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REVIEW OF IDENTIFICATION WITH LOCAL PROJECTIONS

Most of this already discussed in the previous lecture



The issue
(Some) threats to identification

Recall, we need s¢|x; randomly assigned

Some examples when identification fails:
m excluded observables: correlated with s; and y;
m unobservables: correlated with s; and y;
m simultaneity: s; and y; jointly determined

(Some) solutions (well known from VARs):
B parametric zero restrictions
m internal instruments
m external instruments
m identification through heteroscedasticity
m .. and others



Recall: zero short-run restrictions
Cholesky decomposition - Wold causal ordering

Y = PP with P lower triangular:
always exists and is unique, but ...

m different ordering of the variables, different P
m implied 0 restrictions may be incorrect
m just-identification = ordering cannot be tested
m however, trivial to implement
Interpretation:
m Yy, does not contemporaneously depend on others
B Y only depends on yg contemporaneously
W Y@3), only depends on ygy ¢, Y2),c contemporaneously
m and so on...



Recursive identification in LPs
Suppose n x 1vector y;

Decide the causal ordering.
Include the contemporaneous values of variables causally ordered first:

p
Yjteh = Mjh + 5171)/1,t +...+ ijj[—1yif1,t + ﬁfiyi,t + Z C/b,kyt—l? + Vt+h
k=1

Structural LP Estimate

Remark: good idea to order treatment variable (yi,t) last —
variation cannot be explained by observables



Long-run zero restrictions with LPs
Two step procedure

Blanchard and Quah (1989) example:
Y = (X, Ur), X log real GDP; ur unemployment rate

Step 1: long-run LP

p

H
XtyH — Xe—1 = an + Ox pY; + Z CorYi—k T Vxit+H
k=1

d,4: linear combination that best explains long-run GDP (i.e. supply shock)

Remark: choose H large



Long-run identification
Step 2

p
yj,t+h :,uh+5j,h(5X,Hyt)+Zcﬁkyt7k+vj,t+h; j:X,U; h = 0717"'7H
k=1

Remarks:
m 3, is the response of the j variable to supply shock, in period h
[ vaHyt comes from first step
m little guidance on how to choose H. Try different values

m |dea can be generalized in a number of ways:
medium-run identification?



Sign restrictions
Example: monetary shock — positive response of ri,, forh =0,1,..., H
with R,(0) = 1 normalization

Idea: find all linear combinations & such that R.(h) > 0 and R.(0) =1
Step 1t reyn = prp + GrpYe + > e C?,kytffe + Vitgh — gr,h
Step 2: Vjurh = fjh + YinYe + 2oy kayt—fe + Viteh = Y
Step 3: find 6 such that
supd’qjp St 89, =1
é
5/gl’,h20 fOI’ h:1,,H

same for inf to obtain upper and lower bounds for R, (h)



Remarks

note this is set identification not point identification

hence inference is much more complicated

Plagborg-Mgller and Wolf (2021, ECTA) provide solution algorithm
choice of H matters, could be relatively short

simulation methods (bayesian) another way to go?

may combine with other constraints



LP-1V

Stock and Watson (2018, Economic Journal) Assumptions

Suppose z; is a vector of instruments for the structural shock e, and
denote z{ = z, — P(z;|w;) where w; collects all controls in the LP (e.g. y,_;)

Relevance: E (€, 2f') = o/ #0
Basic exogeneity: E (eﬁt zf’) =0, j#1

Lead-Lag exogeneity: £ <€ﬁr+h zf') =0,Vj,h#0

Remarks:
m usual IV conditions except lead-lag exogeneity because dynamics



LP-1V: Assumptions 1
Plagborg-Mgller and Wolf (2021 ECTA)

Assumption 1: y, = p+ O(L) € ; where:

nyx1 Nex1

O(L) =) OnL" st Y " [|04]] < oo with ||©4]* = tr(6},6n)

flyxNe  h_p h=0

and ©(x) has full column rank for all complex scalars x on the unit circle.

