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Overview

1 Time Series Representations of Dynamic Macro Models
Structural State Space Models, MA, VARMA and VAR representations; Estimating Dynamic Causal Effects;
Misspecification: Nonfundamentalness, Nonlinearities, and Time Aggregation

2 State-Space Models and the Kalman Filter

State Space Models, Kalman Filter, Forecasting, Maximum Likelihood Estimation

3 Local Projections
Impulse Responses as Dynamic Treatment Effects, LP Estimation and Basic Inference, VAR-LP Impulse
Response Equivalence

4 ldentification of Dynamic Causal Effects
Identification with Covariance Restrictions or Higher Moments. Proxy SVAR/SVAR-IV, Internal instrument
SVAR

5 Inference for Impulse Responses
Inference methods for VAR/LP impulse responses. Detecting weak instruments; Robust Inference Methods;
Joint inference for VAR and LP impulse responses

6 Impulse Response Heterogeneity
Kitagawa Decomposition, Time Varying Impulse Responses

7 Other Uses of Impulse Responses
Impulse Response Matching and Indirect Inference; Estimating Structural Single Equations using Impulse
Responses, SP-IV; Counterfactuals with Impulse Responses, Optimal Policy Perturbations



3. More Inference for Impulse Responses
3.1 Weak Identification

3.2 Detecting Weak Instruments

3.3 Robust Inference

3.4 Proxy SVAR/SVAR-IV Inference



Inference with Instrumental Variables

IV methods are commonly used in empirical macro

o LP-IV
e Proxy SVAR/SVAR-IV

o But really, anytime you scale impulse responses to a fixed impact on an
endogenous outcome variable at some horizon
IV estimates of impulse responses are quotients of sample moments

The numerator may be non-zero (identified), but small relative to the sampling error
(weakly identified)

Division by deterministic zeros is not allowed

Division by statistics hard to distinguish from zero also creates problems

See Andrews, Stock, and Sun (2019), Keane and Neal (2022) for recent general
discussions



General Model

Model with N endogenous regressors, K > N instrumental variables

y Y8+,
Y = XM+v,

Tx1 outcome variable of interest
T x N endogenous regressors

T x K  instrumental variables, K > N
Nx1 parameters of interest

: K x N ‘first stage’ parameters
r=ng: Kx1 ‘reduced form’ parameters

@ X <<

All data is demeaned, wlg no exogenous regressors (Frisch Waugh), and X' X/T = Ix

Reduced form: y = XI'4+w, w=vB8+v



2SLS and W

Two-Stage-Least-Squares:
Basts = (Y'PxY)1Y'Pxy
where Px = XX’/ T

Let W denote a robust estimator of the covariance matrix of the reduced-form and
first-stage parameter estimates [ vec(1)’]’ with W 5 w

Use Newey-West, Huber-White, clustered, etc estimate as suited to the application

W; Wi

Partition W = [
Wi, W

} (N + 1)K x (N + 1)K

So WS is the robust covariance of the first-stage parameter estimates



Weak Instruments Recap

Given the X’X/T = Ijc normalization, [1= X'Y/T and { = X'y/T

Consider the N = 1 case:

B2SLS =
Since ' = M3, the hope is that B25L5 =~ 3 as MM'MN cancels out in population
However, this never happens exactly with finite T and ﬁAgsLs is biased

When 1’11 is statistically small (the first stage is ‘weak’), division-by-zero problems
can cause the bias to be large

Since M'T > 0 by assumption, Y'PxY /T = [1'[1 being small is a small sample
problem



Consequences of Weak Identification: Bias

Let's model the small sample distribution of B2SL$ using a weak instrument
asymptotic approximation

Local-to-Zero Assumption

Y = XM+ v with M = C/v/T where C is a fixed full rank K x N matrix

First-stage relationship is local-to-zero (ﬁ’ﬁ stays random even as T — 00)

(EQSLS Asymptotics Lewis and Mertens (2022)\

Under Local-to-Zero and otherwise standard assumptions

A d « —1
Bosts — B = Brsis = (RI/\I,K(W277£ ®IK)RN,K) Riv, i vec(mmny)

0
where Ry x = Iy ® vec(Zk) and [n; n5] ~ N(( vec(KC’) ),S)

N J

S is the covariance of Tf%[X'”u vec(X'v))" as T — oo, and depends on W and 3

B;_SLS is: a (complic.ated) random variable and the asymptotic bias E[3]¢, s] (when it
exists) is not zero in general.



