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A Choice over several gasoline and electric vehicles

and proofs of propositions

Proof of propositions

Preliminary calculations. For the moment we drop the i subscript. Let G = πg and E =
(1 − π)e. For a generic policy variable ρ we have

∂W
∂ρ

= µ( 1

exp(Vg/µ) + exp(Ve/µ)
)( 1

µ
exp(Vg/µ)

∂Vg
∂ρ

+ 1

µ
exp(Ve/µ)

∂Ve
∂ρ
)−(δg

∂G

∂ρ
+ δe

∂E

∂ρ
)+∂R

∂ρ
,

which simplifies to

∂W
∂ρ

= ((1 − π)∂Ve
∂ρ

+ π∂Vg
∂ρ
) − (δg

∂G

∂ρ
+ δe

∂E

∂ρ
) + ∂R

∂ρ
. (A-1)

From the definition of π we have

∂π

∂ρ
=
(exp(Vg/µ) + exp(Ve/µ)) exp(Vg/µ) 1

µ
∂Vg
∂ρ − exp(Vg/µ)(exp(Vg/µ) 1

µ
∂Vg
∂ρ + exp(Ve/µ) 1

µ
∂Ve
∂ρ )

(exp(Vg/µ) + exp(Ve/µ))2
.

which simplifies to
∂π

∂ρ
= π(1 − π)

µ
(∂Vg
∂ρ

− ∂Ve
∂ρ
). (A-2)

Using this result we can derive the following

∂G

∂ρ
= g∂π

∂ρ
+ π∂g

∂ρ
= gπ(1 − π)

µ
(∂Vg
∂ρ

− ∂Ve
∂ρ
) + π∂g

∂ρ
(A-3)

and
∂E

∂ρ
= −e∂π

∂ρ
+ (1 − π)∂e

∂ρ
= −eπ(1 − π)

µ
(∂Vg
∂ρ

− ∂Ve
∂ρ
) + (1 − π)∂e

∂ρ
. (A-4)

With these in hand we turn to the proof of the Propositions.

Proof of Proposition 1. Throughout the proof we can drop the subscript i. From the Envelope

Theorem, we have
∂Vg
∂s = 0 and ∂Ve

∂s = 1. The first-order condition for s comes from substituting

these expressions into (A-1) with ρ = s, setting the resulting expression equal to zero, and
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simplifying. This gives

(1 − π) − (δg
∂G

∂s
+ δe

∂E

∂s
) + ∂R

∂s
= 0.

Expected tax revenue is R = −s(1−π). So we have ∂R
∂s = −(1−π)+s∂π∂s . Substituting this into

the first-order condition and simplifying gives

(s∂π
∂s
) − (δg

∂G

∂s
+ δe

∂E

∂s
) = 0. (A-5)

So the optimal s is given by

s =
δg

∂G
∂s + δe ∂E∂s

∂π
∂s

(A-6)

From (A-3) and (A-4), we have

∂G

∂s
= ∂g
∂s
π + g∂π

∂s
= g∂π

∂s
,

and
∂E

∂s
= ∂e
∂s
(1 − π) − e∂π

∂s
= −e∂π

∂s
,

where the second equality in both equations follows from the fact that there are no income

effects, so ∂g
∂s and ∂e

∂s are equal to zero. Substituting these into the first-order condition for s

and simplifying gives

s = (δgg − δee) .

∎
Proof of Proposition 2.

LetW(S) denote the weighted sum of welfare across regions as a function of an arbitrary

vector of subsidies S = (s1, s2, . . . , sn). We have

W(S) = ∑αiWi(si) = ∑αi (µ (ln(exp(Vei/µ) + exp(Vgi/µ))) +Ri − (δgiGi + δeiEi)) .

First consider the derivation of the second-best uniform subsidy. Here the central govern-

ment selects the same subsidy s for each location. Except for δgi, δei, and αi, the locations

are identical, and the government is selecting the same subsidy for each location. Therefore,
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the values for ei, gi, Ri and πi will be same across locations. Under these conditions, the

derivative of W(S) with respect to s can be written as

∑αis
∂π

∂s
−∑αi (δgi

∂G

∂s
+ δei

∂E

∂s
) = 0.

It follows that

s
∂π

∂s
− (∂G

∂s
∑αiδgi +

∂E

∂s
∑αiδei) = 0.

Solving for s gives the second-best uniform subsidy s̃

s̃ = 1
∂π
∂s

(∑αiδgi
∂G

∂s
+∑αiδei

∂E

∂s
) . (A-7)

The equation in the Proposition for s̃ now follows from the same manipulations used in the

proof of Proposition 1.

Next we want to determine a second-order Taylor series approximation to W(S) at the

point S̃ = (s̃, s̃, . . . , s̃). First we take the derivatives at an arbitrary point. Because ∂W
∂si

does

not depend on sj, the cross-partial derivative terms will all be equal to zero. We have

∂W
∂si

= αisi
∂πi
∂si

− αi (δgi
∂Gi

∂si
+ δei

∂Ei
∂si
)

From (A-2), (A-3), and (A-4) we have: ∂πi
∂si

= −πi(1−πi)µ , ∂Gi
∂si

= −πi(1−πi)µ gi and ∂Ei
∂si

= πi(1−πi)
µ ei.

Using these we can write the derivative as

∂W
∂si

= αi
πi(1 − πi)

µ
(−si + δgigi − δeiei) .

Now take the second derivative. We have

∂2W
∂s2

i

= −αi
µ2
πi(1−πi)(1−2πi) (−si + δgigi − δeiei)−αi

πi(1 − πi)
µ

= − 1

µ
(1−2πi)

∂W
∂si

−αi
πi(1 − πi)

µ
.

Evaluating the first and second derivatives at S̃ gives

∂W
∂si
∣
S̃

= αi
µ
π(1 − π)(δgig − δeie − s̃), (A-8)
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and
∂2W
∂s2

i

∣
S̃

= − 1

µ
(1 − 2π) ∂W

∂si
∣
S̃

− αi
µ
π(1 − π). (A-9)

We have dropped the subscripts from g, e, and π because prices, income, and the functions

f and h are the same across locations, and, at the point S̃, the subsidy is the same across

locations. In addition, because the subsidy does not effect the number of miles driven, it

follows from Proposition 1, that s∗i = (δgig − δeie). Thus

∂W
∂si
∣
S̃

= αi
µ
π(1 − π)(s∗i − s̃). (A-10)

Because the cross-partial derivatives are equal to zero, the second-order Taylor series

expansion of W at the point S̃ can be written as

W(S) −W(S̃) ≈ ∑
∂W
∂si
∣
S̃

(si − s̃) +
1

2
∑

∂2W
∂s2

i

∣
S̃

(si − s̃)2.

We use this expansion to evaluate W(S∗) −W(S̃). From (A-9) and (A-10) we have

W(S∗) −W(S̃) ≈ 1

µ
π(1 − π)∑αi(s∗i − s̃)2+

1

2
(− 1

µ2
π(1 − π)(1 − 2π)∑αi(s∗i − s̃)3 −

1

µ
π(1 − π)∑αi(s∗i − s̃)2) .

The formula for the second-order approximation follows by combining the quadratic (s∗i − s̃)
terms. ∎

Choice over several gasoline and electric vehicles

Here we expand the model to allow for a richer consumer choice set. For simplicity we

assume there is a single location. There are me electric vehicles and mg gasoline vehicles.

Gasoline vehicles are indexed by the subscript i and electric vehicles are indexed by the

subscript j. Each vehicle has a different purchase price and price of a mile, and we allow

for the possibility of vehicle-specific taxes on miles and purchases. The indirect utility of
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purchasing the i’th gasoline vehicle is given by

Vgi = max
x,gi

x + fi(gi) s.t. x + (pgi + tgi)gi = I − pΨi.

The indirect utility of purchasing the j’th electric vehicle is given by

Vej = max
x,ej

x + hj(gj) s.t. x + (pej + tej)ej = I − (pΩj − sj).

The conditional utility, given that a consumer elects gasoline vehicle i, is given by

Ugi = Vgi + εgi.

The conditional utility, given that a consumer elects the electric vehicle j

Uej = Vej + εej

The consumer selects the vehicle that obtains the greatest conditional utility. Following the

same distributional assumptions as in the main text, the probability of selecting the gasoline

vehicle i is

πi =
exp(Vgi/µ)

∑i exp(Vgi/µ) +∑j exp(Vej/µ)
.

The probability of selecting the electric vehicle j is

π̃j =
exp(Vej/µ)

∑i exp(Vgi/µ) +∑j exp(Vej/µ)
.

And of course ∑i πi +∑j π̃j = 1. The welfare associated with the purchase of a new vehicle is

given by

W = µ ln(∑
i

exp(Vgi/µ) +∑
j

exp(Vej/µ)) +R − (∑
i

δgiπigi +∑
j

δejπ̃jej) ,

where δgi is the damage per mile from gasoline vehicle i and δei is the damage per mile from

electric vehicle j. It is useful to define Gi = πigi and Ej = π̃jej.

A.6



Differentiated subsidies on purchase of electric vehicle

Here we consider a policy in which the government selects vehicle-specific tax on the purchase

of electric vehicles. Let sj be the subsidy on the electric vehicle j. Government revenue is

R = −∑ π̃jsj. Now consider a given electric vehicle, say vehicle k. The optimal subsidy on

the purchase of this vehicle, sk, solves the first-order condition

∂W
∂sk

= ∑
i

πi
∂Vgi
∂sk

+∑
j

π̃j
∂Vej
∂sk

+ ∂R

∂sk
−∑

i

δgi
∂Gi

∂sk
−∑

j

δej
∂Ej
∂sk

= 0.

From the Envelope Theorem, we have

∂Vgi
∂sk

= 0

and, for j ≠ k,
∂Vej
∂s

= 0.

For j = k we have
∂Vej
∂sk

= 1.

Substituting these expressions into the first-order condition gives

∂W
∂sk

= ∂R

∂sk
+ π̃k −∑

i

δgi
∂Gi

∂sk
−∑

j

δej
∂Ej
∂sk

= 0.

Now
∂R

∂sk
= −π̃k −∑

j

∂π̃j
∂sk

sj.

Substituting this into the first-order condition gives

∂W
∂sk

= −∑
j

∂π̃j
∂sk

sj −∑
i

δgi
∂Gi

∂sk
−∑

j

δej
∂Ej
∂sk

= 0.

Because there are no income effects,

∂Gi

∂sk
= gi

∂πi
∂sk
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and
∂Ej
∂sk

= ej
∂π̃j
∂sk

.

Substituting these derivatives into the first-order condition gives

∂W
∂sk

= −∑
j

∂π̃j
∂sk

sj −∑
i

δgigi
∂πi
∂sk

−∑
j

δejej
∂π̃j
∂sk

= 0. (A-11)

We have one of these equations for each k. So we must solve the system of me equations for

the me unknowns sj. Since we do not obtain an explicit solution for the optimal taxes on

purchase, we cannot derive analytical welfare approximations to the gains from differentiation

analogous to Proposition 2. We can, of course, obtain exact welfare measures by numerical

methods.

Uniform subsidy on the purchase of an electric vehicle

Now suppose that the government places a uniform subsidy s on the purchase of any electric

vehicle. Expected government revenue is given by R = −∑j π̃js. The optimal s can be found

as a special case of (A-11). Let sk = s for every k. Then (A-11) becomes

∂W
∂s

= −s∑
j

∂π̃j
∂s

−∑
i

δgigi
∂πi
∂s

−∑
j

δejej
∂π̃j
∂s

= 0.

Solving for s gives

s = −∑i
δgigi

∂πi
∂s +∑j δejej

∂π̃j
∂s

∑j
∂π̃j
∂s

Now since ∑i πi +∑j π̃j = 1 it follows that

∑
i

∂πi
∂s

+∑
j

∂π̃j
∂s

= 0.