Remarks:
B ¢ are structural, hence possibly ©q # |
m we can have n. > n, (non-invertibility)
m Y, is strictly stationary
m Oy is the structural impulse response coefficient matrix



LP-1V: Assumptions 2

Assumption 2: z; = ¢, + > po1(GnZi—n + ApY,_p) + e + v with:
m o # 0 relevance condition
m1- Y}, GyL" has all roots outside unit circle
3 (|| < oo
m v L e jforanyj, v is measurement error

Remarks:
m Assumptions 1 and 2 — validity of LP-IV and SVAR-IV
m but LP-IV does not require invertibility

See Plagborg-Mgller and Wolf (2021) for more details
Example code: LPIV_example.do



Recall: Impulse responses as a comparison of two averages

R(h) = E(E[Yisn|St = S + 0, Xt] — E[Vin|St = S, X))

Viip: outcome
Si: intervention
s: baseline, eg,s=0
6: dose, e.g, 6 = 1.6 = var(e)'/?; ...
X;: exogenous and predetermined variables



A trivial example

Suppose s; € {0,1} is randomly assigned, then:

1T | T
R(h) = N, ;yt+hst N ;yt+h(1 —St)

T—h
Ny =) s; T—h=N+No
t=1
Remarks:
m inefficient (not using x;), but consistent
m could control for x; with Inverse Propensity score Weighting (IPW)
m feels like the potential outcomes paradigm used in micro
m could have regressed y;,4 on s, same thing (could add x; easily)



Inverse propensity score weighting
The basics: an alternative/complement to regression control
let s; € {0,1} be policy treatment;

Yen = Ve, Yerrs -5 Vegn)
Selection on observables or conditional ignorability:
y(s) Ls|x se{0,1}

suppose s randomly assigned, then no need for x:

T T
. 1 1
R(h) = ﬁ ;St Yirh — T_o ;(1 —St) Yerh

Vo
pl uh

Vien = MQ +St9h + Vigh > R =7




Rosenbaum and Rubin 1983

the propensity score as a sufficient statistic
before: y(s) L s|x; now: y(s) L s|p(s=1|x) s e {0,1}

hence, if p; = p(s; = 1|x:; 8) then:
T

()75 )

t=1




Doubly robust IPW estimators

regression augmented IPW:

St

1—s
Vern = 20 (0 + (% — po)Al) + ——=

h h
u X — V.
b, 1-p, (11 + (Xe — p) Y1) + Vign

see also augmented IPW by Lunceford and Davidian (2004)

Remarks:
m p; usually a first-stage logit/probit — affects inference
m |PW literature provides SE formulas, but not for time series settings
m one solution is to use the bootstrap

IPW code available here


https://sites.google.com/site/oscarjorda/home/local-projections

INFERENCE



Why is inference different with local projections?
It is the MA structure of the residuals

recall the AR(1) example, y; = py;_1 + U;. By recursive substitution:
Vieh = P Wi + Uepn + pUesn—t + ... + "¢

so in a local projection:
Verh = BryVeor + Vign;  Vigh = Utpn + pUtpn—1 + ... + U

In general, we don’t know the MA structure
Jorda (2005) recommended HAC standard errors, e.g. Newey-West



LAG AUGMENTATION A SIMPLER, MORE ELEGANT SOLUTION
MONTIEL-OLEA AND PLAGBORG-M@LLER. 2021. ECONOMETRICA



The logic of lag augmentation
A simple example

DGP:: y¢ = pyi_1 + Uy, Uy strictly stationary, E(ui|{Us}sx) = 0
LP: Yern = BnYt + Vign; Veen ~ MA(h)
Plug DGP into LP: ysip = BpUs + YaYi—1 + Vien

FWL logic: obtain S, by regressing Vi n — vnVi—1 ON YVt — pYi_1

Bh _ ZtT;qh (Yeh — VY1) (Ve — pVi1) _ Ez;qh(ﬂhut + Vign) Ut
Sy — pyea? S u?

T—h
Yot ViphUt
= Bn + T —T-h_ 2
—-h 2
=1 Ut



Key insight
Same logic if DGP is VAR(p)

Recall:

T—h
> i Vt+hut . 52(@1) Zt 1 Vt+hu;
Zt 1 Ut ( T— huz)

t=1 ~t

By = B+ ==

although viyp ~ MA(h), note that vy, pu; ~ MA(O) since forany s < t:

ElVernUiVsinUs] = E[E[VepnUiVsinUs|Usyq, Usto, .. -]
= EVernUeVsin E[Us|Us i, Usya, - ]

~~
=0

Takeaway: do lag-augmented LP with White corrected errors.
No need for Newey-West



Wild boostrap with lag augmentation
Response of ji variable to a shock

Lag-augmented LP — collect 5; p, 6;.p = 6(5; )

VAR(p) — d; (option: bias-adjust VAR coeffs Pope, 1990 procedure)
VAR(p) — BXQR

-~ -1 Q-]

For each boostrap iteration b =1,...,B:
Generate bootstrap residuals 7 = Z:iy;  Z¢ ~ N(0,1) (wild bootstrap)
t
draw a block of p initial observations (y=,...,y*) at random from T — p + 1 blocks of p
1 P
observations from the data
Generate y; with (y7,...,y;) initial observations, the bias-corrected VAR(p) coeffs, and uf

