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I am going to try and cover three topics.

I will omit parts of each topic from the

lectures due to time constraints. However

I will overview the material not covered in

lectures and point you to the part of the

notes that cover them for those of you who

want to access the relevant material.

Topic 1.

I will begin with the behavioral model that

leads to moment inequalities (including ex-

amples). This is the analogue of revealed

preference in the analysis of utility, but to

bring it to data we will need to allow for

the disturbances that arise in applications.

I will then move to a more detailed dis-

cussion of product repositioning. Finally,

I will conclude with a note on analyzing

counterfactuals in situations where multi-

ple equilibrium are likely.
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Topic 2.
The topic here is the econometric of in-
equality estimators. It begins by explain-
ing the econometric issues that arise in
moment inequality estimators that do not
arise on estimators based on moment equal-
ities. It then moves on to techniques avail-
able to derive confidence sets for the par-
tially identified models generated by mo-
ment inequalities. Emphasis is given to
practical issues which arise in getting con-
fidence intervals for parameters.

Topic 3.
The use of inequalities in choice theory.
Again this is based on revealed preference.
We focus on discrete choice problems that
have been difficult to analyze with tradi-
tional discrete choice methods. These in-
clude models with; (i) errors in the right
hand side variables, (ii) and models with
choice specific fixed effects.



Profit Inequalities: The Behavioral

Model.

• Econometrican observes a set of choices

made by various agents.

• Assume agents expected the choices

they made to lead to returns that were

higher than the returns the agents would

have earned had they made an alterna-

tive feasible choice.

• Assume a parametric return function

and for each value of θ compute the

difference between the observable part

of the actual realized returns and the

observable part of returns that would

have been earned had the alternative

choice been made.
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• Estimator: accept any value of θ that,

on average, makes the observed deci-

sions better than the alternative.

• Question: When do such (possibly set

valued) estimators enable us to make

valid inferences on the parameters of

interest?

Pakes (2010) provides two (non-nested)

sets of conditions where they do, and de-

velops the actual estimators. The ideas

behind these estimators date, respectively

to

• Tamer (2003),

• Pakes, Porter, Ho, and Ishii (2015).



I start with a simple example, designed, I
hope, to get your interest. Later I come
back to multiple agent problems.

Static Example: In M. Katz (2007)
unpublished thesis; explained in Pakes

(2010)

Estimate the costs shoppers assign to driv-
ing to a supermarket (important to the
analysis of; zoning regulations, public trans-
portation projects,...). Proven difficult to
analyze empirically with standard choice mod-
els because of the complexity of the choice
set facing consumers (all possible bundles
of goods at all possible supermarkets). Here
we show how to turn it into an “ordered”
problem, which is the single agent ana-
logue to the problems we face to for many
of the investment and product placement
problems we consider in I.O.



Assume that the agents’ utility functions

are additively separable functions of;

• utility from basket of goods bought,

• expenditure on that basket, and

• drive time to the supermarket.

I.e. if bi = b(di) is the basket of goods

bought, si = s(di) is the store chosen, and

zi are individual characteristics

π(di, zi, θ) = U(bi)− e(bi, si)− θidt(si, zi),
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where e(·) provides expenditure, dt(·) pro-

vides drive time, and I have used the free

normalization on expenditure (the cost of

drive time are in dollars).

Standard discrete choice. Need to spec-

ify the expected utility from each possible

choice. Requires

(i) the agent’s prior probability for each

possible price at each store, and

(ii) the bundle of goods the agent would

buy were any particular price vector real-

ized.

(There is a simple reduced form, that I

come back to; but not available for inter-

acting agent problems.)



Simplify. Compare the utility from the

choice the individual made to that of an

alternative feasible choice. Expected dif-

ference should be positive. Requires: find-

ing an alternative choice that allows us to

isolate the effects of drive time.

For a particular di chose d′(di) to be the

purchase of

• the same basket of goods,

• at a store which is further away from

the consumer’s home then the store

the consumer shopped at.

Note. Need not specify the utility from

different baskets of goods; i.e. it allows us
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to hold fixed the dimension of the choice

that generated the problem with the size of

the choice set, and investigate the impact

of the dimension of interest (travel time)

in isolation.

Let E(·) be the agent’s expectation oper-

ator. Then we assume that

E[∆π(di, d
′(di), z)] =

−E[∆e(di, d
′(di))]− θi E[∆dt(di, d

′(di))] ≥ 0.

Note. I have not assumed that the agent’s

perceptions of prices are “correct” in any

sense. I come back to what I need of the

agent’s subjective expectations.



Case 1: θi = θ0. More generally all de-
terminants of drive time are captured by
variables the econometrician observes and
includes in the specification. Assume that

N−1∑
i

E[∆e(di, d
′(di))]−N−1∑∆e(di, d

′(di))→P 0,

N−1∑
i

E[∆dt(di, d
′(di))]−N−1∑

i

∆dt(di, d
′(di))→P 0

which would be true if, for e.g., agents
were correct on average (this is stronger
than we need). Then

−E[∆e(di, d
′(di))]− θ E[∆dt(di, d

′(di))] ≥ 0

implies

−
∑
i∆e(di, d

′(di))∑
i∆dt(di, d′(di))

→p θ ≤ θ0.



If we would have also taken an alterna-

tive store which was closer to the individual

then

−
∑
i∆e(di, d

′(di))∑
i∆dt(di, d′(di))

→p θ ≥ θ0.

and we would have consistent estimates

of bounds on θ0. Note this assumes that

there always is an alternative store closer

to the individual than the store the agent

went to. Below we come back to the ad-

justment to the procedure needed if this is

not the case.

Case 2: θi = (θ0+νi),
∑
νi = 0. This case

allows for a component of the cost of drive

times (νi) that is known to the agent (since



the agent conditions on it when it makes

its decision) but not to the econometri-

cian. Then provided dt(di) and dt(d′(di))

are known to the agent

E
[ ∆e(di, d

′(di))

∆dt(di, d′(di))
− (θ0 + νi)

]
≤ 0,

and provided agents expectation on expen-

ditures are not “systematically” biased

1

N

∑
i

( ∆e(di, d
′(di))

∆dt(di, d′(di))

)
→P θ ≤ θ0.

Notes.



• We did not need to specify (or com-
pute) the utility from all different choices,
so there could have been (unobserved
or observed) sources of heterogeneity
in the U(bi). Our choice of alternative
simply differences them out.

• Case 2 allows for unobserved hetero-
geneity in the coefficient of interest and
does not need to specify what the dis-
tribution of that unobservable is. In
particular it can be freely correlated with
the right hand side variable. “Drive
time” is a choice variable, so we might
expect it to be correlated with the per-
ceived costs of that time (with νi).

• If the unobserved determinant of drive
time costs (νi) is correlated with drive



time (dt) then Case 1 and Case 2 esti-

mators should be different, if not they

should be the same. So there is a test

for whether any unobserved differences

in preferences are correlated with the

“independent” variable.

Empirical Results.

Data. Neilsen Homescan Panel, 2004 &

data on store characteristics from TradeDi-

mensions. Chooses families from Massachusetts.

Discrete Choice Comparison Model. The

multinomial model divides observations into

expenditure classes, and then uses a typ-

ical expenditure bundle for that class to

form the expenditure level (the “price in-

dex” for each outlet). Other x’s are drive



time, store characteristics, and individual
characteristics. Note that

• the prices for the expenditure class need
not reflect the prices of the goods the
individual actually is interested in (so
there is an error in price, and it is likely
negatively correlated with price itself.)

• it assumes that the agents knew the
goods available in the store and their
prices exactly when they decided which
store to choose (i.e. it does not allow
for expectational error)

• it does not allow for unobserved het-
erogeneity in the effects of drive time.
We could allow for a random coeffi-
cient on drive time, but, then we would



need a conditional distribution for the

drive time coefficient....

Focus. Median of the drive time coeffi-

cient (about forty coefficients; chain dum-

mies, outlet size, employees, amenities...).

• Multinomial Model: median cost of drive

time was $240 (when the median wage

in this region is $17). Also several co-

efficients have the “wrong” sign or order

(nearness to a subway stop, several ameni-

ties, and chain dummies).