Using this gives

s = ∑i
δgigi

∂πi
∂s

∑i ∂πi∂s

− ∑j
δejej

∂π̃j
∂s

∑j
∂π̃j
∂s

.
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In the special case in which gi = g and ej = e, we have

s = g∑i
δgi

∂πi
∂s

∑i ∂πi∂s

− e∑j
δej

∂π̃j
∂s

∑j
∂π̃j
∂s

.

The subsidy is a function of the weighted sum of marginal damages from each vehicle in the

choice set, where the weights are equal to the partial derivative of the choice probabilities with

respect to s. This generalizes the result in Proposition 1 in the main text. The informational

requirements of the two results are different, however. To evaluate the optimal subsidy in

Proposition 1, we need only make an assessment of the damage parameters (the δ′s) and the

lifetime miles (e and g). To evaluate the optimal subsidy when there is an expanded choice

set, we need, in addition, the partial derivatives of the adoption probabilities, which requires

a fully calibrated model.

We can also express this result in terms of cross-price elasticities. To see this, consider a

special case in which there are two gasoline vehicles (with probability of adoption π1 and π2)

and a single electric vehicle (with probability of adoption π̃.) The equation for the optimal

subsidy is

s = g (
δg1

∂π1

∂s + δg2
∂π2

∂s
∂π1

∂s +
∂π2

∂s

) − eδe.

From the definition of πi it follows that

∂π1

∂s
= −π1π̃

µ
and

∂π2

∂s
= −π2π̃

µ
.

Substituting into the expression for s gives

s = g (δg1π1 + δg2π2

π1 + π2

) − eδe. (A-12)

Now consider the cross-price elasticities for the electric vehicle (i.e., the effect of a change

in the price of gasoline vehicle i on the demand for the electric vehicle). For discrete choice

goods, price elasticities are defined with respect to the choice probability. So the cross-price

elasticity is

εi ≡
∂π̃

∂pΨi

pΨi

π̃
= π̃πi

µ

pΨi

π̃
= πi
µ
pΨi.
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It follows that

s = g (
δg1

ε1
pΨ1

+ δg2 ε2
pΨ2

ε1
pΨ1

+ ε2
pΨ2

) − eδe.

We can use (A-12) to describe the likely effect of including an additional gasoline vehicle

in the consumers choice set on the welfare gains from differentiated regulation. Consider a

baseline two-vehicle case in which the electric vehicle pollutes more than gasoline cars, so that

the optimal uniform policy is a tax on electric vehicle purchase. Starting at this baseline, we

consider an expanded choice set with an additional gasoline vehicle. Suppose initially that

the original gasoline vehicle and the additional gasoline vehicle are exactly the same (they

have the same purchase price, price for miles, and external costs). Then, of course, adding

the additional gasoline vehicle to the choice set will not have any welfare consequences. Now

suppose that in each region, the external costs from the additional gasoline vehicle are D

units less than the external costs from the original gasoline vehicle. Thus the additional

vehicle lowers the mean of the distribution of environmental benefits, but does not change

the variance or skewness. We now make two observations. First, because the purchase price

and price for miles are still the same we have π1 = π2. Second, the additional vehicle leads to

lower average environmental damages from gasoline vehicles in each region. Combining these

two observations with (A-12) implies that the tax on electric vehicle purchases increases in

each region. Because the gasoline vehicles are the same from the point of view of the

consumer, Proposition 2 still applies. Thus the additional gasoline vehicle lowers the welfare

gain from differentiation.1 This result is reversed if the additional vehicle raises the mean of

the distribution of environmental benefits.

B Welfare gains from differentiation: taxation of gaso-

line and electric miles

Here there are taxes on both gasoline and electric miles. We know that location specific

Pigovian taxes are first-best, but it is useful to derive this result in our model before turning

1Including the additional vehicle increases the taxes on electric vehicle purchases, which increases π,
which in turn decreases both π(1 − π) and π(1 − π)(2π − 1). Because the variance and skewness have not
changed, the second order approximation to the welfare gain from differentiation decreases.
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to other welfare results. For the moment we can drop the location subscript i.

From the Envelope Theorem, we have (under our normalization of the price of the com-

posite good, the marginal utility of income is equal to one)

∂Vg
∂tg

= −g,

and
∂Ve
∂tg

= 0.

The first-order condition for tg comes from substituting these expressions into (A-1) with

ρ = tg, setting the resulting expression equal to zero, and simplifying. This gives

(∂R
∂tg

− πg) − (δg
∂G

∂tg
+ δe

∂E

∂tg
) = 0. (A-13)

We have taxes on both gasoline and electric miles. Expected revenue is therefore R =
tgπg + te(1 − π)e. Taking the derivative of revenue with respect to tg gives

∂R

∂tg
= G + tg

∂G

∂tg
+ te

∂E

∂tg
.

Using this in the first-order condition gives

((G + tg
∂G

∂tg
+ te

∂E

∂tg
) − πg) − (δg

∂G

∂tg
+ δe

∂E

∂tg
) = 0.

Now, because G = πg, this simplifies to

(tg − δg)
∂G

∂tg
+ (te − δe)

∂E

∂tg
= 0.

Similar calculations with respect to te gives

(tg − δg)
∂G

∂te
+ (te − δe)

∂E

∂te
= 0.

Now, returning the location subscripts, it is clear that the optimal location-specific taxes are
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the Pigovian taxes t∗gi = δgi and t∗ei = δei.
Next follow the steps in the proof of Proposition 2, but this time using taxes on miles

rather than a subsidy on the purchase of the electric vehicle. Let W(T ) denote the weighted

average of per capita welfare across locations as a function of the vector of taxes

T = (tg1, tg2, . . . , tgm, te1, te2, . . . , tem).

We have

W(T ) = ∑αiWi(tgi, tei) = µ∑αi (ln(exp(Vei/µ) + exp(Vgi/µ))) +Ri − (δgiGi − δeiEi)).

First consider the second-best uniform taxes on gasoline and electric miles. Here the

central government selects the same taxes tg and te in each location. This implies the values

for ei, gi, Ri, and πi will be the same across locations. Under these conditions, the derivatives

of W(T ) with respect to tg and te be written as

∑αi ((tg − δgi)
∂G

∂tg
+ (te − δei)

∂E

∂tg
) = 0.

∑αi ((tg − δgi)
∂G

∂te
+ (te − δei)

∂E

∂te
) = 0.

The solution to these equations is t̃g = ∑αiδgi ≡ δ̄g and t̃e = ∑αiδei ≡ δ̄e. In other words, the

second-best uniform tax on gasoline miles is equal to the weighted average of the marginal

damages from gasoline emissions across locations.

Next we want to determine a first-order Taylor series approximation to W(T ) at the

point T̃ = (t̃g, t̃g, . . . , t̃g, t̃e, t̃e, . . . , t̃e). At an arbitrary point, we have

∂W
∂tgi

= αi(tgi − δgi)
∂Gi

∂tgi
+ αi(tei − δei)

∂Ei
∂tgi

and
∂W
∂tei

= αi(tgi − δgi)
∂Gi

∂tei
+ αi(tei − δei)

∂Ei
∂tei

.

At T̃ , taxes equal in each location, so the gasoline miles and electric miles will be the same
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each each location. Thus we can drop the subscripts from g, e,G,E and π. From (A-3) we

have
∂G

∂tg
= gπ(1 − π)

µ
(∂Vg
∂tg

− ∂Ve
∂tg
) + π ∂g

∂tg
= −g2π(1 − π)

µ
+ π ∂g

∂tg
.

∂E

∂tg
= −eπ(1 − π)

µ
(∂Vg
∂tg

− ∂Ve
∂tg
) + (1 − π) ∂e

∂tg
= geπ(1 − π)

µ
.

∂G

∂te
= gπ(1 − π)

µ
(∂Vg
∂te

− ∂Ve
∂te
) + π ∂g

∂te
= geπ(1 − π)

µ
.

∂E

∂te
= −eπ(1 − π)

µ
(∂Vg
∂te

− ∂Ve
∂te
) + (1 − π) ∂e

∂te
= −e2π(1 − π)

µ
+ (1 − π) ∂e

∂te
.

This gives

∂W
∂tgi
∣
T̃

= αi(δ̄g − δgi)(−g2π(1 − π)
µ

+ π ∂g
∂tg
) + αi(δ̄e − δei) (ge

π(1 − π)
µ

)

and
∂W
∂tei
∣
T̃

= αi(δ̄g − δgi) (ge
π(1 − π)

µ
) + αi(δ̄e − δei) (−e2π(1 − π)

µ
+ (1 − π) ∂e

∂te
)

The first-order Taylor series expansion of W at the point T̃ can be written as

W(T ) −W(T̃ ) ≈ ∑
∂W
∂tgi
∣
T̃

(tgi − t̃g) +∑
∂W
∂tei
∣
T̃

(tei − t̃e).

Using the expressions above gives

W(T ∗)−W(T̃ ) ≈ ∑(αi(δ̄g − δgi)(−g2π(1 − π)
µ

+ π ∂g
∂tg
) + αi(δ̄e − δei) (ge

π(1 − π)
µ

)) (t∗gi−t̃g)+

∑(αi(δ̄g − δgi) (ge
π(1 − π)

µ
) + αi(δ̄e − δei) (−e2π(1 − π)

µ
+ (1 − π) ∂e

∂te
)) (t∗ei − t̃e).

Which can be written as

W(T ∗) −W(T̃ ) ≈ π(1 − π)
µ

(∑αi (g2(t∗gi − t̃g)2 − 2ge(t∗gi − t̃g)(t∗ei − t̃e) + e2(t∗ei − t̃e)2))−

π
∂g

∂tg
∑αi(t∗gi − t̃g)2 − (1 − π)

∂e

∂te
∑αi(t∗ei − t̃e)2.
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Substituting in the values t∗gi = δgi, t∗ei = δei, t̃g = δ̄g and t̃e = δ̄e gives

W(T ∗) −W(T̃ ) ≈ π(1 − π)
µ

(∑αi (g2(δgi − δ̄g)2 − 2ge(δgi − δ̄g)(δei − δ̄e) + e2(δei − δ̄e)2))−

π
∂g

∂tg
∑αi(δgi − δ̄g)2 − (1 − π)

∂e

∂te
∑αi(δei − δ̄e)2,

which can be written as

W(T ∗) −W(T̃ ) ≈ π(1 − π)
µ

(∑αi (g(δgi − δ̄g) − e(δei − δ̄e))
2)−

π
∂g

∂tg
∑αi(δgi − δ̄g)2 − (1 − π)

∂e

∂te
∑αi(δei − δ̄e)2.

It is interesting to compare this formula to the corresponding one for purchase subsidies.

Using the fact that s∗i = (δgig − δeie) and s̃ = (δ̄gg − δ̄ee) in conjunction with the proof of

Proposition 2, we can write the first-order approximation formula for the welfare gain of

differentiated purchase subsidies as

W(S∗) −W(S̃) ≈= π(1 − π)
µ

(∑αi(e(δei − δ̄e) − g(δgi − δ̄g))2)

The first term in the formula for W(T ∗) − W(T̃ ) has exactly the same structure as the

formula for W(S∗) − W(S̃), but the values for π, e, and g will be different across the two

formulas. The formula for W(T ∗) −W(T̃ ) also has two extra terms that correspond to the

price effects of the taxes on the purchase of gasoline and electric miles. Because these price

effects are negative, both of the extra terms increase the benefit of differentiated regulation.

In the special case in which the population in each location is the same and e = g, first term

in the formula for W(T ∗) −W(T̃ ) is proportional to the variance of the difference between

the list of numbers δgi and δei, the second term is proportional to the variance the list of

numbers δgi, and the third term is proportional to the variance of the list of numbers δei.
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C Continuous Choice Model

Consider an alternative model of vehicle choice and consumption of miles. Here consumers

rent vehicles on a per mile basis from a competitive leasing market. We use the same notation

for variables that also appear in the main text, and introduce new variables as needed.

Consumers obtain utility from a composite consumption good x (with price normalized

to one) and from miles driven over the course of a year, either gasoline miles g or electric

miles e. The rental price of gasoline miles is rg and the rental price of electric miles is re. A

consumer’s indirect utility function is given by

V = max
x,g,e

u(g, e) + x such that x + ree + rgg = I,

where I is income and u(g, e) is a function that delineates the utility of consuming gas and

electric miles.

