗ → pe (asymptotic Coase theorem)
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Summary

Coase theorem doesn’t apply if individuals are wealth constrained

Allocating the good to the poor improves efficiency since only the wealthy can
buy on the resale market

Random assignment with resale does a better job than the market in
allocating to poor

Intuition:

X Under market price, with liquidity constraints, good does not go to those who
value it the most (high value, low wealth guys).

X If rationed, then some high value and low wealth guys will get good.
X With resale market, low value guys can resell, and this leads to more high value

guys getting the good overall.

Speculation limits this benefit and can wipe it out if there are many potential
speculators
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Two Related Questions

Q1: When to allow resale?

Speculators: those with no intrinsic value for good

Che-Gale: speculators in rationing phase will reduce the probability that low
wealth and high value guys get the good. This, in turn, erodes the benefit of
non-market assignment.

Frictions in resale market

Depends crucially on particular model of resale

Q2: What determines the tradability/transferability of a good?

I Roth (2007): Repugnant Transactions
I Paternalism: e.g., people who wish to sell organs might not be making rational

decisions
I Che and Gale’s argument is that allowing resale might be optimal on efficiency

grounds if we have these wealth constrained agents and a utilitarian criterion
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Why Centralize Markets?

Much of economic theory about “decentralization” results – e.g., second
welfare theorem

Hayek (1945 AER): “in a system in which the knowledge of the relevant facts
is dispersed among many people, prices can act to cordinate the separate
actions of different people.... The mere fact that there is one price for any
commodity- or rather that local prices are connected in a manner determined
by the cost of transport, etc.- brings about the solution which (it is just
conceptually possible) might have been arrived at by one single mind
possessing all the information which is in fact dispersed among all the people
involved in the process.”

I Starting point in many matching applications is absence of prices
I Heterogeneity of commodities means prices would be high-dimensional

Without price signals, markets often clear using other means: timing
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Unraveling

Some entry-level labor markets in the US suffer from unraveling

X Medical interns
X Judges & lawyers
X Sports (e.g. NBA, college bowls)
X College admissions

Policies trying to ban unraveling are often unsuccessful

Seen as a rationale for centralization...
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VOL. 84 NO. 4 ROTH AND XING: JUMPING THE GUN 993

TABLE 1—A SELECTION OF MARKETS WITH TIMING PROBLEMS

Market Organization Stage

Postseason college football bowls National Collegiate Athletic Association
(NCAA)

1 and 3

Entry-level legal labor markets:
Federal court clerkships
American law firms

Canadian articling positions
Toronto
Vancouver
Alberta (Calgary and Edmonton)

Entry-level business school markets
New MBA's
New marketing professors

Other entry-level labor markets:
Japanese university graduates
Clinical psychology internships
Dental residencies (three specialties

and two general programs)
Optometry residencies

Other two-sided matching:
Fraternity rush
Sorority rush

Entry-level medical labor markets:
American first-year postgraduate (PGYl)

positions
Canadian first-year positions

U,K, regional markets for
preregistration positions:

' Edinburgh
Cardiff
Birmingham
Newcastle
Sheffield
Cambridge
London Hospital

American specialty residencies:
Neurosurgery
Ophthalmology
Otolaryngology
Neurology
Urology
Radiation Oncology
Other specialties"

Advanced speciality positions:
12 (primarily surgical) specialities''
Three medical subspecialties*^
Four ophthalmology subspecialties
Plastic surgery

Judicial conferences
National Association for Law Placement

(NALP)
Articling Student Matching Program

Ministry of Labor; Nikkeiren
Association of Psychology Internship Centers
Postdoctoral Dental Matching Program

Optometric Residency Matching Services

National Panhellenic Conference

National Resident Matching Program
(NRMP)

Canadian Intern and Resident
Matching Service

Regional health authorities

Neurological Surgery Matching Program
Ophthalmology Matching Program
Otolaryngology Matching Program
Neurology Matching Program
AUA Residency Matching Program
Radiation Oncology Matching Program
NRMP

Specialties Matching Services
Medical Specialties Matching Program
Ophthalmology Fellowship Match
Plastic Surgery Matching program

2, 1
1

4
3 or 4

3

1 (occasionally)
1

2
2
3

1 and 3

3
3

4, 1
4, 1

3 or 4, 1
3
3
4

3
3
3
3

1 and 3
3 and 4

3
3
3
3

•"Anesthesiology, emergency medicine, orthopedics, physical medicine, psychiatry, and diagnostic radiology,
''Colon/rectal surgery, dermatology, emergency medicine, foot/ankle surgery, hand surgery, ophthalmic plastic

and reconstructive surgery, pediatric emergency medicine, pediatric orthopedics, pediatric surgery, reproductive
endocrinology, sports medicine, and vascular surgery,

•̂ Cardiovascular disease, gastroenterology, and pulmonary disease.
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Li-Rosen (1998): “Unraveling in Matching
Markets”

Formalize incentives for unraveling by a 2 period matching model with
I Uncertainty about productivities
I Incomplete contractual market

Clarify how unraveling responds to exogenous market structure

Model

Finite number of workers and firms

2 types of workers and firms: productive or not

I (productive worker, productive firm) produce 1
I The other pairs produce 0
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Three market structures

(# of productive workers)>(# of productive firms)
→In any CE, every productive firm matched to a productive worker.
CE payoff to productive workers=0 & to productive firms=1

(# of productive firms)>(# of productive workers)
→The opposite

Balanced:
In any CE, every productive participant matched to productive one.
Any payoff division is OK

Indivisibilities + Uncertainty about market structures (1)-(3)

→ Participants face payoff risks and may want to contract early
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Example

Equal number of risk averse workers and firms

t = 2: Each firm & worker turns out productive w.p. λ ∈ (0, 1).
A competitive equilibrium takes place as before; assume surplus split w.p. 1/2

t = 1: Firm and worker productivities unknown.
Workers and firms can sign contracts of the form “worker gets r and firm gets
1− r iff both are revealed productive; both get 0 otherwise.”

Definition: Market unravels if ∃r such that some firm-worker pairs choose to
sign contract rather than wait
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Payoffs

Expect utility of early contract for worker:

λ2u(r)︸ ︷︷ ︸
payoff from proving productive

+ (1− λ2)u(0)︸ ︷︷ ︸
payoff from proving unproductive

EU of early contract for firm: λ2u(1− r) + (1− λ2)u(0)

EU from waiting:

λ[u(1)/2 + u(0)/2] + (1− λ)u(0) =
λ

2
[u(1)− u(0)] + u(0)

Let rw & r f be indifferent prices for worker and firm.
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Equilibrium

Equilibrium indifference condition:

u(rw ) = u(1− r f ) = u(0) +
1

2λ
[u(1)− u(0)]

I If λ is large, rw < r f and unraveling (why?)
I If λ is small, r f < rw and no unraveling

Intuition:
I Early contract provides insurance against uncertain market structure
I But leads to ex post assignment inefficiency because your partner may turn out

to be unproductive

Inefficiency decreasing in λ
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Unraveling Driven by Market Incompleteness

Optimal insurance arrangement would have all sign first period contract where

I All wait until the 2nd period to achieve ex post efficient assignment
I Each receives the same share of max total output

Li-Rosen show how this can be implemented in a market with complete
contingent claims (Arrow-Debreu)

Why not?
I Moral hazard (unmodelled)

Broader lesson: market can be incomplete due to inadequate time to
transact; centralized markets can sometimes mitigate timing issues
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Social Choice Functions and Mechanisms

Formulation due to Leonid Hurwicz

Central planner would like to choose an alternative in A

Each agent i observes preferences ui (ti , .) for type ti ∈ Ti over A, while the
central planner does not

Note: writing payoffs this way assumes private values, since payoffs depend
only on your type, not on others’ types

Refer to
ω ≡ t = (ti )i∈N ∈ ×iTi ≡ T

as the state of the world, unknown by the central planner. A type can be a
preference ordering or something more general.

Social choice function (SCF): f : T → A, which the planner would like to
implement; more generally we can think of social choice correspondence

Recall a social welfare function maps to a preference ordering for society, while
social choice function maps to a set of alternatives (“chosen” by society)
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Historical context: Institution-free microeconomics

Early debates between the comparative merits of economic systems tried to
justify the market mechanism and prices

Paradox of Second Welfare theorem: given a Pareto efficient allocation, we
can construct prices to support that allocation as a price equilibrium

X To construct the supporting prices, we need to have full knowledge of the
primitives (utilities, tastes, technologies) in the economy. . .

X Moreover, if we are already at a Pareto efficient allocation, why even bother
with prices?

Hayek (1945): prices may play an informational role

X If individuals have private information about their preferences, endowments,
technologies, etc, this information is too enormous to be communicated to a
central planner

X Market mechanism works by using prices to give people concise sufficient
statistics allowing them to make coordinated choices and arrive at a socially
optimal allocation
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Mechanisms and Implementation

Message space Mi is the set of messages a player can submit

Mechanism ϕ : ×iM
ϕ
i → A is a function, where we index the message space

by the mechanism

For m = (mi ), the outcome of the mechanism implemented by the planner is

ϕ (m)

We say that mechanism ϕ implements SCF f in dominant strategies if for all
t ∈ T , there exists a weakly dominant strategy profile for t of the mechanism
message sending game denoted by m such that

ϕ (m) = f (t)
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Direct Mechanisms

Formulation so far is very general; messages can be practically anything

If each message space satisfies Mϕ
i = Ti for all i ∈ I , then we refer to ϕ as a

direct mechanism

X Set of messages a player can send is simply their set of possible types

Direct mechanism ϕ is incentive compatible if for all states of the world
t ∈ T , t is an equilibrium of the mechanism game

X Revealing your type, or truth-telling, is an equilibrium

42/47



What are some properties of a mechanism?

A direct mechanism is strategy-proof if it is dominant strategy incentive
compatible

A direct mechanism is Pareto efficient, if for any state of the world, it
chooses a social outcome such that there exists no other social outcome that
would make everybody weakly better off and at least one agent strictly better
off

A direct mechanism ϕ : T → A is dictatorial, if there exists an agent i ∈ N
such that for all states t ∈ T , ϕ(t) is the top social alternative of i when his
type is ti
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Theorem (Gibbard/Satterthwaite)

If |A| ≥ 3 is finite, types of agents are such that the utility functions represent
all strict preference rankings on A, then any Pareto-efficient and
strategy-proof mechanism is necessarily dictatorial.

Result is a close cousin of Arrow’s theorem

Pessimistic conclusion for strategy-proof mechanism design: how to get
around?
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Overcoming Gibbard-Satterthwaite

1) Stochastic mechanisms: Allow for mechanisms to be stochastic:

ϕ : T → ∆A,

where ∆A is probability distribution over alternatives

I Gibbard (1977): if mechanism only uses ordinal rankings and players evaluate
outcomes using vNM utility, then only strategy-proof mechanisms are convex
combinations of dictatorships and duple mechanisms

X Duple mechanism: assign positive probability to at most two alternatives
that do not depend on preferences

2) Relax dominant strategy requirement

� Dominant strategies have the property that equilibrium behavior does not
depend on beliefs, common knowledge of rationality, and the information
structure, and therefore gives predictive power or robustness

� Another practical motivation is that one can give advice

3) Restrict the preference domain to economic domains
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Why strategy-proofness?

Concerns about robustness came as early as Hurwicz (1972), who discussed
the need for “non-parametric” mechanisms that are independent of
assumptions regarding willingness to pay of agents

Wilson (1985): argued for ‘belief-free’ trading rules by requiring that they
“should not rely on features of agents’ common knowledge such as their
probability assessments.”

Axiomatic tradition treats strategy-proofness as a goal by itself
I Some complain that objectives should only be consequentialist
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Economic Domains

Single-peaked preferences

Indifferences:
I An agent can be allocated a personalized resource and he only derives utility

from the consumption of his own share

I He would be indifferent among all social alternatives that assign him the same
resource share

I Sometimes known as the hedonic domain

Made throughout quasi-linear mechanism design (Vickrey-Clarke-Groves)

I Social outcome is a pair (δ, χ) ∈ A where δ ∈ D is a social decision and χ ∈ Rn

is a vector of monetary transfers

I Utility of agent i for his type ti ∈ Ti is

ui (ti , (δ, χ)) = vi (ti , δ) + χi

for a value function
vi : Ti × D → R

Nearly all of matching theory works in hedonic domain, opens door to
strategy-proof mechanisms
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Road Map

How to allocate indivisible object in absence of monetary transfers?

Allocation of indivisible objects when nobody owns them (or everybody owns
everything collectively)

Allocation of indivisible objects under individual ownership

Allocation of indivisible objects under individual and collective ownership

Lottery mechanisms

2/78
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Campus Housing at UVA

The West Lawn
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Campus Housing at UVA
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Campus Housing at UVA
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Campus Housing at UVA
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Campus Housing at UVA

http://uvamagazine.org/articles/how_lawnies_are_made
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Public Housing
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Campus Housing Allocation at UVA

http://uvamagazine.org/articles/how_lawnies_are_made:

47 of the Lawns 54 rooms allocated selectively.

Lawn Selection Process Organizing Committee reviews and approves the
selection criteria and the application form.

Applications are collected in January

The Selection Committee divides itself in two and splits the applications
between the halves.

Applications that survive the first step are discussed again, the group comes
up with its list of 47

Calibration Committee: a mechanism to review the composition of the list and
allow the selectors to adjust for any unfair omissions of significant portions of
the University community. “The concept arose in response to the situation two
years ago, when the list included no African-American students, and to the
instance one year ago, when the list had no one from the School of Nursing.”
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House Allocation Problems - Collective Ownership
Economy

A house allocation problem (Hylland & Zeckhauser, 1979) is a triple
〈I ,H,�〉.

I : set of agents

H: set of houses

�: list of preferences over houses
A � B: A is better than B

For simplicity assume:

1. |H| = |I |, and

2. the preferences are strict
A � B: A is better than B or A=B
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The Outcome: A Matching

A (house) matching µ : I → H is a one-to-one and onto function from I to
H.

With everyday language it is an assignment of houses to agents such that

1. every agent is assigned one house, and
2. no house is assigned to more than one agent.

A matching µ Pareto dominates another matching ν if

1. µ(i) �i ν(i) for all i ∈ I and
2. µ(i) �i ν(i) for some i ∈ I .

A matching is Pareto efficient if it is not Pareto dominated by any other
matching.
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Serial Dictatorship

Simple serial dictatorship induced by f : Agent who is ordered first (by the
ordering f ) gets her top choice; agent ordered second gets his top choice
among those remaining; and so on.

Theorem. A serial dictatorship is efficient and strategy-proof.
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Serial dictatorship is Pareto efficient

Proof. Let f be the priority ordering and ϕf be the induced serial
dictatorship.

The first agent f (1) is assigned her best most preferred house among all
available houses, so we cannot make her better off

...

Agent f (k) is assigned his best most preferred house among all remaining
houses, so we cannot make him better off without making one of the first
k − 1 agents worse off

�

13/78



Serial dictatorship is strategy-proof

Proof. Let f be the priority ordering and ϕf be the induced serial
dictatorship.

The first agent f (1) cannot do better than reporting any other preferences
since she already receives her first choice house under her preferences,

...

Agent f (k) cannot do better than reporting her true preferences, since the
houses distributed until f (k) is independent of f (k)’s preferences, and f (k)
receives her first choice among the remaining houses given her reported
preferences.

�
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Characterizing Serial Dictatorship

A mechanism is nonbossy if no agent can change another agent’s assignment
by changing her preferences and without changing her assignment

A mechanism is neutral if the naming of houses does not matter, i.e. if we
rename the houses without changing their physical qualities and without
changing agents’ preferences, each agent is assigned the same physical object
(albeit with a new name)

Theorem: (Svensson 1999) A mechanism is strategy-proof, nonbossy and
neutral if and only if it is serially dictatorial.
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Housing Markets - Individual Ownership Economy

A housing market (Shapley & Scarf 1974) is a 4-tuple 〈I ,H,�, µ〉.

I : set of agents

H: set of houses with |H| = |I |

�: list of strict preferences over houses

µ: initial endowment matching

Let hi = µ(i) denote the initial endowment of agent i ∈ I .
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A matching η is individually rational if

η(i) �i hi for all i ∈ N.

A matching η is blocked a coalition T ⊆ I if there is a matching ν such that

1. ν(i) ∈ {hi}i∈T for all i ∈ T ,

2. ν(i) �i η(i) for all i ∈ T ,

3. ν(i) �i η(i) for some i ∈ T .

A matching η is in the core of the housing market (I ,H,�, µ) if there is no
coalition that blocks it.
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Gale’s Top Trading Cycles Algorithm

(Described in Shapley & Scarf, attributed to David Gale)

Step 1: Each agent “points to” the owner of his favorite house. Since there
are finite number of agents, there is at least one cycle.
Each agent in a cycle is assigned the house of the agent he points to and
removed from the market with his assignment.
If there is at least one remaining agent, proceed with the next step.

Step t: Each remaining agent points to the owner of his favorite house
among the remaining houses.
Every agent in a cycle is assigned the house of the agent he points to and
removed from the market with his assignment.
If there is at least one remaining agent, proceed with the next step.

Q: Can you prove why there must be a cycle in each step?
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TTC in action
A version of TTC (Abdulkadiroğlu and Sönmez 2003) was adopted for school
assignment in New Orleans:
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Properties of the Core

Theorem (Roth & Postlewaite 1977): The outcome of Gale’s TCC algorithm
is the unique matching in the core of each housing market. Moreover, this
matching is the unique competitive allocation.

A direct matching mechanism is a systematic procedure to select a
matching for each problem.

A direct mechanism is strategy-proof if truth-telling is a dominant strategy
in the resulting preference revelation game.

Theorem (Roth 1982). Core (as a direct mechanism) is strategy-proof.
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Properties of the Core - Proofs

Let µ be the matching obtained as the result of Gale’s TTC algorithm.

First we prove that µ is in the core, then we prove that µ dominates any other
matching through some coalition.

µ is in the core:

Let C1,C2, ...,Ck be the agents in cycles (in the order they are removed) in
Gale’s TTC algorithm.

Note that no agent in C1 can be in a blocking coalition, since they get their
first choice under µ.

Given this, no agent in C2 can be in a blocking coalition, since they get their
first choice in H\µ(C1), iteratively we continue.
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Properties of the Core - Proofs

There is no other matching in the core:

Consider a matching ν 6= µ. We will show it is dominated by µ.

Let b be the first agent who satisfies ν(b) 6= µ(b) (according to the order of
the cycles C1, ...,Ck , if there are multiple agents in a cycle like b, then choose
one of them arbitrarily).

Let b be in cycle C`. Note that for every agent a assigned before the cycle C`,
we have ν(a) = µ(a). (by definition)

Given this, for every agent a ∈ C`, µ(a)Raν(a) for all a ∈ C`, as the agents in
C` will be pointing to their most preferred alternative among those available.

Then we have for a ∈ C`, µ(a)Paν(a), by strictness of preferences.

Moreover for each agent a ∈ A, µ(a) = hm which is owned by some am ∈ A by
construction of µ and C`. (so µ is feasible)

Hence µ dominates ν through coalition C`, concluding the proof.
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Housing markets: competitive equilibrium

What about an exchange economy and competitive equilibrium?

The price mechanism will also achieve the core matching:

Prices of houses in a vector p = (p1, ..., pn).

A house hm is affordable for agent a` at p if pm ≤ p` (budget set).

A matching µ and price vector p is a competitive equilibrium if for any
agent a, µ(a) is the best house she can afford at prices p.
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Housing markets: competitive equilibrium

Proof of CE. Let P be a preference profile and let C1,C2, ...,Ck be the cycles
encountered in order in Gale’s TTC algorithm for this market.

Let price vector p be such that for any cycle Cm and for any agent a` ∈ A
such that p` = qm for some constant qm (each house in a cycle has the
same price) and let qm > qm+1 for any m ∈ {1, 2, ..., k − 1} (houses in earlier
cycles have higher price).

Observe that (µ, p) is a competitive equilibrium. No agent a likes some house
allocated in a later cycle more than µ(a). No agent can afford any house
allocated in an earlier cycle. Hence every agent is allocated the best house she
can afford. �
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Proof (Sketch) of Strategy-proofness:

Consider Gale’s TTC algorithm.

Suppose an agent leaves the algorithm with her assignment in Step t.

She cannot stop the formation of cycles that form before Step t by
misrepresenting her preferences.

(These cycles only depend on preferences of agents who are in those cycles.)

So she cannot receive a better assignment through a preference manipulation.
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Theorem (Ma 1994): Core is the only mechanism that is Pareto efficient,
individually rational, and strategy-proof.

Sketch of the Proof : Let ν be the matching in the core for housing market
〈I ,H,�, µ〉.

Construct the preference relation �′i for each agent i , by elevating endowed
house hi to be just below ν(i) as follows:

�′i
h ν(i) hi h′ h′′ h′′′

�i

h ν(i) h′ h′′ hi h′′′
�

�
�

�
�
�

�
�+
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Let φ be a PE, IR, and S-P mechanism; φi is i ’s assignment.

Claim 1: φ(�′) = ν because ν is the only PE and IR matching under �′.

Let C1, ...,Ck be the cycles in TTC for �, and ν′ = φ(�′).

Start with agents in first cycle C1, and consider some agent a` ∈ C1,

ν(a`) 6= ν′(a`).

Since φ is IR and each agent receives top choice under in C1 in ν,

ν′(a`) = h`.

IR of φ implies that for each agent where ν(a`) 6= ν′(a`),

ν′(a`) = h`.

Hence, each of these agents obtains their endowment under ν′, while under
�′ they prefer their matching under ν. This implies φ is not Pareto efficient,
unless ν′(a) = ν(a) for all a ∈ C1.

Iterating, similar argument applies for agents in C2...
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Claim 2: φ(�) = ν.

We will go from � to �′ replacing one agent’s preference at a time

Start with one agent i and use strategy-proofness to obtain:

φi (�′i ,�−i ) �′i φi (�)

φi (�) �i φi (�′i ,�−i )

IR means
φi (�) �i hi ,

Since we have not altered anything above hi in �′i , we have

φi (�′i ,�−i ) �i φi (�)

which implies that

φi (�) = φi (�′i ,�−i )

Then replace with true preferences one agent at a time
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Efficient House Allocation

Simple serial dictatorship induced by f : Agent who is ordered first (by the
ordering f ) gets her top choice; agent ordered second gets his top choice
among those remaining; and so on.

Core from assigned endowments µ: For any house allocation problem
〈I ,H,�〉, select the core of the housing market 〈I ,H,�, µ〉.

Theorem (Abdulkadiroğlu & Sönmez 1998): For any ordering f , and any
matching µ, simple serial dictatorship induced by f and core from assigned
endowments µ both yield Pareto efficient matchings. Moreover, for any
Pareto efficient matching η, there is a simple serial dictatorship and a core
from assigned endowments that yields it.
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Proof

Let µ be a Pareto-efficient matching for a house allocation problem 〈I ,H,�〉.

First, we will construct a priority order f so that ϕf [�] = µ.

Suppose that no agent receives his top choice in µ.

I We can construct a cycle as follows with two or more agents.

I Suppose each agent points to his top choice house and is pointed by the house
he received in µ.

I Then, by finiteness of the problem there exists a cycle.

I Observe that there is no cycle with a single agent in it, as we assumed nobody
receives his top choice in µ.

I Then, we can improve every agent in the cycle by assigning him the house he is
pointing to and otherwise leaving µ unchanged.

This contradicts µ being Pareto efficient.
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We showed that there exists an agent who receives his top choice in µ. Let
him be f (1). Let’s exclude house µ(f (1)) from the problem.

Show in the same manner that there exists an agent who receives his top
choice excluding µ(f (1)), let him be f (2)

We construct the remaining of f in an iterative manner similarly.

It is straightforward to observe that ϕf [�] = µ.

Next, we will construct an endowment matching ω for the same problem.

Let ω = µ. Then core from endowment ω = µ.

To see this, observe that the agent f (1), constructed above, will point to his
endowment in Gale’s TTC algorithm in round 1, and will receive it. Similarly
f (2) will receive his endowment in round 1 or 2, and so on.

This proves that φω[�] = µ.
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House allocation with existing tenants - Hybrid
Ownership Structure

Consider campus housing as an example

Some agents – existing tenants – are grant fathered to their apartments

Existing tenants as well as new comers can apply for housing

Individual rationality requires that each existing tenant is given a house that
she prefers as much as what she is currently occupying
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House Allocation with Existing Tenants

A house allocation problem with existing tenants (Abdulkadiroğlu &
Sönmez 1999) is a five-tuple 〈IE , IN ,HO ,HV ,�〉 where

1. IE is a finite set of existing tenants,

2. IN is a finite set of newcomers,

3. HO = {hi}i∈IE is a finite set of occupied houses,

4. HV is a finite set of vacant houses where h0 ∈ HV denotes the null house, and

5. �= (�i )i∈IE∪IN is a list of strict preference relations.

Assume that the “null house” h0 (i.e receiving nothing) is the last choice for
each agent.
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RSD with squatting rights

Each existing tenant decides whether she will enter the housing lottery or keep
her current house. Those who prefer keeping their houses are assigned their
houses. All other houses become available for allocation.

An ordering of agents in the lottery is randomly chosen from a given
distribution of orderings. This distribution may be uniform or it may favor
some groups.

Once the agents are ordered, available houses are allocated using the induced
simple serial dictatorship: The first agent receives her top choice, the next
agent receives her top choice among the remaining houses and so on so forth.

Major deficiency: It does not guarantee a better house to existing tenants,
i.e. it is not individually rational, so existing tenants may refrain from entering
lottery, which may result in inefficieny
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A Real-life ‘Individually Rational’ Example:
‘MIT-NH4’ mechanism

Start with ordering f
First agent is tentatively assigned top choice among all houses, the next agent
is tenatively assigned choice among the remaining houses, and so on, until a
squatting conflict.
Squatting conflict: when it is the turn of an existing tenant but every
remaining house is worse than his current house. The conflicting agent is
tentatively assigned the existing tenant’s current house.

Resolve a squatting conflict as follows:
X Existing tenant is assigned his or her current house and removed from the

process, and
X All tentative assignments starting with the conflicting agent and up to the

existing tenant are erased

Start over again with the conflicting agent.
Process is over when there are no houses or agents left. All tentative
assignment are finalized.

Major deficiency: The ‘MIT-NH4’ mechanism is individually rational, but it
is not efficient 35/78



Top Trading Cycles Mechanism

Fix an ordering f of agents. Interpret this as a priority ordering.

Step 1: Define the set of available houses for this step to be the set of
vacant houses.

* Each agent points to his favorite house,

* each occupied house points to its occupant,

* each available house points to the agent with highest priority.

There is at least one cycle. Every agent in a cycle is assigned the house that
he points to and removed from the market with his assignment.

If there is at least one remaining agent and one remaining house then we go
to the next step.
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TTC: Adjustment of Available Houses

Whenever there is an available house in a cycle, the agent with the highest
priority, i.e. agent f (1), is also in the same cycle.

If this agent is an existing tenant, then his house hf (1) cannot be in any cycle
and it becomes available for the next step.

All available houses that are not removed remain available.
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Step t: The set of available houses for Step t is defined at the end of Step
(t-1).

* Each remaining agent points to his favorite house among the remaining
houses,

* each remaining occupied house points to its occupant,

* each available house points to the agent with highest priority among the
remaining agents.
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Every agent in a cycle is assigned the house that he points to and removed
from the market with his assignment.

If the most senior (remaining) agent’s house is vacated, then it is added to
the set of available houses for the next step. All available houses that are not
removed remain available.

If there is at least one remaining agent and one remaining house then we go
to the next step.
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Efficiency, Individual Rationality, and
Strategy-Proofness

Natural generalization: TTC reduces to Gale’s TTC for housing markets and
Serial Dictatorship for house allocation problems.

Theorem (Abdulkadiroğlu & Sönmez 1999): For any ordering f , the induced
top trading cycles mechanism is

* individually rational,
* Pareto efficient, and
* strategy-proof.
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Lottery Mechanisms
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Lottery mechanisms

lottery λ: a probability distribution over matchings: λ = (λµ)µ∈M such that∑
µ λµ = 1.

lottery mechanism: a procedure that assigns a lottery for each house
allocation problem.

random assignment matrix: % = [ρi,h]i∈A,h∈H is a bistochastic matrix (a
non-negative matrix with summation of elements of each row vector equals 1,
and summation of elements of each column vector equals 1).

Let %i=(ρi,h)h∈H denote the random assignment vector for agent i under
random assignment matrix %.
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Lottery mechanisms

random assignment matrix induced by lottery λ is a non-negative n by n
matrix % (λ) = [ρi,h]i∈A,h∈H such that for any i and h, ρi,h =

∑
µ(i)=h λµ.

Refer to λ as a decomposition of % (λ)

Note that % (λ) may have many decompositions

permutation matrix: a random assignment matrix with entries 0 or 1. Note
that each matching is equivalent to a permutation matrix and each
permutation matrix is equivalent to a matching.

Birkhoff-von Neumann Theorem: Every bistochastic matrix can be written
as a convex combination of permutation matrices.

Note: random assignment matrices may have many decompositions.
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Example of two possible decompositions

a b c d

1 1/2 0 1/2 0
2 1/2 0 1/2 0
3 0 1/2 0 1/2
4 0 1/2 0 1/2

=
1

2

a b c d

1 1 0 0 0
2 0 0 1 0
3 0 1 0 0
4 0 0 0 1

+
1

2

a b c d

1 0 0 1 0
2 1 0 0 0
3 0 1 0 0
4 0 0 0 1
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a b c d

1 1/2 0 1/2 0
2 1/2 0 1/2 0
3 0 1/2 0 1/2
4 0 1/2 0 1/2

=
1

4

a b c d

1 1 0 0 0
2 0 0 1 0
3 0 1 0 0
4 0 0 0 1

+
1

4

a b c d

1 0 0 1 0
2 1 0 0 0
3 0 1 0 0
4 0 0 0 1

+
1

4

a b c d

1 0 0 1 0
2 1 0 0 0
3 0 0 0 1
4 0 1 0 0

+
1

4

a b c d

1 1 0 0 0
2 0 0 1 0
3 0 0 0 1
4 0 1 0 0
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Implementing Random Assignments

Implementing random assignments is nontrivial since assignments need to be
“correlated.”