Inequality estimators. Uses a lot of mo-

ments: point estimates, but tests indicated

that the model was accepted. Standard er-

rors are very conservative.



• Inequality estimates with

θi = θ0 : .204 [.126, .255]. ⇒ $4/hour,

• Inequality estimates with

θi = θ0+νi : .544 [.257, .666], ⇒ $14/hour

and other coefficients straighten out.

Apparently the unobserved component of

the coefficient of drive time is negatively

correlated with observed drive time differ-

ences.

We now move on to looking for the sets of

assumptions that underlie this and other

moment inequality models in more detail.



Behavioral Models

We will present the two behavioral mod-

els that have been used with moment in-

equalities. Both models allow for interact-

ing agent and both have four assumptions.

Two of these assumptions are the same

and two are not.

Assumptions Common To Both

Models.

Best Response Condition (C1).

sup
d∈Di

E[π(d,d−i,yi, θ0)|Ji, d]

≤ E[π(d(Ji),d−i,yi, θ0)|Ji]

where di ≡ d(Ji) ∈ Di is the agents de-

cision, Di ⊂ D is its choice set, Ji is its
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information set, and E[·|Ji] takes expecta-

tions over (d−i,yi). ♠

Notes.

• No restriction on choice set; could be

discrete (a subset of all bilateral con-

tracts, ordered choice ...) or continu-

ous (with corners, non-convexities ...).

• No uniqueness requirement, and equi-

librium selection can differ for different

observations (we only use ”necessary”

conditions for an equilibrium)..

• C1 is termed ”weak rationality” in Pakes

(2010).



Counterfactuals.

To check the best response condition (or
the maximization condition in single agent
models) we need an approximation to what
profits would have been had the agent made
a choice which in fact it did not make.
This is the analogue of what you implic-
itly do every time you write down a dis-
crete choice model (there is a model for
the choice taken and there is a model for
the choices not taken). This requires a
model of how the agent thinks that d−i
and yi are likely to change in response to
a change in the agent’s decision.

Counterfactual Condition (C2).

d−i = d−i(di, zi), yi = y(zi,di,d−i),

the distribution of zi conditional on Ji does
not depend on di. ♠
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Exogeneity.

The assumption that the distribution of zi
conditional on Ji does not depend on di
is what we mean by zi being an exoge-

nous random variable. It is just a more de-

tailed statement of what an ”instrument”

is when one teaches IV estimation.

• Single agent: no d−i; yi often exogenous

in this sense.

• Multiple agents, simultaneous moves:

d−i satisfies C2.

• Multiple agents, multi-stage; often a y

which is “endogenous” – its distribution

depends on di – and then we need a model

of that dependence.

• Multiple agent, sequential moves: must
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postulate response. We need a model for

dynamic games.

Implication: C1 + C2. After substitut-

ing d−i = d−i(di, zi), and yi = y(zi,di,d−i)
into π(·) , if for d′ ∈ Di we let

∆π(di, d
′, d−i, zi) = π(di, d−i, zi)−π(d′, d−i, zi)

we have

E[∆π(di, d
′,d−i, zi)|Ji] ≥ 0. ♠



To estimate we need the relationships be-

tween:

• The expectations underlying agents de-

cisions ( E(·)) and the expectations of the

observed sample moments (E(·)),

• π(·, θ) and (zi, di, d−i) and their observ-

able analogues.

This is where the two approaches differ.

One is the natural generalization of stan-

dard discrete choice theory to multiple agent

settings. The other is an extension of re-

vealed preference arguments. Before we

turn to them we need assumptions on the

relationship between what we observe, and
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the models’ concepts; a “measurement”

model.

General Measurement Model.

Let

r(d, d−i, z
o
i , θ0)

be our observable approximation to π(·).

Then w.l.o.g. we can define the following

terms



ν(d, d−i, z
o
i , zi, θ0) ≡ r(d, d−i, zoi , θ0)−π(d, d−i, zi),

so

r(·) = π(·) + ν,

and

E[r(·)|·] = E[π(·)|·] + E[ν|·].

It follows that

r(d, d−i, z
o
i , θ0) ≡ E[π(d,d−i, zi)|Ji]+ν2,i,d+ν1,i,d.

where

ν2,i,d ≡ E[ν(d,d−i, z
o
i , zi, θ0)|Ji],

and

ν1,i,d ≡

(π(d, ·)−E[π(d, ·)|Ji])+(ν(d, ·)−E[ν(d, ·)|Ji]).
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Sources of ν1. Sum of: expectational

error from incomplete (uncertainty in zi),

and/or asymmetric (uncertainty in d−i) in-

formation,

π(d, ·)− E[π(d, ·)|Ji]

and specification and measurement error

or

ν(d, ·)− E[ν(d, ·)|Ji]

(This includes errors that arise from spec-

ifying functional forms that involve an ap-

proximation error.)

General Points.

• E[ν1,i,d|Ji] = 0, by construction. E[ν2,i,d|Ji] 6=
0. This distinction is why we need to keep

track of two separate disturbances.



• When the left hand side variable (the

variable we are trying to explain) is a mea-

sure of profits, typically the disturbance is

dominated by ν1 errors, or at least they

should not be ignored. When the ν2 errors

can be ignored straightforward moment in-

equalities based on revealed preference can

be used to estimate.

• When the left had side is a control or

a decision variable (e.g. investment) then

typically the disturbance will be dominated

by ν2 errors or at least we do not want to

ignore them. If the ν1 errors can be ignored

we get traditional discrete choice analysis,

or generalizations thereof (that I turn to

next). No ν1 error requires certainty about

functional forms (often including those that



generate an expectation operator)

• Of course both may be present and we

may have to deal with that.

Abuses of Assumptions on

Disturbances.

ν2 and selection.

Since ν2,i ∈ Ji and di = d(Ji), di will gener-

ally be a function of ν2,i (and perhaps also

of ν2,−i). This can generate a selection

problem.

Temporarily assume; the agent’s expecta-

tions (our E(·)) equals the expectations gen-

erated by the true data generating process

(our E(·)), that x is an “instrument” in



the sense that E[ν2|x] = 0, and that x ∈ J .

Then

E[ν1|x] = E[ν2|x] = 0.

These expectations do not condition on di,

and any moment which depends on di re-

quires properties of the disturbance condi-

tional on di. Since d is measurable σ(J )

E[ν1|x, d] = 0.

However since ν2 ∈ J and

E[π(·)|·] = E[r(·)|·] + ν2,

if the agent choses d∗ then

ν2,d∗ − ν2,d ≥ E[r(·, d)|·]− E[r(·, d∗)|·]

so

E[ν2,d∗|x, d∗] 6= 0, and E[ν2,d|x, d] 6= 0.



The fact that “x is an instrument” does

not “solve” the selection problem.

E.g. Single agent binary choice. di ∈
{0,1}, with

∆π(di, d
′, ·) = ∆r(di, d

′, ·) + ∆ν2,i + ∆ν1
1,i.

Then di = 1 if

E[∆π(di = 1, d′ = 0, ·)|Ji] =

E[∆r(di = 1, d′ = 0, ·)|Ji] + ∆ν2,i ≥ 0

Assume the ν2,i were centered at zero. Then

E[∆ν2,i|di = 1] =

E(∆ν2,i|∆ν2,i ≥ −E[∆r(di = 1, d′ = 0, ·)|Ji]) ≥ 0,

which violates our condition.



Expectational or measurement/approximation

error.

As noted for there not to be a ν1 error
there would either have to be either;

• no; expectational error, measurement
error in rhs variables, or approximation
error in the model, or

• a way of analyzing the model with ex-
pectational and measurement error.

Expectational Error. The mean of ex-
pectational error conditional on variables
one knows at the outset should be zero,
but we in general do not know its distri-
bution. There is a difference here between
single agent and multiple agent models.
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• In single agent models if one is will-
ing to make a rational expectations as-
sumption one can sometimes find esti-
mate the characteristics of the needed
distribution. Dickstein and Morales (2015)
provide a way of using weak semi-parameteric
assumptions to overcome expectational
problems and show that accounting for
expectational errors in a flexible way
makes a difference in analyzing export-
ing decisions.

