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Overview

1 Time Series Representations of Dynamic Macro Models
Structural State Space Models, MA, VARMA and VAR representations; Estimating Dynamic Causal Effects;
Misspecification: Nonfundamentalness, Nonlinearities, and Time Aggregation

2 State-Space Models and the Kalman Filter

State Space Models, Kalman Filter, Forecasting, Maximum Likelihood Estimation

3 Local Projections
Impulse Responses as Dynamic Treatment Effects, LP Estimation and Basic Inference, VAR-LP Impulse
Response Equivalence

4 ldentification of Dynamic Causal Effects
Identification with Covariance Restrictions or Higher Moments. Proxy SVAR/SVAR-IV, Internal instrument
SVAR

5 Inference for Impulse Responses
Inference methods for VAR/LP impulse responses. Detecting weak instruments; Robust Inference Methods;
Joint inference for VAR and LP impulse responses

6 Impulse Response Heterogeneity
Kitagawa Decomposition, Time Varying Impulse Responses

7 Other Uses of Impulse Responses
Impulse Response Matching and Indirect Inference; Estimating Structural Single Equations using Impulse
Responses, SP-IV; Counterfactuals with Impulse Responses, Optimal Policy Perturbations



A huge literature estimates dynamic causal effects to various shocks in various ways:

See

Monetary policy shocks
Romer and Romer (1989), Christiano, Eichenbaum, and Evans (1999), Kuttner (2001), Christiano, Eichenbaum, and Evans
(2005), Gertler and Karadi (2015), Antolin-Diaz, Petrella, and Rubio-Ramirez (2021), Bauer and Swanson (2022), ...

Tax shocks
Romer and Romer (2010), Blanchard and Perotti (2002), Mountford and Uhlig (2009), Mertens and Ravn (2013), Mertens and
Ravn (2014), Mertens and Montiel Olea (2018), Lewis (2021), ...

Government spending shocks
Ramey and Shapiro (1998), Blanchard and Perotti (2002), Ramey (2011), Mountford and Uhlig (2009), Lewis (2021) ...

General aggregate demand or supply shocks
Blanchard and Quah (1989), Angeletos, Collard, and Dellas (2020), Shapiro and Watson (1988)...

Technology shocks
Gali (1999), Fisher (2006), Beaudry and Portier (2006)

Oil shocks, credit shocks, uncertainty shocks, etc.

e.g. Ramey (2016), Kilian and Liitkepohl (2017) for recent overviews.

These impulse response estimates inform policy and guide macroeconomic theory



IRFs (often) also quantify contributions of shocks to fluctuations in macro aggregates

Forecast Error Variance (FEV) Decomposition

The share of the FEV for z; ; at horizon h explained by ¢; ; is

b (mh(i))?
e S o(mh(i))?

where ITIJh(I) is the i-th element in Mf;

h=

Historical Counterfactuals

Let €f,t = ¢j,+ but e*ijt = 0 for all t, then
B(L)z{ = Def = Djej ¢

provides the counterfactual history of z; with all e_; ; set to zero.




4. Other Uses of Impulse Responses

4.1 Estimating Theoretical Models with Impulse Response Matching
4.2 Estimating Single Structural Equations with Impulse Responses
4.3 Counterfactuals Under Alternative Policy Rules

4.4 Evaluating Optimality of Policy



Impulse Response Matching

Recall the SMA(c0) representation of the solution of a theoretical model
zz=(D+AZ-GL)'FL) e

where the coefficients of the state space respresentation {G, F, A, D} are specific
functions of deep structural parameters 6 € ©

The ‘constrained’ SMA(oc0) is z: = M(0, L)er = Y7 M;(0)er—;
The ‘unconstrained’ SMA(c0) is z: = M(L)e: = > 7, Mje,_; (in population)

Impulse Response Matching Conditions

~v(0): m x 1 theoretical IRF coefficients from the M;(0)’s
~0: m x 1 unconstrained coefficients from the M;’s corresponding to (6)

A1 — 70 for T — oo (consistent IRF estimator)

Yo = v(0) , v(6) invertible (identification)




Impulse Response Matching

Impulse Response Matching Estimator Rotemberg and Woodford (1997)

An impulse response matching estimator of 6 is
b= argmin (Y7 —¥(0)) W(HT —+(0))
€

where W is a p.s.d weighting matrix.

The estimator  minimizes the distance between the theoretical and empirical impulse
responses, and 0 — 0 for T — oo.

Let 3 be a consistent estimator of the covariance matrix of the IRFs 47

Common choices for W are

o W =31 the optimal weighting matrix
o W = diag($~1), only the diagonal elements 3 ~!



Example: Christiano, Eichenbaum, and Evans (2005) Monetary Impulse
Response Matching
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Indirect Inference with Impulse Responses

There is not always a direct match between theoretical and empirical impulse responses
(e.g. lag truncation, nonfundamentalness, violation of identification restrictions)

Suppose 41 is from an approximating SVAR, z; = Zle Bz;_; 4+ us and some impact
matrix D;.

We can simulate the model and obtain N artificial samples of length T, and for each
sample n obtain 47.(6), the IRF estimate from the approximating SVAR

IRF Indirect Inference Conditions
° 47(0) = v(0) for T — oo
@ J1 — o for T — oo
@ v = v(0), v(0) invertible (identification)

~(0) are auxiliary parameters rather than true theoretical impulse responses



Indirect Inference with Impulse Responses

Indirect Inference Estimator Gourieroux, Monfort, and Renault (1993)
An indirect inference estimator of 0 is
N

é:arggg(;in(T—*Z 7—(6‘) ( Z )

where W is a p.s.d. weighting matrix.