Consider assigning 3 goods a, b, c to 3 agents 1, 2, 3.

P =

0.5 0.5 0
0 0.5 0.5

0.5 0 0.5

 =

1

2



1 0 0
0 1 0
0 0 1



+
1

2

0 1 0
0 0 1
1 0 0

 .

Birkhoff-von Neumann Theorem shows that any bistochastic matrix can be
written as a convex combination of permutation matrices.

Therefore, any random assignment can be implemented as a lottery over
deterministic assignments when assigning n goods to n agents, with each
agent getting exactly one good.
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Lottery Mechanisms

A lottery λ is ex-post efficient if it gives positive probability to only
Pareto-efficient matchings.

A lottery mechanism Φ is strategy-proof if for every agent, it is
strategy-proof for all von Neumann-Morgenstern utility functions that
represents her preferences.

That is, for any agent a ∈ A, for any two preference relations �a,�′a, any
preference profile �−a, and any utility function u compatible with �a, we have∑

µ

Φ [�a,�−a]µ u (µ (a)) ≥
∑
µ

Φ [�′a,�−a]µ u (µ (a))

Expected utility from lying cannot exceed expected utility from telling the
truth

Sometimes called strongly strategy-proof
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A lottery mechanism Φ treats equals equally (equal treatment of equals –
ETE property) if for any two agents a, b ∈ A with �a=�b we have

% (Φ [�])a = % (Φ [�])b

In words, it gives the same random assignment vector (i.e. the vector of
allocation probabilities of houses) to two agents who have the same
preferences

in house allocation problems, ETE can only be satisfied by lottery mechanisms
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Two mechanisms

Random serial dictatorship: randomly choose an ordering of agents

I RSD Π is strongly strategy-proof, ex-post efficient, neutral, and treats equals
equally.

Core from random endowments: Randomly distribute houses to agents.
Then find the core of this induced housing market

How many ways to randomly assign endowments?
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An Equivalence of Lottery Mechanisms

Theorem (Abdulkadiroğlu and Sönmez 1998): Core from random
endowments and random serial dictatorship are equivalent.

Sketch of the Proof: Both mechanisms induce a probability distribution on
matchings.

Since there are an equal number of initial endowments as orderings, can we
find a ONE-TO-ONE and ONTO function f :M→ F such that the core
found through endowment µ (denoted ψµ) is equal to serial dictatorship
outcome πf ?

The bijective property of f makes sure that the two lottery mechanisms are
equivalent
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Lotteries in Hybrid Ownership Markets

Consider the case where: |HV | = |IN | (so that there are same number of
agents and houses).

Simpler PE, IR and S-P mechanism:

1. Construct an initial allocation by

1.1 assigning each existing tenant her own house and
1.2 randomly assigning the vacant houses to newcomers with uniform

distribution, and

2. choose the core of the induced housing market to determine the final outcome.

Theorem (Sönmez & Ünver 2005): The above mechanism is equivalent to an
extreme case of TTC where newcomers are randomly ordered first and existing
tenants are randomly ordered next.
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Equivalence results

These results have been extended to richer domains, sometimes using different
proof techniques

Pathak and Sethuraman (2011): Multiseat object assignment, particular
version of TTC vs. RSD; motivated by policy debate in school assignment

Carroll (2014): closer to Papai’s setting, where priority of objects can depend
on agents assignment

Ekici (2013): house allocation with existing tenants

Lee and Sethuraman (2014): Generalizes all existing results, and extends to
include inheritance tree priority structure (with simpler proof)

What’s missing here?
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Ex-post Efficiency

Example: A = {1, 2, 3, 4},H = {a, b, c , d}

Preferences are given as:

agents 1 and 2: a �i b �i c �i d

agents 3 and 4: b �i a �i d �i c .

RSD yields:
a b c d

1 5/12 1/12 5/12 1/12
2 5/12 1/12 5/12 1/12
3 1/12 5/12 1/12 5/12
4 1/12 5/12 1/12 5/12
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The following random assignment is preferred by every agent to the above
random assignment for any compatible VNM utility functions:

a b c d

1 1/2 0 1/2 0
2 1/2 0 1/2 0
3 0 1/2 0 1/2
4 0 1/2 0 1/2
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Other efficiency notions

Let ui be a VNM utility function representing preferences �i for each agent i .
Expected utility of a lottery λ is simply denoted by

Ui (λ) =
∑
µ∈M

λµui (µ (i)) .

A lottery λ is ex-ante efficient if there is no lottery γ such that
Ui (γ) ≥ Ui (λ) for every agent i and Ui (γ) > Ui (λ) for some agent i .

If we do not want to rely on the specific cardinal VNM utility function
defined, Bogomolnaia and Moulin defined the concept of ordinal efficiency
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Ordinal Mechanisms

Q: Are there any issues with eliciting cardinal utilities in direct mechanisms in
settings without transfers?

BM (2001): “The restriction to ordinal mechanisms is the central assumption
in this paper. It can be justified by the limited rationality of the agents
participating in the mechanism. There is convincing experimental evidence
that the presentation of preferences over uncertain outcomes by vNM utility
functions is inadequate (e.g., Kagel and Roth 1995). One interpretation of
this literature is that the formulation of rational preferences over a given set
of lotteries is a complex process that most agents do not engage into if they
can avoid it. An ordinal mechanism allows the participants to formulate only
part of their preferences that does not require to think about the choices over
lotteries.”
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A random assignment matrix % = [ρi,h]i∈A,h∈H first-order stochastically

dominates another random assignment matrix %∗ =
[
ρ∗i,h

]
i∈A,h∈H

according

to �i if for any h ∈ H, ∑
g∈H:g%ih

ρi,g ≥
∑

g∈H:g%ih

ρ∗i,g

and for some h ∈ H ∑
g∈H:g%ih

ρi,g >
∑

g∈H:g%ih

ρ∗i,g

Denote by
ρ �i ρ∗

and %i as weak counterpart.

A random assignment matrix % is ordinally efficient if there is no random
assignment %∗ such that ρ∗ %i ρ for every agent i and ρ∗ �i ρ for some agent
i .
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Example (Bogomolnaia & Moulin [2001]): I = {1, 2, 3, 4}, H = {a, b, c , d}.
The preferences are as follows:

agent 1 : a �1 b �1 c �1 d

agent 2 : a �2 b �2 c �2 d

agent 3 : b �3 a �3 d �3 c

agent 4 : b �4 a �4 d �4 c

RSD induces the following random assignment:

P =

a b c d
1 5/12 1/12 5/12 1/12
2 5/12 1/12 5/12 1/12
3 1/12 5/12 1/12 5/12
4 1/12 5/12 1/12 5/12
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Next consider the lottery

L = 0.5

(
1 2 3 4
a c b d

)
+ 0.5

(
1 2 3 4
c a d b

)
which induces the random assignment

Q =

a b c d
1 1/2 0 1/2 0
2 1/2 0 1/2 0
3 0 1/2 0 1/2
4 0 1/2 0 1/2

* the random assignment P assigns everyone their 1st choices with 5/12
probability, 2nd choices with 1/12 probability, 3rd choices with 5/12
probability and 4th choices with 1/12 probability

* whereas Q assigns everyone their 1st choices with 1/2 probability and 3rd
choices with 1/2 probability.

Hence Q stochastically dominates P and therefore RSD is not ordinally
efficient.
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Relationships between Efficiency Notions

Ordinal efficiency ⇒ ex-post efficiency, but not vice versa

Ex-ante efficiency under a particular a utility profile implies ordinal efficiency,
but not all ordinally efficient lotteries are ex-ante efficient under a particular
utility profile

Birkhoff-von Neumann Theorem allows us to work in the domain of random
allocations and not worry about the lotteries that implement them

I Allows us to study mechanisms through the random assignment matrix
(without loss of generality)

Bogomolnania and Moulin define a class of random assignment mechanisms
that are ordinally efficient
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Probabilistic Serial Mechanism

(Cake) eating algorithm:

An algorithm is identified by a speed function vector ω = (ωi (.))i∈A and time
horizon is 1.

Each agent is represented by a mouse and each house is represented by a cake
of size 1.

Each mouse i simultaneously starts eating her most favorite cake at a speed
ωi (t) such that each mouse has the capacity of eating 1 whole cake i.e.∫ 1

0
ωi (t) dt = 1.

When one (or more) cake ends, each mouse i eats her remaining favorite cake
using the speed function ωi .

The previous step is repeated until all cakes are consumed.

A random assignment matrix is found by determining the fraction of the each
cake eaten by each mouse.
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Example: Every mouse eats at the same speed at all times: ωi (t) = 1 for all
i ∈ H and all t ∈ [0, 1].

Set of mice: A = {1, 2, 3, 4}, set of cakes: H = {a, b, c , d}, preferences

agents 1 and 2: a �i b �i c �i d

agents 3 and 4: b �i a �i d �i c .

a b c d

1 1/2 0 1/2 0
2 1/2 0 1/2 0
3 0 1/2 0 1/2
4 0 1/2 0 1/2
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Example: For any i ∈ {1, 2}:

agents 1 and 2: a �i b �i c �i d

agent 3: c �3 a �3 b �3 d .

agent 4: a �4 c �4 d �4 b

The resulting random assignment is

a b c d

1 1/3 4/9 0 2/9
2 1/3 4/9 0 2/9
3 0 1/9 2/3 2/9
4 1/3 0 1/3 1/3

When eating speeds are the same ωi (t) = 1 for all i , we have the symmetric
PS mechanism

Satisfies equal treatment of equals
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Properties of PS

Bogomolnania and Moulin establish the following:

1 Each PS mechanism is ordinally efficient. For every house allocation problem,
and every ordinally efficient random assignment, there exists a PS mechanism
that achieves it.

2 There is no mechanism that satisfies ordinal efficiency, strategy-proofness and
equal treatment of equals.

3 PS mechanism is not strategy-proof.

Intuition: If too many people like the second choice of an agent as their first
choice, then this agent may be better off if he starts eating from his second
choice instead of his first choice.
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Example (continued): if i = 3 submits

agent 3 : a �′3 c �′3 b �′3 d

instead of �3, then we obtain:

a b c d

1 1/4 1/2 0 1/4
2 1/4 1/2 0 1/4
3 1/4 0 1/2 1/4
4 1/4 0 1/2 1/4

Consider the following utility function for agent 3,

u3 (c) = 5, u3 (a) = 4, u3 (b) = 0.1, u3 (d) = 0,

then

U3 (PS [�]3) = 5× 2/3 + 0.1× 1/9 = 3.3444

< U3 (PS [�′3,�−3]3) = 4× 1/4 + 5× 1/2 = 3.5

Since there exists at least one such utility function, PS is not strategy-proof.
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PS becomes strategy-proof in large markets

Theorem (Kojima and Manea 2009)

Fix agent i ’s utility function ui , and assume ui represents strict preferences.
There is a finite bound M such that, if qa ≥ M for all a ∈ O, then truthtelling
is a dominant strategy for i under PS. The conclusion holds no matter how
many other agents are participating in the market.

Remark Truthtelling is an exact dominant strategy in a finitely large markets.

The bound M can be reasonably small: Consider a school context, where a
student finds only 10 schools acceptable, and her utility difference between
any two consecutively ranked schools is constant. Then truthtelling is a
dominant strategy for her in PS if each school has at least 18 seats.
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Intuition of the Theorem

Manipulations have two effects:

(1) given the same set of available objects, reporting false preferences may
prevent the agent from eating his most preferred available object

(2) reporting false preferences can affect expiration dates of each good.

(1) always hurts the manipulating agent, while (2) can benefit the agent.
Intuitively, the effect (2) becomes small as the market becomes large.

A nontrivial part of the formal proof is that (2) becomes very small
relative to (1) when the copies of each object type becomes large, so the
agents hurt themselves in total.
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Che-Kojima: Asymptotic Equivalence

Consider a sequence of economies, where a q-economy is composed of

q copies of each (real) good and infinite copies of n, and

Set of agents: only assume

(number of agents with preference π in q-economy)

q

converges as q →∞ for every preference π (the limit can be zero).
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Theorem (Che and Kojima 2010). Fix the set of types of goods. The random
assignments in RP and PS converge to each other as q →∞.

Formally, limq→∞maxπ,a |RPq
a (π)− PSq

a (π)| = 0, where

RPq
a (π) := Pr[agents with preference π get a in q-economy in RP],

PSq
a (π) := Pr[agents with preference π get a in q-economy in PS].
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Intuition of the Theorem (1)

In PS, the random assignment is pinned down by the expiration dates of the
goods. Expiration date T q

a of good a is the time at which a is completely
consumed away.

The probability that an agent receives good a is duration of consuming good
a, so

max{T q
a −max{T q

b |b is preferred to a}, 0}.

0

probability of receiving a︷ ︸︸ ︷
· · · T q

b T q
a 1
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Intuition of the Theorem (2)

Proof Idea: Find RP-analogues of expiration dates, and show that they
converge to expiration dates in PS (in probability).

Alternative formulation of RP.

1. Each agent draws a number iid uniformly distributed in [0, 1].
2. The agent with the smallest draw receives her favorite good, and so on.

Given realized draws, the cutoff T̂ q
a of good a under RP is the draw of the

agent who receives the last copy of a.
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Since random draws are uniform over [0, 1], an agent will receive good a with
probability

E [max{T̂ q
a −max{T̂ q

b |b is preferred to a}, 0}].

0

draws such that the agent receives a︷ ︸︸ ︷
· · · T̂ q

b T̂ q
a 1
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Intuition of the Theorem (3)

Show cutoffs of RP converge to expiration dates of PS (in probability).

They are different in general: In PS, a good is consumed proportionately to
the number of agents who like it: In RP, a good may be consumed
disproportionately to the number of agents who like it because of the
randomness of draws.

For RP in large markets, the law of large numbers kicks in: with a very high
probability, a good is consumed almost proportionately to the number of
agents who like that good best among available goods.

The formal proof makes this intuition precise.
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Nature of Ordinal Inefficiency in RP

For any finite size, RP and PS may not be exactly equivalent.

Consider a family of replica economies (i.e. agents of each preference type
increase proportionately to q).

Proposition

In replica economies, if RP is ordinally efficient/inefficient in the base
economy (i.e. q = 1), then RP is ordinally efficient/inefficient for all replicas.

Thus, inefficiency of RP does not disappear completely in any finite replica
economy, if RP is inefficient in the base economy.

But the theorem says that the “magnitude” of ordinal inefficiency vanishes as
markets become large.

Manea (2008): Probability that RP fails exact ordinal efficiency goes to zero
as the market becomes large.
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Can we do better?

Theorem (Zhou 1990 JET): For n ≥ 3, there is no mechanism that is
anonymous, strategy-proof, and ex-ante efficient.

We say that a mechanism ϕ dominates ψ if for all preferences, it assigns a
lottery that each agent weakly prefers in a first-order stochastic dominance
sense, and there is some problem and agent for whom the preference is strict

Theorem (Erdil 2014 JET): The outcome of a random serial dictatorship is
dominated within the class of ex-post efficient strategy-proof mechanisms
which satisfy equal treatment of equals.
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Erdil constructs a mechanism exploiting this basic intuition of the following
problem. Preferences are given by:

1 :a � b

2 :c � a

3 :c � b

4 :c

If lottery is 4− 3− 2− 1 or 4− 2− 3− 1, then

µ =

(
1 2 3 4
1 a b c

)
If lottery is 3− 1− 2− 4 or 3− 1− 4− 2, then

ν =

(
1 2 3 4
a 2 c 4

)
Hence, with probability 1

12 , agent 1 is not assigned and b is not assigned to
anyone
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Replace µ and ν with(
1 2 3 4
b a c 4

)
+

(
1 2 3 4
a 2 b c

)
with probability 1

12 . Assigns an extra 1
12 of b to 1, holding everything else the

same

If 1’s preference were bP ′1a, her assignment would be increased by 1
12 of a due

to symmetry of R−1. Hence, 1 will not want to deviate

Improvement treats agent 1 differently. To recover ETE, define analogous
improvements for other agents when the names of agents are permuted, and
randomize over such mechanisms with equal probability

Issue: constructions of strategy-proof improvement like this are
computationally demanding and possibly intractable for large markets
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Lecture Wrap up

Allocation of indivisible objects

Collective Ownership

Individual ownership

Hybrid ownership structure

Lottery mechanisms
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From Theory to Practice

Study of matching started as “pure” theory: first by David Gale and Lloyd
Shapley (1962) who introduced DA

Roth (1984) is a landmark paper, which observed

I Since the 1950s, US hospitals have used a clearinghouse to assign graduating
medical students to residencies.

I Students apply and interview at hospitals in the fall, then students and
hospitals submit rank-order preferences in February.

I A computer algorithm is used to assign students to hospitals, and matches are
all revealed on a single day: match day.

I Roth realized that the doctors has independently discovered and were using
exactly the Gale and Shapley DA algorithm!

2/65



Match Day
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History of NRMP

1900-1945: Unravelling of Appt. Dates

1945-1950: Chaotic Recontracting ⇒ centralized mechanism introduced in
response

1950-197x: High rates of orderly participation (95%) in centralized clearing
house

197x-198x: Declining rates of participation, particularly among married
couples

198x-present: Married couples return, following changes in algorithm to
accomodate couples and other match variations

Why might a centralized clearinghouse be valuable? Does its design matter?
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TABLE I

Stable and Unstable (Centralized) Mechanisms

Market Stable Still in use (halted unraveling)

American medical markets

NRMP yes yes (new design in ’98)

Medical Specialties yes yes (about 30 markets)

British Regional Medical Markets

Edinburgh (‘69) yes yes

Cardiff yes yes

Birmingham no no

Edinburgh (‘67) no no

Newcastle no no

Sheffield no no

Cambridge no yes

London Hospital no yes

Other healthcare markets

Dental Residencies yes yes

Osteopaths (<‘94) no no

Osteopaths (≥‘94) yes yes

Pharmacists yes yes

Other markets and matching processes

Canadian Lawyers yes yes (except in British Columbia

since 1996)

Sororities yes (at equilibrium) yes

Figure: Roth (2002)
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One-to-One Matching: Marriage Problems

Marriage problem is a triple 〈M,W ,R〉 where

M = {m1, ...,mp} is a set of men

W = {w1, ...,wq} is a set of women

R = (Rm1 , . . . ,Rmp ,Rw1 , . . . ,Rwq ) is a list of preferences

Rm: Preference relation over W ∪ {m}
Rw : Preference relation over M ∪ {w}

Pm,Pw : Strict preferences derived from Rm,Rw

6/65



Consider man m:

wPmw
′: man m prefers woman w to woman w ′

wPmm: man m prefers woman w to remaining single

mPmw : woman w is unacceptable for man m

Similar notation for women.

Assumption. Unless otherwise mentioned all preferences are strict.
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Matching

The outcome of a marriage problem is a matching.

Formally a matching is a function µ : M ∪W → M ∪W such that:

1. µ(m) 6∈W ⇒ µ(m) = m for all m ∈ M,

2. µ(w) 6∈ M ⇒ µ(w) = w for all w ∈W , and

3. µ (m) = w ⇔ µ(w) = m for all m ∈ M, w ∈W .

Assumption. There are no consumption externalities: An individual prefers
a matching µ to a matching ν if and only if he/she prefers µ(i) to ν(i).

A matching µ is Pareto efficient if there is no other matching ν such that
ν(i)Riµ(i) for all i ∈ M ∪W and ν(i)Piµ(i) for some i ∈ M ∪W .
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Stability

A matching µ is blocked by an individual i ∈ M ∪W if iPiµ(i).

A matching is individually rational if it is not blocked by any individual.

A matching µ is blocked by a pair (m,w) ∈ M ×W if they each prefer each
other to their partners under µ, i.e.

wPmµ(m) and mPwµ(w).

A matching is stable if it is not blocked by any individual or a pair.

Q: What is the relationship between stability and Pareto efficiency?
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The men-proposing deferred acceptance algorithm gives a stable
matching for each marriage problem:

1. Each man m proposes to his first choice (if he has any acceptable choices).

Each woman rejects any offer except the best acceptable proposals and
“holds” the most preferred acceptable proposal (if any).

k. Any man who was rejected at step k − 1 makes a new proposal to his most
preferred acceptable potential mate who has not yet rejected him. (If no
acceptable choices remain, he makes no proposal.)

Each woman “holds” her most preferred acceptable proposal to date, and
rejects the rest.

Algorithm terminates when there are no more rejections. Each woman is
matched with the man he has been holding in the last step. Any woman who
has not been holding an offer or any who was rejected by all acceptable
women remains single.
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Proof that algorithm produces a matching :

Women get (weakly) better off as the process goes on, and men get (weakly)
worse off as the process goes on.

The algorithm eventually stops producing a matching µ (since a woman never
holds more than one offer).

Proof that matching µ is stable:

It cannot be blocked by any individual, since men do not make any offers to
unacceptable women, and women immediately reject unacceptable offers.

Suppose pair (m,w) blocks µ. Then since wPmµ(m), man m has made an
offer to w in the algorithm and since they are not matched with each other w
rejected m in favor of someone better.

But w gets weakly better throughout the algorithm, contradicting pair (m,w)
blocks µ. ♦
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Core & Stability

Definition: A matching µ is in the core (by strong domination) if there exists
no matching ν and coalition T ⊆ M ∪W such that ν(i)Piµ(i) and ν(i) ∈ T
for any i ∈ T .

Theorem: The set of stable matchings is equal to the core.
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Stable Matchings: Three Main results

1) Side-optimality: There exists a man-optimal stable matching (µM) that
every man likes at least as well as any other stable matching. Furthermore,
the outcome of the man-proposing deferred acceptance algorithm gives the
man-optimal stable matching.

2) Opposing interests: The man-optimal stable matching is the worst stable
matching for each woman. Similarly, the woman-optimal stable matching is
the worst stable matching for each man.

3) Rural hospitals: The set of agents who are matched is the same for all stable
matchings.
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Proof of Side Optimality

Terminology: w is achievable for m if there is some stable matching µ such
that µ(m) = w .

Inductive step: Suppose that up to Step k of the man-proposing deferred
acceptance algorithm, no man has been rejected by an achievable partner.
(This clearly holds for k=1.)

Claim: No man is rejected by an achievable partner at Step k.
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Suppose that up to step k of the algorithm, no man has been rejected by an
achievable partner, and that at step k woman w rejects man m (who is
acceptable to w) and (therefore) holds on to some m′.

Then w is not achievable for m. Why? Suppose, to the contrary, µ is stable
such that µ(m) = w .

But m′ has already proposed at this step, so he prefers w . Thus, µ can’t be
stable: (m′,w) would be a blocking pair.

Therefore, every man is matched with best achievable partner under the
outcome of the man proposing deferred acceptance algorithm µM , meaning
that µM is the man-optimal stable matching. ♦
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Proof of Opposing Interests

Suppose there is a man m and stable matching µ such that µW (m)Pmµ(m).

Then man m is not single under µW . Let w ≡ µW (m).

Since man m is not matched with the same woman under µW and µ, woman
w is not matched with m under µ.

Therefore µW (w)Pwµ(w) by the definition of woman-optimal stable
matching. But then pair (m,w) block matching µ yielding the desired
contradiction. ♦
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Proof of Rural Hospitals

Let µ be any stable matching. Observe that

1. |ν(W )| = |ν(M)| at any matching ν (stable or not)

2. |µM(W )| ≥ |µ(W )| ≥ |µW (W )| since any man who is matched under µW

should also be matched under µ and any man who is matched under µ should
also be matched under µM

3. |µW (M)| ≥ |µ(M)| ≥ |µM(M)| since any woman who is matched under µM

should also be matched under µ and any woman who is matched under µ
should also be matched under µW

17/65



Hence

|µM(W )| = |µ(W )| = |µW (W )| = |µW (M)| = |µ(M)| = |µM(M)|

Therefore, since |µM(W )| = |µ(W )| and any man who is matched under µ
should also be matched under µM , the same set of men should be matched
under µ and µM .

But µ is an arbitrary stable matching, so the set of men who are matched is
the same for all stable matchings.

A similar argument is valid for women. ♦
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Join & Meet

Let µ, µ′ be two stable matchings.

Join: µ ∨M µ′ : M ∪W → M ∪W assigns each man the more preferred of his
two assignments under µ and µ′ and each women the less preferred of his two
assignments under µ and µ′.

Meet: µ ∧M µ′ : M ∪W → M ∪W , defined analogously by reversing the
preferences

Lattice: partially ordered set where any two elements have unique join and
meet

Lattice Theorem (Conway): If µ and µ′ are stable matchings, then not only
are the functions µ ∨M µ′ and µ ∧M µ′ both matchings, but they are also both
stable.
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Example:

There are 3 man and 3 woman with preferences:

Pm1 : w1 w2 w3 m1

Pm2 : w2 w3 w1 m2

Pm3 : w2 w1 w3 m3

Pw1 : m2 m3 m1 w1

Pw2 : m3 m1 m2 w2

Pw3 : m1 m2 m3 w3

Consider the following two matchings:

µ =

(
m1 m2 m3

w1 w2 w3

)
and ν =

(
m1 m2 m3

w3 w1 w2

)
Then the join and meet of µ, ν are as follows:

µ ∨M ν =

(
m1 m2 m3 w1 w2 w3

w1 w2 w2 m1 m2 m3

)
µ ∧M ν =

(
m1 m2 m3 w1 w2 w3

w3 w1 w3 m2 m3 m1

)
Neither is a matching!
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Can Men Receive Better Mates than at
Man-Optimal Stable Matching?

If we can match a man with a woman who finds him unacceptable, then there
may be a matching ν where all man receive better mates than under µM .

If that is not possible (i.e. if we are seeking an individually rational matching)
then some man can receive better mates without hurting any man but not all
man can receive better mates.

Theorem: There is no individually rational matching ν where ν(m)Pmµ
M(m)

for all m ∈ M.

See Roth and Sotomayor, Chapter 2 for a proof
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Example. There are 3 men and 3 women with the following preferences:

Pm1 : w1 w2 w3 m1

Pm2 : w2 w1 w3 m2

Pm3 : w1 w2 w3 m3

Pw1 : m2 m1 m3 w1

Pw2 : m1 m3 m2 w2

Pw3 : m1 m2 m3 w3

Here

µM =

(
m1 m2 m3

w2 w1 w3

)

Although both m1 and m2 prefer and m3 is indifferent for the following
matching: (

m1 m2 m3

w2 w1 w3

)
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McVitie-Wilson on order-independence

Define two operations:

Proposal: make the next proposal of some man i . When complete, call
Refusal for the woman to whom man i has just proposed

Refusal: decides for woman j whether or not to refuse a new proposal from
man i or to refuse the man she has temporarily held and replace him by man
i . When complete, call Proposal.

Perform Proposal for each man in turn

This algorithm performs the same proposals and rejections although in general
in a different order; since assignment not finalized until the end, outcome is
the same as the simultaneous proposing version

Theorem. The outcome of the men-proposing deferred acceptance algorithm
is independent of the order of proposals.
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Direct Mechanism

Notation:

Ri : Set of all preference relations for agent i
R = Rm1 × · · · × Rmp ×Rw1 × · · · × Rmq : Set of all

preference profiles
R−i : Set of all preference profiles for all agents except agent i
M : Set of all matchings

A mechanism is a systematic procedure which determines a matching for
each marriage problem; a function ϕ : R →M.
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Stable Mechanism

A mechanism ϕ is stable if ϕ(R) is stable for any R ∈ R.

Similarly a mechanism is Pareto efficient if it always selects a Pareto efficient
matching and it is individually rational if it always selects an individually
rational matching.

Any stable mechanism is both Pareto efficient and also individually rational.

φM : Mechanism that selects the men-optimal stable
matching for each problem

φW : Mechanism that selects the women-optimal stable
matching for each problem
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Incompatibility of Stability & Strategy-Proofness

Theorem (Roth 1982): There exists no mechanism that is both stable and
strategy-proof.

Proof : Consider the following 2 men, 2 women problem with the following
preferences.

Rm1 : w1 w2 m1

Rm2 : w2 w1 m2

Rw1 : m2 m1 w1

Rw2 : m1 m2 w2
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In this problem there are only two stable matchings:

µM =

(
m1 m2

w1 w2

)
and µW =

(
m1 m2

w2 w1

)
Let ϕ be any stable mechanism. Then ϕ[R] = µM or ϕ[R] = µW .

If ϕ[R] = µM then woman w1 can report a fake preference R ′w1
where only her

top choice m2 is acceptable and enforce her favorite stable matching µW to
be selected by ϕ since it is the only stable matching for the manipulated
economy (R−w1 ,R

′
w1

).

If, on the other hand, ϕ[R] = µW then man m1 can report a fake preference
R ′m1

where only his top choice w1 is acceptable and enforce his favorite stable
matching µM to be selected by ϕ since it is the only stable matching for the
manipulated economy (R−m1 ,R

′
m1

). ♦
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Incentives Facing the Men Under the
Men-Optimal Stable Mechanism φM

Theorem (Dubins & Freedman 1981, Roth 1982): Truth-telling is a dominant
strategy for all men under the men-optimal stable mechanism.

For any man, any strategy which agrees with truth-telling for the set of
acceptable women as well as their relative ranking is also a dominant strategy.
We consider any such strategy also as truth-telling (since the relative ranking
of unacceptable women are irrelevant under any individually rational
mechanism). Any other strategy is a dominated strategy.

Truth-telling is a dominant strategy for all women under the women-optimal
stable mechanism.
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Proof of Strategy-proofness

Fix the reports of all the women and all but one man.

I Plan: Show that whatever report the man m starts with, he can make a series
of (weak) improvements leading to a truthful report.

Suppose man m is considering a strategy that leads to a match µ where he
gets w . Each of the following changes improves his outcome:

1) Reporting that w is his only acceptable woman.

I µ is still unblocked.
I By rural hospitals, m must be matched, and so must get w .

2) Reporting honestly, but truncating at w .

I m being unmatched is still blocked (because it was blocked if m reported just
w), so m must do at least as well as w .

3) Reporting honestly with no truncation.