Firms in the leasing market buy vehicles from producers and rent them to consumers.

Let pψ be the price of a gasoline vehicle, and let pg be the price of a gasoline mile. To break

even, the leasing firm must charge rental price

rg =
pψ
`
+ pg,

where ` is the number of miles in the lifetime of the vehicle. Likewise, for electric cars

re =
pΩ − s
`

+ pe,

where pΩ is the price of a electric vehicle, pe is the price of an electric mile, and s is the

electric vehicle purchase subsidy. In equilibrium, leasing firms buy enough vehicles of each

type in a given year to satisfy the total demand for miles from consumers. This implies the

number of electric car purchases and gasoline car purchases (normalized per consumer) are

given by
e

`
and

g

`
.

Consumers create negative environmental externalities by driving, but ignore the dam-
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ages from these externalities when making choices about the number of miles. Because the

damages from these pollutants may be global or local, we introduce multiple locations into

the model.

Uniform vs. differentiated regulation

Let m denote the number of locations and let αi denote the proportion of the total population

of consumers that reside in location i. Let δgi denote the marginal full damages (in dollars per

mile) from driving a gasoline vehicle in location i, and δei denote the marginal full damages

(in dollars per mile) from driving an electric vehicle in location i.

First we study differentiated regulation. Here there are m local governments that select

location-specific purchase subsidies. Let Ri denote the per capita government revenue gen-

erated by the purchase of vehicles by the leasing firms in location i. Local government i

selects the purchase subsidy si to maximize the welfare Wi associated with driving vehicles

within the location, defined as the sum of utility and revenue less pollution damage:

Wi = V +Ri − (δgigi + δeiei).

Optimizing the welfare function gives the the following Proposition.

Proposition 3. The second-best differentiated subsidy on the purchase of the electric vehicle

in location i is given by s∗i where

s∗i = `
⎛
⎝
−δgi

∂gi
∂si
∂ei
∂si

− δei
⎞
⎠
. (A-14)

If we assume that the subsidy does not effect the total number of miles driven, it follows that

s∗i = ` (δgi − δei) .

Proof. Revenue is equal to the subsidy multiplied by the number of electric car sales.

Ri = −si
ei
`
.
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So welfare is

Wi = (Vi − si
ei
`
− δgigi − δeiei.)

The first-order condition is

∂Vi
∂si

− ei
`
− si
`

∂ei
∂si

− δgi
∂gi
∂si

− δei
∂ei
∂si

= 0.

We have
∂Vi
∂si

= ∂Vi
∂re

∂re
∂si

= (−ei)(−
1

`
),

where the second equality comes from Roy’s identity (and the fact that the marginal utility

of income is equal to one). Substituting into the first-order condition gives

−si
`

∂ei
∂si

− δgi
∂gi
∂si

− δei
∂ei
∂si

= 0.

Solving for si gives (A-14).

If the subsidy does not effect the total number of miles driven, then ei + gi is constant

with respect to s. It follows that
∂ei
∂s

+ ∂gi
∂s

= 0. (A-15)

Using this in (A-14) completes the proof.

The second result in Proposition 3 is the same as the result in Proposition 1, provided

that the vehicle lifetime miles are the same. In the discrete choice model, the subsidy does

not effect either the number of electric miles driven or the number of gasoline miles driven.

In the continuous choice model, we can make the weaker assumption that the subsidy does

not effect the total number of miles driven and still obtain the same result for the second-best

subsidy.

Next we study uniform regulation. Here a central government selects a uniform subsidy

that applies to all m locations. The government’s objective is to maximize ∑αiWi, which

is the weighted sum of welfare across locations. The next proposition delineates the second-

best uniform subsidy. It also describes an approximation formula for the welfare gain in

moving from uniform regulation to differentiated regulation.
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Proposition 4. Assume that the subsidy does not effect the total number of miles driven.

Also assume that prices, income, and the function u are the same across locations. The

second-best uniform subsidy on the purchase of an electric vehicle is given by s̃, where

s̃ = ` ((∑αiδgi) − (∑αiδei)) .

Furthermore, let W(S∗) be the weighted average of welfare from using the second-best differ-

entiated subsidies s∗i in each location and let W(S̃) be the weighted average of welfare from

using the second-best uniform subsidy s̃ in each location. To a second-order approximation,

we have

W(S∗) −W(S̃) ≈ 1

2

∂e

∂s
∣
s̃

1

`
∑αi(s∗i − s̃)2 +

1

2

∂2e

∂s2
∣
s̃

1

`
∑αi(s∗i − s̃)3.

Proof. LetW(S) denote the sum of welfare across regions as a function of an arbitrary vector

of subsidies S = (s1, s2, . . . , sn). We have

W(S) = ∑αi(Vi − si
ei
`
− δgigi − δeiei.)

First consider the derivation of the second-best uniform subsidy. Here the central govern-

ment selects the same subsidy s for each location. Except for δgi, δei, and ni, the locations are

identical, and the government is selecting the same subsidy for each location. Therefore, the

values for ei, gi, and Ri will be same across locations. Under these conditions, the derivative

of W(S) with respect to s can be written as

∑αi(−
s

`

∂e

∂s
− δgi

∂g

∂s
− δei

∂e

∂s
) = 0.

Solving for s gives

s = `(−(∑αiδgi)
∂g
∂s
∂e
∂s

− (∑αiδei)) .

Applying (A-15) gives the equation in the proposition.

Next we want to determine a second-order Taylor series approximation to W(S) at the

point S̃ = (s̃, s̃, . . . , s̃). First we take the derivatives at an arbitrary point. Because ∂W
∂si

does
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not depend on sj, the cross-partial derivative terms will all be equal to zero. We have

∂W
∂si

= αi (−
si
`

∂ei
∂si

− δgi
∂gi
∂si

− δei
∂ei
∂si
) = αi

∂ei
∂si

⎛
⎝
−si
`
− δgi

∂gi
∂si
∂ei
∂si

− δei
⎞
⎠

= αi
∂ei
∂si
(−si

`
+ δgi − δei) ,

where the third equality follows from (A-15).

Now take the second derivative. We have

∂2W
∂s2

i

= αi (−
si
`

∂2ei
∂s2

i

− 1

`

∂ei
∂si

+ δgi
∂2ei
∂s2

i

− δei
∂2ei
∂s2

i

) = −αi
`

∂ei
∂si

+ αi
∂2ei
∂s2

i

(−si
`
+ δgi − δei) ,

where we have used the derivative of (A-15) with respect to s in simplifying.

Evaluating the first and second derivatives at S̃ gives

∂W
∂si
∣
S̃

= αi
∂e

∂s
∣
s̃

(− s̃
`
+ δgi − δei) =

αi
`

∂e

∂s
∣
s̃

(−s̃ + s∗i ) , (A-16)

and

∂2W
∂s2

i

∣
S̃

= −αi
`

∂e

∂s
∣
s̃

+ αi
∂2e

∂s2
∣
s̃

(− s̃
`
+ δgi − δei) = −

αi
`

∂e

∂s
∣
s̃

+ αi
`

∂2e

∂s2
∣
s̃

(−s̃ + s∗i ) , (A-17)

where the second equality in both cases follows from Proposition 3. We have dropped the

subscripts from g and e because prices, income, and the function u are the same across

locations, and, at the point S̃, the subsidy is the same across locations.

Because the cross-partial derivatives are equal to zero, the second-order Taylor series

expansion of W at the point S̃ can be written as

W(S) −W(S̃) ≈ ∑
∂W
∂si
∣
S̃

(si − s̃) +
1

2
∑

∂2W
∂s2

i

∣
S̃

(si − s̃)2.

We use this expansion to evaluate W(S∗) −W(S̃). From (A-16) and (A-17) we have

W(S∗) −W(S̃) ≈ ∂e

∂s
∣
s̃

1

`
∑αi(s∗i − s̃)2 −

1

2

∂e

∂s
∣
s̃

1

`
∑αi(s∗i − s̃)2 +

1

2

∂2e

∂s2
∣
s̃

1

`
∑αi(s∗i − s̃)3.
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It follows that

W(S∗) −W(S̃) ≈ 1

2

∂e

∂s
∣
s̃

1

`
∑αi(s∗i − s̃)2 +

1

2

∂2e

∂s2
∣
s̃

1

`
∑αi(s∗i − s̃)3.

Proposition 4 is most easily interpreted in the special case in which the population is the

same in each location (αi = 1
n). Here the second-best uniform subsidy s̃ is equal to average

environmental benefits multiplied by the number of miles driven in a vehicle’s life. And the

approximate welfare gain from differentiation is a function of the second and third moments

of the distribution of the environmental benefits. Once again we see that under the weaker

assumption that the subsidy does not effect the total miles driven, we get similar results to

the discrete choice model in the main text.

D Welfare Gains from Differentiation: Additional De-

tails and Comparison with Mendelsohn (1986)

First consider the discrete choice model in the main text, under the assumptions of Propo-

sition 2. Marginal welfare in region i is given by

∂Wi

∂si
= π(1 − π)

µ
(−si + g(δgi − δei)). (A-18)

Next considere the continuous choice model in Supplementary Appendix C, under the as-

sumptions of Proposition 4. Marginal welfare in region i is given by

∂Wi

∂si
= ∂e
∂s
(−si

`
+ δgi − δei) . (A-19)

Finally, consider the model in Mendelsohn (1986). Here the regulator selects an emission

standard qi and the environmental variable is denoted by xi. Marginal welfare in region i is

given by
∂Wi

∂qi
= a + xi − bqi. (A-20)
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These equations all have a similar feature. When set equal to zero in a first-order condi-

tion, one can solve for the policy variable as a linear function of the environmental variable.

This ensures that the welfare benefits of differentiation can be written as a function of the

moments of the distribution of the environmental variable. But these equations differ with

respect to whether the overall equation is linear in the policy variable, and this difference

determines the whether or not the second moment is sufficient to describe the benefits of

differentiation.

In Mendelsohn’s model (A-20), marginal welfare is linear in xi. And the welfare gain from

differentiation is a function of only the second moment of the distribution of the environmen-

tal variable. In contrast, in the discrete choice version of our model (A-18), marginal welfare

is non-linear, because π(1 − π) is a non-linear function si. And, as described by Propo-

sition 2, the welfare gain from differentiation is a function of both the second and third

moments of the distribution of the environmental variable. In the continuous version of our

model (A-19), marginal welfare may be linear or non-linear, depending on the properties of

the demand function e. If the demand function is linear, then ∂e
∂si

is a constant, and hence

marginal welfare is linear in si. In this case, we get the same result as with Mendelsohn:

the welfare gain from differentiation is a function of only the second moment. (This follows

from Proposition 4, because ∂2e
∂s2 will be equal to zero.) If the demand function is non-linear,

then ∂e
∂si

is not constant, and hence marginal welfare in nonlinear in si. In this case, we get

the same result as with our discrete choice version: the welfare gain from differentiation is a

function of both the second and third moment.

A graphical illustration of these ideas for a three region example is given in Figure A.

Here we use Mendelsohn’s notation with units normalized such that the optimal differentiated

policy variable is equal to the environmental variable (thus, for example, in (A-20), a = b = 1).