The estimator § minimizes the distance between the theoretical and empirical auxiliary
parameters, and 8 — 0 for T — oo.

IRF Matching/indirect inference are similar to GMM and SMM, but with structural
impulse response coefficients instead of moments.



Example: Mertens and Ravn (2011)

Impulse responses to unanticipated and pre-announced changes in income tax based
on direct measures of Romer and Romer (2010)

Medium-scale RBC model
Tax experiments potentially informative about a range of important parameters:

Consumption dynamics:

o CES utility consumption parameter o
@ Degree of habit persistence

@ Fraction of hand-to-mouth agents 1 — ¢

Investment dynamics:

o Investment adjustment cost in capital and durables ¢4 and ¢,

Labor supply and capacity utilization:

@ Inverse Frisch labor supply elasticity s

o Capacity utilization elasticity v

Fiscal policy rules:

o Elasticity of spending to tax revenues, m¢g



Example: Mertens and Ravn (2011)
(a) Unanticipated Tax Cut (b) Anticipated Tax Cut
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Example: Mertens and Ravn (2011)
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Example: Mertens and Ravn (2011)

Model < u K [N [ Vi Put Pn2 i Pr2 G S Obj.

(1) Benchmark 3762 0880 0976 8488  7.795 0619 1483 0484 1707 0729 - B 7877
(0.198)  (0.008)  (0.116) (0.355)  (0.448) (0.060) (0.032)  (0.032) (0.015) (0.015)

(2) No Durables 3058 0747 0.125  5.966 - 0611 0999% 0% 1654 -0.684 - - 95.28
(0.145)  (0.020)  (0.036)  (0.184) (0.044) (0.011)  (0.012)

(3) No Habits 7.183 - 1103 10786 7995 0626  1.564 -0.565 1724 0743 - - |22
(0.201) (0.130)  (0.445)  (0.430) (0.044) (0.026)  (0.026) (0.011)  (0.011)

(4) Endogenous G 1829 0926 0477 6032 7265 0459 1102 -0.103 1671 -0.698 0221 - 68.15
(0.176)  (0.006) (0.058) (0.274)  (0.448) (0.0530) (0.071) (0.071) (0.016) (0.016) (0.026)

(5) Fixed Capital Tax | 2.651 0926 1334 3010 1866 0011 1597 -0.598 - - - - | 4501
(0.134)  (0.007)  (0.116) (0.184) (0.007) (0.018)  (0.018)

(6) Fixed Labor Tax | 0411 0906 0" 3201 4377 - - 1392 0406 - - | 11046
(0.021)  (0.006) (0.158) (0.084) (0.009)  (0.008)

(7)Rule-Of-Thumb | 3328 0917 0287 6712 0512 1388 0389 1707 0728 - 0848 | 6674

Households (0.185)  (0.007)  (0.071) 0.392)  (0.049) (0.026)  (0.026) (0.013)  (0.013) (0.006)

Standard errors are given in parentheses.



4. Other Uses of Impulse Responses

4.1 Estimating Theoretical Models with Impulse Response Matching
4.2 Estimating Single Structural Equations with Impulse Responses
4.3 Counterfactuals Under Alternative Policy Rules

4.4 Evaluating Optimality of Policy



Estimating Single Structural Equations with Impulse Responses

IRF matching/indirect inference require fully specified theoretical models

Sometimes we only want to estimate the parameters of a single structural equation
without specifying a complete model

Turns out this is simple using regressions in impulse response space

@ Regressions with impulses from distributed lag specifications  Barichon and Mesters (2020)

o Regressions with impulses from VARs, LPs, ... Lewis and Mertens (2022)



General Estimation Problem

!
ye = BYitor,
yt: scalar outcome variable
Y:: Ny X 1 endogenous variables

B: Ny x 1 structural parameters of interest



General Estimation Problem

!
ye = BYitor,
yt: scalar outcome variable
Y:: Ny X 1 endogenous variables

B: Ny x 1 structural parameters of interest

Example: Hybrid NK Phillips curve

Tt = YoTe—1 + V¢ EeTe1 + Agap: + vt
Yt = Tt
Y: = [me—1, Etmer1, gape)

5 = [’Yb?’yﬁ A]l

Well-known endogeneity problems (simultaneity, measurement error).

Common to use lags as instrumental variables (e.g. 7t—2,8apr—1,...) Gali and Gertler (1999)



Estimation Problem

i = B'Yitor,
Using lagged endogenous variable z;_j as instrument requires E[vez;_p] = 0.
Strong assumption in macro applications if h is small.

Choosing large h weakens identification.



Estimation Problem

i = B'Yitor,
Using lagged endogenous variable z;_j as instrument requires E[vez;_p] = 0.
Strong assumption in macro applications if h is small.

Choosing large h weakens identification.

Example: Hybrid NK Phillips curve
Tt = YpTt—1 + VFEe 1 + Agape + vt

Allowing persistence in v; seems important empirically, e.g. Smets and Wouters
(2007).

Lags of 7+, gap: or other macro variables are not valid instruments in general.