I This won’t affect DA relative to above strategy.
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Many-to-One Matching: College Admissions Problems

College problem is a four-tuple 〈C ,S , q,R〉 where

C = {c1, ..., cm} is a set of colleges

S = {s1, ..., sn} is a set of students

q = (qc1 , . . . , qcm) is a vector of college capacities

R = (Rc1 , . . . ,Rcm ,Rs1 , . . . ,Rsn) is a list of preferences

Rs : Preference relation over C ∪ {∅}
Rc : Preference relation over 2S (i.e. sets of students)
Pc ,Ps : Strict preferences derived from Rc ,Rs
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College Preferences: Responsiveness

Assume that whether a student is acceptable for a college or not does not
depend on other students in her class. Similarly, we will assume that the
relative desirability of students does not depend on the composition of the
class. This property is known as responsiveness (Roth 1985).

Formally, college preferences Rc is responsive iff

1. for any T ⊂ S with |T | < qc and any s ∈ S \ T ,

(T ∪ {s})Pc T ⇔ {s}Pc ∅, and

2. for any T ⊂ S with |T | < qc and any s, s ′ ∈ S \ T ,

(T ∪ {s})Pc (T ∪ {s ′}) ⇔ {s}Pc {s ′}.
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Matching

The outcome of a college admissions problem is a matching.

Formally a matching is a correspondence µ : C ∪ S =⇒ C ∪ S ∪ ∅ such that:

1. µ(c) ⊆ S such that |µ(c)| ≤ qc for all c ∈ C ,

2. µ(s) ⊆ C such that |µ(s)| ≤ 1 for all s ∈ S , and

3. s ∈ µ(c) if and only if µ(s) = {c} for all c ∈ C and s ∈ S .
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Stability

A matching µ is blocked by a college c ∈ C if there exists s ∈ µ(c) such
that ∅Pc s.

A matching µ is blocked by a student s ∈ S if ∅Ps µ(s).

A matching is individually rational if it is not blocked by any college or
student.

A matching µ is blocked by a pair (c , s) ∈ C × S if

1. c Ps µ(s), and

2. 2.1 either there exists s ′ ∈ µ(c) such that {s}Pc {s ′}, or
2.2 |µ(c)| < qc and {s}Pc ∅.

A matching is stable if it is not blocked by any agent or a pair.
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College-Proposing Deferred Acceptance Algorithm

1. Each college c proposes to its top qc acceptable students (and if it has less
acceptable choices than qc , then it proposes to all its acceptable students).
Each student rejects any unacceptable proposals and, if more than one
acceptable proposal is received, she “holds” the most preferred.

k. Any college c who was rejected at step k − 1 by any student proposes to its
most preferred qc acceptable students who has not yet rejected it (and if
among the remaining students there are fewer than qc acceptable students,
then it proposes to all).

Each students “holds” her most preferred acceptable offer to date, and rejects
the rest.

Algorithm terminates when there are no more rejections.

Each student is matched with the college she has been holding in the last step.
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Theorem (Gale & Shapley 1962): The college-proposing deferred acceptance
algorithm gives a stable matching for each college admissions problem.

Many (although not all) results for marriage problems extend to college
admissions problems. The following “trick” is often used to extend some of
these results.

Given a college admissions problem 〈C ,S , q,R〉, construct a related
marriage problem as follows:

“Divide” each college ci into qci seperate pieces c1i , . . . , c
qci
i where each piece

has a capacity of one; and let each piece have the same preferences over S as
college c has. (Since college preferences are responsive, Rc is consistent with
a unique ranking of students.)
C∗ : The resulting set of college “pieces” (or seats).

For any student s, extend her preferences to C∗ by replacing each college ci in
her original preferences Rs with the block c1i , . . . , c

qci
i in that order.
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So in the related marriage problem:

each seat of a college c is an individual unit that has consistent preferences
with college c ,

and students rank seats at different colleges as they rank the colleges whereas
they rank seats at the same college based on the index of the seat.

Given a matching for a college admissions problem, it is straightforward to
define a corresponding matching for its related marriage problem: Given any
college c , assign students assigned to c in the original problem one at a time
to pieces of c starting with lower index pieces.

Stability Lemma (Roth & Sotomayor 1989): A matching of a college
admissions problem is stable if and only if the corresponding matching of its
related marriage problem is stable.
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Implications of the Stability Lemma

The Stability Lemma can be used to extend the following results for marriage
problems to college admissions:

1. There exists a student-optimal stable matching µS that every student likes
at least as well as any other stable matching. Furthermore, the outcome of
the student-proposing deferred acceptance algorithm gives the
student-optimal stable matching.

2. There exists a college-optimal stable matching µC that every college likes
at least as well as any other stable matching. Furthermore, the outcome of
the college-proposing deferred acceptance algorithm gives the college-optimal
stable matching.

37/65



Indeed the following stronger result holds:

Theorem (Roth 1984): Consider any college c ∈ C . Among all students
college c can be assigned under all stable matchings, it is assigned qc of the
best ones under µC .

Moreover,

1. The student-optimal stable matching is the worst stable matching for each
college. Similarly the college-optimal stable matching is the worst stable
matching for each student.

2. The set of students filled and the set of positions filled is the same at each
stable matching.

3. The join as well as the meet of two stable matchings is each a stable
matching.

4. There is no individually rational matching ν where ν(s)Psµ
S(s) for all s ∈ S .
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New Results For College Admissions

Theorem (Roth 1986): Any college that does not fill all its positions at some
stable matching is assigned precisely the same set of students at every stable
matching.

Theorem (Roth & Sotomayor 1989): Let µ and ν be two stable matchings.
For any college c ,

either {s}Pc{s ′} for all s ∈ µ(c) \ ν(c) and s ′ ∈ ν(c) \ µ(c), or

{s ′}Pc{s} for all s ∈ µ(c) \ ν(c) and s ′ ∈ ν(c) \ µ(c).
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A Different Result For College Admissions

As the following example shows, there can be an individually rational
matching where each college receives a strictly better assignment than under
the college-optimal stable matching.

Example: There are 2 colleges c1, c2 with qc1 = 2, qc2 = 1, and 2 students.
The preferences are as follows:

Rs1 : {c1} {c2}
Rs2 : {c2} {c1}

Rc1 : {s1, s2} {s2} {s1}
Rc2 : {s1} {s2}

Here both c1 and c2 strictly prefer ν to µC where:

µC =

(
c1 c2
s1 s2

)
and ν =

(
c1 c2
s2 s1

)
.
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College Admissions Problems: Incentives

Since any impossibility result obtained for a smaller class of problems
immediately extends to a larger class. Therefore the following two results are
immediate.

Theorem (Roth 1982): There exists no mechanism that is both stable and
strategy-proof.

The following positive result is a direct implication of the Stability Lemma and
the corresponding positive result for the marriage problem:

Theorem (Roth 1985): Truth-telling is a dominant strategy for all students
under the student-optimal stable mechanism.
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Incentives Facing Colleges under
Stable Mechanisms

For colleges, however, the situation is different.

Example: There are 2 colleges c1, c2 with qc1 = 2, qc2 = 1, and 2 students s1,
s2. The preferences are as follows:

Rs1 : {c1} {c2}
Rs2 : {c2} {c1}

Rc1 : {s1, s2} {s2} {s1}
Rc2 : {s1} {s2}

The only stable matching for this problem is:

µC =

(
c1 c2
s1 s2

)
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Now suppose college c1 submits the manipulated preferences R ′c1 where only
student s2 is acceptable. For problem (R−c1 ,R

′
c1) the only stable matching is:(

c1 c2
s2 s1

)
.

Hence college c1 benefits by manipulating its preferences under any stable
mechanism (including the college-optimal stable mechanism).

Theorem (Roth 1985): There exists no stable mechanism where truth-telling
is a dominant strategy for all colleges.
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NRMP redesign: A new kind of core convergence

Roth and Peranson (1999):
Difference between hospital and doctor-proposing DA (no couples)

1987 1993 1994 1995 1996
APPLICANTS
# of Applicants Affected 20 16 20 14 21
Prefer Doctor-Proposing 12 16 11 14 12
Prefer Hospital-Proposing 8 0 9 0 9

PROGRAMS
# of Programs Affected 20 15 23 15 19
Prefer Doctor-Proposing 8 0 12 1 10
Prefer Hospital-Proposing 12 15 11 14 9
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Magnitude of conflict of interest/manipulations
Simulation on randomly generated data.

Simple model: n hospital programs, n doctors, (no couples).

Preferences are drawn independently and uniformly. Each doctor applies to k
hospitals.

C (n) = number of doctors matched differently at hospital-proposing and
doctor-proposing DAs.
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“Core non-convergence”: k = n→∞

Figure: Roth and Peranson

C (n)/n: proportion of workers who receive different matches at different
stable matchings, in a simple market with n workers and n firms, when each
worker applies to k firms, each firm ranks all workers who apply, and
preferences are uncorrelated.

As market grows, so does the set of stable matchings
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“Core convergence”: k fixed, n→∞

Figure: Roth and Peranson

As market grows for fixed k , the set of stable matchings shrinks.
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Magnitude of possible manipulations by students

Upper limit of the number of applicants who could benefit by truncating their
lists at one above their original match point.

Note: for students, truncation is known to be “exhaustive” (Roth and Vande
Vate 1991).

1987 1993 1994 1995 1996
Program-Proposing 12 22 13 16 11
Applicant-Proposing 0 0 2 2 9

Applicants can manipulate due to match variations

But, more applicants can manipulate program-proposing algorithm than the
applicant-proposing algorithm.

Both numbers are very small.
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Magnitude of possible manipulations by hospitals

Upper limit of the number of hospital programs that could benefit by
truncating their lists at one above their original match point (for hospitals,
truncation is not exhaustive)

1987 1993 1994 1995 1996
Program-Proposing 15 12 15 23 14
Applicant-Proposing 27 28 27 36 18

More programs are able to manipulate applicant-proposing algorithm.
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Model of Large Matching Markets
There are constants q̄, q̃, k (independent of n). G n is a game of incomplete
information such that

there are n colleges, with quota at most q̄.
there are at most q̃n students.
Preferences of colleges are common knowledge (the result holds under
incomplete information as well). Utility uc(S ′) for college c of being matched
with a set of students S ′ is additive:

uc(S ′)

{
=
∑

s∈S′ uc({s}) if |S ′| ≤ qc ,

< 0 otherwise.

uc({s}) is always positive (every student is acceptable). The value
sup{uc({s})|n ∈ N, s,c are in G n} is finite.
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Preferences of students are private information. A student’s preference list is
drawn from a uniform distribution over preference lists of length k,
independently across students (more general cases are analyzed in the paper.)

Timing of the game: Students and colleges submit their preference lists and
quotas simultaneously. DA is applied under the reported preferences.
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Kojima and Pathak (2009)

Given ε > 0, a strategy profile is an ε-Nash equilibrium if no player gains
more than ε by unilateral deviation.

Theorem
For any ε > 0, there exists n such that truth-telling by every agent is an
ε-Nash equilibrium for any game with more than n colleges.
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Kojima and Pathak (2009)

There is also a result regarding the “counting analysis” by Roth and Peranson.

Theorem
The expected proportion of colleges that can manipulate DA when others are
truthful goes to zero as the number of colleges goes to infinity.The expected
proportion of colleges that are matched to the same set of students in all
stable matchings goes to one as the number of colleges goes to infinity.
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Intuition

DA is strategy-proof for students, so truthtelling is an optimal strategy for
students.

Strategic rejection by a college causes a chain of application and rejections.
Some of the rejected students may apply to the manipulating college, and the
college may be made better off if these new applicants are desirable.

In a large market, there is a high probability that there will be many colleges
with vacant positions. So the students who are strategically rejected (or those
who are rejected by them and so on) are likely to apply to those vacant
positions and be accepted. So the manipulating college is unlikely to be made
better off.
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Large Market Matching Models

Azevedo-Leshno (2016): A Supply Demand Framework for Two-Sided
Matching Markets, Journal of Political Economy, 124(5), 1235-1268.

I Continuum model, tractable comparative statics

Ashlagi-Kanoria-Leshno (2017): Unbalanced Random Matching Markets,
Journal of Political Economy, 125(1), 69-98.

I Random preference model, with improved proof; comparative statics by supply
vs. demand

Lee (2017): Incentive Compatibility of Large Centralized Matching Markets
(random bipartite graphs), Review of Economic Studies, 84(1).

Working papers by Che and Tercieux (2017); Lee and Yariv (2017): Stability
vs. Efficiency
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Complementarities: Couples in the labor market

Major post-war transformation of US labor market

Dual-career households raise issues of job coordination

Nagging problem for medical clearinghouses

X 1940s: Timing of transactions lead to creation of centralized market, most
graduates were men

X 1970s: More women (e.g., 21% in 1977), so not uncommon for women to be
married to another doctor

X Married doctors felt that existing clearinghouses did not serve them well and
increasing numbers began finding jobs outside the process

X Roth (1984): Problem was that mechanism did not allow preferences over pairs
to be expressed

56/65



Couples in two-sided matching markets

Currently, many married couples in the medical match (1,000 out of 25,000 in
NRMP) and they usually want to coordinate jobs

DA does not accommodate couples: possible that one partner assigned to
Boston, the other to LA

Participation of medical students in NRMP dropped in 1970s, especially
among couples

NRMP adopted an initial procedure to handle couples in the 1970s

57/65



Initial procedure in the 1970s

Couples (after being certified by their dean) could register for the match as a
couple

X They had to specify one member of the couple as the leading member
X They submitted a separate rank order list of positions for each member of the

couple

The leading member went through the match as if single

The other member then had his/her rank order list edited to remove positions
not in the ‘same community’ as the one the leading member had matched to

X Initially the NRMP determined communities; in a later version, when couples
were still defecting, couples could specify this themselves.

Note: this is similar to the current rules in Scotland

58/65



Handling couples

Did this work?

X Violated the iron law of marriage: you can’t be happier than your spouse!
X Couples consume pairs of jobs. So an algorithm that only asks for their

preference orderings over individual jobs can’t hope to avoid instabilities
(appropriately redefined to include couples preferences)

The NRMP allowed couples to submit preferences over pairs of hospitals and
participation recovered

The Roth-Peranson Algorithm (1998-)
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Non-existence

Allowing couples to rank pairs of programs is still not sufficient

A stable matching does not necessarily exist when there are couples (Roth and
Sotomayor)

Example (based on Klaus and Klijn, 2005)

X There are hospitals h1, h2 with one position each, one single doctor s and one
couple c = (f ,m)

X Their preferences are

s : h1, h2

c : (h1, h2)

h1 : m, s

h2 : s, f

X If couple is matched, µ(c) = (h1, h2). Then s is unmatched, and together with
h2 can block µ

X If couple is unmatched, µ(c) = c, then if µ(s) = h1, then (c, h1, h2) block or if
µ(s) = h2 or µ(s) = s, then (s, h1) block
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Non-existence (cont.)

Klaus and Klijn (2005) find “maximal domain” results: identify condition
known as weak responsiveness which effectively rules out complementarity
in preferences such as due to geography

X Only 1 out of 167 couples in APPIC dataset satisfy this assumption

Using stated preference data from NRMP, Roth and Peranson (1999) run a
number of matching algorithms using submitted preferences from 1993, 1994
and 1995

X Algorithms always produce stable matching

What about the market for clinical psychologists?

X There is a stable matching for all years 1999-2007
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Matching with couples: Theory

Kojima, Pathak and Roth (QJE 2013) consider a model similar to Kojima and
Pathak but assume there are a small number of couples.

Theorem

The probability that there exists a stable matching converges to one, as the
size of the market (number of colleges) goes to infinity with the number of
couples being fixed.

Theorem
For any ε > 0, there exists n such that truth-telling by every agent is an
ε-Nash equilibrium under the Roth-Peranson algorithm for any game with
more than n colleges.
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Rough Intuition

Roth-Peranson algorithm will find a stable matching if couples are not
displaced by another couple or single doctors.

In a large market, there is a high probability that there will be many colleges
with vacant positions. So couples and singles are unlikely to apply and
displace a couple in a hospital. So the algorithm is likely to terminate,
producing a stable matching.
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2002 Antitrust Lawsuit

16 law firms filed class action lawsuit representing 3 former residents, arguing
that NRMP violated antitrust laws and was conspiracy to depress resident’s
wages

I “Defendants and others have illegally contracted, combined and conspired
among themselves to displace competition in the recruitment, hiring,
employment and compensation of resident physicians, and to impose a scheme
of restraints which have the purpose and effect of fixing, artificially depressing,
standardizing and stabilizing resident physician compensation and other terms
of employment.”

Suit was dismissed in August 2004

Milton Friedman (1962): the American Medical Association is the “strongest
trade union in America... licensure has reduced both the quantity and quality
of medical practice... It has retarded technological development both in
medicine itself and in the organization of medical practice.”

I But is the match the problem?
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Academic work related to Antitrust suit

Niederle and Roth (JAMA 2003): compare wages of 14 internal medicine
specialities, where 4 use a match and 10 do not; Report no effect of match on
salaries

Bulow and Levin (AER 2006): develop model where firms set salary levels
before matching with workers, and show that the wage distribution is
compressed compared to competitive equilibrium, because of inflexible wage
schedule

Agarwal (AER 2016): empirical model of the match, “implicit tuition”
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Road Map

How to think about choosing a mechanism?
I Trade-offs among stability, efficiency and strategy-proofness

Single vs multiple (i.e. school-specific) tie breaking in DA

DA with various tie breaking rules vs Student Optimal Stable matching vs
Efficient matching

TTC and minimizing envy with efficient matchings
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Public School Choice

Brown vs. Board (1954): “separate educational facilities are inherently
unequal”

Court-ordered desegregation plans

Many urban areas have abandoned solely residential based systems in favor of
open enrollment or school choice

X People already have school choices because they can “vote with their feet”
X Alternative schooling models: charters, vouchers, theme oriented small schools

Difficulty of clearing supply and demand via residential assignment

Cited rationales include equity considerations; desire to break link between
housing market and school options; introduce quasi-market forces into
education

3/51



Recent literature thinking about the problem of assigning students to schools
in public school choice plans in the US.

2003: New York City adopts a new centralized mechanism

2005: Boston changes the rules of their existing centralized mechanism

2007: England bans class of ‘First Preference First’ mechanisms nationwide

2009: Chicago abandons mechanism midstream

2012: Denver and NOLA adopt new mechanisms

2013: Boston adopts Home-Based Plan

2014: Washington DC and Newark adopt new mechanisms

Experience with mechanisms in the field has inspired new theoretical and
empirical questions
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How to think about Student Assignment?

Key questions:

What is taken as exogenous and at what stage does the mechanism designer
enter?

How should we interpret school preferences?

X What role for incentives of schools and schools in efficiency calculus?

X Are we concerned that schools may want to operate outside of system
(instability)?

X More generally, is the market one or two-sided? (Stability vs. justified envy)

What type of information can participants report?

Are there consumption externalities?

Do these mechanisms generate real allocative efficiencies? Productive
efficiencies?
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Parental Incentives in Boston

A few weeks after Abdulkadiroğlu and Sönmez (2003) was published
in the June 2003 AER, it was described in the Boston Globe

Boston Globe, September 12, 2003
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Parental Incentives in Boston

Evidence from BPS School Guide (2004, p3, quotes in original):

For a better choice of your “first choice” school...
consider choosing less popular schools.

Advice from the West Zone Parent’s Group:

One school choice strategy is to find a school you like
that is undersubscribed and put it as a top choice, OR,
find a school that you like that is popular and put it as
a first choice and find a school that is less popular for a
“safe” second choice.
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Boston Globe, Metro Section: September 12, 2003

Gale and Shapley
(1962)’s Deferred
Acceptance
Algorithm in
Boston
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Redesign of NYC High School Match

Some schools actively rank students ⇒ Incentives to circumvent the match

Deputy Chancellor: Before you might have a situation where a school was
going to take 100 new children for 9th grade, they might have declared 40
seats, and then placed the other 60 outside the process.

⇒ Stable matching algorithm
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Redesign of NYC High School Match

Promote student welfare to the extend possible

It [was] not unusual for up to 45 percent of students who apply to schools
outside their neighborhood to be rejected by all their choices (New York
Times, 03/11/03), after which they would be assigned without regard for
their stated choices

⇒ Student optimal stable matching - student proposing deferred acceptance
algorithm
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Redesign of NYC High School Match

Further gaming by schools:

Schools gave higher priority to students who ranked them as first or second
choice (public info) Students were faced to make strategic decisions while
ranking schools

⇒ No stable mechanisms that is strategy-proof for schools, however stability
removes some school incentives to manipulate

Student proposing deferred acceptance algorithm is strategy-proof for students
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Tie breaking in matching mechanisms

Well-known and widely applied matching algorithms use strict student
preferences over schools and strict rankings of students at schools

Most of the matching literature is built on the assumption of strict
preferences, mainly because strict preferences have been more appropriate in
earlier applications.

However, as opposed to earlier applications, indifferences in school preferences
are a primary feature of school choice problems.

A typical example: Sort students at schools in the following order
I Students with siblings attending the school
I Students living with 2 miles radius of school
I All other students

Districts use lotteries to break ties among equal priority students?

How to break ties? A single lottery that applies to all school? A different
lottery at each school?
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Example 1: Tie-breaking is consequential
Three students; three schools, each with one seat and each is indifferent
among all students.

True Preferences
i1 : s2 − s1 − s3
i2 : s1 − s2 − s3
i3 : s1 − s2 − s3

Assign a random number to each student and then break ties at schools
accordingly:

Ties broken as
i1 − i2 − i3
i1 − i3 − i2
i2 − i1 − i3
i2 − i3 − i1
i3 − i1 − i2
i3 − i2 − i1

s1 − s2 − s3
i2 − i1 − i3
i3 − i1 − i2
i2 − i1 − i3
i2 − i3 − i1
i3 − i1 − i2
i3 − i2 − i1

Each matching is efficient
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Example 2: Multiple tie breaking can be inefficient

True Preferences
i1 : s2 − s1 − s3
i2 : s1 − s2 − s3
i3 : s1 − s2 − s3

Ties broken as
s1 : i1 − i3 − i2
s2 : i2 − i1 − i3
s3 : i3 − i1 − i2

The student proposing DA produces i1 i2 i3
s1 s2 s3

 .

which is dominated by  i1 i2 i3
s2 s1 s3

 .
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NYC DOE argued that a more equitable approach would be to draw a new
random order for each school:

“I believe that the equitable approach is for a child to have a new chance...
This might result in both students getting their second choices, the fact is
that each child had a chance. If we use only one random number, and I had
the bad luck to be the last student in line this would be repeated 12 times and
I never get a chance. I do not know how we could explain that to a student
and parent.”

“When I answered questions about this at training sessions, (It did come up!)
people reacted that the only fair approach was to do multiple runs.”
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Since φ dominates DAτ, φ must also produce μ′ under (P′; RS ). Note that i1 is matched with s3, 
her second choice, at μ′. But then i1 can manipulate φ under P′ by misrepresenting her prefer-
ences as s2 ​P​ i1

​ s1 ​P​ i1
​ s3, because then φ matches her with s2, which she prefers to s3, the school she 

is matched with by reporting truthfully. Therefore no such strategy-proof mechanism exists for 
this problem.

Theorem 1, our main result, generalizes this insight.

II.  Welfare Consequences of Tiebreaking

In the course of designing the New York City high school match, policymakers from the 
Department of Education were concerned with the fairness of tiebreaking. Even after the deci-
sion to use a student-proposing deferred acceptance algorithm, they believed that each student 
should receive a different random number at each program they applied to and this number 
should be used to construct strict preferences of schools for students. Through simple examples 
and simulations, we suggested that single tiebreaking might have superior welfare properties 
to multiple tiebreaking. The DOE remained unconvinced until student preferences had already 
been submitted, and computational experiments could be conducted comparing single and mul-
tiple tiebreaking using actual data from the first round in 2003–2004.

Table 1 presents a comparison of the distribution of school assignments based on the prefer-
ences submitted by grade 8 applicants in New York City 2006–2007. The column labeled Deferred 
Acceptance Single Tiebreaking (DA-STB) reports the average number of students receiving their 
top choice, second choice, and so on under the student-proposing deferred acceptance algorithm 

Table 1—Tiebreaking for Grade 8 Applicants in NYC in 2006–2007

 
 
 
 
Choice

Deferred  
acceptance single 

tiebreaking  
DA-STB  

(1)

Deferred acceptance 
multiple  

tiebreaking  
DA-MTB  

(2)

 
 

Student-optimal 
stable matching  

(3)

 
Improvement  

from DA-STB to  
student-optimal

 
 

Number of  
students  

(4)
1 32,105.3 (62.2) 29,849.9 (67.7) 32,701.5 (58.4) + 1 633.2 (32.1)
2 14,296.0 (53.2) 14,562.3 (59.0) 14,382.6 (50.9) + 2 338.6 (22.0)
3 9,279.4 (47.4) 9,859.7 (52.5) 9,208.6 (46.0) + 3 198.3 (15.5)
4 6,112.8 (43.5) 6,653.3 (47.5) 5,999.8 (41.4) + 4 125.6 (11.0)
5 3,988.2 (34.4) 4,386.8 (39.4) 3,883.4 (33.8) + 5 79.4 (8.9)
6 2,628.8 (29.6) 2,910.1 (33.5) 2,519.5 (28.4) + 6 51.7 (6.9)
7 1,732.7 (26.0) 1,919.1 (28.0) 1,654.6 (24.1) + 7 26.9 (5.1)
8 1,099.1 (23.3) 1,212.2 (26.8) 1,034.8 (22.1) + 8 17.0 (4.1)
9 761.9 (17.8) 817.1 (21.7) 716.7 (17.4) + 9 10.2 (3.1)
10 526.4 (15.4) 548.4 (19.4) 485.6 (15.1) + 10 4.7 (2.0)
11 348.0 (13.2) 353.2 (12.8) 316.3 (12.3) + 11 2.0 (1.1)
12 236.0 (10.9) 229.3 (10.5) 211.2 (10.4)

Unassigned 5,613.4 (26.5) 5,426.7 (21.4) 5,613.4 (26.5) Total: 1,487.5

Notes: Data from the main round of the New York City high school admissions process in 2006–2007 for students 
requesting an assignment for grade 9 (high school). Column 1 reports the average choice received distribution of appli-
cants from the student-proposing deferred acceptance algorithm with single tiebreaking (DA-STB). Column 2 reports 
the average choice received distribution of applicants from the student-proposing deferred acceptance algorithm with 
school-specific tiebreaking. Column 3 reports the average choice received distribution of applicants in a student-opti-
mal stable matching, which is computed from DA-STB followed by stable improvement cycles. Column 4 reports the 
average number of students and how many places on their rank order list students improve in the student-optimal sta-
ble matching relative to the matching produced by DA-STB. Columns 1, 2, 3, and 4 are based on 250 random draws. 
Simulation standard errors are reported in parentheses.
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Are we missing anything good with single
tiebreaking?

Single tiebreaking can produce all student-optimal stable matchings

Proposition:(Abdulkadiroglu, Pathak and Roth (2009))

µ is produced by a multiple tie breaking
µ cannot be produced by any single tie breaking.
Then µ involves inefficiency.
That is, there is another stable matching that Pareto dominates µ.

In other words

Take a preference profile and

a student-optimal matching µ for that preference profile,

Then there is a single-tie breaking rule that produces µ
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Example 3: Even single tie breaking may be
inefficient

True Preferences
i1 : s2 − s1 − s3
i2 : s1 − s2 − s3
i3 : s1 − s2 − s3

Priorities
s1 :
s2 : i2 − i1 − i3
s3 : i3 − i1 − i2

Break ties at s1 as s1 : i1 − i3 − i2
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Example 3: Even single tie breaking may be
inefficient

True Preferences
i1 : s2 − s1 − s3
i2 : s1 − s2 − s3
i3 : s1 − s2 − s3

Priorities
s1 : i1 − i3 − i2
s2 : i2 − i1 − i3
s3 : i3 − i1 − i2

The student proposing DA produces i1 i2 i3
s1 s2 s3


which is dominated by  i1 i2 i3

s2 s1 s3


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Stable Improvements Cycle (Erdil and Ergin 2008)

Single tiebreaking produce all student-optimal stable matchings

But it does not guarantee a student-optimal stable matching, i.e. it may
involve inefficiencies

Erdil and Ergin’s (2008) SIC algorithm:
I Start with a stable (not necessarily student optimal) matching
I A SIC consists of a cycle of students, such that each student in the cycle

prefers the school that the student to the right of him is assigned,and he is the
highest ranked student at that school among all students who prefer that
school to their match

I If the stable matching is not student optimal, it admits a SIC (Theorem 1,
Erdil and Ergin 2008)

I If a SIC exists, assign each student in the cycle tthe school that the student to
right of him is assigned

I Repeat the process until no more SIC exists

SIC produces a student-optimal stable matching

However, SIC is not strategy-proof (Erdil and Ergin 2008)
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SIC and Student Optimal Stable Matching
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Since φ dominates DAτ, φ must also produce μ′ under (P′; RS ). Note that i1 is matched with s3, 
her second choice, at μ′. But then i1 can manipulate φ under P′ by misrepresenting her prefer-
ences as s2 ​P​ i1

​ s1 ​P​ i1
​ s3, because then φ matches her with s2, which she prefers to s3, the school she 

is matched with by reporting truthfully. Therefore no such strategy-proof mechanism exists for 
this problem.

Theorem 1, our main result, generalizes this insight.

II.  Welfare Consequences of Tiebreaking

In the course of designing the New York City high school match, policymakers from the 
Department of Education were concerned with the fairness of tiebreaking. Even after the deci-
sion to use a student-proposing deferred acceptance algorithm, they believed that each student 
should receive a different random number at each program they applied to and this number 
should be used to construct strict preferences of schools for students. Through simple examples 
and simulations, we suggested that single tiebreaking might have superior welfare properties 
to multiple tiebreaking. The DOE remained unconvinced until student preferences had already 
been submitted, and computational experiments could be conducted comparing single and mul-
tiple tiebreaking using actual data from the first round in 2003–2004.