Consequences of Weak ldentification: Size Distortions

Empirical rejection rates for nominal 5% two-sided t-statistics for the null that
Basts = B (y-axis) as a function of a measure of instrument strength (x-axis) across 5
million random DGPs

N=2K=2 N=2K=3 N=2K=4

L 09 . 0 08

Weak instruments can cause serious size distortions for regular inference methods.
Same for N = 1 models.



Detecting Weak Instruments

How do we know whether instruments are weak or not?

@ When are instruments considered weak or strong?
o What statistic is an indicator of instrument strength?
o What is the limiting distribution of this test statistic?

Are critical values fast to obtain?



Detecting Weak Instruments

How do we know whether instruments are weak or not?
Stock and Yogo (2005): Homoskedasticity, any N

o When are instruments considered weak or strong?

Bias criterion, Size criterion

o What statistic is an indicator of instrument strength?
Cragg and Donald (1993) statistic
= non-robust F-statistic when N =1
@ What is the limiting distribution of this test statistic?
For N = 1: non-central x2
For N > 1: unknown, use bounding non-central x?
@ Are critical values fast to obtain?

Yes, only depend on N and K. Look up in Stock and Yogo (2005) tables.



Detecting Weak Instruments
How do we know whether instruments are weak or not?
Montiel Olea and Pflueger (2013): Non-Homoskedasticity N =1

@ When are instruments considered weak or strong?

Bias criterion

What statistic is an indicator of instrument strength?
‘Effective F-statistic’
= equals robust F-statistic when K =1
o What is the limiting distribution of this test statistic?
Unknown, weighted avg. of non-central x2's, use approx. distribution matching
first two cumulants
o Are critical values fast to obtain?

Yes, obtained numerically in each application using a second order
approximation to the bias (weakivtest.ado)



Detecting Weak Instruments

How do we know whether instruments are weak or not?
Lewis and Mertens (2022): Non-Homoskedasticity, any N

o When are instruments considered weak or strong?

Bias criterion

o What statistic is an indicator of instrument strength?

Generalized First-Stage Statistic

o What is the limiting distribution of this test statistic?

For N = 1, weighted avg. of non-central x2's, use approx. distribution
matching first three cumulants

For N > 1: unknown, mineval of matrix of traces, use approx. distribution
matching first three cumulants of a bounding distribution
@ Are critical values fast to obtain?

Yes, obtained numerically in each application using a second order
approximation to the bias (gweakivtest.m)



Defining Weak Instruments

Bias Criterion

B= \/E [ﬁ;SLS}I SE [5;55}/ Tr(S1)

S1 is the covariance of T_%[X’v]’ as T — oo

B =1 in a worst-case scenario when the instruments are completely uninformative
(A =0) and v is a perfect linear combination of second-stage regressors XT1

Bias criterion nests that in Stock and Yogo (2005) (under homoskedasticity) and
Montiel Olea and Pflueger (2013) (when N =1)

Fraction of the OLS bias under homoskedasticity, but not in general

Weak Instruments Definition

Instruments are weak for 3 and C such that B > 7, where 7 is a tolerance level




Nagar Bias

B3s1s has intractable distribution
E [BEFSLS] does not exist for K = N (and K = N + 1 depending on assumptions)

E [,B;SLS] has no known analytical form (except for N = 1 under homoskedasticity)

Two options:

(1) obtain B by Monte Carlo simulations

(2) Nagar (1959) approximation B, (second-order Taylor around m2 = vec(C’))

A function of W, so weakivtest.ado and gweakivtest.m use (2)

Nagar approximation reasonable for K > N + 1, but N < K < N+ 1 can be
problematic



Nagar Bias versus Monte Carlo Bias
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Bounding the Bias

Nagar bias is a complicated function of 8 (N x 1), C (K x N) and W

We can estimate W consistently, but not 8 and C

Nagar Bias Bounds Lewis and Mertens (2022)
@ Bj has a sharp upper bound B, < )\;ilnB(W) (Worst-case Nagar bias)
@ Bj has an upper bound B, < /\r;ii\ll(W)

1 1
where Amin = mineval{A} and A = &~2C/C®~ 2 is the concentration matrix

Both bounds depend only on a single unknown parameter Apnin

In simulations (not a proof):

The worst-case Nagar bias is an effective upper bound on the Monte Carlo bias when
K>N+1

The non-sharp bound is an effective upper bound on the Monte Carlo bias when
K <N+1when N >1and when N=1and K =2

When N = K =1, use the size-based Stock-Yogo test (OK, even under
heteroskedasticity in this case)