Barnichon and Mesters (2020) propose lags of available direct measures of shocks m;
as instruments.

If uncorrelated with v¢, these shocks are valid instruments.



IV with Direct Shock Measures

ye = B'Yitouo,
Let m: be a (scalar) direct shock measure (e.g. monetary policy shock)

Consider a distributed lag (DL) m¢, m¢_1, ..., my_p 1 as instrumental variables

IV Identification Conditions

E[m;_pY:] #0 for h=0,...,H—1, H> Ny (relevance)
E[mi_pve] =0 for h=0,...,H—1 (exogeneity)

Define X¢ = [m¢, ..., ms_p11]’-

The data is demeaned: %Zyt:O, %ZYt:O,%ZXtZO
Lety: Tx1, Y:TXxNy, X: TxH

The 2SLS-DL estimator is Bas5 = (Y/PxY) 1Y’ Pxy with Px = X(XX’)~1X’



IV with Direct Shock Measures

Y'PxY/T = ((X'X/T)" 2 X'Y/T)((X'X/T)":X'Y/T)

dDL §DL
eY eY

Y'Pxy/T = (X'X/T)"2X'Y/TY((X'X/T)"2X'y/T)

ADLr DL
60 b

~ 1
O©PL: H x Ny OLS estimator in regression of Yy on (X'X/T)™2X;, i.e. impulse
response coefficients of Y: to a one-std innovation in m;

A 1
@EL: H x 1 OLS estimator in regression of y; on (X'X/T)™2Xz, i.e. impulse
response coefficients of y; to a one-std innovation in m;

2SLS-DL is a Regression in Impulse Response Space Barnichon and Mesters (2020)

The 2SLS estimator with m¢, m¢_1, ..., my_ 1 as instrumental variables is the
OLS coefficient in a regression in impulse response space

B25L5 — (éeL/éeL)éeL/é)?L




IV with Direct Shock Measures
The SMA(o0) representations of y: and Y; imply that

ve =D 06 T ) M€ e—1 -
j j

Restated Exogeneity Requirements for 2S5LS-DL
For h=0,...,H—1:

Wi Elme€j ip—y] =0, I = hVj (Contemporaneous Exogeneity)
Wi Elme€j epp—] =0, I=h+1,..,00Vj (Lag Exogeneity)
wjElmi€j epp—] =0, 1=0,....,h—1,Vj (Lead Exogeneity)

m; must be exogenous with respect to all non-excluded (i.e. p;; # 0) past, present
and future shocks

We could add z;_1, z;_», ... as controls to span the history of non-excluded shocks and
get rid of lag exogeneity

Unfortunately, z;_1, z¢—2, ... likely also spans the excluded shocks that correlate with
my¢, so this generally weakens identification



From 2SLS-DL to SP-IV

@ 2SLS-DL: identifies structural parameters by regressing impulse responses from
DLs with direct measures of shocks

o SP-1V: identifies structural parameters by regressing impulse responses from
VARs or LPs using any identification scheme from Section 4

SP-IV: System Projections on Instrumental Variables (SP-1V) Lews and Mertens (2022)



System Projections with Instrumental Variables (SP-1V)

Let y;-(h), Y- (h) denote h + 1-step ahead forecast errors conditional on
Zi1=lz_1 2z, -]

If ye = B’ Yt + vt, then

vir(h) = B'YH(h) +vi(h)

Let m- denote one-step ahead forecast error conditional on Z;_; = zl_yzl_5..].
H:# of horizons, Nm = dim(m;i-).
HNpm > Ny SP-IV identifying moments: E[v;-(h)m{]=0for h=0,...,H —1.

Without conditioning on Z;_1 and under stationarity, identical to

HNp, 2SLS-DL identifying moments: E[vim;_p] =0for h=0,...,H—1



The GMM problem

Consider forecasting models that are linear in Z;_1, e.g. VARs or LPs

Let yﬁt and YHLt stack the forecast errors in y; and Y.
E[Uﬁ,t(ﬂ) ® mi] =0, HN,, identifying conditions
!
H}’H +($), Y t(C), th/(C)] ® qu} =0, forecasting moments

where ’U/J_,"t(b) = t — (b ®ZH)YH o
y,f,-’t(d), Y,f,:t(d), mtJ-(d) are functions of d with true value ¢.

Given a p.s.d. weighting matrix and mild assumptions, the GMM problem is separable
in b and d.

Two-step procedure: (1) forecasting step, (2) structural estimation step



SP-1V with Local Projections
Using weights Zy ® E[mi-mi~']~1, GMM problem is equivalent to minimizing
Tr(up P, uf;') where
vir = (8'®Tn) Vi + ujy
Closed form solution a restricted system 2SLS estimator:
A -1
3= (R/(Y,j P YL ®IH)R> R’ vec(yg P, 1 i)

where R = Ty, ® vec(Zy)

SP-1V is a Regression in Impulse Response Space Lewis and Mertens (2022)
" A A 1A, A

©, (HNy x 1) and Oy (HNy, x Ny) contain the LP estimates of the impulse
responses to the standardized shocks mi-

Similarly, SP-IV VAR is a regression with SVAR impulse responses



Implementation in Phillips Curve Example

Tt = YpTt—1 + YrEtmei1 + Agape + vt
Let m;, for example, denote a measure of monetary policy shocks

@ Estimate IRF of 7+ and gap: to my, e.g. using VAR or LP that conditions on Z;_;
@ Construct ﬁ?T-_y using IRFgap and lead and lag of IRF;
© Regress ﬁ??—'w on ﬁ?T-_y — ’/}\/b,”)\/f,}\\

Any of the identification schemes from Section 4 (proxies, recursive, ...) are OK as
long as E[Utﬁrhmf] = 0 holds for the identified shock mg-

Can stack IRFs to different (standardized) shocks Ny, > 1

Exogeneity does not require IRFs are individal dynamic causal effects, can also just be
a rotation to shocks that are exogenous

No need to use all horizons in practice



What are the Advantages of SP-IV over 25LS-DL?