Table 1 presents a comparison of the distribution of school assignments based on the prefer-
ences submitted by grade 8 applicants in New York City 2006–2007. The column labeled Deferred 
Acceptance Single Tiebreaking (DA-STB) reports the average number of students receiving their 
top choice, second choice, and so on under the student-proposing deferred acceptance algorithm 

Table 1—Tiebreaking for Grade 8 Applicants in NYC in 2006–2007

 
 
 
 
Choice

Deferred  
acceptance single 

tiebreaking  
DA-STB  

(1)

Deferred acceptance 
multiple  

tiebreaking  
DA-MTB  

(2)

 
 

Student-optimal 
stable matching  

(3)

 
Improvement  

from DA-STB to  
student-optimal

 
 

Number of  
students  

(4)
1 32,105.3 (62.2) 29,849.9 (67.7) 32,701.5 (58.4) + 1 633.2 (32.1)
2 14,296.0 (53.2) 14,562.3 (59.0) 14,382.6 (50.9) + 2 338.6 (22.0)
3 9,279.4 (47.4) 9,859.7 (52.5) 9,208.6 (46.0) + 3 198.3 (15.5)
4 6,112.8 (43.5) 6,653.3 (47.5) 5,999.8 (41.4) + 4 125.6 (11.0)
5 3,988.2 (34.4) 4,386.8 (39.4) 3,883.4 (33.8) + 5 79.4 (8.9)
6 2,628.8 (29.6) 2,910.1 (33.5) 2,519.5 (28.4) + 6 51.7 (6.9)
7 1,732.7 (26.0) 1,919.1 (28.0) 1,654.6 (24.1) + 7 26.9 (5.1)
8 1,099.1 (23.3) 1,212.2 (26.8) 1,034.8 (22.1) + 8 17.0 (4.1)
9 761.9 (17.8) 817.1 (21.7) 716.7 (17.4) + 9 10.2 (3.1)
10 526.4 (15.4) 548.4 (19.4) 485.6 (15.1) + 10 4.7 (2.0)
11 348.0 (13.2) 353.2 (12.8) 316.3 (12.3) + 11 2.0 (1.1)
12 236.0 (10.9) 229.3 (10.5) 211.2 (10.4)

Unassigned 5,613.4 (26.5) 5,426.7 (21.4) 5,613.4 (26.5) Total: 1,487.5

Notes: Data from the main round of the New York City high school admissions process in 2006–2007 for students 
requesting an assignment for grade 9 (high school). Column 1 reports the average choice received distribution of appli-
cants from the student-proposing deferred acceptance algorithm with single tiebreaking (DA-STB). Column 2 reports 
the average choice received distribution of applicants from the student-proposing deferred acceptance algorithm with 
school-specific tiebreaking. Column 3 reports the average choice received distribution of applicants in a student-opti-
mal stable matching, which is computed from DA-STB followed by stable improvement cycles. Column 4 reports the 
average number of students and how many places on their rank order list students improve in the student-optimal sta-
ble matching relative to the matching produced by DA-STB. Columns 1, 2, 3, and 4 are based on 250 random draws. 
Simulation standard errors are reported in parentheses.
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Trade-off between efficiency and incentives
Trade-off between efficiency and incentives

Preferences
i1 : s2 − s1 − s3
i2 : s1 − s2 − s3
i3 : s1 − s2 − s3

Priorities
s1: i1 − i3 − i2
s2 : i2 − i1 − i3
s3 : i2 − i1 − i3

DA:

i1 i2 i3
s1 s2 s3

Φ :

i1 i2 i3
s2 s1 s3
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Trade-off between efficiency and incentives

Theorem:(Abdulkadiroglu, Pathak and Roth 2009) Given any single tie
breaking rule and an associated DA, there is no strategy-proof mechanism
that does at least as well as the associated DA at every preference profile for
every students.

That is, DA with single tie breaking lies on the Pareto frontier of
strategy-proof stable mechanisms. Any inefficiency associated with it is the
cost of providing straightforward incentives.
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have incentives to circumvent the match. If the blocking pair involves a student and a school that 
uses only various fixed priorities (i.e., passively ranks applicants), then the student involved in the 
blocking pair will have higher priority than the student who receives the school in the efficient 
matching.

The last two columns of Table 2 report both types of blocking pairs that result from the effi-
cient matching. The total number of students involved in at least one blocking pair is 34,898.8 on 
average, which corresponds to a total of 57,046 blocking pairs involving a student and school on 
average across the simulations. More than 90 percent of the blocking pairs involve a student and 
an educational option program, while about 7 percent of the remaining blocking pairs involve 
a “screened” program.18 Since both of these program types submit a rank order list on students, 
this type of violation of stability may lead programs to circumvent their assignment by matching 
with different students after the placements have been announced.

Of the students involved in a blocking pair, 22,287.5, or 63.9 percent, are involved in a block-
ing pair at one school; 6,707.8, or 19.2 percent, of students are involved in a blocking pair at 
two schools. There are even 3.2 students on average who are involved in a blocking pair at 12 
schools. These students are unassigned, but in the efficient matching, there is a student who is 
assigned with either lower priority or lower ranking at each of their 12 choices. Taken together, 
this table shows that, while 4,296.6 students on average could potentially benefit from moving to 

18 Appendix AII contains a description of the admissions criteria employed at both educational option and screened 
programs.

Table 2—Welfare Consequences of Stability for Grade 8 Applicants in 2006–2007

Choice

Student-optimal 
stable matching

(1)

Efficient 
matching

(2)

Improvement 
from student-
optimal stable 

matching Number
(3)

k

Count of 
students with k 
blocking pairs 

(4)
1 32,701.5 (58.4) 34,707.8 (50.5) + 1 1,819.7 (41.3) 1 22,287.5 (205.1)
2 14,382.6 (50.9) 14,511.4 (51.1) + 2 1,012.8 (26.4) 2 6,707.8 (117.9)
3 9,208.6 (46.0) 8,894.4 (41.2) + 3 592.0 (19.5) 3 2,991.0 (79.6)
4 5,999.8 (41.4) 5,582.1 (40.3) + 4 369.6 (16.0) 4 1,485.4 (56.5)
5 3,883.4 (33.8) 3,492.7 (31.4) + 5 212.5 (12.0) 5 716.6 (32.5)
6 2,519.5 (28.4) 2,222.9 (24.3) + 6 132.1 (9.1) 6 364.6 (22.9)
7 1,654.6 (24.1) 1,430.3 (22.4) + 7 77.0 (7.1) 7 183.1 (13.6)
8 1,034.8 (22.1) 860.5 (20.0) + 8 43.0 (5.6) 8 85.6 (10.9)
9 716.7 (17.4) 592.6 (16.0) + 9 26.3 (4.5) 9 44.7 (6.4)
10 485.6 (15.1) 395.6 (13.7) + 10 11.6 (2.8) 10 22.6 (4.9)
11 316.3 (12.3) 255.0 (10.8) + 11 4.8 (2.0) 11 9.9 (3.0)
12 211.2 (10.4) 169.2 (9.3) 12 3.2 (1.6)

Unassigned 5,613.4 (26.5) 5,613.4 (26.5) Total: 4,296.6 34,898.8

Notes: Data from the main round of the New York City high school admissions process in in 2006–2007 for students 
requesting an assignment for grade 9 (high school). Column 1 reports the average choice received distribution of appli-
cants in a student-optimal stable matching, which is computed from DA-STB followed by stable improvement cycles. 
Column 2 reports the average choice received distribution of applicants in a Pareto efficient matching, computed with 
Gale’s top trading cycles, which dominates the matching in column 1. Column 3 reports the average number of stu-
dents and how many places on their rank order list students improve in the efficient matching relative to a student-
optimal stable matching. Column 4 reports the average number of students who form k different blocking pairs in the 
efficient matching. Columns 1, 2, 3, and 4 are based on 250 random draws. Simulation standard errors are reported in 
parentheses.
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Canonical Model

Rest of the talk focuses on the following canonical model with no indifference
in school priorities (Abdulkadiroğlu and Sönmez 2003):

Primitives

1. a set of students I = {i1, ..., in},
2. a set of schools S = {s1, ..., sm},
3. a capacity vector q = (qs1 , ..., qsm),

4. a list of strict student preferences P = (Pi1 , ...,Pin), and

5. a list of strict school priorities π = (πs1 , ..., πsm).
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Gale’s Top Trading Cycles

Adapted by Abdulkadiroğlu and Sonmez (2003) as follows:

In the first step, all individuals and schools are available.

Every available school points to its highest priority individual among all
individuals. Every individual points to her most preferred school among all
available schools. A cycle c = {sk , ik}k=1,...,K is an ordered list of schools and
individuals such that sk points to ik and ik points to sk+1 for every k where
sK+1 = s1.

For every cycle c , match each individual with the school she points to in that
cycle and remove the individual and decrease the capacity of the school. If the
capacity is zero, remove it along with individuals in the cycle from the
problem.

Repeat the algorithm in the next round until no more individuals are matched.
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DA vs TTC

Strategy-proof Stable Pareto Efficient
DA YES YES NO

TTC YES NO YES

DA and TTC are not Pareto-comparable, i.e. although DA is not Pareto
efficient, it may also produce an efficient matching different than the TTC
matching

How to choose between DA and TTC?
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Policy debate: Boston

2003-05: Task Force recommended TTC:
...the Gale-Shapley algorithm [...] cuts down on the amount of
choice afforded to families. The Top Trading Cycles algorithm also
takes into account priorities while leaving some room for choice. [...]
choice was very important to many families who attended
community forums

Recommendation was overturned following further deliberation, and TTC was
faulted in the final school committee report:

[TTC’s] trading shifts the emphasis onto the priority and away from
the goals BPS is trying to achieve by granting these priorities in the
first place.

34/51



Outline

1 Road Map

2 School Choice, Student Assignment and Tradeoffs

3 Tie-breaking in Deferred Acceptance

4 Student Optimal Stable Matching

5 Trade-off between efficiency and incentives

6 TTC and Minimizing Envy
Top Trading Cycles
DA vs TTC ib Boston
New Orleans RSD: OneApp in 2012
Why TTC?



OneApp in New Orleans

New Orleans Recovery School District was formed in 2003 to facilitate state
control of schools in New Orleans; role expanded considerably following
Hurricane Katrina in 2005

In 2012, the RSD became the nation’s first to integrating assignment between
traditional public and charter schools; by 2014, the district became 100%
charter

Early on, officials decided that all RSD schools would only use two different
priorities: sibling and walk-zone, and an even lottery number would break ties
within applicants

RSD environment closely resembles original school choice environment of
Abdulkadiroğlu and Sönmez (2003)
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Review

Roth (1982): A matching free of justified envy need not be Pareto efficient;
therefore there is no mechanism that is both Pareto efficient and without
justified envy

Kesten (2010, Prop 1): There is no Pareto efficient and strategy-proof
mechanism that selects the Pareto efficient and justified-envy free matching
when it exists

Gale and Shapley (1962): A justified envy-free matching which is not Pareto
dominated by any other justified-envy free matching exists (e.g., the
student-optimal matching).

X If value elimination of justified envy first, then Pareto efficiency, this is an
obvious choice

X If value Pareto efficiency first, and then elimination of justified envy, what is a
good choice?

A longstanding open issue: why choose TTC?
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Three students

i1 : s2 � s1

i2 : s1 � s2

i3 : s2 � s1

Two schools, where qs1 = 2, priorities:

s1 : i1 � i2 � i3

s2 : i2 � i3 � i1

TTC produces: (
i1 i2 i3
s2 s1 s1

)
where i2 trades into s1, even though she directly qualifies

Compare with justified envy-free and efficient(
i1 i2 i3
s1 s1 s2

)
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Other strategy-proof and efficient mechanisms

Serial Dictatorship

Morrill (2015): Clinch and Trade

X TTC with counters allows i to trade her priority at other objects even when i is
among the highest qs priority students at s

X Since i is among the highest ranked, would receive s without such a trade;
possible that this trade results needlessly creates envy

Assign a counter for each school qs . For each student i , if i is one of the
qs highest ranked students and i most preferred school is s, then assign i
to s (clinch). Reduce qs by one, and remove school if capacity is zero.
Update preferences and priority rankings. Iterate clinching until no
student has one of the top qs ranking at her most preferred choice

Then look for cycle as in TTC

How to make comparisons between SP and PE mechanisms?
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Problem-wise comparisons

Related ideas in Maskin (2011), Kesten (2011), Pathak and Sönmez (2008)
for different contexts

ϕ has less envy than ψ at �, if for any P and pair (i , s), if (i , s) blocks
ϕ(P,�), then (i , s) blocks ψ(P,�)

X Not a count of blocking pairs, but subset relationship
X Implies that set of individuals and objects are in blocking pairs is at least as

large

has strictly less envy: ϕ has less envy than ψ, but ψ does not have less envy
than ϕ

ϕ minimizes envy: there is no ψ that has strictly less envy than ϕ
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TTC has least envy

Theorem. Suppose each school has one seat. Let ϕ be a Pareto efficient and
strategy-proof mechanism. If ϕ has less envy than TTC at �, then
ϕ(·,�) = TTC (·,�)

X Corollary: TTC minimizes envy in the class of Pareto efficient and
strategy-proof mechanisms.

This result leaves open the possibility that there are Pareto efficient and
strategy-proof mechanisms that have less envy than TTC, but not strictly less
envy than TTC

X For each s, define fs :�s→�s to be an arbitrary transformation of priorities
X Consider a class of mechanisms ϕ(·,�) = TTC(·, f (�)). (run TTC with

modified priorities)

Serial dictatorship would have for given �, fs(�s) =� for any �s and s

I Proposition 1: Suppose fs(�s) 6=�s for some s. Then the mechanism
ϕ(·,�) = TTC(·, f (�)) is not justified-envy minimal
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Proof idea: By contradiction

Strategy of argument closely related to Ma (1994)

Suppose ϕ is PE and SP mechanism that has less envy than TTC given
priority �

Look at steps of TTC, and argue that at each step, ϕ cannot have less
justified envy than TTC without contradicting either Pareto efficiency or
strategy-proofness of ϕ
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Proof Sketch
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Proof Sketch
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Proof Sketch
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RSD’s Switch to DA

RSD switched to DA because of three main reasons

Act 2: expanded Louisiana’s Student Scholarships for Excellence Program
statewide and integrated within OneApp; blocking pairs created by TTC
would potentially be in violation of law

TTC was not easy to explain to participants; esp why someone obtained a
seat at a school

RSD thought that DA would encourage more schools from competing Orleans
Parish School Board to participate; many OPSB schools screen applicants
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Lecture wrap up

How to think about choosing a mechanism?
I trade-offs among stability, efficiency and strategy-proofness

Single vs multiple (i.e. school-specific) tie breaking in DA

DA with various tie breaking rules vs SIC vs fully efficient matching

TTC and minimizing envy with efficient matchings
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TTC-Counters
TTC-Clinch	and	

Trade Equitable	TTC
Serial	

Dictatorship

Student-
Proposing	
Deferred	
Acceptance

(1) (2) (3) (4) (5)

1 772 770 771 777 762
2 126 129 127 121 137
3 46 47 47 44 51
4 18 18 18 17 19
5+ 11 11 11 8 10
Unassigned 222 221 222 228 217
Total 1196 1196 1196 1196 1196

Students	with	justified	envy	(i) 158 157 159 213 0
Schools	with	justified	envy	(s) 7 7 7 12 0
Blocking	pairs	(i,s) 228 224 215 308 0
Instances	of	justified	envy	(i,	(j,s)) 1111 1086 1100 6546 0

B.	Statistics	on	Blocking	Pairs

A.	Choice	Assigned

Table	1.	Comparison	of	Mechanisms	in	New	Orleans	for	Main	Transition	Grades	(PK	and	Grade	9)

Notes:		Main	transition	grades	are	PK	and	grade	9	for	2012.		TTC-counters	defined	in	Abdulkadiroglu	and	Sonmez	(2003).		TTC-
Clinch	and	Trade	defined	in	Morrill	(2013).		Equitable-TTC	defined	in	Hakimov	and	Kesten	(2014).	Instance	of	justified	envy	(i,(j,s))	
means	student	i	complains	about	student	j's	assignment	at	s.		Blocking	pair	(i,s)	means	there	exists	at	least	one	applicant	j	such	that	
(i,(j,s))	is	a	blocking	instance.		Students	with	justified	envy	(i)	means	there	exists	a	school	s	where	(i,s)	is	a	blocking	pair.		School	with	
justified	envy	(s)	means	there	is	a	school	s	such	that	there	exists	student	i	such	that	(i,s)	is	a	blocking	pair.		The	numbers	represent	
averages	over	100	different	lottery	draws	for	each	grade,	and	then	averaged	over	grades	PK	and	9.		The	standard	deviation	across	
lottery	draws	in	column	1	for	first	choice	assigned	is	5.2,	for	unassigned	is	5.2,	for	students	with	justified	envy	is	8.5,	for	blocking	
pairs	is	20.2,	for	instances	of	justified	envy	is	110.7,	and	for	schools	with	justified	envy	is	0.4.		Standard	deviations	are	similar	for	
the	other	columns.			
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TTC-Counters
TTC-Clinch	and	

Trade
Serial	

Dictatorship

Student-
Proposing	
Deferred	
Acceptance

(1) (2) (3) (4)

1 1240 1240 1236 1227
2 322 323 315 336
3 134 134 132 138
4 56 55 51 57
5+ 39 39 34 40
Unassigned 102 101 124 96
Total 1893 1893 1893 1893

Blocks	defined	by	priority	and	lottery	number
			students	with	justified	envy	(i) 389 368 280 0
			blocking	pairs	(i,s) 538 506 369 0
			instances	of	justified	envy	(i,	(j,s)) 1943 1752 3650 0
			schools	with	justified	envy	(s) 30 29 44 0

Blocks	defined	by	priority
			students	with	justified	envy 129 126 280 0
			blocking	pairs	(i,s) 160 156 369 0
			instances	of	just	envy	(i,	(j,s)) 768 711 3650 0
			schools	with	justified	envy	(s) 18 18 44 0

B.	Statistics	on	Blocking

A.	Choice	Assigned

Table	2.	Comparison	of	Mechanisms	for	Main	Transition	Grades	(K1,	K2,	6,	and	9)	in	Boston

Notes:		School	years	2009-2010	through	2012-13.	TTC-counters	defined	in	Abdulkadiroglu	and	Sonmez	(2003).		TTC-Clinch	
and	Trade	defined	in	Morrill	(2013).		Blocks	defined	by	priority	and	random	number	treats	school	priority	as	strict	
ordering	from	priority	and	random	number.		Blocks	defined	by	priority	treats	school	priority	as	weak	ordering	using	
priority.		Instance	of	justified	envy	(i,(j,s))	means	student	i	complains	about	student	j's	assignment	at	s.		Blocking	pair	(i,s)	
means	there	exists	at	least	one	applicant	j	such	that	(i,(j,s))	is	a	blocking	instance.		Students	with	justified	envy	(i)	means	
there	exists	a	school	s	where	(i,s)	is	a	blocking	pair.		School	with	justified	envy	(s)	means	there	is	a	school	s	such	that	there	
exists	student	i	such	that	(i,s)	is	a	blocking	pair.		BPS	precedence	implemented	as	Walk-Open.		The	numbers	represent	
averages	over	100	different	lottery	draws	for	each	grade,	and	then	averaged	over	grades	K1,	K2,	6,	and	9.
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Boston: Background

1970s: court-supervised forced busing

X Boston in 1974: If school more than 50% nonwhite, then it was racially
imbalanced

X Judge Garrity’s 14-year court supervision of Boston Public Schools, longest
anywhere

1980-90s: introduce element of choice into busing plans; Avles and Willie
establish geographic boundaries in Boston and controlled choice plan in 1989,
explicitly using race; by 1999, race no longer a factor

Today’s debate: Rationing oversubscribed schools

X E.g., zone geographies, proximity set-asides, sibling and family-link policies,
special ed kids

X Major fault-line of debate: pro-neighborhood vs. pro-choice
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“The Soiling of Old Glory” by Stanley J. Forman
1977 Pulitzer Prize for Spot Photography
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Student Assignment in Boston (up to 2005)

Over 60,000 students from grades K-12 in almost 140 schools, divided into
three zones: East, West, and North.

Main new school entry points are K2, 6th and 9th grade: about 3,300 entering
Kindergarten, 5,400 entering grade 6, and about 6,300 entering grade 9.

In January, students asked to rank at least three schools in order of
preference.

For elementary and middle school, parents are asked to consider schools in
their zone plus five schools open to all neighborhoods. High school admissions
are citywide.
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Boston Mechanism

X For each school a priority ordering is determined according to the following
hierarchy:

1) First priority: sibling and walk zone
2) Second priority: sibling
3) Third priority: walk zone
4) Fourth priority: other students

Students in the same priority group are ordered based on an even lottery.

X Each student submits a preference ranking of the schools (with no constraint)

X The final phase is the student assignment based on preferences and priorities:
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Round 1: In Round 1 only the first choices of the students are considered.
For each school, consider the students who have listed it as their first choice
and assign seats of the school to these students one at a time following their
priority order until either there are no seats left or there is no student left who
has listed it as her first choice.

In general, at

Round k: Consider the remaining students. In Round k only the kth choices
of these students are considered. For each school with still available seats,
consider the students who have listed it as their kth choice and assign the
remaining seats to these students one at a time following their priority order
until either there are no seats left or there is no student left who has listed it
as her kth choice.
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Cambridge mechanism: Advice for participants

Question: How would you participate if you were in this system?

“Strategies for Getting Your First Choice” (2007)

Because assignments are made randomly by a computer,
the only way to strategize is to look at supply and de-
mand for seats and try to predict human behavior. One
way to do this is to obtain a list of estimated kinder-
garten seats.
...
Nowadays, parents who might prefer Graham & Parks
sometimes don’t choose it at all for fear of wasting their
top choice.

These types of anecdotes can be found in nearly every city using this type of
mechanism
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From the Media:
Consider the following quotation from St. Petersburg Times:

Make a realistic, informed selection on the school you list as your
first choice. It’s the cleanest shot you will get at a school, but if you
aim too high you might miss.

Here’s why: If the random computer selection rejects your first
choice, your chances of getting your second choice school are greatly
diminished. That’s because you then fall in line behind everyone who
wanted your second choice school as their first choice. You can fall
even farther back in line as you get bumped down to your third,
fourth and fifth choices.
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From the Education Literature:

Glenn [Public Interest 1991] states

As an example of how school selections change, analysis of
first-place preferences in Boston for sixth-grade enrollment in 1989
(the first year of controlled choice in Boston) and 1990 shows that
the number of relatively popular schools doubled in only the second
year of controlled choice. The strong lead of few schools was
reduced as others “tried harder.”
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Performance of Boston mechanism

Sample year, 2001-2002

K2 6 9
1st choice 2,598 4,157 5,497
2nd choice 301 415 428
3rd choice 131 294 100
4th choice 61 61 42
5th choice 33 26 11
Unassigned 202 476 302

Roughly 80% get their top choice, 8% get 2nd choice, ..., 5-9% unassigned

Similar patterns across the years before 2005
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Nov 2003-June 2005: Ongoing discussion in Boston about school choice, one
aspect was assignment mechanism

July 2005: Boston School Committee voted to change their student
assignment mechanism to the student-optimal stable mechanism

Superintendent Thomas Payzant’s Report to School Committee (5/11/2005):
“A strategy-proof algorithm levels the playing field by diminishing the harm
done to parents who do not strategize or do not strategize well.”

Formal investigation of this argument in Pathak and Sönmez (2008)
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Burden of strategizing

Evidence from West Zone Parents Group:

Date: Fri, 28 Jan 2005
Subject: Re: Philbrick School

Have you gotten any sense if a lot of people are choosing Philbrick
as a 1st choice? We really like Philbrick (love the K2 teacher)
but are not in the walk zone. We are putting Manning 1st since
we’re in the walk zone and Philbrick 2nd but I’m getting very
nervous that Philbrick has gotten so popular that it might only
be a good #1 selection. We’re also looking for a good safety for
4th place, perhaps Hale or Mendell.
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Parent comments at public hearing

I find the current system of maximizing first choice to be insidious and
destructive. I urge each school committee member to vote enthusiastically for
this new algorithm proposal. [...] My wife and I take dozens of phone calls
around choice time in Dorchester. We have to tell people that it hdoesn’t
make sense to choose our children’s elementary school. And that is absurd.
And the people who get that advice get very angry. [...] Because to get into
the O’Hearn you need to be luckier than megabucks. So I have to say [to
these parents], don’t make your first choice your first choice. That’s enraging.
It is at the bottom of the anger that you [the School Committee] get from
West Roxbury.

It angers the parents who figure it out because they are told not to make their
first choice the first one. And it hurts those who don’t figure it out because
they choose a popular school and end up in the administrative assignment bin.
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Information of Participants

Why might parents understand?

BPS School Guide (2004, p3, quotes in original):

For a better chance of your “first choice” school... con-
sider choosing less popular schools.

Advice from the West Zone Parent’s Group:
Introductory meeting minutes, 10/27/03

One school choice strategy is to find a school you like that is undersubscribed
and put it as a top choice, OR, find a school that you like that is popular and
put it as a first choice and find a school that is less popular for a “safe”
second choice.

⇒ Evidence of sophisticated behavior among some players, unsophisticated
behavior by others.
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Model: Sincere and Sophisticated Students

Empirical and experimental work has documented existence of heterogenous
levels of sophistication

N : Sincere students

M: Sophisticated students

For each i ∈ N , restrict the strategy space to be a singleton, corresponding to
truthful preference revelation.

Focus on the Nash equilibria of the preference revelation game induced by the
Boston mechanism.
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Modeling Choice

We assume that sincere parents are truthful .

Natural default behavior.

Chen & Sönmez (JET 2006): In laboratory about 20% of participants report
their true preferences under the Boston mechanism.

Hastings, Kane, Staiger (2009): In Charlotte, “we believe that the extent of
strategic manipulation in the first year was limited and that parents were
generally reporting their true preferences”

Since truth-telling is a dominant strategy in Boston’s new mechanism, this is
the relevant case for comparative static analysis.
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Sincere & Sophisticated Students

N : Sincere students
M: Sophisticated students

For each i ∈ N , restrict the strategy space to be a singleton, corresponding to
truthful preference revelation.

Focus on the Nash equilibria of the preference revelation game induced by the
Boston mechanism.
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Example: There are three schools a, b, c each of which has one seat, two
strategic students i1, i2 and one sincere student i3.
Utilities:

a b c
ui1 1 2 0
ui2 0 2 1
ui3 2 1 0

Priorities:

πa : i2 − i1 − i3

πb : i3 − i2 − i1

πc : i1 − i3 − i2
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Game payoffs

abc acb bac bca cab cba
abc (0,0,1) (0,0,1) (1,2,0) (1,2,0) (1,1,1) (1,1,1)
acb (0,0,1) (0,0,1) (1,2,0) (1,2,0) (1,1,1) (1,1,1)
bac (2,0,0) (2,0,0) (0,2,2) (0,2,2) (2,1,2) (2,1,2)
bca (2,0,0) (2,0,0) (0,2,2) (0,2,2) (2,1,2) (2,1,2)
cab (0,0,1) (0,0,1) (0,2,2) (0,2,2) (0,2,2) (0,2,2)
cba (0,0,1) (0,0,1) (0,2,2) (0,2,2) (0,2,2) (0,2,2)

There is only one Nash equilibrium outcome:

µ =

(
i1 i2 i3
a b c

)
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Observations:

1. Truthful revelation is not a Nash equilibrium.

2. The sincere player i3 is assigned a seat at school c and received a utility of 0
at all equilibria although she had the highest priority at school b where her
utility is 1.

3. No reason to expect that the equilibrium outcome will be a stable matching.
This is indeed the case here since (i3, b) is a blocking pair.
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Augmented Priorities

Given an economy (P, π) and a school s, partition the set of students I into
m sets as follows

I1: Sophisticated students and sincere students who rank s as their first choices
under P,

I2: sincere students who rank s as their second choices under P,

I3: sincere students who rank s as their third choices under P,
...

...

Im: sincere students who rank s as their last choices under P.
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Given an economy (P, π) and a school s, construct an augmented priority
ordering π̃s as follows:

each student in I1 has higher priority than each student in I2, each student in
I2 has higher priority than each student in I3, . . . , each student in Im−1 has
higher priority than each student in Im, and

for any k ≤ m, priority among students in Ik is based on πs .

Define π̃ = (π̃s)s∈S .

Let (P, π̃s) be the augmented economy.
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Example (continued): Only student i3 is sincere. So π̃ is constructed from π
by pushing student i3 to the end of the priority ordering at each school except
his top choice a (where he has the lowest priority anyways):

πa : i2 − i1 − i3 ⇒ π̃a : i2 − i1 − i3

πb : i3 − i2 − i1 ⇒ π̃b : i2 − i1 − i3

πc : i1 − i3 − i2 ⇒ π̃c : i1 − i2 − i3

In this example the unique Nash equilibrium outcome µ of the preference
revelation game induced by the Boston mechanism is the unique stable
matching for the augmented economy (P, π̃).
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Characterizing Nash Equilibrium Outcomes

Proposition 1: The set of Nash equilibrium outcomes of the preference
revelation game induced by the Boston mechanism for economy (P, π) is
equivalent to the set of stable matchings for augmented economy (P, π̃).

Sincere students lose their priority to sophisticated students.

Set of Nash equilibrium outcomes inherits the same properties as set of stable
matchings for (P, π̃): Set of students who are single is the same in all
equilibrium outcomes, set of occupied seats always the same, lattice structure,
Pareto-dominant equilibrium allocation, etc.

24/63



Equilibrium Assignments of Sincere Students

Proposition 2: Fix an economy (P, π) and a sincere student i ∈ N . Student
i receives the same assignment at each Nash equilibrium outcome.

Multiple stable matchings created by ”conflict” between school priorities and
student preferences

Under augmented priorities, sincere students are never involved in conflicts

I They have lower priority than sophisticated students
I Among sincere students, a school gives higher priority to the sincere student

who ranks it higher in her preferences
I This is the reason why a sincere student receives the same assignment

Useful result for comparative statics.
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Comparative Statics: Becoming Sophisticated

What happens when a parent joins WZPG?