• In interacting agent models, to com-
pute the distribution of the expecta-
tional error we would have to specify
what each agent knows about its com-
petitors, and then repeatedly solve for
an equilibrium (a process which typi-
cally would require additional assump-
tions as it would require us to select
among equilibria).



Measurement and/or Approximation er-

ror. Consider measurement (or approxi-

mation) error in the simple linear binary

choice model, ∆Ud,i,t = x∗i,tβ + ν2. Here

either x∗ is unobserved and what we ob-

serve is xo = x∗+ ν1, or there is a ν1 error

caused by misspecification. The two cases

are similar so I deal only with the first. The

required choice probability is

Pr{d|x0, β} =
∫
ν1

Pr(ν2 ≥ x∗β)dP (x∗|x0, β),

and assuming densities exist to carry out

the integration we need

f(x∗|xo) =
f(x0|x∗)f(x∗)

f(xo)
=
fν1(ν1 = xo − x∗)f(x∗)

f(x0)
.

Though we might be willing to assume the

distribution of ν1 has some familiar form, it

would be harder to assume a distribution

for x∗. To estimate it we would need a

de-convolution theorem.



This concludes the discussion of the rele-

vance of assumptions on the disturbances.

We now go back to the two modeling frame-

works.

I will not go over the first in class in detail,

but rather explain what it does. However

notes on it are included here. So the reader

who is uninterested should be able to go

directly to M2 on slide 57.



M1: Generalized Discrete Choice.

This uses the same assumptions as the sin-
gle agent discrete choice model commonly
used in econometrics. Its multiple agent
analogue dates to Tamer (Restud 2003).
More recent econometric implementation;
Ciliberto-Tamer (Econometrica 2007),

Expectational Condition (FC3): ∀d ∈
Di.

π(d, d−i, zi, θ0) = E[π(d,d−i, zi, θ0)|Ji]. ♠

FC3: does not allow for any expectational
error. It therefore rules out asymmetric
and/or incomplete information∗.
∗Two single agent literatures do allow for ex-
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Measurement Conditions (FC4).

π(·, θ) is known.

zi = (νf2,i, z
o
i ) , (di, d−i, zoi , z

o
−i) observed,

(νf2,i, ν
f
2,−i)|zoi ,zo−i ∼ F (·; θ),

F (·, θ) is known. ♠

FC4 does not allow for specification error

(in π(·) ) or measurement error. Some of

the zi are observed by the econometrician

(zoi ) and some are not (νf2,i). The agents

know (νf2,i, ν
f
2,−i) (from FC3).

pectational errors; (i) dynamic discrete choice
(Keane and Wolpin, Review of Economic Dynam-
ics, 2009), (ii) literature using measures of expec-
tations (see Manski, Econometrica, 2004).
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Implication FC3 + FC4.

∆π(di, d
′, d−i, z

o
i , ν

f
2,i; θ0) ≥ 0,

∀d′ ∈ Di, and

(νf2,i, ν
f
2,−i)|zoi ,zo−i ∼ F (·; θ0).

To insure that the model assigns positive

probability to the observed decisions for

some θ typically also assume:

π(d, d−i, z
o
i , ν

f
2,i) = πas(d, d−i, z

o
i , θ0) + ν

f
2,i,d,

and that the distribution νf2,i conditional on

ν
f
2,−i, has full support.

Notes.
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• Single Agent Problems. FC3 and FC4

are implicit in the standard single agent dis-

crete choice literature where we observe

the choice but not returns (profits or util-

ity)∗.

• Models with Multiple Agents. Assume

now that there is no ν1 error, and we have

a full information equilibrium (or at least

that there are common unobservables that

affect all agents). Then there is an ad-

ditional problem. The r.h.s. contains a

decision variable, d−i, and by assumption

the −i agents know ν2,i when making their

decisions. So we need a different estima-

tion algorithm.

∗However in the single agent literature the model
used . can be derived as a reduced form from a
model with ν1 errors; see Pakes, 2014.



Classic Example: Entry game. Early litera-

ture; market specific unobservable clouded

the effects of competition on firm value.

The number and type of competing firms

had a positive effect on firm value on firm

value. More profitable markets had more

firms and we could not control for sources

of market profitability.

Estimation. Ideas date to Tamer (2003).

Estimation described here begins with Cilib-

erto, Murry, and Tamer (2016), interact-

ing agent version of the classic discrete

choice literature. The parametric distri-

bution for (νf2,i, ν
f
2,−i) does not deliver a

likelihood (multiple equilibria).

• Can check whether the conditions of the

model are satisfied at the observed (di, d−i)



for any (νf2,i, ν
f
2,−i) and θ, and this, to-

gether with F (·, θ), enable us to calculate

the probability of those conditions being

satisfied. These are necessary conditions

for the choices: ⇒ at θ = θ0 the proba-

bility of satisfying them must be greater

then the probability of observing (di, d−i)
(the necessary conditions deliver an “outer

measure”)

• Can check whether (di, d−i) are the only

values of the decision variables to satisfy

the necessary conditions for any (νf2,i, ν
f
2,−i)

and θ; provides a lower bound to the prob-

ability of actually observing (di, d−i) given

θ (provide an “inner measure”).

Define

P{(di, d−i) |θ} ≡



Pr{(νf2,i, ν
f
2,−i) : (di, d−i) satisfy M1 |zoi , z

o
−i, θ},

P{(di, d−i) |θ} ≡

Pr{(νf2,i, ν
f
2,−i) : only(di, d−i) satisfy M1|zoi , z

o
−i, θ}.

Note that

P{(di, d−i)|θ} ≡ Pr{(di, d−i) |zoi , z
o
−i, θ},

depends on the unknown true equilibrium

selection mechanism, but whatever that mech-

anism

P{(di, d−i)|θ0} ≥ P{(di, d−i)|θ0} ≥ P{(di, d−i)|θ0},

which is used as a basis for estimation.

Estimating Equations. If h(·) is a posi-

tive function then



E(P{(di, d−i) |θ}−{d = di, d
−i = d−i})h(zoi , z

o
−i)

= (P{(di, d−i) |θ} − P{(di, d−i)|θ0})h(zoi , z
o
−i),

and

E({d = di, d
−i = d−i}−P{(di, d−i) |θ0})h(zoi , z

o
−i)

(P{(di, d−i)|θ} − P{(di, d−i) |θ0})h(zoi , z
o
−i)

should be non-negative at θ = θ0.

Ciliberto Tamer’s example is entry into

airline markets. If i indexes firms and m

indexes markets their profit function is

πi,m = S′mα+W ′i,mγ+
∑
i 6=j

δijyi,m+
∑
j 6=i

Z′j,mφjyj,m+



+νo2,m + νd2,m + νa2,m + ν2,i,m

where

• i indexes firms m indexes markets (city-

pairs)

• Sm are market characteristics.

• and their are destination, origin, air-

port, and firm-market specific ν2 dis-

turbances, but no ν1 disturbances.

Notice that they have left the interactions

be firm specific because they are partic-

ularly concerned with the differences be-

tween the interactions of; low-cost carriers,



Southwest (low cost but considered sep-

arate), and the majors, and between the

majors themselves. A major question is

how much does airport dominance restrict

entry.

They are especially concerned with the two

airports in the Dallas area (Love and Dal-

las/Ft.Worth), and the effect of the Wright

amendment on entry (the Wright amend-

ment restricted the markets that aircraft

from Love could service in order to stimu-

late Dallas/Fort Worth).

This is quite rich (indeed we seem to be

playing in a different “league” from the

earlier work), but the model is not derived

from a demand system and a cost function,

and therefore one would assume it has er-

ror (an approximation error) which is not



accounted for (along with the other issues

discussed above).

That is if the real profit or value function

from operating in a market were V (·), we

could project it down (or take its expec-

tation conditional on) the included (ob-

served and unobserved) variables, and get

an equation identical to theirs except that

there would be a residual from the pro-

jection. The residual would, by construc-

tion, be orthogonal to included variables –

and so different from the included unob-

servables (which are determinants of air-

port choice and hence not orthogonal to

them).