@ More Identification Options using IRFs from LPs or VARs
o Weaker Exogeneity Conditions
o Potential Efficiency Gains

o Stronger ldentification



Weaker Exogeneity Conditions

The SMA(c0) representations of y; and Y; imply that

ve =D WioGe T ) M1+ e
j j

Exogeneity Requirements for SP-1V

Assume Z;_; spans the history of non-excluded shocks, for h=0,...,H — 1:

i 1 Elmeej sip—1] =0, | = hVj (Contemporaneous Exogeneity)
wjE[mi€j erp—] =0, I=0,....,h—1,Vj (Lead Exogeneity)

For Z;_1 that spans the history non-excluded shocks, SP-1V does not require lag
exogeneity .

Note, weaker assumption than e; is fundamental for z; (partial fundamentalness)



Efficiency Gains
SP-IV asymptotically more efficient if Var(vi,) is ‘small’ relative to Var(ve).
More likely if v is persistent (predictable) and H is not too large.

AR(1) example: vt = pve_1 + vt

SP-IV Estimator More Efficient
01 2SLS Estimator More Efficient
Both Estimators Equally Efficient

0 i i i i i i i i i i '
1 2 3 4 5 6 7 8 9 10 11 12




Stronger ldentification

Weak instrument problems are common.
Lead to small sample bias and incorrect inference.

Conditioning on Z;_; removes predictable variation on Y; and can improve the
signal-to-noise ratio of m;.

SP-1V performs better in small samples.

Including Z;_1 as exogenous regressors in 2SLS instead weakens identification, as
Z;_1 is likely to span lags of m;.



Inference for SP-1V

Inference under strong identification is standard:

Ja

VT(B ~ ) N, Vg)

-1

" /oy ) 1 (L 17 o s /oyl L
Vg (R'(vg P LY’ @ TyR) ™ R <YH P LYy ®Zuﬁ)R(R (YA P Vi ® Iy)R)



Inference for SP-1V

Inference under strong identification is standard:

Ja

VT(B ~ ) N, Vg)

-1 -1

0 VAR L/ / L L/ = VAR L/
Vg (R'(vg P LY’ @ TyR) ™ R <YH P LYy ®Zu#)R(R (YA P Vi ® Iy)R)

Bias-based first-stage test for weak instruments based on the test statistic
mineval{Q0 "2 R/ (Y P, 1 Y& ® T )RO ™2}

where Q = Rl(ivﬁ ® ZH)R and iv,j- is the HK x HK variance of the first-stage

residuals. When H = 1, same as Stock-Yogo (2005). Critical values for H > 1 are
non-standard, application-specific and obtained numerically.



Inference for SP-1V

Inference under strong identification is standard:

Ja

VT(B ~ ) N, Vg)

-1 1

0 VAR L/ / L L/ = VAR L/ -
Vg (R'(vg P LY’ @ TyR) ™ R <YH P LYy ®Zu#)R(R (YA P Vi ® Iy)R)

Bias-based first-stage test for weak instruments based on the test statistic

mineval{ﬁ*% R'(Yif P . Y @ IH)RSAZ*%}

where Q = Rl(ivﬁ ® ZH)R and iv,j- is the HK x HK variance of the first-stage

residuals. When H = 1, same as Stock-Yogo (2005). Critical values for H > 1 are
non-standard, application-specific and obtained numerically.

Identification robust inference can be based on
o AR-statistic (also Stock and Wright, 2000, S-statistic for GMM)
o KLM-statistic (Kleibergen, 2005, KLM-statistic for GMM)



Simulation Evidence

Phillips curve in Smets Wouters (2007)

Vome—1 + Ve Etmer1 + Agapr + vt
Pult—1 +€f - Mpﬁf_l s | Pu |< 1

Tt

ue

o Ny = 1: monetary policy shock

Controls Z;_1: four lags of seven endogenous variables

Fully exogenous, or lag endogenous (RR shock on inflation lags)
e T = 200,500,5000

o H=8,20



Lag Endogenous Instrument

Mean, N,, =1, T = 5000

H=28 Mean
Estimator Vb Y A
True 0.15 0.85 0.05
OoLS 0.48 0.48 0.00
2SLS 0.26 0.58 -0.09
25LS-C 0.41 0.18 1.46
SP-IV LP 0.26 0.60 -0.08
SP-IVLP-C 0.16 0.84 0.05
SP-IVVAR 0.12 0.83 0.09




Lag Endogenous Instrument

Mean, N,, =1, T = 5000

H=38 Mean
Estimator Vb Y A
True 0.15 0.85 0.05
oLS 0.48 0.48 0.00
2SLS 0.26 0.58 -0.09
2SLS-C 0.41 0.18 1.46