By Proposition 2, a sincere student always receives the same outcome in all
Nash equilibria.

When the student becomes sophisticated, her priority weakly improves at each
school

When a student’s priority weakly improves, she receives a school that is at
least as good under the Pareto dominant Nash equilibrium (although she
could receive a worse outcome at other equilibria).

This is called the respecting improvements property of Balinski and Sönmez
(1999)
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Truth-telling is a dominant strategy for sophisticated students in the
student-optimal stable mechanism and the only strategy for sincere ones.

Example (continued): The outcome of SOSM is the following:(
i1 i2 i3
a c b

)

Sincere student i3 improves and obtains a seat at school b.

Sophisticated student i1 receives a seat at school a under both mechanisms.

Strategic student i2 suffers a loss under SOSM and receives a seat at her
second choice school c .
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Comparing Mechanisms for Sincere Students

Is a sincere student always better off under the SOSM? No.

A sincere student can prefer the Boston mechanism since

she gains priority at her second choice school over sincere students who rank
it third or lower,

she gains priority at her third choice school over sincere students who rank it
fourth or lower, etc.

In a way an sincere student may luck out (at the expense of another sincere
student) under the Boston mechanism!
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Comparing Mechanisms for Sophisticated Students

Proposition 3: Fix an economy (P, π) and a sophisticated student i ∈M.
The assignment of student i under the Pareto-dominant Nash equilibrium
outcome of the Boston mechanism is at least as good as her assignment
under the dominant strategy equilibrium outcome of the SOSM.

Sophisticated players could be worse off in other Nash equilibrium outcomes
of the Boston mechanism.

Coordination at Pareto dominant Nash equilibrium may be difficult.
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Resistance to Change by the WZPG

June 8th, 2005: Community testimony from WZPG leader

“There are obviously issues with the current system. If you get a low lottery
number and don’t strategize or don’t do it well, then you are penalized. But
this can be easily fixed. When you go to register after you show you are a
resident, you go to table B and the person looks at your choices and lets you
know if you are choosing a risky strategy or how to re-order it.

Don’t change the algorithm, but give us more resources so that parents can
make an informed choice.”
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Comparative Statics: Becoming Strategic

What happens when a parent joins WZPG?

Proposition 4: A sincere student weakly benefits from becoming
sophisticated in the Pareto-dominant Nash equilibrium of the Boston game,
whereas all other sophisticated students weakly suffer.

When the student becomes strategic, her priority weakly improves at each
school and she receives a school that is at least as good under the Pareto
dominant Nash equilibrium (although she could receive a worse outcome at
other equilibria).
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Does the Boston Mechanism have any virtues?

When all applicants prefer the same school the most, say school X, the tie
among everybody has to be broken

If school X does not rank students, priorities cannot be used to break ties

DA uses a lottery to break ties

Assignment of X will be efficient ex-post, regardless of the realization of the
lottery

Assigning X to those who really value it very highly and does not have a
better alternative is still important

Yet the DA cannot differentiate among students based on preference
intensities; Boston may be able to elicit cardinal information

Abdulkadiroğlu, Che and Yasuda (2011): Present scenarios without priorities
where Boston may dominate DA; Troyan (2012) results are not robust to
introduction of (weak) priorities

I Empirical work quantifies trade-offs
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Condemnation of certain assignment mechanisms

Chicago and England: mechanisms changed without direct
consultation with economists
X Public discussion resembles academic arguments made in Boston

Like another prominent “natural experiment” in mechanism
design: US Medical Match (NRMP)
X Participants (not game-theorists) organized rules, mostly still in place since

1952
X Seen as support for positive interpretation of stability

For school assignment, the broader game-theoretic concept
advanced is aversion to strategic manipulation or “gaming”
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Chicago Sun-Times November 12, 2009
8th-graders’ shot at elite high schools better

Poring over data about eighth-graders who applied to the city’s elite college preps,
Chicago Public Schools officials discovered an alarming pattern.

High-scoring kids were being rejected simply because of the order in which they
listed their college prep preferences.

“I couldn’t believe it,” schools CEO Ron Huberman said. “It’s terrible.”

CPS officials said Wednesday they have decided to let any eighth-grader who applied
to a college prep for fall 2010 admission re-rank their preferences to better conform
with a new selection system.

Previously, some eighth-graders were listing the most competitive college preps as
their top choice, forgoing their chances of getting into other schools that would have
accepted them if they had ranked those schools higher, an official said.

Under the new policy, Huberman said, a computer will assign applicants to the
highest-ranked school they quality for on their list.

“It’s the fairest way to do it.” Huberman told Sun-Times.
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Chicago Public Schools

9 selective high schools

Applicants: Any current 8th
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Composite test score:
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scores
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Chicago Selective Enrollment Mechanism

Round 1: Only the first choices of the students are considered.
For each school, consider the students who have listed it first.
Assign school seats to these students following their composite
test score until either there are no seats left or there is no student
left listing it as her first choice.

In general, for k = 2, ..., 4

Round k: For the remaining students, only the kth choices are
considered. For each school with still available seats, consider the
students who have listed it as their kth choice. Assign the
remaining school seats to these students following their composite
test score until either there are no seats left or there is no student
left listing it as her kth choice.
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New Chicago mechanism (Sd4)

X Rank up to 4 schools

X Students ordered by composite score

X First student obtains her top choice, the second student obtains her top choice
among remaining, and so on.

Somewhat surprising midstream change, especially given that both
mechanisms are manipulable...
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Comparing Mechanisms

Mechanism ψ is manipulable by player i at problem R if there
exists a type R ′i such that

ψ(R ′i ,R−i)Piψ(R).

Mechanism ψ is at least as manipulable as mechanism ϕ if for
any problem where mechanism ϕ is manipulable, mechanism ψ is
also manipulable.

Mechanism ψ is more manipulable than mechanism ϕ if
X ψ is at least as manipulable as ϕ,
X there is at least one problem where ψ is manipulable though ϕ is not.

Equivalent definition: if truth-telling is a Nash equilibrium of the
preference revelation game induced by mechanism ψ, it is also a
Nash equilibrium of the game induced by mechanism ϕ (even
though the converse does not hold).
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Admissions Reform in Chicago

Proposition. Suppose there are at least k schools and let k > 1.
The old Chicago mechanism (Chik) is more manipulable than the
truncated serial dictatorship Chicago adopted (Sdk) in Fall 2009.

Outrage expressed in quotes from Chicago Sun-Times:

“I couldn’t believe it,” schools CEO Ron Huberman said. “It’s terrible.”

suggests that the old mechanism was quite undesirable.

We’d like to compare it to a larger class of mechanisms:
� stable mechanisms?

� not satisfied by many school choice mechanisms, including Chicago’s old one
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A matching is strongly unstable if a student who ranks school s
as his first choice loses a seat to a student who has a lower
composite score.

A weakly stable matching is one that is not strongly unstable.

X old Chicago mechanism is weakly stable

X new mechanism is weakly stable

X variants of new mechanism where can rank more choices are
weakly stable

Theorem. The old Chicago mechanism (Chik) is at least as
manipulable as any weakly stable mechanism.
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Chicago in 2010-11

Based on the last two results, the new mechanism in Chicago is an
improvement in terms of our criteria

However, 2009 mechanism is not Pareto efficient

Possible to have a completely non-manipulable mechanism by
considering all choices...so why not?

In 2010-11 school year, Chicago decided to consider 6 out of 9
choices, so the mechanism is still manipulable; this remains true
this past spring
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Constrained School Choice

Consider more general environment where students may be ordered
in different ways across school

Vulnerability of school choice mechanisms to manipulation played a
role in NYC’s adaptation of a version of the student-optimal stable
mechanism in NYC, where students can rank up to 12 choices

NYC DOE press release on change: “to reduce the amount of

gaming families had to undertake to navigate a system with a

shortage of good schools” (New York Times, 2003)

Based on the strategy-proofness of the student-optimal stable
mechanism, the following advice was given to students:

You must now rank your 12 choices according to your true preferences.
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Constrained School Choice

Next result formalizes the idea that the greater the number of
choices students can make, the less vulnerable this mechanism is
to manipulation:

Theorem: Let ` > k > 0 and suppose there are at least ` schools.
The student-optimal stable mechanism where students can rank k
schools is more manipulable than the student-optimal stable
mechanism where students can rank ` schools.

Corollary: The 2009 Chicago mechanism (Sd4) is more
manipulable than the newly adopted 2010 Chicago mechanism
(Sd6).
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English context

Forms of school choice for decades

2003 School Admissions Code
� “National Offer Day”: coordinated admissions nationwide, under authority of

Local Education Authority; 800,000 students given offer

2007 School Admissions Code
� Strengthened enforcement of admissions rules

Section 2.13: In setting oversubscription criteria the admission authorities for

all maintained schools must not:

give priority to children according to the order of other schools named as preferences

by their parents, including ’first preference first’ arrangements.
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A first preference first system is any “oversubscription criterion that gives
priority to children according to the order of other schools named as a
preference by their parents, or only considers applications stated as a first
preference” (School Admissions Code, 2007, Glossary, p. 118).

Best-known first preference first system is Boston mechanism (pre-2005)

Rationale given by Dept. for Ed & Skills (2007):

“‘first preference first’ criterion made the system unnecessarily complex to parents

who had to play an ‘admissions game’ with their children’s future”

Echoes themes from our 2003-05 Boston discussion, where policymakers said
the new mechanism (BPS 2005):

“adds transparency and clarity to the assignment process, by allowing for clear and

straightforward advice to parents regarding how to rank schools.”
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First preference first (Fpf) mechanism: definition

A school is either a first-preference-first school or an equal
preference school

At each first-preference-first school, priorities modified:
X any student who ranks school s as his first choice has higher priority than any

student who ranks school s as his second choice,
X any student who ranks school s as his second choice has higher priority than

any student who ranks school s as his third choice,
X . . .

Outcome determined by the student-proposing deferred
acceptance algorithm

X Fpf mechanism is a hybrid between Boston and the
student-optimal stable mechanism
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Ban of FPF Mechanism in 2007

2007 Admissions Code outlaws FPF at more than 150 Local Education
Authorities (LEAs) across the country; continued through 2012

Some LEAs abandoned earlier:

Pan London Admissions Authority adopted an ‘equal preference’ system in
2005 (=student-optimal stable mechanism)

designed to “eliminate the need for tactical preferences and make the admissions

system fairer”; it will “create a level playing field for school admissions”

cf. June 2005 comments by Boston superintendent that new algorithm

“levels the playing field by diminishing the harm done to parents who do not

strategize or do not strategize well.”

In 2006, Coldron report: 101 LEAs used equal preference, 47 used first
preference first, nearly all with constraints on rank order list length
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Theorem: Suppose there are more than k schools where k > 1. Fpfk is
more manipulable than the student-optimal stable mechanism where students
can rank k schools.

� Corollary: The old abandoned Chicago Selective Enrollment mechanism is
more manipulable than the new 2009 mechanism.
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Finishing the Job on Student Assignment in Boston

Mayor Thomas Menino, State of the City Address in 2012

“Something stands in the way of taking our [public school] system to the
next level: a student assignment process that ships our kids to schools
across our city.”

“Pick any street. A dozen children probably attend a dozen different
schools. Parents might not know each other; children might not play
together. They can’t carpool, or study for the same tests.”

[. . . ]

“Boston will have a radically different school assignment process—one
that puts priority on children attending schools closer to their homes.”

Mayor Menino and Supt. Johnson form 27-member External Advisory
Committee (EAC) to help BPS develop a new plan in partnership with the
community; over 70 public meetings since March 2012
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An unexpected advocate for more neighborhood assignment...

The city’s demographics have
changed. In the 1970s, Boston
was largely a “bicultural” city
with a “white” majority and a
significantly smaller “black”
minority. Federal court cases
indicated that financial and
facility allocations clearly
favored the white majority. The
current student population is
“majority minority.”

We can no longer afford to
spend millions a year to bus
children across Boston to
schools that are not
demonstrably better than
schools near their homes.
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Neighborhoods vs. Choice

Motivated by court challenges, Boston eliminates racial set-aside for
assignments in 1999; city-wide debate about return to neighborhood schools

November 1999: School Committee adopts choice plan which reduces use of
walk zone priority from 100% to 50%

Fifty percent walk zone preference means that half of the seats at a given school are
subject to walk zone preference. The remaining seats are open to students outside
the walk zone.

One hundred percent walk zone preference would limit choice and access for too
many families to the schools they want their children to attend. On the other hand,
the policy also should and does recognize the interests of families who want to choose
a walk zone school.
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Role of Walk Zone Priority

Boston’s Walk zones: 1 mile radius around school, intersected with 867
geocodes

In Boston, walk zone applicants are prioritized at half of the school seats and
then have a second chance for each school

Has the change from 100% to 50% walk zone shifted the balance too much to
the detriment of neighborhood assignment?

Strategy-proofness of DA allows us to consider two counterfactuals:

1) How would the outcome change if walk zone priority was maintained for all
seats? (100% Walk)

2) On the other extreme, how would the outcome change if walk zone priority was
abandoned altogether? (0% Walk)
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Motivating Puzzle

Outcome under BPS 50-50 “compromise” is incredibly close to the outcome
in the absence of any walk zone priority

Since students only rank schools (and not halves), mechanism must decide
how to “convert” student preferences over schools to student preferences over
school-halves

In BPS, walk-half seats are systematically ranked ahead of open-half; ranking
between schools unchanged

Decision was a detail left to BPS IT
“A great deal of market design is going to be done by Java programmers...”

Roth (2002)
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Policy Reform

March 2013: Supt. Johnson supports the EAC recommendation of
Home-Based Plan A, but recommends against keeping the walk zone priority.

“After reviewing that struggle and after viewing the final MIT and BC
presentations on the way the walk zone priority actually works, it seems to
me that it would be unwise to add a second priority to the Home-Based
model by allowing the walk zone priority to be carried over.

Leaving the walk zone priority to continue as it currently operates is not a
good option. We know from research that it does not make a significant
difference the way it is applied today: although people may have thought
that it did, the walk zone priority does not in fact actually help students
attend schools closer to home. The External Advisory Committee sug-
gested taking this important issue up in two years, but I believe we are
ready to take this step now. We must ensure the Home-Based system
works in an honest and transparent way from the very beginning.”
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Organization of Kidney Markets

Nikhil Agarwal1

MIT and NBER

1Thanks to Itai Ashlagi and Al Roth for sharing slides and materials



Motivation

Transplantation is the best treatment for kidney failure
I Improves quality and length of life
I Each transplant is estimated to save Medicare hundreds of thousands of dollars

Almost 100K patients are waiting on the kidney list
I List has been growing, and thousands die while waiting

Two sources of kidney transplants

1. ∼12K receive a deceased donor transplant each year
2. ∼6K receive a kidney from a living donor

Potential for many more living donor transplants

X Biological compatibility prevents many direct donations
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Biological Compatibility

Donation requires biological compatibility
I Blood-type compatibility
I Tissue-type compatibility

X Common immune sensitivity measure: Panel Reactive Antibody (PRA)

3/23

Compatibility

 Blood compatibility and HLA compatibility 

 Patients with low Panel Reactive Antibodies (PRA) are easier to match (scale 
is 0-100) 
 PRA matters more when the market is thin
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A Barrier to Organ Markets

In principle, shortage of organs can be solved using monetary incentives
[Becker and Elias, ’07]

Section 301, National Organ Transplant Act (NOTA), 42 U.S.C. 274e 1984:

I “it shall be unlawful for any person to knowingly acquire,
receive or otherwise transfer any human organ for valuable
consideration for use in human transplantation”

Near universal norm (exception: Republic of Iran)
I Societies often constrain transactions [Roth, ’07]
I Concerns about inadequate protections against exploitation and coercion

[see also Satz, ’12; Sandel, ’13]
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Double Coincidence of Wants

Chapter I [Jevons, 1876]:
I “The first difficulty in barter is to find two persons whose disposable

possessions mutually suit each other’s wants. ... to allow of an act of barter,
there must be a double coincidence, which will rarely happen.”

I “Sellers and purchasers can only be made to fit by the use of some
commodity... which all are willing to receive... This common commodity is
called a medium, of exchange...”

Pairwise Kidney Exchange
I Each living donor donates a kidney
I In return, her intended recipient receives one
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Kidney exchange

Cycles are kept short  
(typically at most 3 pairs) 
due to operational and 
incentive constraints

Donor 1
A

Patient1
B

Patient 2 
A

Donor 2
B



What about NOTA?

Charlie W. Norwood Living Organ Donation Act (2007)

I Section 301 of the National Organ Transplant Act (42 U.S.C. 274e) is
ammended – (I) in subsection (a), by adding at the end the following:

“The preceding sentence does not apply with respect to
human organ paired donation”
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Top Trading Cycles
Pioneering work by Roth, Sonmez and Unver (’04)

I Based on model for housing market by Shapley and Scarf (’74)
I Gale’s Top Trading Cycles to form cycles and chains
X Show that individual patient-donor pairs have an incentive to enter the market
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Constraints on Cycles Lengths

Large cycles are logistically challenging
I Most exchanges through 2-way and 3-way cycles
I In addition, priorities need to be incorporated [Roth, Sonmez and Unver, ’05]

7

Incentive Constraint: 2-way exchange 
involves 4 simultaneous surgeries. 
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Chains

Non-simultaneous altruistic donor chains [Rees et.al. ’09]

I Vast majority of transplants in large exchanges
I Typically four to five donors long, although long chains are possible and useful

[Ashlagi et.al., ’12]
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Exchanges in Large Market

Erdos-Renyi Model: Random graph G (n, p) with n nodes and probability p of
a non-directed edge

I If p >
(1 + ε) ln n

n
, then G(n, p) is almost surely connected

X Interpret p as probability of tissue-type compatibility

Implications: Kidney exchange platforms exhibit natural scale economies
I Tissue-type incompability can be overcome in large platforms
I Blood-type incompatibility persists

[see Roth, Sonmez and Unver ’07; Unver ’09; Ashlagi and Roth, ’15]

Efficiency in large markets

Theorem[Roth, Sönmez, Ünver 07, Unver 2009,  Ashlagi, Roth 2015]: In almost 
every large (limit) graph there exists an efficient allocation with cycles of size at 
most 3 whose structure is as follows:

Over-demanded (shaded) patient-donor pairs are all matched

B-A

B-AB       A-AB  

A-O            B-OAB-O

O-B             O-A

A-B

AB-B AB-A

O-AB

O-O
A-A B-B AB-

AB
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Real-World Platforms are Thin
An Operational Example
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Hospital Free-Riding: Causes and Consequences

Center 1 Center 2

A - O

A - A

O - O

O - A

Hospitals may have incentives to withold valuable types, resulting in thin
markets
Mechanisms can better align incentives
[Roth, Sonmez and Unver, ’07; Ashlagi and Roth, ’14; Agarwal, Ashlagi, Azevedo,

Featherstone, Karaduman, ’17]
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Mike Rees (APD Director):

“As you predicted, competing matches at home centers is
becoming a real problem. Unless it is mandated, I’m not sure
we will be able to create a national system. I think we need to
model this concept to convince people of the value of playing
together”
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Problem I: A Fragmented and Inefficient Market
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Moreover, market is inefficient
X Within Hospital exchanges use O donors used to transplant non-O patients

[Source: Agarwal et.al., ’17]
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Problem II: A Selected Market
summary_table_format

Page 1

Altruistic Donors Pairs Unpaired Patients

N 164 1265 501
Mean s.d. Mean s.d. Mean s.d.

Patient Blood Type
A --- --- 23.8% (0.43) 51.1% (0.50)
B --- --- 15.0% (0.36) 16.0% (0.37)
AB --- --- 2.6% (0.16) 19.0% (0.39)
O --- --- 58.6% (0.49) 14.0% (0.35)

Donor Blood Type
A 44.5% (0.50) 44.8% (0.50) --- ---
B 14.0% (0.35) 18.5% (0.39) --- ---
AB 3.7% (0.19) 5.1% (0.22) --- ---
O 37.8% (0.49) 31.5% (0.46) --- ---

Match Power

Recipient/Pair --- --- 21.6% (0.21) 43.0% (0.39)

Donor 27.6% (0.16) 25.4% (0.16) --- ---

Panel Reactive Antibody (PRA) --- --- 48.8% (0.41) 44.4% (0.45)

Pair Type

Overdemanded --- --- 13.8% (0.35) --- ---

Underdemanded --- --- 42.2% (0.49) --- ---

Note: A pair is overdemanded if the patient is blood-type compatible with the related donor. Underdemanded pairs 
either are O-patients without O-donors or are AB-donors without AB-patients. Sample of all patients and donors 
registered in the NKR between April 4, 2012 and December 1, 2014.[Source: Agarwal et.al., ’17]
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Problem III: Financial Barriers/Agency Problems
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[Source: Agarwal et.al., ’17]

Small Hospitals Unlikely to Participate
I Consistent with financial barriers of participating at large platforms

[Rees et.al.,’12; Agarwal et.al., ’17]

16/23



Value of a Thick Market

Kidney exchange platform: An abstraction [Agarwal et.al., ’17]

I Inputs: Patients and donors, q
I Outputs: Transplants, f (q)

X Gains from co-ordinating on a few large platforms exceed 200 transplants per
year
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Batching/Market Timing

Exchanges differ on how frequently they match
I NKR matches everyday → market is effectively small
I UNOS and APD match less frequently

X Frequent matching effectively makes the market thinner
I Suppose pairs arrive in the order (a), (b), (c) and (d)

Greedy vs waiting

Not easy to create thickness via batching in this market

X Knowledge of whether a patient is critical is invaluable
[Akbarpour, Li and Gharan, ’17]

X Must wait very long for significant gains (∼ 3− 6 months)
[Anderson, Ashlagi, Gamarnik, Kanoria, ’15; Ashlagi, Burq, Jaillet, Manshadi, ’13]

X Waiting costs can be incorporated into the exchange design
[Unver, ’09; Lee and Yariv, ’15]
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A Points System
Hospitals are key players advising patients and donors

I Need incentives for participation [Ashlagi and Roth, ’15]
I Optimal incentives approximate marginal product, p∗ ≈ ∇f [Agarwal et.al., ’17]
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A Points System
Proposed implementation as a “scrip system” or “frequent flyer” system
[Ashlagi and Roth, ’15; Agarwal et.al., ’17]

X Currently working with the APD on implementation
X Many unsolved theoretical questions [see Mobius, ’01; Hauser and Hopenhayn,

’08; Abdulkadiroglu and Bagwell, ’13]

Marginal Product 

Mean Mean 

Panel A: Altruistic Donors

Non-O Donor 0.85 0.81 0.17 0.95

O Donor 0.93 1.88 0.23 2.02

Panel B: Patient-Donor Pairs

O Patient, Non-O Donor 0.28 0.04 0.14 -0.87

O Patient, O Donor, PRA >= 82% 0.35 0.08 0.13 -0.77

O Patient, O Donor, PRA < 82% 0.79 0.64 0.19 -0.20

Non-O Patient, O Donor, PRA >= 94% 0.32 0.12 0.15 -0.63

Non-O Patient, non-O Donor, PRA < 94% 0.84 0.62 0.23 -0.25

Non-O Patient, O Donor,  PRA < 94% 0.82 1.32 0.33 0.61

Panel C: Unpaired Patients

Non-AB Patients 0.20 -0.01 0.12 -1.03

AB Patients 0.36 0.09 0.14 -0.74

Match 
Probability

Points per 
Transplantation Within Category 

Standard 
Deviation
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Global Kidney Exchange

Financial barriers commonly prevent transplantation in the developing world

X Global Kidney Exchange (GKE) overcomes these financial barriers
I Bringing biologically compatible pairs to the US
I Pay for transplants and post-transplant care

GKE pair (pair 2) is not transplantable

X Enables a transplant for pair 1
X Saves US health-insurer $$ [Rees et.al., ’17; Nikzad, Akbarpour, Rees, Roth, ’17]

X First successful chain involving a couple from the Phillippines
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Other Directions

Endowment bias has kept compatible pairs out of the market

X Compatible pairs may be very valuable
I Incentive schemes based on future transplants could encourage participation

[see Sonmez, Unver and Yenmez, ’17]

Interactions between kidney exchange and deceased donor exchange

X Mostly analyzed as a separate problem [Su and Zenios (several papers); Agarwal,

Ashlagi, Rees, Somaini, Waldinger, ’17]
I Potential value from interactions between the two systems
I Current efforts:

Kidney Donor Waiting List Exchange [Roth, Sonmez, Unver, Delmonico,

Saidman, ’06]

Chains initiated by deceased donors [Melcher, Roberts, Leichtman, Roth,

Rees, ’16]

X Need to analyze willingness to accept a deceased donor instead
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Conclusion

Kidney exchange is a poster child of market design

X Transparent, measurable improvements enabled by matching theory

Close interaction between theory, practice, and empirics

X Lessons from practice incorporated into research and vice-versa
X Inolvement of surgeons, academics and policy-makers

Design of the market has evolved in response to new challenges

X Pushed economic analysis and practice on the field
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Revealed Preference for Matching Markets

Nikhil Agarwal

MIT and NBER



Introduction
Theory of matching markets

I Comparison of mechanisms (Efficiency, Incentives, Fairness, Stability)

Debates on the best forms of market organization
I Organization of school choice systems

Immediate Acceptance vs. Deferred Acceptance
[Pathak and Sonmez, 2008; Abdulkadiroglu, Che and Yasuda, 2011]

Centralized vs. Decentralized Systems
I Effects of centralized systems on salaries (medical match)

[Jung et.al. 2002; Bulow and Levin, 2006; Niederle and Roth, 2003]

X Theory does not always yield unambiguous answers

Effects of Policy Proposals
I Impact of financial aid reform on access to college

Outcomes are mediated through agent choices
I Preferences are primitives in the theory
I Practical designs are often based on reported preferences
I Matches in decentralized/informal markets also mediated through preferences

X Formal mechanisms produce rich administrative data
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Role of Using Choice Models

Positive Analysis:
I Quantifying preferences

X What do parents value in a school or college?
X What is the value of certain job amenities?

I Effects of market interventions are intermediated through agent choices

X Taxes, tuition subsidies, free tuition, quotas
X Preference estimates facilitate General Equilibrium policy analysis

Normative Analysis:
I Welfare and distributional consequences

X Complementary to theory in evaluation of trade-offs
I Magnitudes of effects identified in the theory
I Analysis in cases where theory is intractible or ambiguous

3/39



Revealed Preference Approach

Traditional revealed preference approach

X Use data on consumer decisions to deduce most preferred option (given price)

Matching Markets: Cannot choose your preferred option → must also be
chosen

I Cannot decide to enroll at MIT
I Your partner needs to agree to marry you
I Cannot show up at work at Google
I Peer-to-peer platforms require mutual consent (eg. AirBnb)
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Revealed Preference Approach

X Rules of the market determine the interpretation of the data
I Matched partner need not be preferred to others
I College application decisions consider chances of admission
I Agents need not submit a truthful ranking of options if incentives are not

straightforward

X Organized marketplaces present a unique opportunity for analysis
I Administrative data on outcomes and/or submitted rankings
I Well understood rules of the game assist modeling choices

NB: Related to significant body of work on labor and marriage markets with
transferable utility, and search markets matching more broadly

[Abowd, Kramarz and Margolis, 1999; Burdett, Judd and/or Mortensen (’90s);

Postel-Vinay and Robin, 2002; Choo and Siow, 2006; Chiappori, Galichon, Salanie and

co-authors (several papers); Menzel, 2015; Fox and co-authors (several papers)]
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Random Utility Preference Model

(Indirect) Utility of agent i over possible options j :

vij = v(xij , ξj , εi ;β)

= xijβi + ξj + εij

I xij are observed in the data
I βi are individual preference factors
I ξj is an unobserved option quality indicator
I εij is an idiosyncratic taste

Other details
I Value of a reference (outside) option normalized to zero vi0 = 0
I Scale of utility also requires a normalization

X Parametric assumptions on εij and βi are commonly made for estimation

6/39



Numeraire and Welfare

Often interested in making welfare statements
1. Within agent: Does agent i benefit? Do all agents benefit?
2. Across agents: Who benefits the most? Does the average student benefit?

Inter-personal comparisons are difficult if lump-sum transfers are prohibited
[c.f. Kaldor-Hicks]

Two approaches, depending on the setting
I Standard: Setting involves monetary payments, e.g. tuition

vij = v(xij , ξj , εi )− pij

X Increase in welfare coupled with a transfer is a pareto improvement

I Non-Standard: Utility metric in terms of another variable, e.g. distance

vij = v(xij , ξj , εi )− dij

X Willingness to travel metric
X Inter-personal comparisons and subgroup analysis based on chosen units
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Discrete Choice Model

Consumer’s decision to purchase a product or pick from a set of alternatives

Figure X 

 

𝑣ଵ (0,0) 
Pick Option 1 

Pick Option 2 

Pick Option 0 

𝜈ଶ 

X Choice reveals the region in utility space
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Estimation Approaches

Several possible estimation methods:
I Maximum likelihood [McFadden, 1974; Train, 2004]
I Bayesian MCMC methods [Rossi, McCulloch and Allenby, 1996]
I Maximum Score [Manski, 1985]
I Moment Inequality [Ciliberto and Tamer, 2009; Pakes 2010; Chernozhukov, Hong

and Tamer, 2007]
I Method of Moments (with price endogeneity) [Berry, 1994; Berry, Levinsohn and

Pakes, 1995]

X Logit choice probabilities when ε ∼ EV I

P(i chooses j |X ;β) =
exp(xijβ)∑
k exp (xikβ)

I Yields simple maximum likelihood methods
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Rank-Ordered Data

Several public school choice systems use incentive compatible mechanisms in
which reported rank-order lists are used to assign students

X Deferred Acceptance, Top Trading Cycles and Serial Dictatorship mechanisms
I Good source of administrative data to learn about preferences

Figure X 
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Rank-Ordered Data

X Multiple choices useful for individual specific (random) co-efficients βi

vij = xijβi + εij

I When εij has a GEV Type I distribution, we get the exploded logit form:

P(i ranks j > j ′|X ;βi ) =
exp(xijβi )∑
k exp (xikβi )

exp(xij′βi )∑
k 6=j exp (xikβi )

[Beggs, Cardell and Hausman (1981) and Berry, Levinsohn and Pakes (2004)]

Several studies estimate value of various schools using data from organized
school choice systems

[Abdulkadiroglu, Agarwal and Pathak, 2015; Hastings, Kane and Staiger, 2009; Ajayi,

2015; amongst others]

11/39



3658 THE AMERICAN ECONOMIC REVIEW DECEMBER 2017

student characteristics (i.e., ​​α​​ l​  =  0​ for all ​l​  ). Further, we do not include additional 
achievement characteristics examined in Table 4, such as high English achievement 
and percentage of students later attending a four-year college, because these both 
closely relate to high math achievement.