Estimation Routine. The estimation rou-

tine constructs unbiased estimates of (P (·|θ), P (·|θ)),

substitutes them for the true values of the



probability bounds into these moments, and

then accepts values of θ for which the mo-

ment inequalities are satisfied.

Since typically neither the upper nor the

lower bound are analytic function of θ, we

employ simulation techniques to obtain an

unbiased estimate of them. The simula-

tion procedure is straightforward, though

often computationally burdensome. Take

pseudo random draws from a standardized

version of F (·) as defined in FC4, and for

each random draw check the necessary con-

ditions for an equilibrium, at the observed

(di, d−i). Estimate P (di, d−i|θ) by the frac-

tion of random draws that satisfy that in-

equality at that θ. Next check if there is

another value of (d, d−i) ∈ Di × D−i that

satisfy the equilibrium conditions at that

θ and estimate P (di, d−i|θ) by the fraction



of the draws for which (di, d−i) is the only

such value.

Notes

• This can become computationally de-

manding, particular if every time you

need to compute an equilibrium I need

to re-evaluate a fixed point (then it can

become incredibly computationally de-

manding).

• The estimator here is based on inequal-

ities, and so under the null we should

expect a set of θ values that satisfy it.

I.e there is a need for the Econometrics

of set estimators (I will come back to

this).



• Often sampling error will cause the set

to be empty. Take the simple case

where we are estimating a single pa-

rameter. Then the inequalities set lower

and upper bounds for the parameter. If

the estimate of the lower bound is the

greatest lower bound it will be biased

upwards in finite samples. Similarly if

the estimate of the upper bound is the

least upper bound, then that estimate

has a negative bias in finite samples.

If they cross there is no point which

satisfies all the inequalities.

Tables 3 and 4 in Ciliberto Tamer They

report confidence intervals for points. First

they find a set such that the probability

that the confidence set covers the true point

is .95. Then they project each point down



onto the axis. Table 3 assumes iid errors.

LAR=large airlines. LCC=low cost carri-

ers. WN=Southwest.

• The first column constrains competi-

tive effects to be the same, so as in

Berry (1992) there is a unique num-

ber of firms. The competitive effects

(number of other airlines serving the

city-pair) and the airport presence ef-

fect are both strong, as in prior work.

• Column 2 allows for heterogeneity in

continuation values, but the heterogene-

ity is just in constant dummies (the

presence of one airline affects all other

airlines equally). No longer a unique

number of firms (depends on who en-

ters). Competitive effects are similar



except for the low cost carriers which

have a bigger impact, and airport pres-

ence stronger yet.

• Column 3 allows one airlines presence

to effect different airlines differently. Now

Large airlines (LAR) and Southwest (=WN)

have strongly negative effects on LCC,

and there are smaller differences among

the rest.

Table 4. Now errors are allowed to be cor-

related, and have different variances. Also

the effect of the presence of the airline is

interacted with its airport presence (do air-

lines with a greater presence have a bigger

deterrence effect on entry into a market?).



• The presence of a low cost carrier or

Southwest has a very negative effect

on the majors. Also airport presence

more generally has a negative effect on

others.

• Comparing column 1 to 2 compares

iid error specification with a specifica-

tion which allows for a free covariance

structure. There are quite large dif-

ferences in the coefficients of interest,

and they treat the disturbance distribu-

tion more carefully than most others..

This is a bit disturbing since there is

often little direct evidence on the form

of the error distribution, and, since it is

a reduced form specification and does

contain a reduced form error, they prob-

ably have it wrong still. Perhaps it



should have been expected because the

estimator is a non-linear functional of

the error distribution; i.e. it is ε’s in the

tail that will determine entry; it mat-

ters if tails are correlated.

• Column 3 takes out the airport pres-

ence variables, because one might think

they are endogenous, and puts in car-

rier cost. Coefficients change and the

cost effect is particularly sharp for South-

west.

They go through and do various “policy

experiments” using these results. They do

this by simulating equilibria under different

circumstances and giving upper and lower

bound probabilities for what would hap-

pen were those circumstances in place. In



particular they find that elimination of the

Wright amendments would have increased

entry significantly (and they quantify its

various effects).

Remaining Issues: Analysis of Entry

Games.

• Partly for the computational reasons

introduced above, almost all of the work

with these type of models works with

“reduced form” profit functions, not

derived directly from a rich model of

the second stage. The early papers

try to circumvent this by using non-

parametrics, but that runs into data

limitations, as the dimension of the non-

parametric function increases as a mul-

tiple of: (i) the number of agents, and



(ii) the number of distinguishing char-

acteristics of each agent. It is exactly

this issue that the differentiated prod-

uct demand systems were designed to

handle. However that requires a de-

mand system, and a second stage profit

function and the latter would have to

be recomputed for every value of the

parameter vector.

• This is a reduced form, but if we are us-

ing approximations to profit functions

we might want to allow for errors in

our approximations (they are currently

absent).

• Lack of True Dynamics; that is who

is active this period depends on who



was active last period, and on percep-
tions of profitability in future periods.
Note that not only would dynamics get
rid of some of the conceptual prob-
lems but it would allow you to bring
in the information in the sequential na-
ture of most data. That is in many of
these data sets we know exactly when
each firm entered, so we could condi-
tion that firm’s entry decision on firms
existing in the market at the time they
enter. The problems here are a mix
of computational and conceptual, and
we come back to them after we intro-
duce dynamic games. A lot more can
be done now, but the dynamic games
solutions still ran into their own prob-
lems.

We now go back to the second behavioral
model that underlies the use of moment
inequalities.



M2: Requirements for Profit

Inequalities.

Recall that we already have assumed C1 or

the best response (or maximization) con-

dition and C2 or the ability to construct

counterfactuals. What we still need is:

• an assumption on the relationship be-

tween agents expectations and the ex-

pectation operator generated by the DGP,

and

• restrictions on the measurement model.
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Condition on Agents’ Expectations. Let

h(·) be a positive valued function, and xi ∈
Ji be observable.

Condition IC3

(1/N)
∑
i

E(∆π(di, d
′, d−i, zi)|Ji) ≥ 0 ⇒

E
[ 1

N

∑
i

(∆π(di, d
′, d−i, zi)h(xi))

]
≥ 0 ♠.

Three progressively weaker conditions. The

weakest suffices.

Agents’ expectations are

1. correct (Bayesian Nash),

E(∆πi(·)|xi) = E(∆πi(·)|xi),
16



2. or are wrong, but not consistently so

(1/N)
∑
i

(
E[∆π(·|xi]−E[∆π(·)|xi]

)
= 0,

3. or are consistently wrong but in an “overly

optimistic” way - i.e.

(1/N)
∑
i

(
E[∆π(·|xi]−E[∆π(·)|xi]

)
≥ 0.

Note. Generalized discrete choice model

nested to this: expectations=realizations.



Condition on Measurement Model.

Assume Di discrete and there is an x ∈ Ji
and a function c(·) : Di × Di → R+, such

that we satisfy

Recall that

r(d, d−i, z
o
i , θ0) ≡ E[π(d,d−i, zi)|Ji]+ν2,i,d+ν1,i,d,

where

ν2,i,d ≡ E[ν(d,d−i, z
o
i , zi, θ0)|Ji],

and

ν1,i,d ≡

(π(d, ·)−E[π(d, ·)|Ji])+(ν(d, ·)−E[ν(d, ·)|Ji]).

When we have a comprehensive measure

of the profits from the action, it is just

that those profits either contain expecta-

tional error or are measured with error, are

17



the cases we mostly worry mostly about ν1
errors.

Sufficient Condition, SIC4: ν2 ≡ 0.

This is the analogue of no ν1 error in the
generalized discrete choice model. When
there are only ν1 errors in the profit in-
equalities procedures gives you inequalities
by simply averaging the difference in the
measured profit function. That is given
our three assumptions if

r(d, d−i, z
o
i , θ0) = E[π(d,d−i, zi)|Ji] + ν1,i,d,

then

E[r(d, d−i, z
o
i , θ0)|Ji] ≥ 0.