SP-1V LP 0.26 0.60 -0.08
SP-IV LP-C 0.16 0.84 0.05
SP-IVVAR 0.12 0.83 0.09




True Shocks as Instruments

Mean parameter estimates, N, = 1

H=38 T =250 T =500 T = 5000
Estimator Vb v A Vb 8l A Vb 8l A
True 0.15 085 005 015 085 0.05 0.15 0.85 0.05
OoLS 0.47 047 000 048 048 0.00 048 0.48 0.00
2SLS 027 051 001 023 060 0.01 0.17 0.83 0.04
2SLS-C -0.08 033 0.14 -0.04 032 032 107 058 1.09
SP-IV LP 026 050 001 023 060 0.01 0.17 0.83 0.04
SP-IVLP-C 029 064 0.04 024 074 0.05 016 0.84 0.05
SP-IV VAR 023 081 003 018 0.84 0.05 0.12 0.83 0.09




True Shocks as Instruments

Mean parameter estimates, N, = 1

H=38 T =250 T =500 T = 5000
Estimator Vb v A Vb 8l A Vb 8l A
True 0.15 085 005 015 085 0.05 0.15 0.85 0.05
OLS 047 047 000 048 048 0.00 0.48 0.48 0.00
2SLS 027 051 001 023 060 0.01 0.17 0.83 0.04
2SLS-C -0.08 033 0.14 -0.04 032 032 107 058 1.09
SP-IV LP 026 050 001 023 060 0.01 0.17 0.83 0.04
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SP-IV VAR 023 081 003 018 0.84 0.05 0.12 0.83 0.09




True Shocks as Instruments

Mean parameter estimates, N, = 1

H=38 T =250 T =500 T = 5000
Estimator Vb Y¢ A Vb yf A Vb Yf A
True 0.15 0.85 0.05 0.15 0.85 0.05 0.15 0.85 0.05
OLS 0.47 0.47 0.00 0.48 0.48 0.00 0.48 048 0.00
2SLS 0.27 0.51 0.01 0.23 0.60 0.01 0.17 0.83 0.04
2SLS-C -0.08 033 0.14 -0.04 032 032 107 058 1.09
SP-IV LP 0.26 0.50 0.01 0.23 0.60 0.01 0.17 0.83 0.04
SP-1V LP-C 0.29 0.64 0.04 0.24 0.74 0.05 0.16 0.84 0.05
SP-IV VAR 0.23 0.81 0.03 0.18 0.84 0.05 0.12 0.83 0.09
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SP-IVLP-C 029 064 0.04 024 074 0.05 016 0.84 0.05
SP-IV VAR 023 081 003 018 0.84 0.05 0.12 0.83 0.09
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True Shocks as Instruments

Mean parameter estimates, N, = 1

H=38 T =250 T =500 T = 5000
Estimator Vb v A Vb 8l A Vb 8l A
True 0.15 085 005 015 085 0.05 0.15 0.85 0.05
OoLS 0.47 047 000 048 048 0.00 048 0.48 0.00
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2SLS-C -0.08 033 0.14 -0.04 032 032 1.07 058 1.09
SP-IV LP 026 050 001 023 060 0.01 0.17 0.83 0.04
SP-IVLP-C 029 064 0.04 024 074 0.05 016 0.84 0.05
SP-IV VAR 023 081 003 018 0.84 0.05 0.12 0.83 0.09




True Shocks as Instruments

Mean parameter estimates, N, = 1

H=38 T =250 T =500 T = 5000
Estimator Vb v A Vb 8l A Vb 8l A
True 0.15 085 005 015 085 0.05 0.15 0.85 0.05
OoLS 0.47 047 000 048 048 0.00 048 0.48 0.00
2SLS 027 051 001 023 060 0.01 0.17 0.83 0.04
2SLS-C -0.08 033 0.14 -0.04 032 032 107 058 1.09
SP-IV LP 026 050 001 023 060 0.01 0.17 0.83 0.04
SP-IVLP-C 029 064 0.04 024 074 0.05 016 0.84 0.05
SP-1V VAR 023 081 003 018 084 0.05 0.12 0.83 0.09




Application: Inflation-Activity Disconnect

Based on the muted response of inflation to a Main Business Cycle Shock, Angeletos,
Collard, and Dellas (2020) conclude inflation is disconnected from the business cycle

2SLS-DL and SP-IV allow a formal econometric investigation of claims about
relationships across impulse responses

IRF Core CPI IRF Unemployment FEVD

— Inflation
—— Unemployment Rate

—— Distributed Lag

— VAR

Percent

—— Distributed Lag
VAR

0 12 24 36 8 60

o 12 2 36 a8 60
horizon (months)

horizon (months) horizon (months)



Parameter Estimates

W:th =Q1- ’Yf)W:{3 + 'Vf”grlz + AUt + e,

2SLS-DL

@ 25LS Point Estimate 7, —0.57 A
@ OLS Point Estimate 7, =0.49 \ =

-

o
®

o
>

°
=

0.2

Coefficient on Expected Inflation, 7,

-07 -06 05 -04 -03 -02 -01 0
Coefficient on Unemployment Rate, A

68%-90%-95% KLM Confidence sets

0.1

0.2

SP-IV

|
® SPIV |
OLS Point Estimate v; =0.49 A =-0.09 I

12 |
|

|

VAR Point Estimate v; =0.57 A =-0. m‘

Coefficient on Expected Inflation, 7,

03 02 -01 0 0.1 0.2

07 06 -05 -04
Coefficient on Unemployment Rate, A



4. Other Uses of Impulse Responses

4.1 Estimating Theoretical Models with Impulse Response Matching
4.2 Estimating Single Structural Equations with Impulse Responses
4.3 Counterfactuals Under Alternative Policy Rules