The next three specifications include student-school interactions. Each specifica-
tion includes dummies for Spanish, Asian, and Other Language Programs, which are 
interacted with students’ English proficiency status and whether they are Hispanic 

Table 7—Select Preference Estimates for Different Demand Specifications

School characteristics × Student characteristics

Models with random coefficients

No student 
interactions

Without random 
coefficients

All 
choices

Choice among 
eligible programs

(1) (2) (3) (4)

High math achievement
  Main effect 0.016 (0.016) 0.027 (0.014) −0.029 (0.018) −0.058 (0.039)
  Baseline math 0.031 (0.001) 0.039 (0.001) 0.050 (0.001)
Percent subsidized lunch
  Main effect −0.085 (0.007) −0.057 (0.004) −0.069 (0.009) −0.113 (0.058)
Size of ninth grade (in 100s)
  Main effect −0.164 (0.036) −0.092 (0.032) −0.113 (0.048) −0.153 (0.178)
Percent white
  Main effect −0.002 (0.014) 0.070 (0.012) 0.062 (0.016) 0.093 (0.062)
  Asian −0.054 (0.002) −0.075 (0.003) −0.100 (0.004)
  Black −0.084 (0.002) −0.124 (0.002) −0.189 (0.003)
  Hispanic −0.047 (0.002) −0.084 (0.002) −0.119 (0.003)
Standard deviation of ε 7.226 (0.010) 7.385 (0.011) 7.858 (0.013) 10.059 (0.022)
Standard deviation of ξ 3.519 (0.121) 2.954 (0.100) 3.676 (0.129) 5.151 (0.650)
Random coefficients (covariances)
  Size of ninth grade (in 100s) 1.584 (0.009) 1.837 (0.012)
    Percent white −0.006 (0.001) −0.009 (0.001)
    Percent subsidized lunch −0.002 (0.000) −0.002 (0.000)
    High math achievement −0.011 (0.001) −0.015 (0.001)
  Percent white 0.008 (0.000) 0.013 (0.000)
    Percent subsidized lunch −0.001 (0.000) −0.002 (0.000)
    High math achievement 0.005 (0.000) 0.007 (0.000)
  Percent subsidized lunch 0.002 (0.000) 0.003 (0.000)
    High math achievement 0.000 (0.000) −0.001 (0.000)
  High math achievement 0.016 (0.000) 0.022 (0.000)

X X X
X X X

69,907  69,907  69,907  69,907 
542,666  542,666   542,666  542,666 

Notes: Select estimates of demand system with submitted ranks over 497 program choices in 235 schools. Distance 
is calculated using ArcGIS. Dummies for missing school attributes are estimated with separate coefficients. Column 
1 contains no interactions between student and school characteristics. Column 2 contains interactions among 
school characteristics and baseline achievement, gender, race, special education, limited English proficiency, 
subsidized lunch, and median 2000 census block group family income. Columns 3–4 include random coefficients 
on school size, percent white, percent subsidized lunch, and math achievement, with unrestricted covariance across 
characteristics. High math achievement is the fraction of students who score more than 85 on the Math A Regents 
in New York State Report Cards. Models estimate the utility differences among inside options only. Column 4 
restricts each applicant’s choice set to include eligible programs. If an applicant ranked an ineligible program, that 
program is included in the choice set. A total of 193 programs have eligibility restrictions and 3,854 students rank 
an ineligible program. Standard errors in parentheses.

Source: Abdulkadiroglu, Agarwal and Pathak (2017). Select Coefficients
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Welfare Gains From Coordination
In 2003, NYC replaced an uncoordinated mechanism with one based on DA

I Uncoordinated mechanism did not automate offer processing
X One-third were unassigned and placed administratively in a nearby school3670 THE AMERICAN ECONOMIC REVIEW DECEMBER 2017

The estimates discussed above may be optimistic because they are not based on 
the best-case scenario for the uncoordinated mechanism. Table 10 reports the extent 
to which truthful reporting may be biased in favor of the uncoordinated mechanism. 
Specifically, the table reports

	​ ​Δ​​ ℓ​  = ​   1 __ 
​| ′ |​ ​ ​ ∑ 

i∈′
​​​ E​[EU(​r​ i​ ∗,ℓ​, ​u​i​​)]​ − ​  1 __ 

​| ′ |​ ​ ​ ∑ 
i∈′

​​​ E​[EU(​r​ i​ T​ , ​u​i​​ )]​,​

for ​ℓ  =  10, 15,​ and ​20​ where ​​r​ i​ T​​ is the truthful report, i.e., ​​r​ ik​ T ​​ is the program with 
the ​k th​  highest utility in ​​u​i​​​, and a student only ranks a school if it is preferred to 
remaining unassigned in the main round. The difference between our approxima-
tion of optimal reporting and truthful reporting in the uncoordinated mechanism 
indicates that the range under which our behavioral assumptions about rankings 
submitted in the uncoordinated mechanism may alter the conclusions about the two 
mechanisms.38

There is a large difference in behavior between estimates that assume truth-
ful reporting and our approximation of optimal reporting. Using our approxima-
tion computed from the top ten choices, only about one-tenth of applicants submit 
the same rank ordering as they would if they submitted preferences truthfully. As 
we improve our approximation by considering larger choice sets, the fraction of 
applicants who have the same optimal report increases. Roughly half of applicants 

38 If applicants submitted truthful reports in the uncoordinated mechanism and ​(p, q)​ represents the correspond-
ing admissions probabilities, then

​​​W ̅ ​​​ T​ (​μ ′ ​)  = ​   1 _____ | ′ | ​  ​ ∑ 
i∈​​  ​ ′​

​​​ E [EU(​r​ i​ T​ , ​u​i​​ ) ] ,​

where ​​μ ′ ​​ is assignment in the uncoordinated mechanism. 
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0.08

−50 −40 −30 −20 −10 0 10 20

0.04
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Uncoordinated

Coordinated

Utility in distance (miles)

Figure 4. Student Welfare from Uncoordinated and Coordinated Mechanism 

Notes: Distribution of utility (measured in distance units) from assignment based estimates in column 3 of Table A1 
with mean utility in 2003–2004 normalized to zero. Top and bottom 1 percent are not shown in figure. Line fit from 
Gaussian kernel with bandwidth chosen to minimize mean integrated squared error.

Source: Abdulkadiroglu, Agarwal and Pathak (2017)
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Gains Correlated with Administrative Assignment

X Students most likely to be administratively assigned gained the most!
3675Abdulkadiroğlu et al.: Effects of Coordinated AssignmentVOL. 107 NO. 12

it difficult to disentangle changes in the mechanism from other contemporaneous 
changes. Our approach considers groups of students who are more likely to benefit 
from the new mechanism based their likelihood of being assigned administratively 
in the old mechanism. Because our findings suggest that effects are largest for those 
most likely to have been administratively assigned, we anticipate that the down-
stream consequences are largest for that group.

Figure 7 reports estimates of math and English Regents and graduation based on 
the probability a student is administratively assigned, constructed in the same way as 
Figure 6. The top panel shows the difference in Regents math and English achieve-
ment is largest for students who were most likely to be administratively assigned in 
the uncoordinated mechanism, and the difference in achievement mirrors the dif-
ference in utility shown in Figure 6. The bottom panel shows that these differences 
translate into differences in graduation rates, with a nearly 10 percent graduation 
increase for students who were most likely to be formerly administratively assigned.

VIII.  Model Fit and Alternate Behavioral Assumptions

A. Model Fit

Since our goal is to make statements about welfare, it is important to examine 
how well our demand estimates match the data. We first investigate within-sample 
fit to see what our estimates imply for the aggregate patterns by rank in Table 6. 
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Probability administratively assigned

∆ utility (including distance)

∆ utility (net distance)

∆ distance

95% confidence interval

Figure 6. Change in Student Welfare by Propensity to be Administratively Assigned in the 
Uncoordinated Mechanism

Notes: Probability of administrative assignment estimated from probit of administrative assignment indicator on 
student census tract dummies and all student characteristics in the demand model except for distance in the unco-
ordinated mechanism. If student lives in a tract where either all or no students are administratively assigned, all 
students from those tracts are coded as administratively assigned. For a grid of points of administrative assignment 
propensity, we plot the difference between local linear regression fits of utility including distance and net of distance 
from coordinated and uncoordinated mechanism computed as in Table 9. Standard errors constructed using 100 
draws of parameter values taken from the posterior distribution and re-estimated utility distributions. For each draw 
of the parameter, we updated ξ and obtained utility draws consistent with observed rank-ordered data using a Gibbs’ 
sampler. Programs that are not ranked by anyone are assigned a draw of ξ from the unconditional distribution.

Source: Abdulkadiroglu, Agarwal and Pathak (2017)
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Alternative Mechanisms

X Student welfare modestly affected by further modifications of the algorithm

3673ABDULKADIROĞLU ET AL.: EFFECTS OF COORDINATED ASSIGNMENTVOL. 107 NO. 12

somewhat smaller, but they are still large. For instance, the distance-equivalent utility 
for the average student is 9.25 miles (with standard error 0.56 miles). The change in 
distance to enrolled school is also lower than the change in distance to assignment. 
Though a smaller gain from enrollment suggests some of the old mechanism’s mis-
match was undone in its aftermarket, these facts weigh against the argument that 
post-market reallocation has undone a large fraction of misallocation. Relatedly, 
since the exit rate in the coordinated mechanism is lower than in the uncoordinated 
mechanism, more students preferred accepting their coordinated offer over enrolling 
in a high school outside of the system. This finding suggests that our welfare estimate 
may understate the overall effect for all public school eighth graders.

Figure 5 summarizes the comparisons across the alternative mechanisms. The 
scale corresponds to 18.96 miles from neighborhood to utilitarian assignment. Under 
our approximation to the best-case for the uncoordinated mechanism, the difference 
between it and the coordinated mechanism represents 45 percent of the total range. This 
is more than double the possible range associated with further tweaks to the matching 
algorithm, which is at most 20 percent. This finding informs a broader debate in the 
market design literature about the importance of sophisticated market clearing mech-
anisms. In the context of auctions, Klemperer (2002, p. 170) argued that “most of the 
extensive auction literature is of second-order importance for practical auction design,” 
and that “good auction design is mostly good elementary economics.” Consistent with 
this point of view, for school matching market design, coordinating admissions pro-
duces much larger gains than algorithm refinements within the coordinated system.

VII.  Comparison for the Administratively Assigned

A key difference between mechanisms is the number of students administratively 
assigned. Table 4 shows that being administratively assigned is undesirable: stu-
dents are assigned to schools that differ substantially from the schools they ranked. 
These facts suggest that students who are administratively assigned loom large in 
comparisons between mechanisms. In this section, we investigate what our demand 
estimates imply for this group, and we also examine achievement outcomes.

Neighborhood
assignment

Uncoordinated
mechanism Student-optimal

stable

Utilitarian
optimal

Approx. best-case

Gain from no choice benchmark
to uncoordinated mechanism

(6.69 miles, 35%)

Coordinating assignment
(8.54 miles, 45%)

Potential algorithm
improvements

(3.73 miles, 20%)

0.11
miles
0.6%

0.51
miles
2.7%

2.08 miles
11.0%

3.11 miles
16.4%

Truthful

Coordinated
mechanism

Pareto efficient
stable

Figure 5. Coordinating Assignments versus Algorithm Improvements
Source: Abdulkadiroglu, Agarwal and Pathak (2017)
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Strategic Choices
However, many mechanisms do not incentivize truthful reporting
X Immediate Acceptance (Boston) Mechanism prioritizes students at higher

ranked choices
I Trade-off: Gaining priority at true second-choice or try for true first choice
I Need to interpret choices in terms of preferences:

Figure X 
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X Baseline case of optimal choices [see He 2012; Agarwal and Somaini, 2015;

Calsamiglia et.al., 2016; Hwang, 2016; for extensions and applications]
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Revealed Preferences
Figure X 
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X Similar to simpler discrete choice setting!

Several recent developments with varying behavioral assumptions
[He, 2014; Agarwal and Somaini, 2015; Calsamiglu, Guell and Fu, 2015; Hwang, 2015]
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Sheet1

Page 1

Estimated Willingness to Travel (in miles)

Paid Lunch Free Lunch Paid Lunch Free Lunch Paid Lunch Free Lunch

Graham Parks 22% 82% 1.29 0.40 1.9 -0.17
[0.06] [0.08] [0.12] [0.19]

Haggerty 45% 87% 1.39 0.72 1.49 0.61
[0.07] [0.11] [0.10] [0.15]

Baldwin 49% 89% 1.26 0.50 1.35 0.73
[0.05] [0.09] [0.07] [0.10]

Morse 54% 64% 0.66 0.70 0.84 1.00
[0.07] [0.08] [0.08] [0.10]

Amigos 73% 74% -0.01 -0.38 0.02 -0.39
[0.13] [0.15] [0.11] [0.15]

Cambridgeport 51% 77% 0.77 0.18 0.68 0.39
[0.06] [0.08] [0.08] [0.10]

King Open 100% 100% 0.65 0.40 0.59 0.22
[0.06] [0.07] [0.08] [0.10]

Peabody 94% 95% 0.22 0.48 0.06 0.27
[0.08] [0.09] [0.09] [0.12]

Tobin 93% 72% -0.49 0.64 -0.82 0.37
[0.11] [0.12] [0.18] [0.19]

Fletcher Maynard 100% 76% -1.30 -0.05 -2.29 -0.19
[0.14] [0.10] [0.24] [0.14]

Kenn Long 100% 100% -0.19 0.47 -0.36 0.17
[0.09] [0.07] [0.14] [0.11]

MLK 100% 100% -0.66 0.08 -1.27 -0.32
[0.10] [0.09] [0.16] [0.13]

King Open Ola 100% 100% -3.60 -4.13 -2.20 -2.69
[0.35] [0.39] [0.32] [0.44]

Outside Option --- --- -2.08 -1.44 -0.50 -0.94
[0.10] [0.09] [0.04] [0.06]

Probability of Assignment 
as First Choice School Assumption: Truthful 

Behavior
Assumption: Sophisticated 

Behavior

Notes: Estimates from Agarwal and Somaini (2015). Utility Estimates relative to the mean value of inside 
options.
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Comparison Between IA and DA

Percent Assigned to First Choice 67.8 58.4 86.4
Percent Assigned to Second Choice 15.8 18.7 10.0
Percent Assigned to Third Choice 5.2 7.1 1.5

Percent Assigned to First Choice 72.3 63.9 88.8
Percent Assigned to Second Choice 14.7 18.1 7.9
Percent Assigned to Third Choice 3.9 5.1 1.3

Mean Utility DA - Cambridge -0.078 -0.107 -0.021
Std. Utility DA - Cambridge 0.109 0.120 0.046
Percent DA > Cambridge 17.3 15.6 20.6
Percent DA ≈ Cambridge 31.2 28.0 37.5
Percent DA < Cambridge 51.5 56.4 41.9
Percent with Justified Envy 2.5 2.7 2.3

All 
Students

Paid 
Lunch

Free 
Lunch

Deferred Acceptance

Immediate Acceptance

Comparison
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Empirical Findings and Limitations: School Choice

Other Key findings
I Significant preference heterogeneity for various schooling options based on

socio-economic characteristics [Hastings, Kane and Staiger, 2009; Abdulkadiroglu,

Agarwal and Pathak, 2015]
I Biases in beliefs can diminish screening benefits of Immediate Acceptance

[Agarwal and Somaini, 2015; Kapor, Neilson and Zimmerman, 2016]
I Improving the organization of after-markets is promising [Narita, 2016]

Some Limitations and avenues for future research
I Models take strong stances on parent information [Hastings and Weinstein, 2008]
I Peer effects are largely ignored
I Limited evidence on monetary value for better schools
I Limited evidence on effects of assignment on achievement outcomes
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Estimating Preferences Using Stability

So far...
I Settings where individual’s choices are observed
X Interpreting choices may still be challenging without truthful behavior

Often observe who matches with whom
I College/school enrollment data
I Employer-employee match dta

Typical datasets include characteristics of both sides (eg. workers and firms)
I Significant sorting in proxies for quality
X Cannot choose your most preferred option → must also be chosen

X Two issues:

1. Cannot directly use revealed preferences approaches developed earlier
2. Need two-sided preference model
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Stability

Pairwise stable equilibrium for frictionless markets
I IR: Each firm is assigned no more than its capacity
I IC: No worker prefers a firm that prefers that worker to an assigned worker (at

fixed salaries)

X Substantiating this assumption requires knowledge of market institutions
I Medical matching market using stable matching algorithms [Agarwal (2015)]
I Schools using test scores for admissions [Fack, Grenet and He (2015)]
I College admission settings [Akyol and Krishna (2017); Bucarey (2017)]
I Decentralized settings [Boyd et.al. (2013); Jiang (2016); Vissing (2017)]
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One Side: School Choice or College Admissions

Suppose we know preferences of schools for students
I Student i has test score eij for school j

Stability admits a cutoff representation [Azevedo and Leshno (2016)]

I Each school has a cutoff
Pj = min

i∈µ−1(j)
eij

I Students can enroll in any eligible school

S(ei ,P) = {j ∈ J|Pj ≤ eij}

I Students enroll at their most preferred eligible school

µ(i) = arg max
j∈S(ei ,P)

uij

X Cutoffs ensure that no school is over-subscribed

Model has student specific choice sets that depend on scores eij

X Can construct choice sets using data on P and ei
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Revealed Preferences Figure X 

 

 

𝑣ଵ (0,0) 

Enroll in Option 1 Enroll in Option 0 

𝜈ଶ 

X Similar to simplest discrete choice setting!

Less information because no information about unattainable options
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Empirical Details

Applicable to settings with rank-data
I Ranks are hard to interpret if students know which schools are unattainable
X Stability is more robust, especially in large markets

[Fack, Grenet and He (2015); Artemov, Che and He (2017)]

Choice probabilities are similar to standard discrete choice
I In mixed-logit case:

P(i enrolls in j |X ;βi ) =
exp(xijβi )∑

k∈S(ei ,P) exp (xikβi )

X Notice the denominator

Extrapolation of preferences for lower performing students
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Application: College Financial Aid Design in Chile

Current Chilean government was elected on the promise of making college free
by 2020

I Active policy debates around the world, including the US

Several major implications
I Increase in financial aid across the board
I Smallest change for current beneficiaries – low income students

X What should we expect to happen in 2020?
I Who gains the most?
I Are there any losers?
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Outline of Analysis: Bucarey (2017)

Chilean Higher Education
I Most selective colleges use a DA based admission scheme
X Known aggregate of test scores used for admission
I Administrative data on student enrollment

Regression discontinuity and Differences-in-differences analysis
I Students barely eligible for financial aid are more likely to attend 4-year college

[Solis (2017)]
I Past expansions, although modest, resulted in crowding out of the poor

Structural Model
I Preferences for various college-majors
I Willingness to pay estimated using regression discontinuity in financial aid

X Effects of free tuition?
I Who would enroll where if capacities did not change?
I How much expansion in capacities would offset any adverse effects?
I Can we design a better policy?
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Effects of Free Tuition
Ignoring Capacity Constraints

Table 11: Excess of Demand with Free Tuition, Capacities and Admission Cutoffs at Baseline
Level

All University 
Centralized 

System
Vocational

A. Percentage Excess of Demand

Common Price Coefficient Model 47% 58% 44% 28%

Income-heterogeneous Price Coefficient Model 35% 37% 25% 31%

B. Program Characteristics

Share of Students Enrolled in Baseline 100% 64% 40% 34%

Number of Programs 2,370 2,361 1,287 -

Type of Program

Notes: This table presents the percentage excess of demand over baseline capacity after introducing free

tuition, assuming that admission cutoffs and capacity remain at baseline levels from year 2015. Admission

cutoffs are simulated for the baseline equilibrium using estimates of preferences for the respective model.

Panel A uses estimates from each of the two models considered in estimation, while Panel B shows basic

descriptive of the baseline. Centralized system are the group of university programs that admit students

using a coordinated system. The number of vocational programs is omitted as I group them in nine

categories for estimation.

Table 12: Baseline and Percentage Change in Enrollment by Institution and Income Quintile
after Free Tuition Introduction

Baseline
Change with 

Free College
Baseline

Change with 

Free College
Baseline

Change with 

Free College

A. Common Price Coefficient Model

Poorest 20% 0.57 -10% 0.27 -11% 0.15 -13%

2nd Income Quintile 0.78 0% 0.44 -11% 0.27 -20%

3rd Income Quintile 0.73 -5% 0.46 -6% 0.29 -11%

4th Income Quintile 0.69 8% 0.50 9% 0.32 11%

Richest 20% 0.69 17% 0.59 15% 0.38 17%

B. Income-heterogeneous Price Coefficient Model

Poorest 20% 0.56 -7% 0.27 -12% 0.15 -13%

2nd Income Quintile 0.72 -2% 0.40 -8% 0.25 -12%

3rd Income Quintile 0.72 3% 0.46 -5% 0.29 -12%

4th Income Quintile 0.71 11% 0.53 6% 0.34 7%

Richest 20% 0.72 18% 0.62 11% 0.40 13%

All Programs University Centralized System

Notes: This table presents the change in average enrollment for different income groups at different

institutions before and after a free tuition policy. Each panel presents the same figures for the two models

estimated. Simulations hold capacities fixed at baseline levels of 2015.

51

X Cutoffs or capacity would have to change!
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Effects of Free Tuition
Fixed Capacity

Figure 4: Graphical Representation of Stylized Example in Space (I, t)

Admitted    Applicants

Rejected    Applicants

Admission Cutoff

Admission Test Score (t)

Income (I)

(a) Admitted Population to Selective College in Baseline

Admitted    Applicants

Rejected    Applicants

New Admission Cutoff

Admission Test Score (t)

Income (I)

Displaced Students

(b) Admitted Population to Selective College with Tuition Free Col-
lege

56
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Effects of Free Tuition
Fixed Capacity

Table 11: Excess of Demand with Free Tuition, Capacities and Admission Cutoffs at Baseline
Level

All University 
Centralized 

System
Vocational

A. Percentage Excess of Demand

Common Price Coefficient Model 47% 58% 44% 28%

Income-heterogeneous Price Coefficient Model 35% 37% 25% 31%

B. Program Characteristics

Share of Students Enrolled in Baseline 100% 64% 40% 34%

Number of Programs 2,370 2,361 1,287 -

Type of Program

Notes: This table presents the percentage excess of demand over baseline capacity after introducing free

tuition, assuming that admission cutoffs and capacity remain at baseline levels from year 2015. Admission

cutoffs are simulated for the baseline equilibrium using estimates of preferences for the respective model.

Panel A uses estimates from each of the two models considered in estimation, while Panel B shows basic

descriptive of the baseline. Centralized system are the group of university programs that admit students

using a coordinated system. The number of vocational programs is omitted as I group them in nine

categories for estimation.

Table 12: Baseline and Percentage Change in Enrollment by Institution and Income Quintile
after Free Tuition Introduction

Baseline
Change with 

Free College
Baseline

Change with 

Free College
Baseline

Change with 

Free College

A. Common Price Coefficient Model

Poorest 20% 0.57 -10% 0.27 -11% 0.15 -13%

2nd Income Quintile 0.78 0% 0.44 -11% 0.27 -20%

3rd Income Quintile 0.73 -5% 0.46 -6% 0.29 -11%

4th Income Quintile 0.69 8% 0.50 9% 0.32 11%

Richest 20% 0.69 17% 0.59 15% 0.38 17%

B. Income-heterogeneous Price Coefficient Model

Poorest 20% 0.56 -7% 0.27 -12% 0.15 -13%

2nd Income Quintile 0.72 -2% 0.40 -8% 0.25 -12%

3rd Income Quintile 0.72 3% 0.46 -5% 0.29 -12%

4th Income Quintile 0.71 11% 0.53 6% 0.34 7%

Richest 20% 0.72 18% 0.62 11% 0.40 13%

All Programs University Centralized System

Notes: This table presents the change in average enrollment for different income groups at different

institutions before and after a free tuition policy. Each panel presents the same figures for the two models

estimated. Simulations hold capacities fixed at baseline levels of 2015.
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Effects of Free Tuition
Welfare EffectsTable 13: Welfare Consequences of Tuition Free College

Utility Utility Net of Price Sticker Tuition Received Scholarship

A. Common Price Coefficient Model

Family Income

Poorest Quintile -$3,396 -$1,180 -$567 $1,137

Second Quintile -$4,586 -$1,454 -$243 $1,458

Third Quintile -$2,994 -$1,109 -$524 $1,274

Fourth Quintile -$1,247 -$776 $630 $2,736

Richest Quintile -$96 -$490 $1,460 $3,484

Test Scores

Lowest Quartile -$8,533 -$2,485 -$2,184 $24

Top Quartile $1,955 $178 $3,328 $4,515

B. Income-heterogeneous Price Coefficient Model

Family Income

Poorest Quintile -$6,530 -$1,078 -$506 $1,271

Second Quintile -$3,684 -$990 -$323 $1,379

Third Quintile -$1,461 -$778 -$25 $1,629

Fourth Quintile $404 -$572 $675 $3,070

Richest Quintile $1,486 -$332 $1,204 $3,832

Test Scores

Lowest Quartile -$10,980 -$2,178 -$2,160 $34

Top Quartile $5,480 $614 $2,509 $5,038

Change in average:

Notes: This table compares the average of the variable in each column for the free tuition case and the

baseline. Utilities are expressed in dollar equivalent.

52
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Estimating Preferences on Both Sides

Key problem: Final matches depend on two sets of preferences

Build intuition using simple model with no preference heterogeneity

uij = zjβ + wj + ξj

hi = xiα + εi

I Perfect assortative matching on u and h

1. Information in sorting patterns
2. Usefulness of many-to-one matching structure

[see Diamond and Agarwal, 2017 for formal analysis]

X Wage endogeneity can be dealt with using a control function approach

Related work and alternative approaches
I Econometric issues [Diamond and Agarwal (2017) and Menzel (2015)]
I Transferable Utility (flexible salary/transfers) Case [Choo and Siow, 2006; Fox,

2010; Chiappori, Galichon and Salanie, and co-authors (several papers)]
I Imperfectly Transferable Utility [Galichon, Kominers and Weber, 2015]
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Limitation of Sorting Patterns

Resident Program Characteristic

Characteristic Large Small

High 30% 20%

Low 20% 30%

Assume that residents from “High” NIH funded schools tend to be better

Cannot learn about preferences on both sides from sorting patterns alone
I Consistent a strong preference for large hospitals +

moderate association between high NIH funding and resident skill

I Cannot distinguish from the reverse

I Degree of sorting on observables increases with both α and β

Large β and small α vs. large α and small β
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Usefulness of Data from Many-to-One Matching

Data from many-to-one matching provides additional identifying information
I Do residents matched at the same program have similar characteristics?

Two residents matched at the same program must be similarly qualified
I Otherwise, the program can replace the lower quality resident or the higher

quality resident can find a better match

Residents at a program have similar values of x if it strongly predicts human
capital ⇒ small within-program variation

I If x is important, then programs pick residents with most desirable x
I Low preference for x results in programs picking residents with varying x

Provides crucial information that is not available in one-to-one matching
I Combine with sorting patterns to learn about preferences on both sides
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Information in Many-to-One Matching

Fraction of variation within-program decreases with importance of resident
characteristic

I Programs are more segregated by degree type than gender
I Consistent with degree but not gender being associated with skills

Fraction of Variation

Within Program-Year

Log NIH Fund (MD) 77.8%

Median MCAT (MD) 72.1%

Osteopathic/DO Degree 85.2%

Foreign Degree 57.2%

Allopathic/MD Degree 64.8%

Female 96.4%
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Estimates for Job Characteristics

Select Variables Full Geographic Geo. Het. w/

Heterogeneity Heterogeneity Instrument

(1) (2) (3)

Case Mix Index (1 sd.) $4,792 $2,320 $6,088

Random Coeff. (sigma) $4,503

Log NIH Fund (Major) (1 sd.) $491 $6,499 $4,402

Random Coeff. (sigma) $5,498

Log Beds (1 sd.) $6,900 $3,528 $8,837

Random Coeff. (sigma) $11,107

Log NIH Fund (Minor) (1 sd.) $4,993 $5,560 $7,620

Medical School State $9,820 $2,302 $4,529

Birth State $6,342 $1,320 $2,451

Rural Birth x Rural Program $1,189 $109 $233

Source: Agarwal (2015)
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Centralization and Salary Setting

Centralized mechanism in the medical market has been criticized as a
mechanism for wage suppression [Jung et.al., 2002]

I Medical residents make approximately $40,000 less than substitute labor
X Lawsuit argument based on a perfect competition benchmark

Debate on the effects of this market reform on wage suppression
I Presence of a match does not seem to be associated with lower wages

[Niederle and Roth, 2003]
I Theoretical results on effects of centralization on wages are ambiguous

[Bulow and Levin, 2006; Kojima, 2007]

Medical labor markets are characterized by imperfect competition
I Sources: Accreditation restrictions on programs, fixed costs of operating and

heterogeneity in quality
I Conservative estimates suggest that these sources result in wage depression

(implicit tuition) of at least $23,000 relative to MPL net training costs
[Agarwal, 2015]

X These sources of imperfect competition are not directly related to the match

X Centralized designs with ordered contracts allows for salary flexibility [Kelso

and Crawford, 1982; Niederle, 2007; Crawford, 2008]
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Empirical Findings and Conclusions

Approaches that use related equilibrium models on the final outcomes have
been used to quantify

I Match surplus in the market for venture capital [Sorenson, 2007]
I Factors that determine the marital surplus [Choo and Siow, 2006; Chiappori,

Salanie and Wiess, 2016, and others]
I Efficiency of various market mechanisms [Bajari and Fox, 2013; Jiang, 2016]
I Value of mergers in the Industrial Organizations literature [Akkus, Cookson and

Hortacsu, 2015]
I Determinants of public school teacher matching [Boyd et.al., 2013]
I Effects of market power on drilling leases [Vissing (2016)]

Limitations and avenues for future research
I Restrictive assumptions on preference distribution
I Richer matching function at the cost of incorporating market frictions [see

Sorkin, 2016, for an exception]
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Summary and Future Directions

Avenues for future research
I What are the effects of matching systems on education/health outcomes?
I Comparison with decentralized markets

X Features commonly arise in the allocation of rival and non-excludable goods
I Heterogeneity and capacity constraints
I Limitations on the price mechanism

A variety of other settings
I Course allocation mechanisms
I College applications in non-centralized schemes
I Allocation of medical care via wait-lists
I Public housing and organ allocation [Agarwal et.al., 2018; Waldinger, 2017]

X Key: Empirical approach depends on

1. Rules of the market
2. Available data
3. Nature of the agent’s decision problem
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Kelso & Crawford (1982)

i ∈ I workers, f ∈ F firms

Each firm can hire as many workers as it wants, while each worker can get at
most one job

Workers care for their jobs and salaries, but not for co-workers

ui (f , s fi ) : Utility of worker i matched at firm f at wage s fi
Strictly increasing and continuous in s fi

y f (C f ) : Gross product of firm f which hires set of workers C f

πf (C f , s f ) ≡ y f (C f )−
∑

i∈C f s fi , Net profits of firm f
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Firm’s Problem

Suppose firm f face a vector of salaries s f ≡ (s fi )i∈I

D f (s f ): Set of solutions to firm’s profit maximization problem

max
C

πf (C , s f )

D f (s f ) is the set of optimal groups of workers for firm f given salary vector s f
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Gross Substitutes

Workers are gross substitutes for a firm f if, for any pair of salary vectors
s f , s̃ f , with s̃ f ≥ s f ,

C f ∈ D f (s f ) =⇒ ∃C̃ f ∈ D f (s̃ f ) s.t. j ∈ C̃ f for all j with s̃ fj = s fj

That is, workers are gross substitutes for a firm if the demand for a worker j
does not go down when the salary of another worker i goes up.