Which implies that provided xi ∈ Ji, at the
true θ0∑

i

r(d, d−i, z
o
i , θ0)h(xi)→a.s. κ > 0.



The case when ν2 6= 0: overcoming the

selection problem.

The econometrician only has access to ∆r(·, θ)

and our best response condition is in terms

of the conditional expectation of ∆π(·).

So we need an assumption which enables

us to restrict weighted averages of ∆r(·) in

a way that insures that the expectation of

the weighted average of ∆r(·, θ) is positive

at θ = θ0.Here are two ways around it that

are frequently used.

PC4a: Differencing. Here there are groups

of observations with the same value for

the ν2 error. We end up getting difference

in difference inequalities (the difference for

one observation contains the same ν2 error

as the difference for the other).



Our supermarket example is a special case

of PC4a. There di = (bi, si),

π(·) = U(bi, zi)− e(bi, si)− θ0dt(si, zi)

and ν2,i,d ≡ U(bi, zi). If we measure expen-

ditures up to a ν1,i,d error,

r(·) = −e(bi, si)− θ0dt(si, zi) + ν2,i,d + ν1,i,d.

We chose a counterfactual with b′i = bi, so

∆r(·) = ∆π(·) + ∆ν1,·

and the utility from the bundle of goods

bought is differenced out.

“Matching estimators”, i.e. estimators based

on differences in outcomes of matched ob-

servations, implicitly assume PC4a (no dif-

ferences in unobservable determinants of

the choices made by matched observations).

PC4b: Unconditional Averages and IV’s.

There is a counterfactual which gives us an



inequality that is additive in ν2 no matter

the decision the agent made. The counter-

factual may be different for different obser-

vations. Then we can form averages which

do not condition on d so there is no selec-

tion problem.

Assume that ∀d ∈ Di, there is a d′ ∈ Di and

a wi ∈ Ji such that

wi∆r(di, d
′
i, ·; θ) = wiE[∆π(di, d

′
i, ·; θ)|Ji]+ν2,i+∆ν1,i,·,

Then if xi ∈ Ji, and E[ν2,i|xi] = 0,

N−1∑ ν1,i,·h(xi)→P 0 and N−1∑ ν2,ih(xi)→ 0

or x is an “instrument” for both ν2 and ν1,

so provided h(·) > 0

N−1∑
i

wi
[
∆r(di, d

′
i, ·; θ0)−E[∆π(di, d

′
i, ·; θ0)|Ji]

]
h(xi)

converges to a positive number.



Case 2 of our supermarket example had

two ν2 components; a decision specific util-

ity from the goods bought, ν2,i,d = U(bi, zi)

(like in case 1), and an agent specific aver-

sion to drive time, θi = θ0 + ν2,i. As in

case 1, taking d′ = (bi, s
′
i) differenced out

the U(bi, zi).

Then

∆r(·) = −∆e(·, si, s′i)−(θ0+ν2,i)∆dt(si, s
′
i, zi)+∆ν1,·.

Set wi = [∆dt(si, s
′
i, zi)]−1 ∈ Ji, then C1

and C2 ⇒

E[∆e(si, s
′
i, bi)/∆dt(si, s

′
i, zi)|Ji]−(θ0+ν2,i) ≤ 0.

This inequality is;

(i) linear in ν2,i, and

(ii) is available for every agent.



So if E[ν2] = 0, PC3 and a law of large
numbers insures N−1∑

i ν2,i →P 0, and∑
i

∆e(si, s
′
i, bi)/∆dt(si, s

′
i, zi)→P θ0 ≤ θ0

while if E[ν2|x] = 0 we can use x to form
instruments which give us the additional
inequalities∑

i h(xi)
∆e(si,s

′
i,bi)

∆dt(si,s
′
i,zi)∑

i h(xi)
→P θ0 ≤ θ0

Notice that ν2,i can be correlated with dt(zi, si)
so this procedure enables us to analyze dis-
crete choice models when a random coeffi-
cient affecting tastes for a characteristic is
correlated with the characteristics chosen.

General Condition Condition IC4:∑
j∈Di

χ{di = j}c(j, d′(j))(ν2,i,j−ν2,i,d′(j))h(xi) ≤ 0



where χ{di = j} is an indicator function.

Notes.

• This is an unconditional average (does
not condition on di); i.e. for every pos-
sible d ∈ Di we specify a d′(d) (a priori).

• This average is an average of differ-
ences in the ν2,i,j − ν2,i,d′(j).

• Both (i) the weights, and (ii) the com-
parison (d′), can vary with j.

• We assumed xi ∈ Ji. Could also us an
x−i ∈ J−i provided x−i is not correlated
with ν1,i which might well be violated in
models with asymmetric information.



Summary: Profit Inequality Model.

• Allows for specification errors, incor-

rect expectations, and incomplete and

asymmetric information,

and it does so without requiring the econo-

metrician

• to specify what the agent knows about

either its competitors, or about the state

of nature

• It requires a restriction on {ν2,d}, but

given that restriction, there is no need

for the distribution of {ν2,d}.
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Other examples of use of inequalities
in I.O.

• Contracting (bargaining) models in ver-
tical markets. A party which accepts
a contract must expect to earn more
from when the contract was in force
then they would have earned were the
contract not in force; and if a contract
is rejected the opposite must be the
case. Enables an analysis of the char-
acteristics of the contracts signed in
vertical markets Ho (2009), Crawford
and Yorukoglu (2012).

• Product repositioning (see below)

• Ordered choice models and other dis-
crete investments by firms (see below).
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Product Repositioning and Short-Run
Responses to Environmental Change

• Product repositioning: a change in the
characteristics of the products marketed
by an incumbent firm.

• Empirical analysis of equilibrium responses
to environmental changes typically dis-
tinguish between the response of

– “static” controls (prices or quanti-
ties)

– “dynamic” controls effects (entry,
exit, and various forms of invest-
ment including in new products).

• Product repositioning generally allocated
to dynamics. Dynamics are harder to

20



do formally (especially when there are
time constraints, as is often the case
when policy decisions must be made)
and so often left to informal analysis.

Recent work:

• a number of industries in which firms
already in the market can change the
characteristics of their products as eas-
ily as they can change prices, and

• shows that static analysis that does not
take repositioning into account is likely
to be misleading, even in the very short
run.

• analysis does raise the issue of multi-
plicity of equilibria (come back to this).



Examples.

• Nosko (2014): Response of the mar-
ket for CPU’s to innovation: easy to
change chip performance to lower val-
ues than the best performing chips of
the current generation.

• Eizenberg (2014): Introduction of the
Pentium 4 chip in PC’s and notebooks:
decisions to stop the production of prod-
ucts with older chips (and lower prices)
is easy to implement. Total welfare
does not increase, but poorer consumers
do better with the low end kept in.

• Wollmann (2016): commercial truck
production process is modular (it is pos-
sible to connect different cab types to
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different trailers), so some product repo-

sitioning immediate. Considers the bailout

of GM and Chrysler, and ask what would

have happened had GM and Chrysler

been forced to exit the commercial truck

market (once allowing for product repo-

sitioning and once not), and once with

pure exit and once with them being

bought out by an existing producer.



Nosko: Intels’ Introduction of The

Core 2 Duo Generation in Desktops.

• Chips sold at a given price typically change

their characteristics about as often as

price changes on a given set of charac-

teristics.

• Figures provide benchmark scores and

prices for the products offered at dif-

ferent times.

– June 2006: just prior to the intro-

duction of the Core 2 Duo. The

red and blue dots represent AMD’s

and Intel’s offerings. Intense com-

petition for high performance chips

with AMD selling the highest priced

product at just over $1000: seven
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Price/Performance – June 2006

Price/Performance – July 2006



Price/Performance – Oct 2006

Price/Performance – January 2008



sold at prices between $1000 and

$600.

– Core 2 Duo introduced in July. By

October; (i) AMD no longer mar-

kets any high priced chips (ii) there

are no chips offered between $1000

and $600 dollars.

• November 2006: Only Core 2 Duo’s at

the high end.