4.4 Evaluating Optimality of Policy



Counterfactuals Under Alternative Policy Rules

We can learn a lot from dynamic causal effects of e.g. monetary policy shocks
But ultimately, systematic monetary policy is much more important

Changes in systematic policy change expectations and therefore the dynamic causal
effects to all shocks

However, we can still study the effects of changes in systematic policy using
semi-structural evidence:

McKay and Wolf (2022)



Observed Economy

Suppose the actual economy follows the model

oo

pr=ay:+ »_ " (E1)
n=0

ye = Hy(0,a)Ee[ye1] + Hp(0, a)pe + Hev (6, a)ef (E2)

pt is a scalar policy tool, e.g. the funds rate
P =[P? P! P2 | ]is an infinite-dimensional vector of i.i.d ‘policy news shocks'’
vyt is Ny X 1 vector of macro variables, e.g. inflation, output, etc.

€/ is Ney X 1 vector of i.i.d ‘non-policy shocks’

E; is a policy feedback rule, e.g. a Taylor rule

E> contains the structural equations, e.g. consumption Euler, Phillips curve, etc ...

{Hy,Hp, Her } generally depend on the ‘deep’ structural parameters 6 and o



Observed Economy

pr=ayi+ > "
n=0
yt = Hy (0, @) Et[yes1] + Hp(0, a)pt + Her (0, )€l

The observed data z: = [p: y{]' is generated by {e/}T and {e7}T

i=—o0 i=—o0

(E1)

(E2)

(Assumption: Uniqueness
There is unique solution satisfying (E1)-(Ez), in SMA(c0) form
Pt = Mpy (L, 0, )€l + Mpp(L, 0, a)e?
\ ye = Myy (L, 0, )€l + Myp(L, 0, a)e?

/Assumption: Econometrician Information
o {Hy(0,a), Hp(0, ), Her (0, )} is unknown
\ o Myp(L,0,a) and Mpy(L,0, ), are known

AN

J

The economic structure is unknown, but the dynamic causal effects of policy shocks

on yt and p; are known.



Example: New Keynesian Model

]38

p.n
t

€t—n

Re = ¢ +

I
o

n
EtAgale = Rt — Et7l't+1 — Sg
mr = kgapt + BEtmi+1 + s7

[e @)
_ gap; psn
R =[0 or ][ 5 }+§_joet_n
Pt a —_—— =
yt
gapy | _| 1 1 8aPiy1 -1 st
|: e 1|7[n ﬁ—i—/ﬁ]Et[ Te+1 + —K \R,t./—i_ s?
—_—— ~—— Pt —_——
Yt Hy Etyti1 Hp 24

with =[k 8] and k>0, ¢ >1,0<8<1



Counterfactual Economy f

Consider the same economy, but with a different policy rule (and no policy shocks)

pl =aly (E))
vi = Hy(0,aN)Eely] 1]+ Hp(0, 01 )pe + Her (8, 07)e] (E])

Assumption: Uniqueness {
There is unique solution satisfying (EIT)-(EJ) in SMA(o0) form

PI = My (L0, aT)G'X
y;‘ = M,y (L, O,aT)e{

ool T ;
Same sequence of non-policy shocks {€} };__ __ as in the actual economy

In general, M,, (L, 0, af) # Myy (L, 6, )

Entire impulse-propagation system changes when a — ot



Counterfactual Economy

. . . pP* T
Consider again the actual economy, but change sequence of policy shocks {e]~;}' _

Py = Mpy(L,0,0)ef + Mpp(L, 0, )€l
vi = Myy(L,90, O‘)ét/ + My,(L, 0, a)E;:*

. T .
Same sequence of non-policy shocks {€/} __ as in the actual economy

The stochastic processes pf and y* are solutions to (E1)-(Ez)

All we are doing is changing the policy shock sequence to generate counterfactual
realizations of pf and y;*

A single policy shock per period suffices to ensure that p} = afy; always holds

However, it is generally not be the case that E¢[p], ;] = af Eelyfp]-

Lucas’ critique



Example: New Keynesian Model

New Keynesian model, but set s¢ =0, 7" =0 for all n > 0, and s = ps;_q + €t

The solution is

R: 1 1 ¢x(1-p) PO
== | “1 —(ér— t 1
gfrft L+ onr | (f_ ) { AN = pL)"teg } W

L 1 1-PBénr
— 1 1= !
where A =det (T —pC~1), C I+énk |: Kk Btk :|

The impulse response of inflation is

1—p)pha—1
Et—1[7rt+h | 6? = 1] - Et—l[ﬂ't] = %

In the counterfactual economy, the impulse response of inflation is

(1-p)ph(ah)—t

T s _ 11 _ 1
Eealmy |l ef =1] — Eea[mi] = Lt oin

t+h

+
t_ _pty—1 fy-1_ _ 1 1 1-B¢x
where AT = det (T — p(CT)71), (CT) rotn [ v Bin



Example: New Keynesian Model

Suppose for every h we choose the monetary policy shock v}, such that
Ec1[Rih | € = 1] — E1[Re] = o) (Eeorlwiyp | € = 1] — Ee—alme])

such that the counterfactual Taylor rule holds ex post at al horizons

The resulting impulse response of inflation is

(1-p)ph(a)—?