Recall from GE theory that gross substitutes of Marshallian demand implies
uniqueness of competitive equilibrium
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Allocations

Matching, µ : I → F ∪ ∅, function that assigns each worker to at most one
job

Allocation: a matching µ together with a salary schedule
(
s
µ(i)
i

)
i∈I

If µ(i) = ∅, then s
µ(i)
i = 0

Allocation is individually rational if no worker or firm instead prefers to
remain unmatched

5/40



The Strict Core and Core

Individually rational allocation
(
µ; (s

µ(i)
i )i∈I

)
is in the strict core if there is no

firm+group of workers combination (g , J) and salary vector pg such that

1. uj(g , pg
j ) ≥ uj

(
µ(j), s

µ(j)
j

)
for all j ∈ J, and

2. πg (J, pg ) ≥ πg
(
µ−1(g), sg

)
where at least one of the inequalities is strict.

Individually rational allocation
(
µ; (s

µ(i)
i )i∈I

)
is in the core if there is no

firm+group of workers combination (g , J) and salary vector pg such that

1. uj(g , pg
j ) > uj

(
µ(j), s

µ(j)
j

)
for all j ∈ J, and

2. πg (J, pg ) > πg
(
µ−1(g), sg

)
.

Clearly strict core is a subset of the core. The two are equivalent when salaries
are continuous.
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Kelso-Crawford ‘Auction’

Step 0: Set all salaries to 0

Step 1: Firms make offers to their most preferred set of workers. No offer can
be withdrawn

Step 2: Each workers evaluates his offers. He tentatively holds the best
acceptable offer (if any), and rejects the rest

Step 3: If no offer is rejected, terminate the procedure. Otherwise, for each
rejected offer a firm made, increase the salary of the rejecting worker by one
unit. This defines the revised salaries.

Step 4: Return to Step 1

7/40



Kelso-Crawford ‘Auction’

Gross substitutes condition assures that the “No offer can be withdrawn”
condition (Step 1) does not hinder firms’ ability to optimize in Step 1 no
matter how salaries evolve

Also observe that nothing changes in Step 2 if workers evaluate “all offers to
date” rather than merely the existing offers

As the algorithm progresses

a. the set of feasible offers shrink for firms,
b. the set of available offers grow for the workers

Therefore the optimal choices of firms and workers evolve in opposite
directions as the algorithm proceeds

Like the deferred acceptance algorithm
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Kelso-Crawford ‘Auction’

Theorem: Assume workers are gross substitutes for each firm. Then

a. the Kelso-Crawford auction terminates,
b. it produces an allocation in the core, and
c. its outcome is weakly preferred by every firm to any other allocation in the core.

Alternatively we can consider a worker proposing version of the above auction
where workers start offers at the highest feasible salary

Modern treatments have been based on tools from lattice theory, largely
thanks to Hatfield and Milgrom (2005)

Standard reference is Topkis (1998): Supermodularity and Complementarity
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Matching with Contracts

D = Set of doctors
H = Set of Hospitals
X = Finite set of contracts

Each contract (except the null contract) is associated with one doctor and
one hospital.

Examples:

Gale & Shapley (1962) College Admissions: X = D × H

Kelso & Crawford (1982) Labor Market: X = D × H × Salaries
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Hatfield and Milgrom (2005)

Hatfield and Milgrom (2005): use tools from lattice theory to generalize
Gale-Shapley algorithm

Preferences expressed in terms of choice sets: Ch(X ): choice of hospital h
from set of contracts X ; Rh(X ) ≡ X\Ch(X ): contracts rejected by hospital h

Gale-Shapley expressed as an isotone operator defined via “opportunity sets”:
e.g., the set of doctors not yet rejected by a hospital

Two key ideas:
I Substitutes:

X ′ ⊆ X ′′ ⇒ Rh(X ′) ⊆ Rh(X ′′)

Addition of a contract to a choice set never induces a hospital to take a
contract it previously rejected

I Law of Aggregate Demand:

X ′ ⊆ X ′′ ⇒ |Ch(X ′)| ≤ |Ch(X ′′)|

Under substitutes, we obtain key results on lattice structure, existence,
side-optimality, opposite interests as before

Under Substitutes and Law of Aggregate Demand, Hatfield and Milgrom show
that generalized Gale-Shapley algorithm is strategy-proof; and rural hospitals
theorem
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Junior Officer Retention in the Army

There are two main programs the U.S. Army relies on to recruit officers:

• United States Military Academy (USMA)
• Reserve Officer Training Corps (ROTC)

Graduates of USMA and ROTC enter active duty for an initial period of
obligatory service upon completing their programs.

The Active Duty Service Obligation (ADSO) is

• 5 years for USMA graduates,
• 4 years for ROTC scholarship graduates, and
• 3 years for ROTC non-scholarship graduates.
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Army’s Difficulty Retaining Junior Officers

Upon completion of this obligation, an officer may apply for voluntary
separation or continue on active duty

The low retention rate of these junior officers has been a major issue for the
U.S. Army since the late 1980s.

In the last few years, the Army has responded to this challenge with
unprecedented retention incentives, including branch-for-service incentives
programs offered by both USMA and ROTC (Wardynski, Lyle, and Colarusso
2010)
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Army Branches

During the fall semester of their senior year, USMA and ROTC cadets
“compete” for a slot from the following 16 branches:

Adjutant General’s Corps

Air Defense Artillery

Armor

Aviation

Chemical Corps

Corps of Engineers

Field Artillery

Finance Corps

Infantry

Medical Service Corps

Military Intelligence

Military Police Corps

Ordnance Corps

Quartermaster Corps

Signal Corps

Transportation Corps

Career advancement possibilities vary widely across different branches
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Cadet-Branching Prior to 2006

Long tradition of assigning branches to cadets based on their preferences and
their merit ranking

Merit ranking is known as the order-of-merit list (OML) in the military and
is based on a weighted average of academic performance, physical fitness test
scores, and military performance

Until 2006, the simple serial dictatorship based on OML was used by the
USMA and ROTC
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Cadet-Branching Reform in 2006

In 2006, both programs changed their mechanisms in response to historically
low retention rates of their graduates

Idea: Since branch choice is essential for most cadets, why not allow them to
bid an additional period of obligatory service for their desired branches?

Fraction of slots up for bidding is

• 25% for USMA
• 50% for ROTC

New matching process is referred as the branch-for-service program for
both USMA and ROTC
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Cadet-Branch Matching Problem

A cadet-branch matching problem consists of

1) a finite set of cadets I = {i1, i2, . . . , in},
2) a finite set of branches B = {b1, b2, . . . , bm},
3) a vector of branch capacities q = (qb)b∈B ,

4) a set of “terms” or “prices” T = {t1, . . . , tk} ∈ Rk
+

where t1 is the cheapest, . . . , and tk is the most expensive term,

5) a list of cadet preferences P = (Pi )i∈I over (B × T ) ∪ {∅}, and

6) a list of base priority rankings π = (πb)b∈B .

πb : I → {1, . . . , n}: The function that represents the base priority ranking of
cadets for branch b

πb(i) < πb(j) means that cadet i has higher claims to a slot at branch b than
cadet j , other things being equal
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Primitives

Cadet preferences over branch-price pairs:
�i : Cadet preferences over branches alone
P: Set of all preferences over (B × T ) ∪ {∅}
Q: Set of all preferences over B

Contract x = (i , b, t) ∈ I × B × T : a cadet i , a branch b, and the terms of
their match

X ≡ I × B × T : set of all contracts

Allocation X ′ ⊂ X is a set of contracts such that each cadet appears in at
most one contract and no branch appears in more contracts than its capacity.

X : Set of all allocations
X ′(i) = (b, t): Assignment of cadet i under allocation X ′

X ′(i) = ∅: Cadet i remains unmatched under X ′
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Fairness

For a given problem, an allocation X ′ is fair if

∀i , j ∈ I , X ′(j)︸ ︷︷ ︸
=(b,t)

Pi X
′(i)⇒ πb(j) < πb(i).

That is, a higher-priority cadet can never envy the assignment of a
lower-priority cadet under a fair allocation.

Possible for a higher-priority cadet to envy the branch assigned to a
lower-priority cadet under a fair allocation only if the latter pays the price of a
longer term

19/40



Mechanisms

A mechanism is a strategy space Si for each cadet i along with an
outcome function

ϕ :
∏
i∈I

Si → X

that selects an allocation for each strategy vector (s1, s2, . . . , sn) ∈
∏

i∈I Si .

A direct mechanism is a mechanism where the strategy space is simply the
set of preferences P for each cadet i .

A direct mechanism is fair if it always selects a fair allocation.
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The USMA Mechanism

All cadets receive an assignment under the USMA mechanism (unassigned
manually placed).

P: Set of preferences over B × T

Since 2006, T = {t1, t2}.

t1: Base price
t2: Increased price

Denote any contract with increased price t2 as a branch-of-choice contract
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Strategy Space under the USMA Mechanism

Each cadet is asked to choose

1) a ranking of branches alone
2) a number of branches (possibly none) for which the cadet is asked to sign a

branch-of-choice contract.

Hence Si = Q× 2B for each cadet i .

Let (�′
i ,Bi ) be the strategy choice of cadet i under the USMA mechanism for

a given problem

Interpretation of Bi :

• For each branch b ∈ Bi , cadet i is willing to pay the increased price t2 in
exchange for favorable treatment for the last 25 percent of slots

• Cadet i will need to pay the increased price only if he receives one of the last
25 percent of the slots for which he is favored.
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Strategy Space under the USMA Mechanism

For each branch b,

• priority for the top 75 percent of slots determined by the order-of-merit list
πb = πOML

• cadets who sign a branch-of-choice contract for branch b receive favorable
treatment for the last 25 percent of slots

Priority for the last 25 percent of slots is based on the following adjusted
priority ranking π+

b :

For any i , j ∈ I ,

• if b ∈ Bi and b 6∈ Bj , then π+
b (i) < π+

b (j),

• if b ∈ Bi and b ∈ Bj , then π+
b (i) < π+

b (j) ⇔ πb(i) < π(j),

• if b 6∈ Bi and b 6∈ Bj , then π+
b (i) < π+

b (j) ⇔ πb(i) < πb(j).
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Outcome Function of USMA Mechanism

For a given strategy profile (�′
i ,Bi )i∈I , the USMA mechanism determines the

final outcome with the following USMA algorithm:

Step 1 : Each cadet i “applies” to his top-choice under �′
i .

* Each branch b holds the top 0.75qb candidates based on πb.

* Among the remaining applicants it holds the top 0.25qb candidates based on
the adjusted priorities π+

b .

Any remaining applicants are rejected.

In general, at

Step k : Each cadet i who is rejected at Step (k-1) “applies” to his
next-choice under �′

i .

* Each branch b reviews the new applicants along with those held from Step
(k-1), and holds the top 0.75qb based on πb.

* For the remaining slots, branch b considers all remaining applicants and holds
the top 0.25qb of them based on the adjusted priorities π+

b .

Any remaining applicants are rejected.
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Outcome Function under the USMA Mechanism

Algorithm terminates when no applicant is rejected. All tentative assignments
are finalized at that point.

For any branch b,

any cadet who is assigned one of the top 75 percent of slots is charged the
base price t1,

any cadet who is assigned one of the last 25 percent of slots is charged

• the increased price t2 if he has signed a branch-of-choice contract for branch b,
and

• the base price t1 if he has not signed a branch-of-choice contract for branch b.

ψWP(s) : Outcome of USMA mechanism under s = (�′
i ,Bi )i∈I
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Preliminary Observations

Let λ be the fraction of slots where branch-of-choice contracts are favored

When λ = 0:

• USMA mechanism reduces to the simple serial dictatorship induced by the
order-of-merit list

When λ > 0:

• Truthful preference revelation be suboptimal under the USMA mechanism and
the optimal choice of branch-of-choice contracts is not obvious

• Issue: Mechanism tries to “infer” cadet preferences over branch-price pairs
from their submitted preferences over branches alone and signed
branch-of-choice contracts

Strategy-space provided by the USMA mechanism is not rich enough to
reasonably represent cadet preferences.

26/40



Representation of Priorities via Choice Sets

Branches have priorities over cadet-price pairs, and these priorities induce
choice sets

Hence, the cadet-branch matching problem is a special case of matching
with contracts

In general, the choice set of branch b from a set of contacts X ′ depends on
the policy on who has higher claims for slots in branch b. So let’s represent
the current USMA priorities, or any other priorities by adequate construction
of choice sets.

For a given priority structure for branch b,

Cb(X ′): Set of contracts chosen from X ′ ⊆ X
Rb(X ′) ≡ X ′ \ Cb(X ′): Rejected set
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USMA: Defining Choice Set of Branch b

Phase 0: Remove all contracts that involve another branch b′ and add them
all to rejected set Rb(X ′).
(Hence each contract that survives Phase 0 involves branch b.)

Phase 1: For the first 0.75qb potential elements of Cb(X ′), choose the
contracts with highest-OML cadets one at a time. When two contracts of the
same cadet are available, choose the contract with the base price t1 and reject
the other one.

Continue until either all contracts are considered or 0.75qb elements are
chosen for Cb(X ′).

If the former happens, terminate the procedure.
If the latter happens proceed with Phase 2.1.
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USMA Choice Set

Phase 2.1: For the last 0.25qb potential elements of Cb(X ′), give priority to
contracts with increased price t2. In this phase only consider branch-of-choice
contracts and among them include in Cb(X ′) the contracts with highest-OML
cadets. If any cadet covered in Phase 2.1 has two contracts in X ′ reject the
contract with the base price t1. Continue until either all branch-of-choice
contracts are considered in X ′ or Cb(X ′) fills all qb elements. For the latter
case, reject all remaining contracts, and terminate the procedure. For the
former case, terminate the procedure if all contracts in X ′ are considered and
proceed with Phase 2.2 otherwise.

Phase 2.2: By construction, all remaining contracts in X ′ have the base price
t1. Include in Cb(X ′) the contracts with highest-priority cadets one at a time
until either all contracts in X ′ are considered or Cb(X ′) fills all qb elements.
Reject any remaining contracts, placing them in Rb(X ′).
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Stability

Allocation X ′ is stable if

1) no cadet or branch is imposed an unacceptable contract, and
2) there exists no cadet i , branch b, and contract x = (i , b, t) ∈ X \ X ′ s.t.

(b, t) Pi X
′(i) and x ∈ Cb

(
X ′ ∪ {x}

)
.

Motivation:

X If the first condition fails, then the outcome is not individually rational
X If the second requirement fails, then there exists an unselected contract (i , b, t)

where cadet i prefers pair (b, t) to his assignment and also contract x has
sufficiently high priority to be selected by branch b.

30/40



Fairness vs. Stability

Two cadets i1, i2, one branch b with two slots and λ = 0.5

Cadet i1 has higher priority than cadet i2

(b1, t1)Pi1(b1, t0) and (b1, t0)Pi2(b1, t1)

In allocation
X ′ = {(i1, b1, t0), (i2, b1, t1)},

the higher-priority cadet i1 envies i2, so X ′ not fair.

But its stable because branch b gives priority to contract (i1, b1, t0) over
contract (i1, b1, t1) for the first slot
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Irrelevance of Rejected Contracts

Three properties of choice sets (branch priorities in our context) are central in
matching with contracts.

Priorities satisfy the irrelevance of rejected contracts for branch b if
∀X ′ ⊂ X ,∀x ∈ X \ X ′,

x 6∈ Cb(X ′ ∪ {x}) =⇒ Cb(X ′) = Cb(X ′ ∪ {x}).

That is, the removal of rejected contracts have no effect on the choice set
under the IRC condition.

Lemma: USMA priorities satisfy IRC.

Aygun and Sönmez (2013) show that IRC is implicitly assumed throughout
the analysis of Hatfield and Milgrom (2005)
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Law of Aggregate Demand

Priorities satisfy the law of aggregate demand (LAD) for branch b if

X ′ ⊂ X ′′ ⇒ |Cb(X ′)| ≤ |Cb(X ′′)|

That is, the size of the choice set never shrinks as the set of contracts grows
under the LAD condition.

Lemma: USMA priorities satisfy the LAD.
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Substitutes Condition

Elements of X are substitutes for branch b if

∀X ′ ⊂ X ′′ ⊆ X , Rb(X ′) ⊆ Rb(X ′′).

Matching with contracts: Substitutes + IRC⇒ existence of a stable allocation

Elements of X are unilateral substitutes for branch b if, whenever a contract
x = (i , b, t) is rejected from a smaller set X ′ even though x is the only
contract in X ′ that includes cadet i , contract x is also rejected from a larger
set X ′′ that includes X ′.

34/40



Contracts not Substitutes

I = {i1, i2} in OML order and B = {b1} with qb1 = 2, λ = 0.5

X ′ = {(i2, b1, t0), (i2, b1, t1)}

X ′′ = {(i1, b1, t0), (i2, b1, t0), (i2, b1, t1)}

Cb1(X ′) = {(i2, b1, t0)} and Rb1(X ′) = {(i2, b1, t1)}
Cb1(X ′′) = {(i1, b1, t0), (i2, b1, t1)} and Rb1(X ′′) = {(i2, b1, t0)}

Contract (i2, b1, t1) is rejected from X ′, but not from X ′′ ⊃ X ′

When two contracts include the same cadet, (i , b, t0), (i , b, t1) contract
(i , b, t0) might be rejected at the expense of (i , b, t1) from a larger set X ′′

while the contract choice is reversed for a subset X ′ of X ′′

Only reason a contract can be rejected from a smaller set despite being
chosen from a larger one, so we satisfy unilateral substitutes
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Cumulative Offer Algorithm and COSM

Cadet-optimal stable mechanism (COSM)

Strategy space of each cadet is P under the COSM, and hence it is a direct
mechanism.

Fix branch priorities (and hence the choices sets). Given a profile P ∈ P, the
following cumulative offer algorithm (COA) can be used to find the
outcome of COSM.

Step 1 : Start the offer process with the highest OML cadet π(1) = i(1).
Cadet i(1) offers his first-choice contract x1 = (i(1), b(1), t) to branch b(1)
that is involved in this contract. Branch b(1) holds the contract if
x1 ∈ Cb(1)({x1}) and rejects it otherwise. Let Ab(1)(1) = {x1} and Ab(1) = ∅
for all b ∈ B \ {b(1)}.
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Cumulative Offer Algorithm and COSM

In general, at

Step k : Let i(k) be the highest OML cadet for whom no contract is currently
held by any branch. Cadet i(k) offers his most-preferred unrejected contract
to branch b(k). Branch b(k) holds the contract if
xk ∈ Cb(k)(Ab(k)(k − 1) ∪ {xk}) and rejects it otherwise. Let
Ab(k)(k) = Ab(k)(k − 1) ∪ {xk} and Ab(k) = Ab(k − 1) for all
b ∈ B \ {b(k − 1)}.

The algorithm terminates when each cadet either has an offer that is on hold
or has no remaining acceptable contracts. Since there are a finite number of
contracts, the algorithm terminates after a finite number T of steps. All
contracts held at this final Step T are finalized and the final allocation is⋃

b∈B Cb(AT ).
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COSM and Unilateral Substitutes

Theorem: Suppose that the priorities satisfy the unilateral substitutes
condition and the IRC. Then the COA produces a stable allocation that is
weakly preferred by any cadet to any stable allocation. If in addition the
priorities satisfy the LoAD, then the COSM is also strategy-proof.
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Improving the USMA Mechanism

ϕUSMA: COSM induced by USMA priorities

COSM induced by USMA priorities fixes all previously mentioned deficiencies
of the USMA mechanism.

Proposition. The outcome of ϕUSMA is stable under USMA priorities and it is
weakly preferred by any cadet to any stable allocation. Moreover ϕUSMA is
strategy-proof and fair.

Note that stability does not imply fairness here since we haven’t assumed that
a cadet prefers (b, t0) to (b, t1)
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Matching with Contracts

Literature pursuing generalizations of Gale-Shapley is very active

Relationship between models
I Echenique (AER 2012); Hatfield and Kojima (JET 2010); Hatfield-Kominers

(2015)

Several papers consider matching in even richer domains – relaxing
two-sidedness

I Ostrovsky (2008); Hatfield-Kominers-Westkamp (2016)

Other directions include applied papers
I Sönmez (2013)
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Road Map

How to utilize centralized assignment data for impact evaluation?

Selection Bias

Centralized assignment and solving the selection bias problem

Large market approximation to assignment probabilities under DA

Propensity score based research design

Evaluating Denver's charter school sector



How can centralized assignment be used for impact evaluation?

The impact on educational outcomes of

Early childhood education
School size
Teacher training
School resources
Peer e�ects
Charter schools
Exam schools

Portfolio planning

System evaluation beyond simple summary stats

Major challenge: Selection Bias











Gale and Shapley Go to School

Parents in large urban districts increasingly have the opportunity to
choose schools from a menu of options; they express strict preferences
by ranking schools on this menu

Schools establish coarse priorities over applicants, determined by
neighborhood, sibling enrollment, and poverty status

X Boston, Chicago, Denver, New Orleans, Newark, NYC, and Washington
DC convert preferences and priorities into school assignments using
variants of Gale and Shapley's Deferred Acceptance (DA)

X Ties for applicants with the same priority are often broken by randomly
assigned lottery numbers

Can these lotteries be utilized for impact evaluation?

A growing literature uses quasi-experiments embedded in centralized
matches for research
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Equal Treatment of Equals

DA and other assignment mechanisms satisfy the equal treatment of

equals property: applicants with the same preferences and priorities (or
�type�) have the same probability distribution over assignments

Embedded in DA, therefore, is a strati�ed randomized trial

Conditional on preferences and priorities schools are assigned randomly

Perform impact evaluation among students with same preferences and
priorities?

Few students share the same preferences and priorities ⇒ eliminates
data



















Ad hoc RD/MD

Previous use of centralized assignment schemes for research:

Random tie-breakers include Abdulkadiro§lu, Angrist, Dynarski, Kane,
Pathak (2011); Abdulkadiro§lu, Hu, Pathak (2013); Bloom, Unterman
(2014); Deming (2011); Deming, Hastings, Kane, Staiger (2013);
Hastings, Kane, and Staiger (2009), among others
Regression-discontinuity tie-breakers include Abdulkadiro§lu, Angrist,
Pathak (2013); Ajayi (2013); Dobbie and Fryer (2013); Jackson (2010);
Lucas and Mbiti (2013); Pop-Eleches-Urqiuola (2013)

This work uses �rst-choice and quali�cation instruments that discard
much of the causality-revealing power of quasi-randomized DA

The DA propensity score harnesses all random variation in school
o�ers

The DA score retains students and schools (for research) that methods
like �rst-choice discard
Furthermore, the DA score reveals why we do or don't see random
assignment at one school or another
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De�ning the Problem



Market Design: DA Details

Each student applies to his or her most preferred school.

Each school ranks its initial applicants (those who've ranked it �rst) by
priority then by lottery number within priority groups, tentatively
admitting the highest-ranked applicants up to its capacity
Other applicants are rejected

Each rejected student applies to his or her next most preferred school.

Each school ranks these new applicants together with applicants

tentatively admitted in the previous round, �rst by priority and then by
lottery number
From this pool, schools again tentatively admit those it's ranked highest,
up to capacity, rejecting the rest

DA terminates when there are no new applications or each applicant has
exhausted the schools he or she has ranked

Some students may remain unassigned



Research Design: Ignorable Assignments

Let Di (s) indicate whether student i is o�ered a seat at school s

Applicants are characterized by prefs and priorities, their type, θ

Type a�ects assignment and is correlated w/outcomes, hence a powerful
source of omitted variables bias (OVB)

DA induces a strati�ed RCT

Let Wi be any r.v. independent of lottery numbers

Pr [Di (s) = 1|Wi ,θi = θ ] = Pr [Di (s) = 1|θi = θ ] (1)

Wi includes potential outcomes and student characteristics like sibling
and free lunch status
Conditioning on type therefore eliminates any OVB in comparisons by
o�er status

But full type conditioning is impractical: it eliminates many students
and schools from statistical analyses

Denver's 5,000 charter applicants include 4,300 types



Propensity Score
We condition instead on the propensity score, the probability of
assignment to school s for a given type:

ps(θ) = Pr [Di (s) = 1|θi = θ ]

Theorem (Rosenbaum & Rubin 1983)

Conditional independence property (1) implies that for any Wi that is

independent of lottery numbers,

P[Di (s) = 1|Wi ,ps(θi )] = P[Di (s) = 1|ps(θi )] = ps(θi )

Why is this useful?

The score is much coarser than θ : many types share a score
The score identi�es the maximal set of applicants for whom we have a
randomized school-assignment experiment
The score reveals the experimental design embedded in DA: we know
(and will show) its structure



Example 1: The Score Pools Types

Five students {1,2,3,4,5}; three schools {a,b,c}, each with one seat

student preferences

1 : a� b

2 : a� b

3 : a

4 : c � a

5 : c

school priorities

2 has priority at b
5 has priority at c

Types are unique, ruling out research with full-type conditioning

The score pools: DA assigns students 1, 2, 3, and 4 to school a each
with probability 0.25

5 beats 4 at c by virtue of priority; this leaves 1, 2, 3, and 4 all applying
to a in the second round and no one advantaged there



Example 2: Further Pooling in Large
Markets

Four students {1,2,3,4}; three schools {a,b,c}, each with one seat and
no priorities

student preferences

1 : c

2 : c � b � a

3 : b � a

4 : a

Types are again unique

There are 4! = 24 possible assignments. Enumerating these, we �nd

pa(1) = 0, since 1 doesn't rank a
pa(2) = 2/24 = 1/12
pa(3) = 1/24
pa(4) = 1−pa(1)−pa(2) = 21/24

No pooling



Understanding Example 2

The probability of assignment to a is determined by

Failure to be seated at schools ranked more highly than a
Success in the competition for a conditional on this failure

Type 2 is seated at a when:

Schools he's ranked ahead of a (schools b and c) are �lled by others
He also beats type 4 in competition for a seat at a

This happens for two realizations of the form (s,t,2,4) for s,t = 1,3

Type 3 is seated at a when:

Schools he's ranked ahead of a (school b) are �lled by another and he
beats type 4 at a

This happens only when the lottery order is (1,2,3,4)



The Large-Market P-Score

An n− scaled version of Example 2:

n each of types 1-4 apply to 3 schools, each with n seats
Enumeration with large n is a chore, but repeating lottery draws reveals
a common score for types 2 and 3 for n more than a few:

Type 3

Type 2

0.833

0.0833

Type 4

0

0.3

0.6

0.9

2 4 6 8 10 12 14 16 18 20 22 24
Number of Students of Each Type

Probability of Assignment to School a
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Deriving the DA Score



Score Computation

ps(θ) is generated by a permutation distribution, a relative frequency
generated by all possible lottery realizations

That is 26,000! lotteries for DPS... I'll get back to you...

The LLN tells us it's enough to sample lotteries. But since covariates are
discrete, the resulting empirical p̂s(θ) has as many points of support as
does θ (cf. HIR 2003)
Sim scores are a black box; sample-based p̂s(θ) must be smoothed

Is there a formula?