Assume for the moment that marginal welfare is a linear function of the policy variable

qi. We have superimposed all the marginal welfare functions for all three regions on the

same coordinate axis. In the first case, shown on the left-hand-side, the environmental

variable x takes on the values (1,4,4) in the three regions. Notice that regions two and

three have the same marginal welfare. Under differentiated regulation, the optimal values

are (q∗1 , q∗2 , q∗3) = (1,4,4). Under uniform regulation, the optimal value for q̃ is three, which
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Figure A: Effect of Third Moment on Welfare Gain From Differentiation: Linear Case

A

B
B

A

2 541 q1, q2, q3 q1, q2, q3

∂W3

∂q3
∂W2

∂q3
= ∂W3

∂q3

∂W1

∂q2
= ∂W2

∂q2∂W1

∂q1

x = (1,4,4) x = (2,2,5)

is simply the average of the xi’s. The welfare loss from uniform regulation is equal to the

area A plus two times the area B. In the second case, shown on the right-hand-side, the

environmental variable takes on the values (2,2,5) and region one and two now have the

same marginal welfare. Notice that the two cases have the same mean and variance for the

distribution of x, but the third moment is different. The welfare loss from uniform regulation

in the second case is equal to the area A plus two times the area B. Because these triangles

have the same area in both cases, the welfare loss from uniform regulation is the same in both

cases. Thus the third moment does not effect the welfare loss, provided that marginal welfare

is linear in the policy variable. If we relax this assumption, however, then the welfare loss

will no longer be the same across the two cases, and hence will depend on the third moment.

As a final point, our welfare approximation was defined relative to the reference point

of uniform regulation. Suppose instead we define the reference point to be the second-best

differentiated regulation. In this case we are measuring the welfare loss of using uniform
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regulation rather than differentiated regulation.2 Modifying (A-8) to evaluate the derivative

at S∗ rather than S̃ gives

∂W
∂si
∣
S∗

= αi
µ
πi(1 − πi)(−s∗i + δgig − δeie) =

αi
µ
πi(1 − πi)(−s∗i + s∗i ) = 0. (A-21)

As we would expect, the first derivative of the welfare function is equal to zero at the second-

best differentiated regulation. Similar modifications of (A-9) gives

∂2W
∂s2

i

∣
S∗

= − 1

µ
(1 − 2πi)

∂W
∂si
∣
s∗i

− αi
µ
πi(1 − πi) = −

αi
µ
πi(1 − πi), (A-22)

because the first derivative is zero. Now we want to evaluate W(S̃) −W(S∗). Because the

first derivative is zero at S∗, we have

W(S̃) −W(S∗) ≈ − 1

2µ
∑πi(1 − πi)αi(s∗i − s̃)2.

This expression is quadratic in s∗ − s̃. But also notice that we can’t factor out the π′s,

because they are defined at the points s∗i , and hence are not all the same. So there is not a

simple interpretation in terms of the distribution of the environmental benefits of an electric

vehicle. For this reason, we use the other welfare expression (with the reference point of

uniform regulation) in the main text.

E Substitute gasoline vehicles and their emissions

In the main text, we assigned an substitute gasoline vehicle to each electric vehicle. These

substitute gasoline vehicles represent the forgone vehicle when a consumer purchases an

electric vehicle. Emissions data for the substitute gasoline vehicles are given in Table A.

To test to see if our choices were reasonable, we obtained data from the market research

company MaritzCX. They conduct a new vehicle customer survey in which participants are

asked: “When shopping for your new vehicle, did you consider any OTHER cars or trucks?”

2In the main text we measured the welfare gain of using differentiated regulation rather than uniform
regulation. Because we are using approximation formulas, these two measures will not be exactly the same.
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Table A: Emissions data for 2014 electric vehicles and substitute gasoline vehicles

Electric Vehicle kWhrs/Mile Substitute MPG NOx VOC PM2.5 SO2

Gasoline Vehicle

Chevy Spark EV 0.283 Chevy Spark 39/31 0.04 0.127 0.017 0.004
Honda Fit EV 0.286 Honda Fit 33/27 0.07 0.147 0.017 0.005
Fiat 500e 0.291 Fiat 500e 40/31 0.07 0.147 0.017 0.004
Nissan Leaf 0.296 Toyota Prius 48/51 0.03 0.112 0.017 0.003
Mitsubishi i-Miev 0.300 Chevy Spark 39/31 0.04 0.127 0.017 0.004
Smart fortwo electric 0.315 Smart fortwo 38/34 0.07 0.147 0.017 0.004
Ford Focus electric 0.321 Ford Focus 36/26 0.03 0.112 0.017 0.005
Tesla Model S (60 kWhr) 0.350 BMW 740i 29/19 0.07 0.147 0.017 0.007
Tesla Model S (85 kWhr) 0.380 BMW 750i 25/17 0.07 0.147 0.017 0.008
Toyota Rav4 EV 0.443 Toyota Rav4 31/24 0.07 0.147 0.017 0.006
BYD e6 0.540 Toyota Rav4 31/24 0.07 0.147 0.017 0.006

Notes: NOx, VOC, PM2.5, and SO2 emissions rates for gasoline equivalent cars are in
grams per mile.

(emphasis in original). If the participants responded yes, then they were asked to state the

“model most seriously considered”. We obtained data on responses from participants who

purchased one of the electric vehicles listed in Table 2 during the years 2013-2015.

The responses are summarized in Tables B to Tables D for the Ford Focus, Nissan

Leaf and Tesla S. The most notable thing about the responses is that the vast majority of

respondents either report most seriously considering another EV or not seriously considering

another vehicle. Thus the survey provides information on the substitute gasoline vehicle for

only a small share of respondents.

For this small share of respondents, the substitute gasoline vehicle is largely consistent

with our choices. For the Ford Focus EV, the most common substitute gasoline vehicle are

the Toyota Prius with 55 respondents; the Audi A3 and Chevrolet Spark with 21 respondents

each; and the Ford Focus (our choice), the Ford Fusion Hybrid, the Volkswagen Golf, and an

unspecified Nissan car with 20 respondents each. For the Nissan Leaf, the Toyota Prius (our

choice) was by far the most common substitute gasoline vehicle with 2166 respondents. For

the Tesla S, the Audi A-Series were the most common substitute gasoline vehicle. But the

Audi A7 and A8 have very similar emission profiles to our choices (the BMW 750 and BMW

740). The results for the other electric vehicles follow a similar pattern. For the Spark EV
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and Smart fortwo EV, our choice was one of the most popular substitute gasoline vehicles.

For the Mitsubishi i-MEV and Toyota Rav4 EV, our choice was not one of the most popular

substitute gasoline vehicles, but our choice has a similar emission profile as these vehicles.

Finally, for the Honda Fit EV, Fiat 500 EV, and BYD e6, there were no responses in the

data.

Most of the results in the main paper are based on the comparison of the Ford Focus EV

with the gasoline Ford Focus. Changing the substitute gasoline vehicle to one of the other

gasoline vehicles identified in Table B would affect these results. For example, the Toyota

Prius is substantially cleaner than the gasoline Ford Focus. Using the Toyota Prius as the

substitute gasoline vehicle would shift the distribution of environmental benefits of the Ford

Focus EV downward. Using the numbers in Table 2a, mean environmental benefits would

decrease from -0.73 to -1.36 cents per mile. Conversely, using the Audi A3 or Volkswagen

Golf (dirtier cars than the gasoline Ford Focus) would shift the distribution of environmental

benefits of the Ford Focus EV upward. Thus our choice of the gasoline Ford Focus as the

substitute vehicle can be viewed as a moderate one given the alternatives.

As an additional robustness check, we created “composite” substitute gasoline vehicles

by taking the weighted average of emissions of the top 10 gasoline substitute vehicles for

each electric vehicle, where the weights correspond to the response frequencies. Table E

compares the environmental benefits with respect to our original substitute vehicle and the

environmental benefits with respect to the composite substitute vehicle.3 In about half of

the cases the composite substitute vehicle is cleaner than the original substitute vehicle and

in about half the cases it is dirtier.

F EPRI charging profile

The EPRI charging profile is given in Figure B.

3We did not have any data for the Honda Fit EV, Fiat 500 EV, and BYD e6. The data for Tesla was not
broken out between the 60 and 85 kWhr models, so we did the calculation for the 85 kWhr model.
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Table B: Ford Focus EV: Model most seriously considered

Response Frequency Share

Nissan Leaf ∗ 1128 30%
No Other Considered 1108 30%
Chevrolet Volt ∗ 327 9%
Tesla Model S ∗ 116 3%
Fiat 500 Electric ∗ 105 3%
Ford Fusion Plug In Hybrid ∗ 76 2%
Honda Fit EV ∗ 67 2%
Toyota RAV4 EV ∗ 61 2%
Ford C-Max Energi ∗ 57 2%
Toyota Prius 55 1%
Toyota Prius Plug-in ∗ 52 1%
Chevrolet Spark Electric ∗ 47 1%
BMW i3 ∗ 33 1%
Volkswagen e-Golf ∗ 32 1%
Mitsubishi i-MiEV ∗ 25 1%
Audi A3 21 1%
Chevrolet Spark 21 1%
Ford Focus 20 1%
Ford Fusion Hybrid 20 1%
Volkswagen Golf 20 1%
Nissan Car Unspecified 20 1%
Ford Fusion 18 0%
Honda Accord 17 0%
Nissan Unspecified 17 0%
Fiat 500 15 0%
Lincoln MKZ Hybrid 13 0%

Notes: The survey has 3754 responses from Ford Focus EV purchasers. ∗ indicates plug-in
vehicles.
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Table C: Nissan Leaf EV: Model most seriously considered

Response Frequency Share

No Other Considered 31,081 61%
Chevrolet Volt ∗ 3372 7%
Toyota Prius 2166 4%
Ford Focus Electric ∗ 1889 4%
Toyota Prius Plug-in ∗ 1073 2%
Tesla Model S ∗ 903 2%
Honda Fit EV ∗ 590 1%
BMW i3 ∗ 502 1%
Ford C-Max Energi ∗ 459 1%
Fiat 500 Electric ∗ 448 1%
Kia Soul 344 1%
Mitsubishi i-MiEV ∗ 332 1%
Ford Fusion 301 1%
Honda Accord 263 1%
Nissan Juke 249 0%
Ford Fusion Plug In Hybrid ∗ 241 0%
Lexus CT200h 231 0%
Toyota Prius v 227 0%
Kia Soul EV ∗ 217 0%
Audi A5 201 0%
Chevrolet Spark Electric ∗ 200 0%
Nissan Altima 189 0%
Honda CR-V 182 0%
Toyota RAV4 EV ∗ 181 0%
Honda Accord Hybrid 172 0%
Honda Civic 157 0%
Nissan Rogue 146 0%
Toyota Corolla 136 0%
smart fortwo electric ∗ 136 0%
MINI Cooper Countryman 135 0%

Notes: The survey has 51,002 responses from Nissan Leaf EV purchasers. ∗ indicates plug-in
vehicles.
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Table D: Tesla S EV: Model most seriously considered

Response Frequency Share

No Other Considered 24,109 26%
Audi A7 648 1%
Chevrolet Volt ∗ 592 1%
Nissan Leaf ∗ 480 1%
Audi A8 337 0%
Porsche Panamera 280 0%
Audi S7 262 0%
Mercedes-Benz S550 260 0%
Audi A6 247 0%
Lexus Car Unspecified 235 0%
Misc. Division Car Unspecified 219 0%
Mercedes-Benz Car Unspecified 219 0%
BMW 650 205 0%
Land Rover Range Rover 199 0%
Fisker Karma ∗ 169 0%
Chevrolet Corvette Stingray 163 0%
Porsche Panamera S Hybrid ∗ 163 0%
Porsche 911 138 0%
BMW Car Unspecified 136 0%
BMW 5-Series Unspecified 132 0%
Audi Car Unspecified 125 0%
Lexus LS460 121 0%
Audi RS 7 116 0%
Tesla Car Unspecified ∗ 113 0%
Jaguar F-Type 111 0%
BMW ActiveHybrid 3 102 0%
Infiniti Q50 Hybrid 97 0%
BMW 750 96 0%
Cadillac Car Unspecified 94 0%
Jeep Grand Cherokee 94 0%
Lexus ES300h 91 0%
Land Rover Evoque 90 0%
Cadillac CTS 90 0%
Lincoln Car Unspecified 90 0%
Porsche Car Unspecified 87 0%
Lincoln MKZ Hybrid 86 0%
Toyota Prius 85 0%
BMW Unspecified 78 0%
BMW 6-Series Unspecified 78 0%
Audi S5 78 0%
BMW M5 76 0%
Mercedes-Benz E550 74 0%

Notes: The survey has 92,437 responses from Tesla S EV purchasers. ∗ indicates plug-in vehicles.
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Table E: Environmental benefits (cents/mile) relative to two substitute gasoline vehicles

Electric Vehicle Environmental Benefits Environmental Benefits
Original Substitute Composite Substitute

Chevy Spark EV -.60 -0.45
Nissan Leaf -1.16 -.92
Mitsubishi i-Miev -0.73 -0.70
Smart fortwo electric -0.87 -0.73
Ford Focus electric -0.73 -1.02
Tesla Model S (85 kWhr) -0.39 -0.54
Toyota Rav4 EV -1.49 -1.93

Notes: Data for original substitute column is from Table 2. Composite substitute is formed
by taking the weighted average of the top 10 substitutes for the relevant electric vehicle.