Ei_1[m} e =1, vy — Er—1[ne] =
t—1[miyn | € 1 = Ee—a[m] T+ oln

Generally not the same as in the counterfactual economy since A # AT unless p =0

The shocks that enforce the new rule at each horizon are not anticipated in advance.



Counterfactuals With Impulse Responses

/Key Assumptions for Policy Counterfactuals with Impulse Responses \

CFA1 {Hy,Hp, Hev} do not depend on «
Hy(0,0) = Hy(0) , Hy(0, ) = Hy(0) , Her (0, ) = H,y(0)

CFA2 There exists a sequence {€”* }T such that for all t and h >0

t—iJi=—o0
\ Etlpfip]l = af Etlyiin] j
fPoIicy Counterfactuals with Impulse Responses McKay and Wolf (2022)\

Under Uniqueness, Uniqueness {, CFA1 and CFA2,

Pl = Muy(L,6,0)ef + Mpp(L, 8, 0)e2" = pf , Eelpl, ] = Eclp} ]

\ yfT = My (L, 0, O‘)E{ + Myo(L, 0, 0‘)65* =y, Ef[y:+h] = Et[y:+h] j

All conditional expectations in the counterfactual economy } can be replicated exactly
. . p* T .. .

by a (unique) sequence of policy shocks {etii i—_ oo Uunder the decision rules in the

observed economy



Counterfactuals With Impulse Responses

Intuition:

Policy following the af-rule is exactly equivalent to deviating from the a-rule in a way
that (1) perfectly mimicks the af-rule and (2) is known perfectly in advance by all
private agents

The underlying model equations in (Ep) — (E;) can arbitrarily more complicated as
long as CFA2, and the other assumptions continue to hold, see McKay and Wolf
(2022)

Throughout linearity is required

The methodology allows counterfactuals conditional on an identified non-policy shock

For counterfactuals with unconditional data, a fundamentalness assumption is also
required.



Example: New Keynesian Model

Key Assumptions for Policy Counterfactuals with Impulse Responses

CFAL1 {Hy,Hp,Her} do not depend on «
Hy(0,a) = Hy(0) , Hy(0,0) = Hy(0) , Her (0, ) = Hy(0)

8gap B
R =[0 on )| B |43 e,
Pt a — =0
Yt
gap; | _ 1 1 E, gaPry1 | -1 R + sg
T Kk Btk Tetl —K |~~~ S
—— N—— Pt ~——
Yt Hy Etyti1 Hp e

with @ =[x 8]’ and k >0, ¢ >1,0< B <1

‘Hy, and H, indeed do not depend on «, CFA2 is satisfied



Counterfactuals With Impulse Responses

The solution to the NK model with news shocks is

8gapt _ 1 -
|: Tt :| 1+¢77an2: |: :|Zet+m n
—1 1.
1+¢7‘rﬁ7 |: :|A (1=

E_; |:|: gjrlit+h :| les = 1,1/():| —E_, [ 8aPt+ih :|

t+h Tt+h
(oo}
= 41 Zch—m |: -1 ] zzo(m) 4 1 |: 7(¢7l‘ *P) :| A—lph
1+ ¢nk = —K 14+ ¢k 1-p

Ec 1Ry | € = 1,00] — Ec—1[Re] = ¢ (Ee—1lmyyp | € = 1,00] — Ee—1[me]) + vo(h)
Choose the news shocks vg(h) such that for all h=0, ..., N,
vo(h) = (¢} — ¢x) (Ee-alwfip | € = 1,v0] — Ees[me])

For Np — oo, the resulting impulse response of inflation is

(1-p)p(ah)t

Eealmiin | e = 1,v0] — Ee—a[me] =
t t+h t t 1+¢LN



McKay and Wolf (2022) HANK Theoretical Example
Rule switch from Ry = ¢ + 302, €t to Re = ¢pRr—1+ (1 — ¢r)(dr 7t + Pxgapt)

. Onutput i, Policy Shocks
2
N
.
S~
Horizon N : i Horizon v | Horizon

2 SHOCKS: MATCH 1-PERIOD-AHEAD EXPECTATIONS

Output Policy Shocks

Horizon : Horizan : Horizon

FuLL DATE-0 SHOCKS: MATCH ALL EXPECTATIONS

Output Policy Shocks




McKay and Wolf (2022) Monetary Policy Counterfactuals

In reality, we do not have a (rotation) of complete set of policy news shocks

Reasonable approximations of future policy paths with linear combinations of different
identified monetary policy shocks

McKay and Wolf (2022) identify monetary policy shocks using Romer and Romer
(2004) and Gertler and Karadi (2015) as m; in an internal instrument SVAR

ROMER & ROMER (2004) SHOCK

GERTLER & KARADI (2015) SHOCK

Output Gap Infations Interet Rate

A



McKay and Wolf (2022) Monetary Policy Counterfactuals

Response to a technology news shock from Ben Zeev and Khan (2015) under
counterfactual monetary policy rules