• Nosko goes on to explain

– that the returns from the research

that went into the Core 2 Duo came

primarily from the markups Intel was

able to earn as a result of emptying

out the space of middle priced chips



and dominating the high priced end

of the spectrum.

– how a similar phenomena would likely

occur if AMD were to merge with

Intel.



Analytic Framework Used in these

Papers.

• Two-period sub-game perfect model (back-

ward induction)

– product offerings set in the first stage

and

– prices set in the second.

• Two-period model ignores effect on sub-

sequent periods. Come back to correct

this.

• Even for two-period model, need

– Estimates of the fixed costs of adding

and of deleting products.
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– A way of dealing with the multiplic-

ity problem if we compute counter-

factuals (and all papers do).

Estimates of Fixed Costs (F);

The three examples use

• Estimates of demand and cost as a

function of product characteristics (use

either BLP or the pure characteristics

model in Berry and Pakes, 2007).

• An assumption on the pricing (or quan-

tity setting) in the “but for” world in

which; (i) one the products that was

offered was not, and (ii) one that was

not offered was offered (use Nash pric-

ing equilibrium).



• The profit inequality approach proposed

in Pakes, Porter, Ho, and Ishii (2015)

and Pakes (2010).

Constant F case.

• xj be a vector of 1’s and 0’s; 1 when

the product is offered. Say ez is vec-

tor with one in the ”z” spot and zero

elsewhere.

• Assume z had been added. Compute

the the implied profits had the product

not been added (unilateral deviation in

a simultaneous move game).

• Let ∆πj(xj, xj − ez, x−j) ≡ πj(xj, x−j)−
πj(xj − ez, x−j).



• Ij is the agent’s information set. zj
added because

E[∆πj(xj, xj − ez, x−j)|Ij] ≥ F.

• Average over all the products introduced

and assume agents’ expectations are

unbiased. ⇒ a consistent lower bound

for F .

• If z is a feasible addition that was not

offered and ∆πj(xj, xj+ez, x−j) ≡ πj(xj, x−j)−
πj(xj + ez, x−j), then

E[∆πj(xj, xj + ez, x−j)|Ij] ≤ F.

which gives us an upper bound to F .

Complications: Non-constant F.



• If the fixed costs are a function of ob-
served characteristics of the product all
we need is more complicated moment
inequality estimators.

• Allowance for unobservable fixed cost
differences that were known to the agents
when they made their product choices
implies that the products provided may
have been partially selected on the ba-
sis of having lower than average unob-
servable fixed costs (and vice versa for
those that were not selected). Need a
way of dealing with ν2 errors.

• In addition to the suggestions above,
you could assume a bounded support
as in Manski (2003); for an applica-
tion which combines them see Eizen-
berg (2014).



Complications: Sunk (in contrast to Fixed)

Costs.

• Find a z that was not marketed, and

assume that the firm could have mar-

keted it and commit to withdrawing it

in the next period before competitors

next period decisions are taken.

• Then our behavioral assumption implies

that the difference in value between,

(i) adding this z and then withdrawing

it in the next period, and (ii) the value

from just marketing the products actu-

ally marketed, would be less than zero.

I.e.

E[πj(xj+ez, x−j)−πj(xj, x−j)|Ij] ≤ F+βW,



W ≥ 0 is the cost of withdrawing and

β is the discount rate.

• Lower bounds require further assump-

tions, but the upper bound ought to be

enough for examining extremely prof-

itable repositioning moves following en-

vironmental changes (like those discussed

in Nosko (2014)).



Discrete Investment Choices by A
Firm.

This application is due to Ishii (thesis and
PPHI). It is about analyzing choices of a
number of ATM’s but as will become ob-
vious similar analysis could be used for at
least some types of entry games.

Ishii analyzes how ATM networks affect
market outcomes in the banking industry.
The part of her study we consider here is
the choice of the number of ATMs. Gen-
eral issue: techniques that can be used
to empirically analyze “lumpy” investment
decisions, or investment decisions subject
to adjustment costs which are not convex
for some other reason∗, in market environ-
ments.
∗Actually Ishii’s problem has two sources of non-convexities.
One stems from the discrete nature of the number of ATM
choice, the other from the fact that network effects can
generate increasing returns to increasing numbers of ATMs
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Ishii uses a two-period model with simul-
taneous moves in each period.

• First period; each bank chooses a num-
ber of ATMs to maximize its expected
profits given its perceptions on the num-
ber of ATMs likely to be chosen by its
competitors.

• Second period interest rates are set con-
ditional on the ATM networks in exis-
tence and consumers chose banks.

Note that there are likely to be many pos-
sible Nash equilibria to this game so again
there is a multiplicity problem.

Getting the second stage profit function?
• Estimate a demand system for banking



services (discrete choice model among a fi-

nite set of banks with consumer and bank

specific unobservables; as in BLP).and

• an interest rate setting equation.

Both conditional on the number of ATMs

of the bank and its competitors, i.e. on

(di, d−i). Interest rates set in a simultane-

ous move Nash game.

Note. We need to know what interest rates

would be and where consumers would go

were there a different network of ATMs to

get the counterfactuals. Need to assume

that the solution to the second stage is

unique; or at least that you are calculating

the one all participants agree would occur.

Come back to the realism of this below.

The ATM Choice Model.To complete

the analysis of ATM networks Ishii requires



estimates of the cost of setting up and run-

ning ATMs. Crucial to the analysis of the

implications of existing network (is there

over or under investment, are ATM net-

works allowing for excessive concentration

and excessively low interest on customer

accounts,...) and of what the network is

likely to result from alternative institutional

rules (of particular interest is the analysis

of systems that do not allow surcharges, as

suggestions to eliminate surcharges have

been part of the public debate for some

time).

We infer what cost must have been for

the network actually chosen to be opti-

mal. So we model choice network size;

of di ∈ D ⊂ Z+, the non-negative inte-

gers. We assume a simultaneous move

gain. The agent forms a perception on the



distribution of actions of its competitors
and of likely values of the variables that
determine profits in the next period, and
chooses the di that maximizes expected
profits. So this is a multiple agent ordered
choice model.

Formally

E[π(yi, di, d−i, θ)|Ji] = E[r(zi, di, d−i)|Ji]−(θ+ν2,i)di,
(1)

where

• Ji is the information known by the agents
when the decisions on the number of
ATM’s must be made,

• θ is average cost of an ATM, and the
ν2,i capture the effects of cost differ-
ences among banks that are unobserved



to the econometrician but known to
the agent. What we know is there are a
set of instruments such that E[ν2,i|xi] =
0

Clearly a necessary condition for an optimal
choice of di is that:

• expected profits from the observed di is
greater than the expected profits from
di − 1

• expected profits from the observed di is
greater than the expected profits from
di + 1.

Since we can calculate what the bank would
earn in income in both those situations,



these two differences provide inequalities

that the costs of ATMs must satisfy, and

when we average them over banks, they

provide an inequality estimator of θ.†

The inequality for the first case is‡

0 ≤ E[π(zi, di, d−i, θ)|Ji]−E[π(zi, di−1, d−i, θ)|Ji] =

E[r(zi, di, d−i)|Ji]−E[r(zi, di−1, d−i)|Ji]−(θ+ν2,i)

†These conditions will also be sufficient if the expectation of
π(·) is (the discrete analogue of) concave in di for all values
of d−i, a condition which works out to be almost always
satisfied at the estimated value of θ.
‡More formally to get this we use PC4 substituting

h(j, d′(j), ·) = 1 ifj = di; h(j, d′(j), ·) = −1 ifj = di − 1,

and h(j, d′(j), ·) = 0 elsewhere.



This will give us are upper bound for θ. I

will let you work out the second case. It

gives us our lower bound.

A few points are worthy of note.

• Note we have chosen d′(di) in a way

that insures we keep a ν2,i for every

agent (there is no selection).

• To do this we need to solve out for

the returns that would be earned were

there a different ATM network (for r(yi, di−
1, d−i), etc.) ⇒ we have to solve out

for the interest rates that would pre-

vail were the alternative networks cho-

sen. This is why you need the struc-

tural static model; i.e. we need approx-

imations to counterfactuals.