Figure B: EPRI charging profile

	

Appendix	Figure	1:		EPRI	charging	profile.	

	

	

Source:	“Environmental	Assessment	of	Plug‐In	Hybrid	Electric	Vehicles,	Volume	1:	Nationwide	
Greenhouse	Gas	Emissions”	Electric	Power	Research	Institute,	Inc.	2007.		p.	4‐10.	

	 	

Source: Electric Power Research Institute (2007).

G The effect of temperature on electric vehicle energy

use

Let E68 be the energy usage (in KWhr/mile) at a baseline temperature of 68°F (obtained

from EPA data). In this Appendix, we determine a temperature adjusted energy usage Ẽ.

The range of an electric vehicle R is given by

R = C
E

where C is the battery capacity of the vehicle (in KWhr). We first determined a function

R(T ) that describes the range as a function of temperature and then use this function in
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conjunction with weather data to calculate the temperature adjusted energy usage Ẽ for

each county.

There are three recent studies of the effect of temperature on electric vehicle range.

1. Transport Canada. This engineering study considered three different electric vehicles,

three temperatures (68°F, 19.4°F, -4°F), and cabin heat on/off conditions. The origi-

nal data is available at https://www.tc.gc.ca/eng/programs/environment-etv-electric-

passenger-vehicles-eng-2904.htm

2. AAA. This engineering study considered three different electric vehicles, three tem-

peratures (75°F, 20°F, 95°F). We were unable to obtain the original data, but the

results are summarized on the internet (http://newsroom.aaa.com/2014/03/extreme-

temperatures-affect-electric-vehicle-driving-range-aaa-says)

3. Nissan Leaf Crowdsource. This study summarizes user reported driving ranges at

a variety of temperatures for the Nissan leaf. The results are posted on the internet

(http://www.fleetcarma.com/nissan-leaf-chevrolet-volt-cold-weather-range-loss-electric-

vehicle/)

There is clear evidence in these studies that significant range loss in electric vehicles

occurs both at low and high temperatures.4 We use a Gaussian function to describe this

range loss

R(T ) = R68e
−
(T−68)2

y , (A-23)

where R68 is the range at the baseline temperature of 68°F and y is a parameter to be fitted

from the range loss data. The transport Canada study indicates a 20 percent range loss at

19.4°F with the heat off and a 45 percent range loss at 19.4°F with the heat on. We took

the average of these figures and assumed a 33 percent range loss. This gives5

y = −1(19.4 − 68)2
ln(0.67) .

4Yuksel and Michalek (2015) use the Nissan Leaf data in their analysis of the effect of temperature on
electric vehicle range.

5The assumed range loss is (R(19.4) −R68)/R68 = −0.33 which implies R(19.4)/R68 = 0.67. Using this in

(A-23), we have 0.67 = e−
(19.4−68)2

y , which we can then solve for y.

A.30



Temperature data was obtained from the CDC website.6 This gave us the average

monthly temperature in each county for the years 1979-2011. In a given month j with

temperature Tj, the energy usage per mile in that month is given by

Ej =
C

R(Tj)
= E68

R68

R(Tj)
.

Let the total miles driven in month j be denoted by xj, the temperature adjusted energy

usage is given by the formula

Ẽ = ( 1

∑xj
)

12

∑
j=1

Ejxj = (
1

∑xj
)

12

∑
j=1

⎛
⎝

E68

e−
(Tj−68)2

y

⎞
⎠
xj.

We evaluate this formula assuming the number of miles driven per day is constant over all

months.

H Procedure for assigning counties to electricity re-

gions

We model nine electricity demand regions for the contiguous US. Most are based on NERC

regions (see http://www.nerc.com for a general description). The Eastern interconnection

has six NERC regions: FRCC, MRO, NPCC, RFC, SERC, and SPP. We modify these

regions by removing those counties that are served by the Midwest Independent Transmission

System (MISO) circa 2012 from the overlapping NERC regions: MRO, RFC, SERC, and

SPP. This new region is then merged with the remaining MRO area. Thus, only the FRCC

and NPCC regions are exact NERC regions. We split the Western interconnection between

California (specifically, the CA-MX NERC subregion) and the rest of the WECC. The Texas

interconnection is simply the coterminous ERCOT.

Given this set of NERC regions, we assign each county to specific region using the

following procedure. The EPA power profiler (http://www.epa.gov/energy/power-profiler,

year 2010 data) provides a mapping from zip code to eGrid subregion. More specifically,

6http://wonder.cdc.gov/nasa-nldas.html.
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it identifies the primary, secondary, and tertiary eGrid subregion. We only use the pri-

mary subregion, and map this into the appropriate NERC region. From the U.S. Depart-

ment of Housing and Urban Development, we obtained a county to zip code crosswalk

(http://www.huduser.gov/portal/datasets/usps crosswalk.html, first quarter 2010). This

provided all the zip codes in a given county as well as the number of addresses for each

zip code. Combining the EPA power profiler data with the county to zip crosswalk en-

abled us to assign a NERC region to each county. In the cases in which this procedure

assigned more than one NERC region to a given county, we selected the NERC region which

corresponded to the largest number of addresses in the county.

Finally, we recode counties as part of MISO as follows. First, we use EIA 860 data on

power plants to determine which utilities serve the ISO. Then the utility IDs are merged

with EIA 861 files that list the counties that each utility serves. If a utility in a given county

serves MISO, that county was included. Next, we included all other counties in the Eastern

Interconnection that are in Iowa, Illinois, Indiana, Michigan, North Dakota, or Wisconsin.

Finally we excluded all utilities in Ohio as well as the Commonwealth Edison Co. and

Indiana Michigan Power Co. territories.

The overall result is shown in Figure C

I Methods details

Data sources for emissions of gasoline vehicles

The emissions of SO2 and CO2 follow directly from the sulfur or carbon content of the fuels.

Since emissions per gallon of gasoline does not vary across vehicles, emissions per mile can

be simply calculated by the efficiency of the vehicle.7 For emissions of NOx, VOCs and

PM2.5, we use the Tier 2 standards for NOx, VOCs (NMOG) and PM. We augment the

VOC emissions standard with GREET’s estimate of evaporative emissions of VOCs and

augment the PM emissions standard with GREET’s estimate of PM2.5 emissions from tires

7The carbon content of gasoline is 0.009 mTCO2 per gallon and of diesel fuel is 0.010 mTCO2 per gallon.
For sulfur content we follow the Tier 2 standards of 30 parts per million in gasoline (0.006 grams/gallon)
and 11 parts per million diesel fuel (0.002 grams/gallon).
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Figure C: Electricity demand regions
Appendix	Figure	2:		Electricity	demand	regions.	

	

Notes:	Codes	are	1‐SERC;	2‐California;	3‐RFC;	4‐WECC	w/o		CA	or	NPCC;	5‐ERCOT;	6‐MISO	&	MRO;	
7‐FRCC;	and	8‐SPP.	
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and brake wear. Electric vehicles are likely to emit far less PM2.5 from brake wear because

they employ regenerative braking. We had no way of separating emissions into tires and

brake wear separately, so we elected to ignore both of these emissions from electric vehicles.

This gives a small downward bias to emissions of electric vehicles.

Data sources for the electricity demand regressions

The Environmental Protection Agency (EPA) provides data from its Continuous Emissions

Monitoring System (CEMS) on hourly emissions of CO2, SO2, and NOx for almost all

fossil-fuel fired power plants. (Fossil fuels are coal, oil, and natural gas. We aggregate

data from generating units to the power-plant level. Some older smaller generating units

are not monitored by the CEMS data.) CEMS does not monitor emissions of PM2.5 but

does collect electricity (gross) generation. We match emissions data from the 2011 NEI to

annual gross generation reported on the DOE form 923, by plant, to estimate an average

annual average emissions rate expressed as tons of PM2.5/kWh. Power plant emissions of

VOCs are negligible. Based on the NEI for 2008, power plants accounted for about 0.25%
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of VOC emissions, but 75% of SO2 emissions and 20% of NOx emissions. In contrast, the

transportation sector accounted for about 40% of VOC emissions.

The hourly electricity load data are from the Federal Energy Regulatory Commission’s

(FERC) Form 714. Weekends are excluded to focus on commuting days. See Graff Zivin et

al (2014) for more details on the CEMS and FERC data.

Details of the AP2 model

AP2 is a standard integrated assessment model in that it links emissions to damages.8

The model first uses an air quality module to map the emissions by sources into ambient

concentrations pollutants at receptor locations. Next, concentrations are used to estimate

exposures using detailed population and yield data for each receptor county in the lower-48

states. Exposures are then converted to physical effects through the application of peer-

reviewed dose-response functions. Finally, an economic valuation module maps the ambient

concentrations of pollutants into monetary damages. AP2 also employs an algorithm to

determine the marginal damages associated with emissions of any given source.

The inputs to the air quality module are the emissions of ammonia (NH3), fine particulate

matter (PM2.5), sulfur dioxide (SO2), nitrogen oxides (NOx), and volatile organic compounds

(VOC)—from all of the sources in the contiguous U.S. that report emissions to the USEPA.9

The outputs from the air quality module are predicted ambient concentrations of the three

pollutants—SO2, O3, and PM2.5— at each of the 3,110 counties in the contiguous U.S.

The relationship between inputs and outputs captures the complex chemical and physical

processes that operate on the pollutants in the atmosphere. For example, emissions of

ammonia interact with emissions of NOx, and SO2 to form concentrations of ammonium

nitrate and ammonium sulfate, which are two significant (in terms of mass) constituents of

8See Muller, 2011; 2012; 2014. The AP2 model is an updated version of the APEEP model (Muller and
Mendelsohn 2007; 2009; 2012; National Academy of Sciences 2010; Muller et al 2011; Henry et al 2011).

9There are about 10,000 sources in the model. Of these, 656 are individually-modeled large point sources,
most of which are electric generating units. For the remaining stationary point sources, AP2 attributed
emissions to the population-weighted county centroid of the county in which USEPA reports said source
exists. These county-point sources are subdivided according to the effective height of emissions because
this parameter has an important influence on the physical dispersion of emitted substances. Ground-level
emissions (from vehicles, trucks, households, and small commercial establishments without an individually-
monitored smokestack) are attributed to the county of origin (reported by USEPA), and are processed by
AP2 in a manner that reflects the low release point of such discharges.
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PM2.5. And emissions of NOx and VOCs are linked to the formation of ground-level ozone,

O3. The predicted ambient concentrations from the air quality module give good agreement

with the actual monitor readings at receptor locations (Muller 2011).

The inputs to the economic valuation module are the ambient concentrations of SO2, O3,

and PM2.5 and the outputs are the monetary damages associated with the physical effects of

exposure to these concentrations. The majority of the damages are associated with human

health effects due to O3 and PM2.5, but AP2 also considers crop and timber losses due to O3,

degradation of buildings and material due to SO2, and reduced visibility and recreation due

to PM2.5. For human health, ambient concentrations are mapped into increased mortality

risk and then increased mortality risks are mapped into monetary damages.10 AP2 uses the

value of a statistical life (or VSL) approach to monetize an increase in mortality risk (see

Viscusi and Aldy 2003). In this paper we use the USEPA’s value of approximately $600 per

0.0001 change in annual mortality risk.11 This value of an incremental change in mortality

risk yields a VSL of $6 x 106 = $600/0.0001.