Approximate simple Taylor rule Ry = 0.5R;—1 + (1 — 0.5) x (1.57: + gap)

Output Gap Inflation . Interest Rate

% Deviation

-++ Baseline
— Robust Counterfactual
—  Exact Taylor Rule

-2 -2
5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20
Horizon Horizon Horizon

25

30



McKay and Wolf (2022) Monetary Policy Counterfactuals

Response to a technology news shock from Ben Zeev and Khan (2015) under
counterfactual monetary policy rules

Approximate output gap targeting rule

Output Gap Inflation Interest Rate

% Deviation

+oe Bascline
— Robust Counterfactual
—  Exact Output Gap Targeting

5 10 15 20 25 00 5 10 15 20 25 0 5 10 15 20 25 30
Horizon Horizon Horizon



4. Other Uses of Impulse Responses

4.1 Estimating Theoretical Models with Impulse Response Matching
4.2 Estimating Single Structural Equations with Impulse Responses
4.3 Counterfactuals Under Alternative Policy Rules

4.4 Evaluating Optimality of Policy



Evaluating Optimality of Policy

We can approximate outcomes under counterfactual systematic policies with impulse
responses to multiple policy shocks

Given a policy loss function, we can also approximate the optimal policy

Barnichon and Mesters (2022), McKay and Wolf (2022)



Optimal Policy

Consider again
yt = HyEt[yt11] + Hppe + Her el (E2)

where p; is a scalar policy tool.

The policy loss function is

1
Ly= EYLVt
Optimal policy requires
oLt
— =HLy: =0
Opt Pyt

In the New Keynesian model y; = [gap: 7¢]’

a
Hpye=[ -1 —r ] [ gﬂft } =0= gap: = —Kmt



Optimal Policy

Let the policy rule in the observed economy be

Pt*Oé}’t-i-ZEt n (E1)

0 pl P2 Qi oo - e .
el = [l € €P° ...] is an infinite-dimensional vector of i.i.d ‘policy news shocks

Assume there is a unique solution in SMA(oco) form:

pt = Mpy(L)E{ + MPP(L)ef
ye = Myy(L)f}t/ + Myp(L)Ei7

where Mop(L) = 372 0 Map s LP

Consider

0Lt

86 = M/ 0yr = Mpp,OH;JYt

If the policy rule is optimal, then "prt = 0 such that M}’,p oyt =0



Optimal Policy

If the impact impulse response coefficients My, o are known, than a feasible test of
policy optimality is based on the condition M;p oyt =0

Intuition: If policy is optimal, there should be no deviations from the policy rule that
lead to a lower loss

In the New Keynesian model M}//p,O = [ ﬁ H;';” }

—1 — ap:
M;p,o}’t = [ T+ror 1+n2,, ] { gwtt ] = 0= gapt = —Kmt

We can test deviations from optimal policy and even calculate policy improvements
using empirical estimates of impulse responses to policy shocks



Optimal Policy

Let Y¢ = [y{ y/,; ---]’ stack the current and all future values of y; containing the
arguments in the policy loss function

Policy loss function

L = E[Y.WY] where p.s.d W contains policy weights

Uniqueness

There is a unique solution to the model generating the observed y;, in SMA(o0)
form
e = My (L)ef + Myp(L)ef




Optimal Policy Perturbations

Let Pt = [p; py,; -] stack the current and all future values of p;

Let P§ = E;P: denote the observed expected policy path at time t

Let P?’T denote a proposed alternative expected policy path at time t

Let P?’Opt denote the expected policy path under optimal policy, i.e. minimizing L

/Uniqueness Conditions \

e,opt
Pt

@ Uniqueness Under Optimal Policy: The optimal policy is unique

k @ Uniqueness {: There is a unique solution to the model for y,_T under Pf’TJ

(Condition for Optimal Policy Barnichon and Mesters (2022)\

Pyl = PO o VLt peort = MTWEY! =0
t

where M contains the dynamic causal effects on YI under the proposed alter-

\native policy j




Optimal Policy Perturbations

Optimal Policy Perturbation Barnichon and Mesters (2022)

The optimal policy perturbation ¢ such that Pf‘Jr + 6 = P?‘om is given by

5: = —(MPwMhH MY WE Y] =0

Projection coefficient in the weighted projection of EthT on -Mf

Policy deviations should not be able to reduce the sum of squared projection residuals
(i.e. the policy objective)

Barnichon and Mesters (2022) check ‘policy mistakes’ §; at any time t in observed
data with the following:

o Policymakers ‘outlook’, E;Y¢
@ M, the dynamic causal effect of policy shocks from the observed data
@ Knowledge of the policy weights W



Barnichon and Mesters (2022) Application to Monetary Policy

E:Y: and M are population objects, in practice both are sampled with error such that
0t is a random variable

The test of policy optimality becomes a statistical test of the null that ; = 0.

E:Y: is measured by median FOMC projection in the Summary of Economic
Projections

M in theory requires a (rotation) of a full sequence of news shock. In practice,
Barnichon and Mesters (2022) use impulse response to high frequency shocks around
FOMC announcement in the FFR target and 10 year Treasury yield

The baseline policy loss function is £ = ||¢||> + ||U¢||? where M; and U; stack the
vector of inflation gaps and unemployment gaps from t to t + H



Barnichon and Mesters (2022) Application to Monetary Policy
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