• The expectation is conditional on infor-

mation known when the decisions are

made. It is over any component of yi
not known at the time decisions are

made, and over the actions of the com-

petitors (over d−i). Note that we do

not need to specify what that informa-

tion set is.



Our behavioral assumptions imply.

E
(
r(zi, di, d−i)−r(zi, di−1, d−i)−(θ0+ν2,i)

)
≥ 0

and

E
(
r(zi, di, d−i)−r(zi, di+1, d−i)+(θ0+ν2,i)

)
≤ 0,

with
∑
ν2,i = 0 by construction. If we had

an instrument (an x which is the in the

agents’ information set when it made its

decision) that was orthogonal to ν2,i and

h(·) was a positive value function, our be-

havioral assumptions would also imply∑
i

E
(
r(zi, di, d−i)−r(zi, di−1, d−i)−(θ0+ν2,i)

)
h(xi) ≥ 0

Simplest Estimator. Let ∆rL be the sam-

ple average of the returns made from the

last ATM installed, and ∆rR be the sam-

ple average of the returns that would have
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been made if one more ATM had been in-

stalled. Then

∆rL − θ ≥ 0 (i.e. ∆rL ≥ θ),

and

−∆rR + θ ≥ 0 (i.e. θ ≥ rR).

Assuming |∆rR| ≤∆rL

Θ̂J = {θ : −∆rR ≤ θ ≤∆rL}.

Notes. With more instruments the lower

bound for θ0 is the maximum of a finite

number of moments, each of which dis-

tribute (approximately) normally. So ac-

tual lower bound has a positive bias in fi-

nite samples. The estimate of the upper

bound is a minimum, so the estimate will



have a negative bias. ⇒ Θ̂J may well be a

point even if Θ0 is an interval. Importance

of test.

Boundaries. To construct the (uncondi-

tional) moment used to estimate the pa-

rameter of the ordered choice model, the

weight function h placed positive weight

only on counterfactuals d′ = di+ t for fixed

(positive) t. More generally, we could con-

sider counterfactuals d′ = di + ti where ti
depends on i, if the ti are fixed and have

the same sign for all i. In this case, weights

proportional to 1/|ti| satisfy Assumption 3.

Typically, we want at least one inequality

based on weighting positive ti counterfac-

tuals and one inequality based on weighting



negative ti counterfactuals in order to get
both upper and lower bounds for θ0. For
any agents with di = 0, there are no fea-
sible counterfactuals with d′ = di + t for
any t < 0. Dropping the observations with
di = 0 before forming the inequalities gen-
erates a standard truncation problem. A
similar problem will occur when controls
are continuous but bounded from one side
(as in a Tobit model, or in an auction
model where there is a cost to formulat-
ing the bid which causes some agents not
to bid).

We start out now with slight more detailed
notation, allowing for a different structural
error for every di, di+t, say ν2,i,di,di+t = tηi
in the ATM model (so ηi is now the firm
specific unobserved cost of the ATM). By
definition of the parameter θ0, Eηi = 0. To
deal with the boundary problem, we make
an additional assumption that



Assume the ηi are i.i.d. with a distri-

bution that is symmetric (about zero).

Extending the argument of Powell (1986),

the symmetry assumption allows for the

use of the information from the un-truncated

direction (e.g. ν2,i,di,di+t with positive t) to

obtain a bound in the truncated direction

(e.g. ν2,i,di,di−t). We use the choice set in

the ATM model is di ≥ 0 to illustrate, but

the idea extends to other one-sided bound-

ary models.

Let L = {i : di > 0} denote the set of firms

that install a positive number of machines

and so are not on the boundary, and let

nL be the number of firms in L. It will be

helpful to use order statistic notation, i.e.

η(1) ≤ η(2) ≤ · · · ≤ η(n).

26



Let

Lη = {i : ηi ≤ η(nL)} and Uη = {i : ηi ≥ η(nL+1)}.

Similarly, let ∆r+
i = ∆r(di,di + 1,d−i, zi)

and

∆r+
(1) ≤∆r+

(2) ≤ · · · ≤∆r+
(n)

while

Ur = {i : ∆r+
i ≥∆r+

(nL+1)}.

Sets L and Ur are observable to the econo-
metrician, but sets Lη and Uη are not.

Consider the following choice of weight func-
tion

hi(d′;di,Ji) = n−1[ 1{d′ = di−1}1{i ∈ L}+ 1{d′ = di+1}1{i ∈ Ur}],
and form∑

i

∑
d′∈Di

hi(d′;di,Ji,x−i)∆r(di, d
′,d−i, z

o
i , θ0)

=
1

n

∑
i∈L

∆r(di,di−1,d−i, z
o
i , θ0)+

1

n

∑
i∈Ur

∆r(di,di+1,d−i, z
o
i , θ0)



≥
1

n

∑
i∈L

∆r(di,di−1,d−i, z
o
i , θ0)+

1

n

∑
i∈Uη

∆r(di,di+1,d−i, z
o
i , θ0)

=
1

n

∑
i∈L

{E[∆π(di,di − 1,d−i, zi)|Ji]− ν2,i,di,di−1}

+
1

n

∑
i∈Uη

{E[∆π(di,di + 1,d−i, zi)|Ji]− ν2,i,di,di+1}

≥ −
1

n

∑
i∈L

ν2,i,di,di−1 +
∑
i∈Uη

ν2,i,di,di+1

 .

The first inequality holds by the definition of Ur
and noting ∆r(di,di + 1,d−i, zoi , θ0) = ∆r+

i + θ0.
The second follows from the fact that E[∆π(di,di−
1,d−i, zi)|Ji] > 0 for i ∈ L and E[∆π(di,di+1,d−i, zi)|Ji] >
0 for all i.

Now note that

−
1

n

∑
i∈L

ν2,i,di,di−1 +
∑
i∈Uη

ν2,i,di,di+1

 =
1

n

∑
i∈L

ηi −
∑
i∈Uη

ηi


≥

1

n

∑
i∈Lη

ηi −
∑
i∈Uη

ηi

 =
1

n


nL∑
i=1

η(i) −
n∑

i=nL+1

η(i)

 .

Under the assumption that ηi are i.i.d. and symmet-
rically distributed about zero, the last term above



has mean zero. So, E
[
−n−1

∑
i∈L ν2,i,di,di−1 − n−1

∑
i∈Uη

ν2,i,di,di+1

]
≥

0.

We have provided a set of assumptions

which generates a lower bound for the pa-

rameter of interest despite the fact that

the choice set is bounded from below. The

appendix to PPHI shows that we can use

instruments along with a symmetry assump-

tion to generate more moment inequalities

for the lower bound.



Inequality Method, ATM Costs∗

θJ 95% CI for θ
LB UB

1. h(x) ≡ 1, d ≥ 1 u.b. θ̂ [24,452, 25,283] 20,544 29,006
2. h(x) ≡ 1, d ≥ 0 [24,452, 26,444] 20,472 30,402
h(x) = Inst.
3. d ≥ 1 for u.b. θ̂ 19,264 16,130 23,283
4. d ≥ 0 20,273 17,349 24,535

{d : |d− di| = 1,2}, h(x) = 1

5.{d : |d− di| = 1,2}; d ≥ 1 u.b. θ̂ [24,452, 25,283] 20,691 28,738
6.{d : |d− di| = 1,2}; d ≥ 0 [24,452, 26,644] 20,736 29,897

F.O.C (Hansen & Singleton,1982)

7. h(x)=1 28,528 23,929 33,126
8. h(x)=IV 16,039 11,105 20,262

∗ There are 291 banks in 10 markets. The IV are 1,pop, #
Banks in Mkt, # Branches of Bank). The first order condition
estimator requires derivatives with respect to interest rate
movements induced by the increment in the number of ATMs.
We used two-sided numerical derivatives of the first order
conditions for a Nash equilibria for interest rates.

Results (see table).

• First two rows just use a constant and
you can see that when you do the selec-
tion correction (second row) the upper

27



bound goes up a bit. There is mediocre

precision.

• When we add instruments we get a

point estimate, but it is just outside the

bounds and a formal test marginally re-

jects the instruments.