AP2 is used to compute marginal ($/ton) damages over a large number of individual

sources (power plants in the present analysis) and source regions (counties within which

vehicles are driven). First, baseline emissions data that specifies reported values for all

emissions at all sources is used to compute baseline damages. (For this paper, we use

emissions data from USEPA (2014) that contains year 2011 emissions.) Next, one ton of

one pollutant, NOx perhaps, is added to baseline emissions at a particular source, perhaps

a power plant in Western Pennsylvania. Then AP2 is re-run to estimate concentrations,

exposures, physical effects, and monetary damage at each receptor conditional on the added

ton of NOx. The difference in damage (summed across all receptors) between the baseline

10Because baseline mortality rates vary considerably according to age, AP2 uses data from the U.S. Census
and the U.S. CDC to disaggregate county-level population estimates into 19 age groups and then calculates
baseline mortality rates by county and age group. The increase in mortality risk due to exposure of emissions
is determined by the standard concentration-response functions approach (USEPA 1999; 2010; Fann et al
2009). In terms of share of total damage, the most important concentration-response functions are those
governing adult mortality. In this paper, we use results from Pope et al (2002) to specify the effect of PM2.5

exposure on adult mortality rates and we use results from Bell et al (2004) to specify the effect of O3 exposure
on adult mortality rates.

11Of course not all lifetime vehicle miles are driven in the same year. But we assume that marginal
damages grow at the real interest rate so that there is no need to discount damages from miles over the life
of the vehicles.
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case and the add-one-ton case is the marginal damage of emitting NOx from the power

plant in Western Pennsylvania.12 This routine is repeated for all pollutants and all sources

in the model, first for full damages, and then second for native damages (which only looks

at receptors in the state or county of interest).

To assess the statistical uncertainty associated with the marginal damages produced by

AP2 for both gas and electric vehicles, we use results from Muller (2011) that executes

a Monte Carlo simulation for each marginal damage for the data year 2005 (by source and

pollutant). We use these simulation results in the following way. First, we compute the coeffi-

cient of variation for each pollutant-source marginal damage (standard deviation/arithmetic

mean). We then multiply these coefficients times the matching 2011 marginal damages.

This yields an estimate of the standard deviation for each source-pollutant marginal dam-

age. We then estimate confidence intervals in order to estimate the 5th and 95th percentiles

for the damages from gas and electric vehicles. These are used to calculate the environmental

benefits reported in Table 7.

Finally, we provide three pieces of evidence that AP2 gives similar marginal damage

estimates as other air pollution models. First, Weis et al (2015) test AP2 results (for 2005)

against the EASIUR model and find some variation in damages from electric vehicles. But

overall, they find that using different integrated assessment models does not fundamentally

overturn their results. Second, Barnett et al (2015) and Holland et al (2016) both analyzed

the damages and expected deaths from excess emissions from VW diesel engines. Holland

et al use AP2, Barnett et al use a different air pollution model. Nevertheless, the results

are essentially the same in the two papers. The third and final piece of evidence comes from

comparing the performance of AP2 relative to EPA emissions monitoring data. Jaramillo

and Muller (2016) perform a battery of tests and document that AP2 performs quite well

using standard performance metrics.

12We can also analyze the marginal damages at each receptor.
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J State electric vehicle incentives

The Department of Energy maintains a database of alternative fuels policies by state.13 Using

this information, we determined four measures of state electric vehicle policy. (These data

reflect policies in place on July 28, 2014.) The first measure is the actual subsidies for the

purchase of an electric vehicle. The second measure is equal to the total number of electric

vehicle policies (including both incentives and regulations). The third measure is equal to

the number of policies that were classified by the Department of Energy as incentives. The

fourth measure is equal to the number of incentives that were deemed by us to be significant

(thus excluding, for example, an incentive that would only apply to the first 100 consumers

to install electric vehicle charging equipment).

The four measures are shown in Table F for each state along with the full damage subsidy

and the native damage subsidy. Each of the four measures is more highly correlated with

the native damage subsidy than with the full damage subsidy.

K Calibration and welfare sensitivity

To analyze welfare issues, we must calibrate a numerical version of the model. This requires

specifying functional forms for the utility of miles f(g) and h(e), determining “exogenous”

parameters that correspond directly to observed economic data, and determining the “en-

dogenous” parameters that are adjusted so that model outcomes correspond to observed or

assumed economic data.

We employ a functional form for the utility of consuming miles that yields a constant

elasticity demand function. For gasoline miles we have

f(g) = kg
g1−γ − 1

1 − γ

and for electric miles we have

h(e) = ke
e1−γ − 1

1 − γ +H.

13http://www.afdc.energy.gov/laws/matrix?sort by=tech
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Table F: State electric vehicle policies
State Full Native Actual Significant All incentives All incentives

Damage Damage Subsidy Incentives and regulations
Subsidy Subsidy

Alabama -1747 44 0 1 3 1
Arizona 889 276 0 5 14 6
Arkansas -1747 -37 0 0 2 0
California 2785 1547 2500 9 42 21
Colorado 902 312 6000 1 11 5
Connecticut -1933 -126 0 0 5 1
Delaware -2688 -27 0 0 3 1
District of Columbia -1017 441 0 2 4 3
Florida -1049 293 0 1 7 3
Georgia -1166 595 5000 4 7 7
Idaho 499 46 0 0 1 1
Illinois -2345 1000 4000 3 13 7
Indiana -3448 255 0 2 9 6
Iowa -4394 -109 0 0 4 2
Kansas -1133 118 0 0 1 0
Kentucky -1957 76 0 0 4 1
Louisiana -1735 -9 3000 1 4 3
Maine -2811 -393 0 0 4 1
Maryland -2199 439 3000 6 12 7
Massachusetts -1713 220 2500 1 5 2
Michigan -3720 279 0 3 5 5
Minnesota -4145 306 0 1 7 1
Mississippi -1992 -54 0 0 2 1
Missouri -2957 127 0 0 4 1
Montana -32 -41 0 0 1 1
Nebraska -3927 -14 0 0 2 1
Nevada 728 137 0 2 9 3
New Hampshire -2450 -324 0 0 3 0
New Jersey -1598 717 2461 2 4 2
New Mexico 521 74 0 0 6 3
New York -1371 616 0 1 6 4
North Carolina -1611 204 0 1 11 6
North Dakota -4964 -213 0 0 1 0
Ohio -2640 414 0 1 4 1
Oklahoma -1021 201 0 0 7 3
Oregon 648 149 0 1 12 5
Pennsylvania -2675 322 0 0 4 3
Rhode Island -1962 -132 0 0 5 1
South Carolina -1711 48 0 0 2 1
South Dakota -3992 -174 0 0 0 0
Tennessee -1729 55 0 1 3 1
Texas 505 380 2500 2 7 6
Utah 1089 544 605 2 8 4
Vermont -3034 -431 0 0 7 1
Virginia -1807 69 0 2 14 6
Washington 865 295 2321 1 19 5
West Virginia -3168 -91 0 0 4 0
Wisconsin -4180 76 0 0 6 2
Wyoming 205 -42 0 0 0 0

Correlation with full damage subsidy 0.30 0.40 0.50 0.49
Correlation with native damage subsidy 0.52 0.76 0.68 0.79

Notes: New Jersey and Washington give a sales tax exemption for electric vehicles. Sales tax rates are 6.5% in Washington
and 7% in New Jersey. The value for the subsidy in these states is calculated for the Ford Focus electric.
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In these equations, − 1
γ is the elasticity of demand for miles. Notice we assume the elasticity

is the same for gas and electric miles. Because prices for miles are different, this assumption

would imply different number of lifetime miles for the two vehicles at business as usual

(no policy intervention). Because we want lifetime miles to be the same, we include the

endogenous parameters kg and ke. We also include the endogenous parameter H, which is

the intercept of h(e). This allows us to incorporate a non-stochastic taste for driving electric

vehicles. This is in contrast to the parameter µ which describes the standard deviation of

the random variables in the discrete choice model.

As in the main text, we compared the Ford Focus with the Ford Focus Electric. The

exogenous parameters are shown in Table G.14 This leaves us with the task of specifying

the endogenous parameters kg, ke,H and µ. To pin down values of kg and ke, we follow

Michalek et al (2011) and assume that both gasoline vehicles and electric vehicles would be

driven 150,000 lifetime miles at business as usual. Using the functions f(g) and h(e) in the

consumer’s optimization problems, and then solving these problems at business as usual,

gives the demand for miles

g = (kg
pg
)

1
γ

(A-24)

and

e = (ke
pe
)

1
γ

. (A-25)

Setting e = 150,000 and g = 150,000, substituting the values for γ, pg, and pe from Table G,

and solving for ke and kg gives kg = 2.58 × 109 and ke = 8.93 × 108.

The values for µ and H were determined such that model outcomes matched two pieces

of economic data. First, at business as usual, the consumer would select the gasoline vehicle

with some given probability π̂. Second, consistent Li et al (2015)’s observation, when the

federal subsidy is $7500, half of all electric vehicles sales are due to the subsidy. These

conditions give us two equations, from which the values for µ and H can be determined. For

example, suppose that, at business as usual, ninety nine percent of the vehicles sold would

be gasoline, so that π̂ = 0.99. Using Li et al (2015)’s observation, this implies that, when the

subsidy is $7500, ninety eight percent of vehicles sold would be gasoline. So we have two

14Values in the table are in 2013 dollars. We convert to 2014 dollars when making calculations.
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equations

π∣s=0 = 0.99

and

π∣s=7500 = 0.98.

Because all of the other parameters have been specified, the two left-hand-sides of these

equations are a function of H and µ only. Using the definition of π, we can write these

equations as

Ve∣s=0 − Vg ∣s=0 = µ ln(1 − 0.99

0.99
)

and

Ve∣s=7500 − Vg ∣s=7500 = µ ln(1 − 0.98

0.98
) .

From the definition of Vg and Ve we have

H −A = µ ln(1 − 0.99

0.99
)

and

H −A + 7500 = µ ln(1 − 0.98

0.98
) ,

where

A = (kg
g1−γ − 1

1 − γ − pgg − pG) − (ke
e1−γ − 1

1 − γ − pee − pΩ)

and g and e are the demand functions described in (A-24) and (A-25). We interpret

(kg g
1−γ

−1
1−γ − pgg − pG) as the “surplus” of driving a gasoline vehicle (the indirect utility from

miles minus the purchase cost and cost of miles). Thus A is the difference in the surplus of

driving an electric vehicle and a gasoline vehicle. Eliminating H from these equations gives

the solution for µ:

µ = 7500

ln (1−0.98
0.98
) − ln (1−0.99

0.99
)
.

It follows that the solution for H is

H = A +
7500 ln (1−0.99

0.99
)

ln (1−0.98
0.98
) − ln (1−0.99

0.99
)
.
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We see that the non-stochastic taste for electric vehicles H is smaller than the difference in

the surplus between the two vehicles. The exact degree to which it is smaller depends on

the assumed probabilities and subsidy used for calibration. Evaluating these expressions for

H and µ gives the values in the first row of Table H. The other rows correspond to different

assumptions about π̂.

The large values for H are due to the fact that we are integrating under the entire constant

elasticity demand curve to get indirect utility. In practice, there is likely a choke price such

that above this price, demand goes to zero. Implementing demand curves with such a choke

price would significantly lower the surplus of driving both vehicles, significantly lower the

the value for A, and significantly lower the values for H. But, as long as the choke price

was well above the range of prices we consider, including it would not have any effect on our

welfare calculations because they are all defined as differences from the first best outcome.

The expression for welfare W in the main text gives the welfare associated with the

purchase of a new vehicle. For the calculations in Tables 6a and 6b, we multiply the welfare

per new vehicle sale by 15 million (the approximate number of new vehicle sales per year in

the U.S.).