Except for special cases, ps(θ) as no closed form

Our large market continuum model provides the formula we need

The DA score for a continuum market approximates the score as a
function of a few easily-computed su�cient statistics
The DA score is automatically coarse: no simulation, smoothing or
rounding required
The DA score reveals the nature of the strati�ed trial embedded in DA:
which schools have random assignment and why
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DA Formalities

I students with preferences �i and priorities for school s given by
ρis ∈ {1, ...,K ,∞}
Student i 's type is θi = (�i ,ρi ), where ρi is the vector of i 's ρis

s = 1, ...,S schools, with capacity vector q = (q1, ...,qS)

In the continuum (large market), I = [0,1] and qs is the proportion of I
that can be seated at s

Student i 's lottery number, ri , is i.i.d. uniform [0,1]

Student i 's rank at school s is

πis = ρis + ri

DA assignment is determined by a vector of cuto�s, cs : applicants to s
with πis ≤ cs and πi s̃ > cs̃ ∀s̃ they prefer to s, are seated at s

Lottery numbers matter for assignment to s only in the marginal priority

group



Illustrating Cuto�s and Marginal Priorities

Rank Priority Lottery No. O�er

1.13 1 .13 1

1.99 1 .99 1

2.05 2 .05 1

2.35 2 .35 1 cs=2.35

2.57 2 .57 0

2.61 2 .61 0

3.12 3 .12 0

3.32 3 .32 0

Marginal priority, denoted ρs , is the integer part of cs ; here, ρs = 2

The lottery cuto�, denoted τs , is the decimal part of cs ; here, τs = .35



Assignment Outcomes: Partitioning Types

Let Θs denote the set of types who rank s

Bθs denotes the set of schools that type θ prefers to s

This set is partitioned by:

Θn
s , de�ned by ρθs > ρs

These never-seated applicants have worse than marginal priority at s
No one in this group is seated at s

Θa
s , de�ned by ρθs < ρs

These always-seated applicants clear marginal priority at s
Everyone in this group is seated at s when not seated at a school in Bθs

Θc
s , de�ned by ρθs = ρs

These conditionally seated applicants have marginal priority at s
Members of this group are seated at s when not seated at a school in
Bθs and they clear the lottery cuto� at s



Assignment Risk: Most Informative
Disquali�cation

De�ne

MIDθs =


0 if ρθ s̃>ρs̃ for all s̃ ∈ Bθs

1 if ρθ s̃<ρs̃ for some s̃ ∈ Bθs

max{τs̃ | ρθ s̃ = ρs̃ , s̃ ∈ Bθs} if ρθ s̃ ≥ ρs̃ for all s̃ ∈ Bθs

MID tells us how the lottery number distribution for applicants to s is
truncated by quali�cation at more preferred schools

MID is 0 when priority status is worse-than-marginal at all higher ranked
schools (no truncation)
MID is 1 if Bθs includes a school where θ is seated with certainty
(complete truncation)
For those who are marginal or worse at all schools they prefer to s, and
marginal somewhere, MID is the most forgiving cuto� in the set of
schools at which they're marginal

Applicants who clear max{τs̃ | ρθ s̃ = ρs̃ , s̃ ∈ Bθs} are seated in Bθs , and
so not at risk for a seat at s
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The DA Propensity Score

Theorem

In a continuum economy, Pr[Di (s) = 1|θi = θ ] = ϕs(θ)≡
0 if θ ∈Θn

s

(1−MIDθs) if θ ∈Θa
s

(1−MIDθs)×max

{
0,

τs −MIDθs

1−MIDθs

}
if θ ∈Θc

s

where we set ϕs(θ) = 0 when MIDθs = 1 and θ ∈Θc
s

MIDθs , τs , and Θ are population quantities, �xed in the continuum

Our second theorem shows that the sample analog of ϕs(θ) converges
uniformly to the �nite market score as market size grows



Example 2 in the Continuum

4 types determined by student preferences:

1 : c

2 : c � b � a

3 : b � a

4 : a

τc = 0.5 and τb = 0.75

B2a = {b,c}; B3a = {b}
Hence, MID2a = MID3a = τb = 0.75

Types 2 and 3 have the same large market score at school a

It remains to compute τa = 5/6. We then have

ϕa(θ) = max{0,5/6−0.75}=
1

12
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DA Econometrics

Estimating the DA score described by Theorem 1

Formula: assign students by priority status to Θn
s , Θa

s , or Θc
s as realized

in the match; plug empirical τs and MIDθs into ϕs(θ)
Frequency: use empirical o�er rates in cells with constant ϕs(θ)

This is looks more like an estimated score of the sort discussed by Abadie
and Imbens (2012)

Simulating the �nite-market score

We do this using 1,000,000 lottery draws, running DA for each, and
computing the empirical assignment rate for each type

This converges (as # of draws increase) to the �nite-market score
No dimension reduction in our data: 1148 score values for 1523
applicants with non-degenerate charter risk. The simulated score requires
smoothing

By contrast with simulation, Theorem 1 reveals why we have random
assignment at one school or another
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MILE HIGH CHARTER EFFECTS



Empirical Strategy

DPS has a large charter sector, part of the SchoolChoice match.

Impact evaluation for the charter sector

An any-charter o�er dummy, Di , is the sum of all individual charter
o�ers (our instrument)
The any-charter p-score (our key control) is the sum of the scores for
each charter that type θ ranks
Ci indicates any-charter enrollment (our �endogenous� variable)

2SLS First and Second stages

Ci = ∑
x

γ(x)di (x) + δDi + νi

Yi = ∑
x

α(x)di (x) + βCi + εi

di (x): dummies for propensity score values (cells), indexed by x
γ(x) and α(x): associated �score e�ects�



IV Foundations

Conditional independence:

{Y1i (d),Y0i (d),C1i ,C0i} ⊥⊥ Di |θi ; d = 0,1

where Yji (d) is potential outcome for applicant i in sector j when the
o�er instrument, Di , equals d (CI seems likely given (1))

Exclusion:
Yji (1) = Yji (0)≡ Yji ; j = 0,1

Holds if we assume away within-sector di�erences in potential outcomes;
mitigated by a �ner-grained parametrization of school sector e�ects
Violated if school quality changes for never-takers in Round 2

Monotonicity:C1i ≥ C0i

By the propensity score and LATE theorems, we have

E [Yi |Di = 1,pD(θi )]−E [Yi |Di = 0,pD(θi )]

E [Ci |Di = 1,pD(θi )]−E [Ci |Di = 0,pD(θi )]
= E [Y1i −Y0i |pD(θi ),C1i > C0i ]

2SLS and a semiparametric estimand marginalize this



Table 1: DPS charter schools
Propensity score in (0,1)

School Total applicants
Applicants 

offered seats
DA score 

(frequency)
DA score 
(formula) Simulated score

Simulated score 
(first choice)

(1) (2) (3) (4) (5) (6)
Elementary and middle schools

Cesar Chavez Academy Denver 62 9 7 9 8 3
Denver Language School 4 0 0 0 0 0
DSST: Cole 281 129 31 40 44 0
DSST: College View 299 130 47 67 68 0
DSST: Green Valley Ranch 1014 146 324 344 357 291
DSST: Stapleton 849 156 180 189 221 137
Girls Athletic Leadership School 221 86 18 40 48 0
Highline Academy Charter School 159 26 69 78 84 50
KIPP Montbello College Prep 211 39 36 48 55 20
KIPP Sunshine Peak Academy 389 83 41 42 44 36
Odyssey Charter Elementary 215 6 20 21 22 14
Omar D. Blair Charter School 385 114 135 141 182 99
Pioneer Charter School 25 5 0 2 2 0
SIMS Fayola International Academy Denver 86 37 7 18 20 0
SOAR at Green Valley Ranch 85 9 41 42 43 37
SOAR Oakland 40 4 0 9 7 2
STRIVE Prep - Federal 621 138 170 172 175 131
STRIVE Prep - GVR 324 112 104 116 118 0
STRIVE Prep - Highland 263 112 2 21 18 0
STRIVE Prep - Lake 320 126 18 26 26 0
STRIVE Prep - Montbello 188 37 16 31 35 0
STRIVE Prep - Westwood 535 141 235 238 239 141
Venture Prep 100 50 12 17 17 0
Wyatt Edison Charter Elementary 48 4 0 3 2 0

High schools
DSST: Green Valley Ranch 806 173 290 343 330 263
DSST: Stapleton 522 27 116 117 139 96
Southwest Early College 265 76 34 47 55 0
Venture Prep 140 39 28 42 45 0
KIPP Denver Collegiate High School 268 60 29 37 40 24
SIMS Fayola International Academy Denver 71 15 6 22 22 0
STRIVE Prep - SMART  383 160 175 175 175 175

Notes: This table describes DPS charter applications. Column 1 reports the number of applicants ranking each school. Columns 3-6 count applicants with propensity score values 
strictly between zero and one according to different score computation methods. Column 6 shows the subset of applicants from column 5 who rank each school as their first 
choice. 
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Score Anatomy at STRIVE Prep

Table 2: DA Score anatomy
DA Score = 0 DA Score in (0,1) DA Score = 1

Capacity Offers 0≤MID≤1 MID ≥ τs MID = 1 MID < τs 0<MID<1 MID = 0

Campus (1) (2) (3) (4) (5) (6) (7) (8) (9)
GVR 324 147 112 0 0 159 0 116 49
Lake 274 147 126 0 0 132 0 26 116
Highland 244 147 112 0 0 121 0 21 102
Montbello 188 147 37 0 0 128 0 31 29
Federal 574 138 138 78 284 3 171 1 37
Westwood 494 141 141 53 181 4 238 0 18
Notes: This table shows how formula scores are determined for STRIVE school seats in grade 6 (all 6th grade seats at these schools are assigned in a 
single bucket; ineligible applicants, who have a score of zero, are omitted). Column 3 records offers made to these applicants. Columns 4-6 show the 
number of applicants in partitions with a score of zero. Columns 7 and 8 show the number of applicants subject to random assignment. Column 9 shows 
the number of applicants with certain offers.

Eligible 
applicants

Θ𝑠𝑠𝑛𝑛 Θ𝑠𝑠𝑐𝑐 Θ𝑠𝑠𝑎𝑎 Θ𝑠𝑠𝑐𝑐 Θ𝑠𝑠𝑎𝑎 Θ𝑠𝑠𝑎𝑎 

Every STRIVE campus has random assignment, though many are
undersubscribed and only two have have �rst-choice applicants at risk



Demographic Characteristics

Table 3: DPS student characteristics
Propensity score in (0,1)

DA score (frequency) Simulated score
Charter applicants Charter students Charter applicants Charter students

(1) (2) (3) (4) (5) (6) (7)
Origin school is charter 0.133 0.080 0.130 0.259 0.371 0.230 0.357
Female 0.495 0.502 0.518 0.488 0.496 0.506 0.511
Race

Hispanic 0.594 0.593 0.633 0.667 0.713 0.636 0.711
Black 0.141 0.143 0.169 0.181 0.161 0.192 0.168
White 0.192 0.187 0.124 0.084 0.062 0.098 0.059
Asian 0.034 0.034 0.032 0.032 0.039 0.033 0.037

Gifted 0.171 0.213 0.192 0.159 0.152 0.165 0.149
Bilingual 0.039 0.026 0.033 0.038 0.042 0.032 0.037
Subsidized lunch 0.753 0.756 0.797 0.813 0.818 0.800 0.823
Limited English proficient 0.285 0.290 0.324 0.343 0.378 0.337 0.380
Special education 0.119 0.114 0.085 0.079 0.068 0.083 0.070

Baseline scores
Math 0.000 0.015 0.021 0.037 0.089 0.037 0.062
Reading 0.000 0.016 0.005 -0.011 0.007 0.008 -0.002
Writing 0.000 0.010 0.006 0.001 0.039 0.016 0.035

N 40,143 10,898 4,964 1,436 828 1,523 781
Notes: This table decribes the population of Denver 3rd-9th graders in 2011-2012, the baseline and application year. Statistics in column 1 are for charter and non-
charter students. Column 2 describes the subset that submitted an application to the SchoolChoice system for a seat in grades 4-10 at another DPS school in 2012-2013. 
Column 3 reports values for applicants ranking any charter school. Columns 4-7 show statistics for charter applicants with propensity score values strictly between zero 
and one. Test scores are standardized to the population in column 1.

Denver 
students

SchoolChoice 
applicants

Charter 
applicants



Balance: Traditional Tests

Table 5a: Statistical tests for balance in application covariates
Propensity score controls

DA score (frequency) Simulated score
Nonparametric Nonparametric

No controls
Rounded 

(hundredths) Saturated
Rounded 

(hundredths)
Rounded (ten 
thousandths)

Application variable (1) (2) (3) (4) (5) (6) (7) (8)
Number of schools ranked -0.341*** 0.097 0.059 0.028 0.014 0.001 -0.061 -0.015

(0.046) (0.103) (0.095) (0.094) (0.102) (0.095) (0.125) (0.042)
Number of charter schools ranked 0.476*** 0.143*** 0.100** 0.074 0.020 -0.017 0.009 0.007

(0.024) (0.052) (0.047) (0.047) (0.048) (0.043) (0.061) (0.010)
First school ranked is charter 0.612*** 0.012 0.002 -0.001 -0.030 -0.042* 0.012 0.000

(0.011) (0.025) (0.022) (0.020) (0.027) (0.022) (0.027) (0.000)

N 4,964 1,436 1,289 1,247 1,523 1,290 681 301

Risk set points of support 88 40 47 1,148 51 126 61

Robust F-test for joint significance 1190 2.70 1.70 1.09 0.49 1.26 0.31 0.34
p-value 0.000 0.044 0.165 0.352 0.688 0.287 0.817 0.710

Full applicant 
type controls

Notes: This table reports coefficients from regressions of the application variables in each row on a dummy for charter offers. The sample includes applicants for 2012-13 charter seats in grades 4-
10 who were enrolled in Denver at baseline. Columns 1-7 are from regressions like those used to construct expected balance in Table 4, except that the tests reported here use realized DA offers, 
with test statistics and standard errors computed in the usual way.  Column 8 reports the balance test generated by a regression with saturated controls for applicant type (that is, unique 
combinations of applicant preferences over school programs and school priorities in those programs). Robust standard errors are reported in parentheses. P-values for robust joint significance tests 
are estimated by stacking outcomes and clustering  at the student level.
*significant at 10%; **significant at 5%; ***significant at 1%

Linear control Linear control

Imbalance too small to detect under saturated DA score control



2SLS and Semiparametric Alternatives
Table 6: Comparison of 2SLS and semiparametric estimates of charter effects
Frequency (saturated) Formula (saturated) Simulation (hundredths)

2SLS Semiparametric 2SLS Semiparametric 2SLS Semiparametric
(1) (2) (3) (4) (5) (6)

Math 0.496*** 0.443*** 0.524*** 0.486*** 0.543*** 0.474**
(0.076) (0.105) (0.071) (0.105) (0.075) (0.212)
{0.071} {0.076} {0.079}

Reading 0.127* 0.106 0.120* 0.118 0.106 0.127
(0.065) (0.107) (0.073) (0.115) (0.069) (0.173)
{0.065} {0.069} {0.071}

Writing 0.325*** 0.326*** 0.356*** 0.364*** 0.324*** 0.305**
(0.079) (0.102) (0.082) (0.113) (0.079) (0.145)
{0.077} {0.080} {0.080}

N 1,102 1,093 1,083 1,081 1,137 1,137
Notes: This table compares 2SLS and semiparametric estimates of charter attendance effects on the 2012-13 TCAP scores of Denver 4th-
10th graders. The instrument is an any-charter offer dummy. The semiparametric estimator is described in Section 3.5.  In addition to score 
variables, 2SLS estimates include controls for grade tested, gender, origin school charter status, race, gifted status, bilingual status, 
subsidized price lunch eligibility, special education, limited English proficient status, and baseline test scores. Semiparametric models use 
these same variables as controls when computing the score weighting function. Standard errors in parentheses are from a Bayesian 
bootstrap. Conventional robust standard errors for 2SLS estimates are reported in braces.
*significant at 10%; **significant at 5%; ***significant at 1%

The semiparametric scheme uses a score-weighted Abadie (2003)-style
estimand; 2SLS estimates are close, but more precise



Semiparametric Details
Abadie (2003) shows the LATE framework implies

E [Y0i |C1i > C0i ] =
1

Pr(C1i > C0i )
E

[
CiYi (Di −pD(θi ))

(1−pD(θi ))pD(θi )

]
E [Y1i |C1i > C0i ] =

1

Pr(C1i > C0i )
E

[
(1−Ci )Yi ((1−Di )− (1−pD(θi )))

(1−pD(θi ))pD(θi )

]
.

Subtracting and rearranging, we have

E [Y1i −Y0i |C1i > C0i ] =
1

Pr(C1i > C0i )
E

[
Yi (Di −pD(θ))

(1−pD(θi ))pD(θi )

]
(2)

The �rst stage in this case is constructed using

P[C1i > C0i ] = E

[
Ci (Di −pD(θi ))

(1−pD(θi ))pD(θi )

]
(3)

The estimator used here is the sample analog of the rightmost term in
(2) divided by the sample analog of (3)

Non-score covs are added to a logit model for E [Di |Xi ,pD(θi )] and the
�tted values used for pD(θi ))



2SLS

Table 7: Comparison of 2SLS and OLS estimates of charter attendance effects

DA score

(1) (2) (3) (4) (5) (6)
First stage 0.410*** 0.389*** 0.377*** 0.683***

(0.031) (0.032) (0.032) (0.012)

Math 0.496*** 0.524*** 0.543*** 0.306*** 0.304*** 0.386***
(0.071) (0.076) (0.079) (0.021) (0.015) (0.034)

Reading 0.127** 0.120* 0.106 0.093*** 0.103*** 0.093***
(0.065) (0.069) (0.071) (0.020) (0.014) (0.029)

Writing 0.325*** 0.356*** 0.324*** 0.183*** 0.180*** 0.202***
(0.077) (0.080) (0.080) (0.023) (0.015) (0.036)

N 1,102 1,083 1,137 4,317 4,317 1,102
Notes: This table compares 2SLS and OLS estimates of charter attendance effects using the same sample and instruments as for Table 6. The OLS 
estimates in column 6 are from a model that includes saturated control for frequency estimates of the DA score. In addition to score variables, all 
models include controls for grade tested, gender, origin school charter status, race, gifted status, bilingual status, subsidized price lunch eligibility, 
special education, limited English proficient status, and baseline test scores. Robust standard errors are reported in parentheses.
*significant at 10%; **significant at 5%; ***significant at 1%

2SLS estimates

Simulated score
rounded (hundredths)

Frequency
(saturated)

Formula
(saturated)

No score 
controls OLS

OLS with 
score controls
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Multi Sector Models
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Compared to What?

2SLS estimates so far contrast charter outcomes with mix of traditional
public schools and schools from other non-charter sectors

To characterize these states, let Wi denote the sector in which i enrolls;
1(Wi = j) indicates enrollment in sector j

De�ne potential sector enrollment variables, W1i and W0i , indexed
against charter o�ers, Di

Wi = W0i + (W1i −W0i )Di

In the population of charter-o�er compliers, W1i = charter for all i

We're interested in E [1(W0i = j)|C1i > C0i ], the sector dsn for
charter-o�er compliers in the scenario where they aren't o�ered a charter
seat ("counterfactual destinies")
These are identi�ed by a simple 2SLS estimand and reported in column 5
of Table 9



Table 9: Enrollment destinies for charter applicants
Charter applicants with DA score (frequency) in (0,1)

All charter applicants All applicants Compliers

No charter offer Charter offer
Non-offered 

mean
First stage 

+ col 3 No charter offer Charter offer
(1) (2) (3) (4) (5) (6)

Enrolled in a study charter 0.147 0.865 0.347 0.757 -- 1.000
… in a traditional public 0.405 0.081 0.257 0.054 0.497 --
… in an innovation school 0.234 0.023 0.241 0.107 0.328 --
… in a magnet school 0.192 0.021 0.116 0.078 0.094 --
… in an alternative school 0.009 0.005 0.018 0.006 0.030 --
… in a contract school 0.012 0.004 0.018 -0.001 0.047 --
… in a non-study charter 0.001 0.000 0.002 0.000 0.005 --

N 2,555 1,833 498 1,102 -- --
Notes: This table describes school enrollment outcomes for charter applicants in the sample used to construct the estimates reported in Table 7. Columns 1-2 show 
enrollment by sesctor for all applicants without and with a charter offer. The remaining columns look only at those with a DA (frequency) score strictly between 
zero and one. Column 4 adds the non-offered mean in column 3 to the first stage estimate of the effect of charter offers on charter enrollment. School sectors are 
classified by grade. Innovation schools design and implement innovative practices to improve student outcomes. Magnet schools serve students with particular 
styles of learning. Alternative schools serve students struggling with academics, behavior, attendance, or other factors that may prevent them from succeeding in a 
traditional school environment; the latter offer faster pathways toward high school graduation, such as GED preparation and technical education. There is a single 
contract school, Escuela Tlatelolco, a private school contracted to serve DPS students, and a single non-study charter that closed in May 2013. Complier means in 
columns 5 and 6 were estimated using the 2SLS procedures described by Abadie(2002), with the same propensity score and covariate controls as were used to 
construct the estimates in Table 7.



Outline

1 Road Map

2 Selection Bias

3 De�ning the Problem

4 Deriving the DA Score

5 DPS Charter FX

6 Multi-sector Models
Divining Destinies
Innovation and CMOs

7 IV Comps

8 Conclusion



Multi-Sector Models

In addition to being of intrinsic interest, introducing innovation sector
e�ects turns the non-charter counterfactual into one of mostly
traditional publics

Within charter sector heterogeneity: CMO vs. non-CMO

Innovation and CMO/non-CMO charter FX are jointly identi�ed by
2SLS system w/three endogenous vars, C 1

i , C
2
i , and C 3

i

Yi = ∑
x
[α1(x)d

1

i (x)+α2(x)d
2

i (x)+α3(x)d
3

i (x)]+β1C
1

i +β2C
2

i +β3C
3

i + εi

C1

i = ∑
x
[γ11(x)d

1

i (x)+ γ12(x)d
2

i (x)+ γ13(x)d
3

i (x)]+δ11D
1

i +δ12D
2

i +δ13D
3

i +νi

C2

i = ∑
x
[γ21(x)d

1

i (x)+ γ22(x)d
2

i (x)+ γ23(x)d
3

i (x)]+δ21D
1

i +δ22D
2

i +δ23D
3

i +ηi

C3

i = ∑
x
[γ31(x)d

1

i (x)+ γ32(x)d
2

i (x)+ γ33(x)d
3

i (x)]+δ31D
1

i +δ32D
2

i +δ33D
3

i +υi

where d j
i (x) saturate the (estimated) propensity scores for each o�er

IV, pj(θi ) = E [D j
i |θi ] for j = 1,2,3

We also try joint score control instead of additive



Table 11A: DPS charter and innovation school attendance effects for academic years 2013 and 2014
DA score (frequency) controls (saturated)

Charters and innovation

(1) (2) (3) (4) (5)

3 CMOs First Stage 0.490*** -- -- 0.490*** 0.468***
(0.024) -- -- (0.027) (0.028)

Other Charters First Stage -- 0.344*** -- 0.333*** 0.351***
-- (0.057) -- (0.056) (0.056)

Innovation First Stage -- -- 0.378*** 0.354*** 0.359***
-- -- (0.033) (0.033) (0.034)

A. Math
3 CMOs 0.440*** -- -- 0.450*** 0.432***

(0.046) -- -- (0.057) (0.063)

Other Charters -- -0.095 -- -0.028 -0.044
-- (0.157) -- (0.155) (0.148)

Innovation -- -- -0.159* 0.061 0.099
-- -- (0.088) (0.094) (0.102)

N 2,012 405 960 2,922 2,404
Notes: This table reports 2SLS estimates of charter and innovation attendance effects for applicants to schools in one or both 
sectors. The estimates in column 1 are for DSST, KIPP, and STRIVE charter applicants. Column 2 reports attendance effects of 
other charters, estimated in models using an other charters offer instrument and other charters-specific saturated score controls 
constructed like those used for charter applicants. Column 3 reports attendance effects of innovation schools, estimated in models 
using an innovation school offer instrument and innovation-specific saturated score controls constructed like those used for charter 
applicants. Column 4 report coefficients from a three-endogenous-variable/three-instrument 2SLS model for the attendance effects 
of 3 CMOs, other charters and innovations, conditioning additively on 3 CMO-specific, other charter-specific, and innovation-
specific saturated score controls. Column 5 shows results from joint-effect models that add interactions between the three scores to 
the specification that generated column 4.  
*significant at 10%; **significant at 5%; ***significant at 1%

Additive score
controlsInnovation only3 CMOs only

Joint score 
controls

Other Charters 
only



Table 11B: DPS charter and innovation school attendance effects for academic years 2013 and 2014 (cont'd)
DA score (frequency) controls (saturated)

Charters and innovation

(1) (2) (3) (4) (5)

B. Reading
3 CMOs 0.207*** -- -- 0.135** 0.128*

(0.046) -- -- (0.064) (0.070)

Other Charters -- -0.236 -- -0.228 -0.112
-- (0.180) -- (0.185) (0.181)

Innovation -- -- -0.144 -0.094 -0.092
-- -- (0.098) (0.110) (0.117)

C. Writing
3 CMOs 0.294*** -- -- 0.348*** 0.320***

(0.052) -- -- (0.068) (0.075)

Other Charters -- -0.021 -- 0.002 0.018
-- (0.157) -- (0.164) (0.170)

Innovation -- -- -0.067 0.145 0.061
-- -- (0.098) (0.111) (0.114)

N 2,012 405 960 2,922 2,404
See notes to Table 11a.
*significant at 10%; **significant at 5%; ***significant at 1%

3 CMOs only
Other Charters 

only Innovation only
Additive score

controls
Joint score 

controls
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Comps: Quali�cation and First-Choice IV
Strategies

First-choice strategy

R(θi ) identi�es the charter i ranks �rst, along with his priority there
The �rst-choice instrument, D f

i , indicates quali�cation (lottery number
below cuto�) at this school
First-choice 2SLS:

Yi = ∑
x

α(x)di (x) + βCi + εi

Ci = ∑
x

γ(x)di (x) + δD f
i + νi

where dummies di (x) = 1[R(θi ) = x ]

Quali�cation instruments

The quali�cation 2SLS model swaps as follows:

R(θi ) identi�es all charters i ranks and i 's priority at each
Dq
i indicates i 's quali�cation at any charter he or she has ranked



Alternative IV Results

Table 8: Other IV strategies
Charter attendance effect

(1) (2) (3) (4) (5)
A. First stage estimates

1.000 0.774*** 0.476***
-- (0.026) (0.024)

0.410*** 0.323*** 0.178***
(0.031) (0.035) (0.027)

B. 2SLS estimates
Math 0.496*** 0.596*** 0.409***

(0.071) (0.102) (0.149) 2.0 4.4

Reading 0.127** 0.227** 0.229
(0.065) (0.102) (0.144) 2.5 4.9

Writing 0.325*** 0.333*** 0.505***
(0.077) (0.119) (0.162) 2.4 4.5

N (students) 1,102 1,125 1,969
N (schools) 30 15 24

Notes: This table compares alternative 2SLS estimates of charter attendance effects using the same sample and control variables used to construct the 
estimates in Tables 6-7. Column 1 repeats the estimates using a DA offer instrument from column 1 in Table 7. The row labeled "First stage for charter 
offers" reports the coefficient from a regression of any-charter offer dummy (the instrument used in column 1) on other instruments, conditioning on the 
same controls used in the corresponding first stage estimates for charter enrollment. Column 2 reports 2SLS estimates computed using a first-choice 
charter offer instrument. Column 3 reports charter attendance effects computed using an any-charter qualification instrument. These alternative IV 
models control for risk sets making the first-choice and qualification instruments conditionally random; see Section 4.5 for details. Columns 4 and 5 
report the multiples of the first-choice offer sample size and qualification sample size needed to achieve a precision gain equivalent to the gain from 
using the any-charter offer instrument. The last row counts the number of schools for which we observe in-sample variation in offer rates conditional on 
the score controls included in the model.
*significant at 10%; **significant at 5%; ***significant at 1%

Offer instrument with 
DA score (frequency) 
controls (saturated)

First choice charter 
offer with risk set 

controls

Qualification 
instrument with risk 

set controls

Sample size increase 
for equivalent gain 

(col 2 vs col 1)

Sample size increase 
for equivalent gain 

(col 3 vs col 1)

First stage for charter 
offers

First stage for charter 
enrollment



Unpacking �rst choice advantage

First choice estimates on math and reading are noticeably larger than
estimates from DA

May re�ect an advantage for those awarded a seat at their �rst choice
school
Since DA o�er instrument covers 2X more charter schools, estimate may
be more representative of an overall charter e�ect

To investigate further, we use multi-sector model to estimate models
with �rst choice charter vs. other charter

Also of independent interest, given longstanding practice of evaluating
matches based on fraction who obtain top choice



Version 4: DPS first-choice and other-choice charter school attendance effects for academic years 2012-2014

DA score (frequency) controls (saturated)

First chcice charter and other charters

(1) (2) (3) (4)

First choice charter First Stage

First-choice offer 0.625*** -- 0.603*** 0.600***

(0.022) -- (0.023) (0.024)

Other charters offer -- -- -0.049* -0.051**

-- -- (0.025) (0.025)

Other choice charter First Stage

First-choice offer -- -- -0.142*** -0.149***

-- -- (0.017) (0.017)

Other charters offer -- 0.544*** 0.464*** 0.457***

-- (0.034) (0.035) (0.035)

A. Math

First choice charter 0.287*** -- 0.386*** 0.381***

(0.036) -- (0.048) (0.049)

Other choice charter -- -0.041 0.227*** 0.207***

-- (0.063) (0.075) (0.078)

B. Reading

First choice charter 0.142*** -- 0.143*** 0.147***

(0.034) -- (0.049) (0.050)

Other choice charter -- -0.117** -0.029 -0.028

-- (0.059) (0.076) (0.077)

C. Writing

First choice charter 0.165*** -- 0.282*** 0.290***

(0.040) -- (0.054) (0.056)

Other choice charter -- 0.071 0.271*** 0.322***

-- (0.064) (0.083) (0.084)

N 2,299 879 2,601 2,395

First choice is 

charter only

Other choices are 

charters only

Additive score

controls Joint score controls
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Conclusion

Centralized assignment produces data with quasi-experimental variation
in student assignment to schools

Such data o�ers unprecedented opportunities for program evaluation

Informed parental choice
Informed school portfolio planning

Probability of assignment to schools can be estimated as a function of a
few simple statistics

Research design via propensity score matching
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