• Adding equations for |d − di| = 2 does

not do much, as it shouldn’t if the profit

function is concave.

• An alternative procedure is Hansen and

Singleton’s F.O.C. estimator. It gets a

number which is about the upper bound

of our c.i. and would be rejected if we

accepted the c.i. of the IV estimator.



• Works out to $4,500 per ATM per month).

Quite a bit larger than prior estimates

which do not take into account all as-

pects of costs.

Implications. Ishii (thesis). Large banks

subsidize their ATM networks in order to

gain customers (whom they pay lower in-

terest rates to). The question of whether

to force equal access to all ATMs and a

central surcharge was considered in congress.

She considers a counterfactual with the

same number of ATMs, imposes a univer-

sal ATM user fee that would just cover

ATM costs, and recalculates equilibrium.

A centralized surcharge would reallocate

profits from large to small banks and de-

crease concentration markedly. Welfare ef-

fects (conditional on the network) not as



obvious because of costs of ATMs. She

also show that investment in ATMs is sub-

optimal; so one might want to make the

ATMs endogenous and see what happens,

but then we get faced with, among other

things, the issue of multiplicity of equilib-

ria.



Digression: Multiple Equilibria and

Counterfactual’s in Ishii’s game.

Selection of Equilibria for Counterfac-

tuals. Possibilities that have been used.

• Enumerate all possible (or at least all

relevant) equilibria (used in Eizenberg,

2014).

– Seems like there may be many, but

investment history limits what can

be supported. (see Lee and Pakes,

2009, for an example).

• Use a learning model to select among

equilibria (used in Wollmann, 2016).
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– Eg.s: best response, fictitious play

(Fudenberg and Levine, 1998, for a

discussion of alternatives.).

– Will settle down at a Nash equilib-

rium. Repeat and get a probability

distribution of possible equilibria.

– Probably not suitable for major changes

that induce experimentation (Doraszel-

ski, Lewis, and Pakes, 2016).

This is taken from Lee and Pakes (2009,

Economic Letters). Take Ishii’s informa-

tion on Pittsfield, Massachusetts and ana-

lyze the likely impact of a change in Pitts-

field’s banking environment (a hypotheti-

cal merger and unexpected shock to Pitts-

field’s economy which changes the costs of

running an ATM).



There were eight banks before the merger,
so we examine the actions of the seven
remaining banks in the market. We as-
sume the merged bank has a profit func-
tion which consists of the sum of the prof-
its from the two banks which merged and
starts with their ATMs, giving us an ini-
tial allocation of ATMs to the seven banks
of (9,0,3,1,0,0,1). Note that, as is of-
ten the case in empirical work, there is sig-
nificant heterogeneity across the firms in-
herited from past actions and events (the
banks differ in the number and locations of
their branches, in the amenities they pro-
vide customers...). We are assuming that
these characteristics of the banks do not
change.

The realized costs of agent i if it uses ni
ATMs in period t are given by:

C(ni, t) = [b0,i + b1,i,t]ni + b2n
2
i



where (b0,i, b2) are known constants and

b1,i,t is the random draw on the cost shock.

These are iid draws from a normal distri-

bution with mean µ and variance σ2 that

is common across firms. For simplicity, we

assume switching costs and fixed costs of

each machine to be 0; we only focus on

the per-period operational costs.

Firms do not know their future cost shocks

before they chose the number of ATMs

they operate in the next period, and we fo-

cus on Nash Equilibria in expected costs.

In the first period after the merger, each

firm receives its own realization of the cost

shock b1,i,t. As firms realize that their costs

have changed, each firm will use an av-

erage over cost draws after the switch in

regimes to form their expectation of costs



for the next period (µ). There are no dy-

namics other than that induced by learning

about the likely value of the cost shocks

and the likely play of competing firms.

Number and Nature of Equilibria

The first part of the analysis proceeds by

simply enumerating the “limiting equilib-

ria”: i.e., the Nash equilibria when all firms

know the expected value of the cost shock.

Since banks are asymmetric, there are 170,544

different allocations of up to 15 ATMs among

seven banks. Table 1 lists all equilibrium

allocations when firms know the expected

value of the cost shock for different values

of µ.

Results.



• initial post merger allocation is (9,0,3,1,0,0,1)

does not constitute a best response for

any of our cost specifications.

• the number of equilibria is always strik-

ingly small in comparison to the num-

ber of total possible allocations.

• within a specification for costs, the dif-

ferent equilibria are quite similar to each

other (no two equilibria for the same

cost specification in which one firm dif-

fers in its number of ATMs by more

than one ATM,...)

• “comparative statics”; if an allocation

which had been an equilibrium is no

longer an equilibrium when we lower



the cost, this former equilibrium was

always the equilibrium with the least

number of ATMs at the higher cost. If

an allocation becomes an equilibrium

allocation when it had not been one at

the higher cost, the new equilibrium al-

location always has a larger total num-

ber of ATMs then the equilibria that

are dropped out (and those that are

dropped are always the equilibria with

the lowest number of ATMs).



Possible Equilibria for Four Mean Cost Specifications

Mean Cost (µ) 20,000 15,000 10,000 0
ATM Allocation # of ATMs Is Allocation An Equilibrium?
(4,0,4,0,0,1,1) 10 Yes No No No
(5,0,3,0,0,1,1) 10 Yes No No No
(4,0,4,0,0,1,2) 11 No Yes No No
(4,0,4,0,1,1,1) 11 No Yes Yes No
(5,0,3,0,1,1,2) 12 Yes Yes Yes Yes

Equilibrium Selection through Belief For-

mulation.

Investigate the implications of different pro-

cesses for forming beliefs about competi-

tors’ play.

• Best response; each firm believes its

competitors’ will play the same strat-

egy in the current period as they did in

the prior period
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• Fictitious play; each firm believes the

next play of its competitors will be a

random draw from the set of tuples of

plays observed since the regime change.

Note: here we consider forming beliefs about

competitor’s actions. An alternative would

have been to consider “learning” about the

outcomes of one’s actions (that is I have

a perception of the returns to different ac-

tions and update those beliefs). We return

to this second formulation when we come

to reinforcement learning later on in the

course.

Each run is stopped when we have con-

verged to a single allocation, where con-

vergence is defined as having remained in

the same allocation state for 50 iterations.



This location was viewed as a “rest point”

of the process. Note that all rest points

are Nash equilibria of the game where each

agent knows its mean costs. Table 2 pro-

vides the fraction of rest points at vari-

ous equilibria for the different cost spec-

ifications. We tried different mean cost-

shocks and different coefficient variations

for those shocks.



Fraction of Rest Points at Alternative Equilibria

Mean (µ) 20,000 15,000 10,000 0
CV (σ/µ)a 1 .5 .25 1 .5 .25 1 .5 .25 1 .5 .25

Best Reply
4040011 .89 .87 .82
5030011 .10 .10 .13
4040012 .27 .14 .01
4040111 .40 .21 .02 .04b .00 .00
5030112 .01 .03 .06 .33 .65 .97 .94 1.0 1.0 1.0 1.0 1.0

Fictitious Play.
4040011 .47 .41 .41
5030011 .34 .44 .30
4040012 .00 .00 .00
4040111 .10 .01 .00 .00 .00 .00
5030112 .15 .15 .29 .90 .99 1.0 1.0 1.0 1.0 1.0 1.0 1.0

The initial condition is (9,0,3,1,0,0,1) for all runs
and is never an equilibrium based on true expected
costs.

a CV is the coefficient of variation of the cost shock.
For the base specification where µ = 0, the variance
of the cost shocks were set to be the same as when
µ = 20,000.

b In this specification under Best Reply, approxi-

mately 2% of trials resulted in “cycling.”
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Note that

• The variance in the cost shocks can

cause a distribution of rest points from

a given initial condition.

• Apparently there is a dependence of the

distribution of the equilibria on belief

formulation process. This is troubling

because of the lack of evidence on the

empirical relevance on how one forms

beliefs.

• On the brighter side, it appears that

the distribution of the number of ATMs

from the lower cost specifications al-

ways stochastically dominated those from

the higher cost specifications.
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