Table G: Exogenous Calibration Parameters : Ford Focus and Ford Focus Electric

Param. Value Economic Interpretation Source/Notes

I 430040 Income over 10 year vehicle lifetime US BLS : $827 week
pe 0.0389 Price of electric miles ($ per mile) EIA : 0.1212 $ per kWh * 0.321 kWh/mile
pg 0.1126 Price of gasoline miles ($ per mile) CNN : 3.49 $ per gallon / 31 miles/gallon
pΩ 35170 Price of electric vehicle ($) Ford Motors
pG 16810 Price of gasoline vehicle ($) Ford Motors
γ 2 Gives elasticity for miles of -0.5 Espey 1998, Davis and Kilian 2011

Notes: www.bls.gov/emp/ep chart 001.htm,

http://www.eia.gov/electricity/monthly/epm table grapher.cfm?t=epmt 5 3,

http://money.cnn.com/2013/12/31/news/economy/gas-prices/, www.Ford.com. All accessed May 20, 2014.

A sensitivity analysis of the exogenous calibration parameters is given in Table I. Baseline

corresponds to a BAU probability of 0.01 of selecting the electric vehicle (which corresponds

to the first columns in Table 6a and 6b). Changes in the price of the vehicles and income

have no effect on the results. Changes in the price of miles and the elasticity of demand for

miles have no effect on the benefits of differentiated subsidies, but do effect the benefits of
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differentiated taxes. Changes in the lifetime miles driven and percentage of sales due to the

current federal subsidy effect the benefits of both differentiated subsides and differentiated

taxes.

Table H: Value of µ and H as a function of the probability, with no policy intervention, of
selecting the gasoline vehicle

π̂ H µ

0.99 1688947865 10664
0.98 1688955973 10508
0.95 1688967313 10037

We conducted a final sensitivity analysis with respect to the price of gasoline and electric

miles. Up to now, we have assumed (in both the theoretical model and the empirical calcu-

lations) that these prices are the same across locations. In this final sensitivity analysis, we

drop this assumption and employ state-specific prices for electric miles and region-specific

prices for gasoline miles (using data from EIA.gov). In this analysis, the second best uniform

federal subsidy is no longer given by the expression in Proposition 2, and in fact does not

have a closed form expression. Likewise for the second best uniform federal taxes. So we

determine the these quantities numerically. The benefits of differentiated subsidies, state

vs. federal, is $24.3 million (compared to a baseline of $24.3 million) and the benefits of

differentiated taxes is $68.5 million (compared to a baseline of $72.9 million).

L Single tax policies

Suppose that local government i uses both a tax on gasoline miles and a tax on electric miles.

As is well known, the government can obtain the first-best outcome by utilizing the Pigovian

solution. Here taxes are equal to the marginal damages, so that tgi = δgi and tei = δei.
Now suppose for some reason the government can only tax gasoline miles. What is the

optimal gasoline tax, accounting for the externalities from both gasoline and electric vehicles?

The answer to this question is given in the next Proposition.
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Table I: Sensitivity of Exogenous Calibration Parameters

Parameter Welfare Loss Welfare Loss Gain from
Subsidy Tax Differentiation

Federal State Federal State Subsidy Tax

Baseline 1782.8 1758.5 162.1 89.1 24.3 72.9
Gas Miles Elasticity + 33% 1232.3 1208.0 120.9 62.5 24.3 58.5
Gas Miles Elasticity 33% 2322.2 2297.9 200.8 113.9 24.3 86.9
Electric Miles Elasticity + 33% 1760.9 1736.6 161.4 89.1 24.3 72.3
Electric Miles Elasticity 33% 1803.7 1779.4 162.6 89.1 24.3 73.4
Lifetime Miles Electric 16.6% 1795.5 1765.4 167.2 89.2 30.2 78.0
Lifetime Miles Electric - 16.6% 1769.1 1750.3 157.1 89.0 18.8 68.1
Lifetime Miles Gas +16.6% 2069.5 2042.9 187.6 104.7 26.6 82.9
Lifetime Miles Gas -16.6% 1496.5 1474.2 137.0 73.8 22.3 63.2
Purchases due to subsidy +10% 1787.8 1756.2 168.5 90.4 31.6 78.1
Purchases due to subsidy - 10% 1778.7 1760.6 156.8 88.1 18.1 68.7
Price of Electric Vehicle +16.6% 1782.8 1758.5 162.1 89.1 24.3 72.9
Price of Electric Vehicle -16.6% 1782.8 1758.5 162.1 89.1 24.3 72.9
Price of Gas Vehicle + 16.6% 1782.8 1758.5 162.1 89.1 24.3 72.9
Price of Gas Vehicle -16.6% 1782.8 1758.5 162.1 89.1 24.3 72.9
Price of Electric Miles +16.6% 1775.0 1750.7 162.0 89.1 24.3 72.9
Price of Electric Miles -16.6% 1792.9 1768.6 162.0 89.1 24.3 72.9
Price of Gas Miles + 16.6% 1558.7 1534.4 147.2 79.6 24.3 67.5
Price of Gas Miles 16.6% 2084.6 2060.3 181.0 101.2 24.3 79.9
Income + 16% 1782.8 1758.5 162.1 89.1 24.3 72.9
Income -16% 1782.8 1758.5 162.1 89.1 24.3 72.9

Note: $ Million/year
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Proposition 5. The optimal tax on gasoline miles alone in location i is given by

t∗gi =
⎛
⎜
⎝
δgi + δei

⎛
⎜
⎝

ei

−gi ( pG
gi(pg+t∗g)

εg
εG
+ 1)

⎞
⎟
⎠

⎞
⎟
⎠
,

where εg is the own-price elasticity of gasoline and εG is the own-price elasticity of the

gasoline vehicle.

The optimal tax on gasoline miles alone is less than the Pigovian tax on gasoline miles.

This occurs because the consumers have the option to substitute into the electric vehicle and

thereby avoid taxation on the externalities they generate.

Proof of Proposition 5.

Throughout the proof we can drop the subscript i. The first-order condition for tg is the

same as (A-13):

(∂R
∂tg

− πg) − (δg
∂G

∂tg
+ δe

∂E

∂tg
) + ∂R

∂tg
= 0.

In this case there is only a single tax, so expected tax revenue is given by

R = tgπg,

and hence
∂R

∂tg
= G + tg

∂G

∂tg
.

Using this in the first-order condition gives

((G + tg
∂G

∂tg
) − πg) − (δg

∂G

∂tg
+ δe

∂E

∂tg
) = 0.

Now, because G = πg, this simplifies to

(tg − δg)
∂G

∂tg
− (δe)

∂E

∂tg
= 0.

Solving for tg gives

tg =
⎛
⎝
δg + δe

∂E
∂tg

∂G
∂tg

⎞
⎠
.

A.44



Now from (A-2), (A-3), and (A-4), we have

∂π

∂tg
= −π(1 − π)

µ
g,

∂G

∂tg
= −π(1 − π)

µ
g2 + π ∂g

∂tg
.

and
∂E

∂tg
= π(1 − π)

µ
eg + (1 − π) ∂e

∂tg
.

Now because there are no income effects, tg does not effect the choice of e, so this latter

equation simplifies to
∂E

∂tg
= π(1 − π)

µ
eg.

Substituting these into the first-order condition for tg and simplifying gives

tg =
⎛
⎜⎜
⎝
δg + δe

⎛
⎜⎜
⎝

e
∂g
∂tg

µ

(1−π)g − g

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
.

We can further express this equation in terms of elasticities. The own-price elasticity of

gasoline miles is

εg =
∂g

∂tg

pg + tg
g

.

For discrete choice goods, price elasticities are defined with respect to the choice probability.

The own-price elasticity of the gasoline vehicle, given a change in the price of the gasoline

vehicle, is

εΨ = ∂π

∂pΨ

pΨ

π
= π(1 − π)

µ
( ∂Vg
∂pΨ

− ∂Ve
∂pΨ

)pΨ

π
= π(1 − π)

µ
(−1 − 0)pΨ

π
= −(1 − π)pΨ/µ.

Substituting the elasticities into the first-order condition for tg gives

tg =
⎛
⎜
⎝
δg + δe

⎛
⎜
⎝

e

−g ( pΨ

g(pg+tg)
εg
εΨ
+ 1)

⎞
⎟
⎠

⎞
⎟
⎠
.

∎
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M Large scale electric vehicle adoption

This paper measures the marginal emissions from an increase in electricity consumption.

In this supplementary appendix, we consider two questions about this procedure related to

the current electricity grid. First, is it reasonable to use marginal emissions for our policy

analyses (e.g. considering a 5 percent electric vehicle adoption rate)? Second, does the

relationship between load and marginal emissions vary between high and low load conditions?

A simple way of approaching the first question is to compare the load due to electric

vehicle adoption with the total electricity consumption in the country. The entire light duty

vehicle fleet is approximately 250 million vehicles. Suppose 5 percent of this fleet consisted of

electric vehicles. This is the steady state version of the 5 percent adoption rate discussed in

the main paper. The charging need for these vehicles corresponds to 60 TWh per year, which

is approximately 1.6% of total U.S. electricity consumption per year.15 Another approach

is based on the hourly load from electric cars relative to the random component of hourly

electricity load (after controlling for fixed effects by hour-of-day times month-of-sample). If

the electric vehicles were charged uniformly across the day, the electricity demand would be

6.8 GW (GWh per hour). The standard deviation of the random component of electricity

load in the country is 30.8 GW. So electric cars, at 5 percent of the entire fleet, would add

a load shock equal to approximately 22 percent of the standard deviation of load variation.

For the second question, we broke our load sample into two sub-samples, corresponding

to high and low load conditions. Note that our main regression includes fixed effects by hour-

of-day times month-of-sample. For each of these groups, there are about 30 observations.

We split each group based on the median to define “low demand” and“high demand” hours.

Using the aggregated data (all emissions within an interconnection), we regressed emissions

on load and fixed effects for just the high demand hours and then for just the low demand

hours. We then took the coefficients from these regressions as data and pooled them to

include all NERC regions and all hours for high/low demand levels (9*24*2=432 obsevations).

We regressed them on an indicator of whether they came from the high demand sample.

Periods with high demands have greater marginal emissions than periods with low demands,

15We have 12.5 million electric vehicles driven 15,000 miles per year using 0.32 KWh per mile.
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but the effect varies by pollutant. For SO2 the increase is 68 percent, for CO2 the increase

is 12 percent, for NOx the increase is 46 percent, and for generation (which we use for

PM2.5) it is 80 percent. Although some of these percentages are large, none of the effects are

statistically significant when clustering by NERC region.

Our final analysis considers the implications of a large scale adoption of electric vehicles

on the future of the electricity grid. A full model would need to account for entry and

exit of power plants and transmission capacity, which is beyond the scope of this paper.

However, we can discuss how our approach could be modified to examine discrete changes

in load levels. Suppose the investment in new power plants to build grid capacity mimics

the existing grid. Under this assumption, we can use the average emission rates as an

approximation for emission rates that result under grid expansion to service electric vehicles.

On average, the average emission rates are comparable to the marginal emission rates we

used in the main paper. But there is variation across interconnections and pollutants. See

Table J. For example, in Texas (ERCOT), average SO2 emission rates are 187% larger than

marginal rates, but average NOx rates are only 5% larger than marginal rates. In the Eastern

interconnection (EAST), both average SO2 and NOx emissions rates about 18% smaller than

marginal rates.

Table J: Average emission rates relative to marginal

Interconnection SO2 CO2 NOx PM2.5

ERCOT 187% 19% 5% -10%
WECC 72% -4% 54% -28%
EAST -18% -10% -19% -22%

N CAFE standards

Consider an automobile manufacturer that produces three models a, b, and g with corre-

sponding fuel economies in miles per gallon fa < fb < fg. As the notation indicates, vehicle

g will play the role of the gasoline vehicle in the main text (and thereby be the substitute

for the electric car.) The sales are each model are na, nb and ng. The CAFE standard

requires that fleet fuel economy (defined as the sales-weighted harmonic mean of individual
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fuel economies) exceeds a given value k. So we have

na + nb + ng
na
fa
+ nb
fb
+ ng
fg

≥ k.