Apply augmeAnted LP to S

Store Ty = (87, — B30 /67,
Compute a/2 and 1 — a/2 quantiles of {?;}5:1, say Gqa,2 and Gi_q , respectively
a

the percentile confidence interval is:
1Bih = 60810 /25 Bih — 61,02

See https://github.com/jm4474/Lag-augmented_LocalProjections


https://github.com/jm4474/Lag-augmented_LocalProjections

Parametrically adjusted standard errors

General LP;

Vieh = BnSt + Xt + Vixn;  Vien = Ueen + QrUepn—1 + ... 4+ dpU;

Note: make no assumptions on how y, s, and x are dynamically related
hence no assumption on ¢,..., ¢n

Can view the LP as the DGP and estimate the ¢; directly as XMA(h) model



LUSOMPA (2019) FGLS



Lusompa’s (2019) FGLS procedure
See his paper for a bootstrap and Bayesian approaches
Step 1 (usual LP for h = 0):

Ve=ao+XBo+S0+U — {0}
Step 2 (use step 1to fix LHS variable):
Verr = a1 + XeBr + S+ Vg Ve = Ve — Urho

Step 3 (use estimates from Step 1 and 2):

Viro = o + X + Sty + Viro
Viro =Yiro — (U + Uado)  — %

rinse and repeat for steps 4 ... H
Note: always use Step 1 residuals 0, in all steps



Further comments and remarks
Many interesting results from Lusompa (2019)

VAR need not be DGP for FGLS to work

m in small samples with high persistence,
NW has small sample bias

similar result in Herbst and Johannsen (2020)

shows two bootstrap algorithms

shows bayesian approach with time-varying example
focus is on pointwise uncertainty, however



https://sites.google.com/uci.edu/amazelusompa/research
https://www.federalreserve.gov/econres/feds/bias-in-local-projections.htm

JOINT INFERENCE

LPs As A GMM PROBLEM



A simplification first
The Frisch-Waugh-Lovell theorem

Elements of the problem:
;. outcome variable (response)

X control variables (constant, predetermined endogenous and
exogenous variables)

si: treatment variable (impulse)
z;: instrumental variables (possibly none in which case, s; = z;)

Let P.(w;|v;) denote the linear regression of w; on v;
From now on, assume:

def
BV S Yeen — PUViinlx)
m st Yo - PL(st|xt)
mz Yoz - P(2:|t)



Basic univariate LP results

Verh = Sivh +Vegns h=0,1,... H

1 T— hv S 1 T
VIGh =) = Tis— 3250 D E) = Qs
TZt:1 t t=1

T—h T—h
1 d |
L3t Sy 9=y (3 )
t=1 =1
O~ Z E(Stth+th+h—jSte—j) ~
j=—00

T—h L
1

[
2
?vahs + = Z Z WiViphVegh—1S Sy wi =1 —
t=1

l1t L+1



Remarks

m | am using T instead of T — h to keep it simple
asymptotically, it makes no difference

m Newey-West or any other HAC estimator ok
m Inprinciple, L=h; h=1,...,H
can truncate at L for efficiency
m Lusompa (2020) GLS directly tackles MA errors



Set-up

Vin =0F - Vi) 58 =lw)® st
(H4+1)x1 (H+1) % (H+1) 1x1

Vin =Vt ... Virn) Va4 = ( X¢ () ® 28));
(H4+1) %1 (HED) X (HH(RED)  (HE) X (HH1)R 1x

moment condition:

ElZi(vin — SiB)l =

with

E[Z¢'vey] = 0



Objective function
recall the moment condition:
E[Z;(yiH - 5(B)] = E[Zte/Vt,H] =0

objective function:

T—H ! T—H
min [Z Z¢ (e ssm] W [Z Z¢'(Ven — Sfﬁ)]
t=1 t=1

4 IH -1
W = (7_ ;Ztelvt,HV:f,HZf>



Estimator

In the simple case

1 A - 4 IH
A~ !/ /
Y= <? § Z; Ste> (7— E Z; yf,H)

t=1 t=1

more generally:

1 A -1 1 A
5 <?ZSE’25W25’55> <?ZSE'Z?WZf’y§H>
t=1 t=1



The residual structure
Useful later when we construct GLS

Vi 1 0 0 Ut
Vi ¢ 0 Uty
Vin = : - : : : :
VitH On PH—r ... ] UttH
NG ~~ JW
@ Ut,H

in the AR(1) example, ¢, = ¢" and By = ¢n

Note ¢ = 3, = exploit for GLS



Estimating LP covariance matrix X

Using optimal W defined earlier, usual GMM result is:

—1

T T =1
1 1
o= ; 7'S, (T ; Z{cIDULHuQHd)’Zt) S\Z,

but & unknown. solutions:
m Newey-West (as we saw earlier)
m recursive estimates of ® (GLS)
m block bootstrap
m Bayesian methods



Comments on GMM

m nothing unusual in using GMM to estimate LPs
m LPs induce MA structure on residuals

m optimal weighting matrix should reflect this

m GMM results on LM test useful later

m also useful later for Gaussian Basis Functions



ERROR BANDS



Inference on the trajectory of the response
key reference
"Simultaneous confidence bands: theory, implementation, and an application to SVARs” by José Luis Montiel
Olea and Mikkel Plagborg-Mpller

idea f 1
Ry Is correlated with Rn1 ) .
In AR(1) example CORR(Ryp, Rp_1) = ¢ ptonal 2 5.2 x°
Estimates f1

95% Confidence
Ellipse

-




The sup-t procedure for joint inference
let the H x 1 vector R collect impulse response coeffs
assume

RSN (R, D)

can show error bands for response are such that:

H
P(ﬂ [Rh Gﬁhﬂ:C&h]> — P(mﬁxbh V| < C)

h=1

choose ¢ as smallest c.v. with simultaneous coverage

€= Gral(D) = Gro (mﬁtx o7 w)

where v = (V1, e VH)/ ~ N(OH, E) and op = Z[fhh]



A simple algorithm to implement sup-t procedure
based on asymptotic normality

start with estimates of the response: R, 3.
draw i.i.d. vectors ¥ ~ N(04,%), fors=1,...,S

define §i_, as the empirical 1 — a quantile of maxj, |4, \7}75)| across
S = 1,...,5 with oh = E[h,h]

construct bands as (i_,[Ri — 64G1-a, Rh + 6nG1—a]



Bootstrap/Bayesian version of sup-t algorithm

denote P as either the bootstrap or posterior ¢
¢ can be VAR parameters so that R = R(¢)
¢ can be local projection estimates so that R = ¢

and generate s =1,...,S draws R
Hence:

let gns denote the empirical § quantile of ﬁff)

Sl (7@(5) € Nh_ilan.s- @mﬂs])
S >1—«

el

construct bands as "i_,[dy 5> G 1_s]



SIGNIFICANCE BANDS



Motivation
a common situation with VARs

Response of log CPI to a monetary shock

CPI

A
!

/

-3 -2 -1




Basic idea
some observations

m temptation: the response of CPI is basically zero

m observation 1: all (48) coefficients negative rather than randomly
alternating between +/-

m observation 2: response coefficients (highly) correlated

m observation 3: collinearity — low individual t-stats (wide bands),
sometimes high F-stat

proposition: often the key question is significance of the overall response
rather than estimation uncertainty

is the average treatment effect (ATE) different from zero?



A simple example

let {y;}]_, be mean zero, stationary and homoscedastic AR(1). Using local
projections (LPs):

Vern = BrYt + Utsn [=1,...,H
so that

1 n
B, = 7 Dt VernYt
= TN 2

2 2t Vi

with n subset of T observations available for estimation
under the null

Ho:Bh=0,Vh — Utth = Yirn

here 0 denotes the residuals under the null



A simple example
continued

using usual OLS formula for variance of 3,, under the null,

1N 2
2 _ a2t Yirn £>1
e
B Dt Vi n

o

since y; is stationary and under Hy, no serial correlation

m hence, asymptotic confidence interval is £¢(1_q/2)/v/N
B C(1_a/2) Standard Gaussian critical value
m same as autocorrelogram error bands



Significance bands in a local projection
the autocorelogram is the LP in an AR(1)

1.0

0.8

0.0 0.2 0.4 0.6

0.2

-0.4

Autocorrelation Function

Lag

14




Significance bands
LPIV set up and using x¢ notation for x; — P, (x|l;)

LPIV: y¢, = S§9h + Urgn. Instrument: zg. Null: Ho : 7, = 0

T—h T—h
VTR —0) = 77 Lt ZVin, iZze e 5N, V);
Th AN Thjece T T tYerh T

T 2ut=1 Zt5t t=1

1 T—h
P
t=1

What is V under the null hypothesis?



The variance under the null
Key: the variance is not a function of h!

\'

T—h o)

1

vov (72zsyah) S EE )
t=1 j=—00

o0

= Z E(ziz{ j)E(YiinYiin_j) under Ho + lead-lag exogeneity

j=—o0

= Y @iy = propy0 ifz serially uncorrelated

J—

hence
= qzs1 VC]
Note: use Barlett-type correction for V (e.g. NW weights)