Suppose initially that the cafe standard is binding, which implies that the market would

prefer to swap from a high MPG vehicle purchase to a low MPG vehicle purchase, but

cannot do so because of the standard. It is helpful to write the initial condition in terms of

gallons per mile rather than miles per gallon:

na
fa
+ nb
fb
+ ng
fg

na + nb + ng
= 1

k
.

We want to analyze the impact of selling an electric vehicle on the composition of the

fleet, under the assumption that the total number of vehicles sold stays the same. For

CAFE purposes, an electric car is considered to be an alternative fuel vehicle, and as such

is assigned an equivalent MPG. Let this be denoted by fe where fe > fg. Since the total

number of vehicles sold stays the same, the sale of an electric vehicle leads to a reduction

in sales of another type of vehicle. This clearly raises the fleet fuel economy, the CAFE

standard is no longer binding, and so the previously restricted swap from high to low MPG

may now be allowed to take place. Assume that the electric vehicle sale replaces a sale of a

model g vehicle, and that the desired swap is from b to a. Also assume that the footprint of

g and e are the same, and the footprint of b and a are the same. (This keeps the value of k

constant.) The swap of a for b can be done if the resulting fleet fuel economy satisfies the

standard:
na+1
fa

+ nb−1
fb

+ ng−1
fg

+ 1
fe

na + nb + ng
≤ 1

k
. (A-26)

Using the initial condition this becomes

1

k
+

1
fa
+ −1

fb
+ −1
fg
+ 1
fe

na + nb + ng
≤ 1

k
,

and so the condition becomes
1

fa
− 1

fb
≤ 1

fg
− 1

fe
. (A-27)
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The right-hand-side of (A-27) specifies the maximum feasible increase in gallons per mile

that may occur from the swap of a for b due to the sale of an electric vehicle. If the CAFE

constraint binds after this swap (which we would generally expect to be the case), then this

maximum will be obtained. And of course this increase in gallons per mile has an associated

cost to society due to damages from emissions.

We see that CAFE regulation induces an additional environmental cost from electric

vehicles due to the substitution of a low MPG vehicle for a high MPG vehicle . We can sketch

a back-of-the-envelope calculation for the magnitude of this CAFE induced environmental

cost and its effect on the second-best subsidy on electric vehicles as follows. Assume that

vehicle a and vehicle b are in the same Tier 2 “bin”. For vehicles in the same bin, the vast

majority of environmental damages are due to emissions of CO2. In addition, without a

explicit model of the new vehicle market, we don’t know in which location the vehicle a

will be driven. So we calculate the CAFE induced environmental cost due to CO2 emissions

only. Let δa and δb be the damage (in $ per mile) due to CO2 emissions from vehicle a and

b, respectively.16 It follows that the additional environmental cost is given by (δa − δb)g.

Next we integrate CAFE standards with the model in the main part of the paper. We

do not try to model both supply and demand for the market for vehicles. Rather we sim-

ply assume that the consumer chooses between the electric vehicle and vehicle g, and this

choice induces a change in the composition of the rest of the fleet due to CAFE regulation

considerations. The basic single-location welfare equation becomes

W = µ (ln(exp(Ve/µ) + exp(Vg/µ))) +R − (π(δb + δg)g + (1 − π)(δee + δag)).

We see that if the consumer selects the gasoline vehicle, then the fleet consists of this gasoline

vehicle in conjunction with vehicle b. But if the consumer selects the electric vehicle, then

the fleet consists of the electric vehicle in conjunction with vehicle a. (We are ignoring the

utility benefit generated by the switch from b to a.) Following similar arguments as in the

16We have δa =
$0.3644

fa
, where the numerator is the CO2 damages per gallon in our model. (There are

0.008887 metric tons of CO2 per gallon of gasoline and the social cost of carbon is $41 per metric ton in
2014 dollars. Multiplying these two numbers gives 0.3644)
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proof of Proposition 1, the optimal subsidy is determined to be

s∗ = ((δg − (δa − δb))g − δee).

We see that the optimal subsidy is decreased by the amount equal to the CAFE induced

environmental cost (δa − δb)g. Using our Ford Focus baseline numbers, the CAFE induced

environmental cost turns out to be $1555.17

In addition to CAFE regulations, vehicle manufacturers must also satisfy EPA CO2

regulations. In theory, these regulations have been harmonized, so that the CO2 constraint

is equivalent to the CAFE constraint. In practice, there may be differences between the two

constraints. See Jenn et al (2016) for details.

O Calculation of upstream externalities from data in

Michalek et al (2011).

Michalek et al (2011) present data on damages due to upstream externalities from both

gasoline vehicles and electric vehicles. These data (in 2010 dollars) are presented in Table K.

Local corresponds to the damages from the local pollutants analyzed in our study (SO2,

NOx, PM2.5, and VOCs). Other corresponds to CO and PM10. All data except the up-

stream electricity production row are taken directly from table S-25 in Michalek et al (2011).

Upstream electricity production is calculated from electricity production in table S-25 as-

17There are two complications in this calculation. First, for a given vehicle, the MPG for CAFE purposes
is not equal to the EPA posted MPG number. On average, the EPA number is eighty percent of the CAFE
number. Second, for electric cars, the CAFE MPG is calculated as 82049 watt hours per gallon divided by
the EPA determined electricity consumption in watt hours per mile. So the CAFE MPG for a electric Ford
Focus is 82049/321 = 255.6 MPG. The EPA MPG for a gasoline Ford Focus is 30, dividing by 0.8 gives a
CAFE MPG of 37.5. We want to use the EPA MPG in the equation for the additional environmental cost
because it more accurately reflects real world gasoline consumption, but we must use the CAFE MPG in the
constraint (A-27). Let the EPA MPG be denoted with the superscript E and the CAFE MPG be denoted
with the superscript C. We have

(δa − δb)g = 0.3644(
1

fEa
−

1

fEb
) g = 0.3644(

1

0.8fCa
−

1

0.8fCb
) g =

0.3644

0.8
(

1

fCa
−

1

fCb
) g =

0.3644

0.8
(

1

fCg
−

1

fCe
) g,

where the last equality follows from the assumption that (A-27) is binding. Substituting 37.5 for fCg , 255.6

for fCe , and 150,000 for g gives $1555.
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Table K: Damages Due To Upstream Externalities (Source: Michalek et al 2011)

GHG Local Other Total

Gasoline Vehicle (CV)
Vehicle production 316 535 78 929
Battery production 12 17 2 31
Gasoline production 290 289 18 597
Total 1557
Electric Vehicle (BEV 240)
Vehicle production 291 566 69 926
Battery production 532 1272 103 1907
Upstream electricity production 63 47 2 111
Total 2944

suming 6.3% percent of emissions from electricity production occur upstream (a number

which is calculated from Table S-15).

The electric vehicle total upstream costs are $2944 and the gasoline vehicle total upstream

costs are $1557, for a difference of $1387 in 2010 dollars, which is approximately $1500 in

2014 dollars.

We can also compare our calculation of the average environmental benefits of an electric

vehicle over the lifetime of driving the vehicle with the corresponding value from Michalek et

al (2011). Recall we found the average environmental benefits are be equal to -$1095. The

corresponding value for Michalek et al is -$181.18

P Cap and Trade Programs

If electric power plants are subject to a binding cap on total emissions of some pollutants,

then this will have an effect on the calculation of the environmental benefits of electric cars.

A complete analysis of this issue would require a model of the cap and trade market, because

permit trade would shift the location of emissions, even though the total level is capped. In

this Appendix, we approximate the effect of a binding cap by zeroing out marginal damages

18According to table S-25 in Michalek et al (2011), the environmental externality from driving an electric
vehicle is electricity production (1762) plus vehicle operation (75) less PM10 (22) which equals 1815. For
gasoline cars is it vehicle operation (3246) less military (120) less monopsony (829) less disruption (335) less
CO (292) less PM10 (22) which equals 1648. This gives a difference of -$167 in 2010 dollars, which is -$181
in 2014 dollars.
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from power plants that are subject to cap and trade markets.

There are several cap and trade markets that are relevant for our analysis of 2010-

2012 (these are described in EPA’s eGRID, see http://www.epa.gov/energy/egrid). Markets

regulating SO2 emissions include the Acid Rain Program and the Clean Air Interstate Rule

(CAIR) annual SO2 market. Markets for NOx emissions include both the CAIR seasonal

NOx market and the CAIR annual NOx market. The Regional Greenhouse Gas Initiative

regulates CO2 in the Northeast. As noted in the main text, during the period of analysis,

permit prices were low and the stock of banked permits was increasing.19 We set a power

plant’s marginal emissions for a given pollutant to zero if it is regulated for even part of the

year by one of these programs.

The results are given in Table L. First we consider caps on pollutants in isolation. The

effect is largest for caps on SO2 (the environmental benefits shift from -0.73 to 0.79 cents

per mile). We also consider simultaneous caps on NOx, SO2, and CO2 (the environmental

benefits become 0.92 cents per mile.)

Table L: Effects of binding caps on environmental benefits (cents/mile for 2014 electric and
gasoline Ford Focus)

Electric Vehicle Gasoline Vehicle Environmental Benefits
mean min max mean min max mean min max

Baseline 2.59 0.67 4.72 1.86 1.03 4.32 -0.73 -3.63 3.16
NOx only 2.54 0.67 4.60 1.86 1.03 4.32 -0.68 -3.51 3.16
SO2 only 1.07 0.70 1.54 1.86 1.03 4.32 0.79 -0.47 3.40
CO2 only 2.50 0.67 4.73 1.86 1.03 4.32 -0.65 -3.63 3.16

NOx, SO2, and CO2 0.94 0.29 1.42 1.86 1.03 4.32 0.92 -0.35 4.04

Q Full Size Color Figures

Here we reproduce the figures from the main paper in color and at full size.

19See the EPAs progress reports on emission, compliance, and market analyses (e.g.,
https://www.epa.gov/sites/production/files/2015-08/documents/arpcair10 analyses.pdf).
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Figure 1a: Marginal Damages for Gas Vehicles by County
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Figure 1b: Marginal Damages for Electric Vehicles by County
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Figure 2: Second-Best Electric Vehicle Subsidy by County
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Figure 3a: Second-Best Electric Vehicle Subsidy by State (Full Damages)
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Figure 3b: Second-Best Electric Vehicle Subsidy by State (Native Damages)
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Figure 4a: Change in PM2.5 from Gasoline Vehicle in Fulton County, Georgia
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Figure 4b: Change in PM2.5 from Electric Vehicle in Fulton County, Georgia
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1 Description

These supplementary maps illustrate the environmental effects from local pollution due to

driving a Ford Focus EV and gasoline Ford Focus in each of the 20 largest Metropolitan

Statistical Areas (MSAs) in the United States. The methodology for generating the maps

is described in our paper entitled “Are There Environmental Benefits from Driving Electric

Vehicles? The Importance of Local Factors.” For all maps, we assume that the vehicles are

driven 150,000 miles over their lifetime. We also assume the vehicles are driven exclusively

within the county that has the largest population of all the counties in the MSA. Damages

are determined from the emissions of four local pollutants (NOx, SO2, VOC, PM2.5) from

the tailpipe of the gasoline Ford Focus and the smokestacks of electric power plants that

charge the Ford Focus EV.

For each MSA we give three maps. One shows the damages that accrue to various

counties from the plume of pollution generated by driving the gasoline Ford Focus in the

given county. One shows the damages that accrue to various counties from the plumes of

pollution that are generated by the power plants that increase emissions when a Ford Focus

EV is charged in the given county. And one shows the environmental benefits that accrue to

various counties from driving the Ford Focus EV in the given county (defined as the damages

from the gasoline Ford Focus minus the damages from the Ford Focus EV.)

This maps illustrate the the importance of pollution export and native damages. The

damages from gasoline vehicles are highly concentrated in a few counties surrounding the

county in which the vehicle is driven. In contrast, the damages from electric vehicles are

largely exported to other counties and states. Thus native damages from electric vehicles

are generally much smaller than native damages from gasoline vehicles. Correspondingly,

driving an electric vehicle generally leads to a positive environmental benefit within the given

county, but also tends to create a negative environmental benefit in other places.
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