Measuring Instrument Strength

We need a test statistic that is informative about Anin

Generalized First-Stage Statistic Lewis and Mertens (2022)

For arbitrary N and W, the test statistic
8min = mineval{@‘% Y’ Px YcT:F%}7

measures instrument strength, ® = (Zy ® vec(Zx)) (W2 ® I )(Zy ® vec(Zk))

® is the N x N matrix consisting of traces of the K x K partitions of W,
The key property of the test statistic is that E[gmin] = 1 + Amin

Test the null of weak instruments by testing whether gnin < 1+ B(W)/7 (or
8min <1+ WV(W)/7 for K< N+ 1)



Measuring Instrument Strength

8Bmin = mineval{&‘% Y/PX Yq’\)—%}

Special cases:

Under homoskedasticity and N =1, Wg = &5 ® Ik, &= K&e

&min = Y'Px Y /(K&2) is the non-robust F-statistic

Under homoskedasticity and N > 1, Wz = )A:V ® Ik, &= Kfv

A1 A1
Gmin = K~ mineval{¥, 2Y'PxYX, 2} is the Cragg and Donald (1993) test
statistic of the Stock and Yogo (2005) tests

Under non-homoskedasticity and N = K = 1, W, = (67°0)2, & = (57°0)2

&min = Y'Px Y /(K(61°P)?) is the robust F-statistic

Under non-homoskedasticity and N =1 and K > 1, ® = Tr(W5)

gmin=Y'PxY/ Tr(Wg) is the the effective F-statistic of Montiel Olea and
Pflueger (2013)

So gmin always gets it right (do not use Kleibergen and Paap (2006))



Critical Values

Under the null, g, is the minimum eigenvalue of a matrix consisting of traces of the
K X K partitions of W

Lewis and Mertens (2022) derive analytical expressions for all the cumulants, and
upper bounds on the cumulants that depend only on A,

Critical values are obtained from a three-parameter approximating Imhof (1961)
distribution that match the first three cumulants of the bounding limiting distribution

As in Stock and Yogo (2005), this makes the test conservative (false rejections with at
most « probability, e.g. o = 5%)

The generalized test nevertheless has power



Size and Power

a=5%, 7=0.10

of ll of weak Istrummests




Example: Ramey and Zubairy (2018) LP-IV

Ramey and Zubairy (2018) estimate state-dependent government spending multipliers

using
h h
Zyt+j =l—1 |yan + dan(L)ze—1+ map Z 8t+j
=0 =0
h
+ (1 —=l-1) |v8,n + ¢B,n(L)Zt—1 + mB p thﬂ' + Weth,
=0

where I; is an indicator of recession/boom or binding/non-binding ZLB

N=2 K=4



Example: Ramey and Zubairy (2018) LP-1V

(a) Government Spending Interacted with Indicator of Slack
Full sample Post-WWII Excluding WWII

3 3 8 &
3 3 8 &

B S T I T T e S S R R TR e

(b) Government Spending Interacted with ZLB Indicator
Full sample Excluding WWII




Comments

@ Download by clicking here: gweakivtest.m

@ Same test statistic as Stock and Yogo (2005) and Montiel Olea and Pflueger
(2013)

@ Similar critical values to bias based test in Stock and Yogo (2005) under
homoskedasticity (Nagar vs Monte Carlo)

@ Virtually the same critical values as Montiel Olea and Pflueger (2013) when
N=1

Except when K = 2:

A more conservative bias bound is required when K =2

Example: Under homoskedasticity, the worst case nagar bias is zero when K = 2!

@ Selection on first-stage statistics creates additional size distortions, e.g. Andrews,
Stock, and Sun (2019)


https://karelmertenscom.files.wordpress.com/2022/12/webprograms.zip

3. More Inference for Impulse Responses
3.1 Weak Identification

3.2 Detecting Weak Instruments

3.3 Robust Inference

3.4 Proxy SVAR/SVAR-IV Inference



Robust Inference Methods

When instruments are weak, several other robust inference methods are available

All work by test inversion
Suppose you have a test that correctly rejects at a % under the null that 3 = Bo
Perform the test over a set of possible values for Sy, the acceptance region contains 8

with 1 — o % probability

Options under Non-Homoskedasticity:

e AR statistic, Anderson and Rubin (1949), Chernozhukov and Hansen (2008)
o KLM statistic, Kleibergen (2007), Chernozhukov and Hansen (2008)
o CLR statistic See overview in Andrews, Stock, and Sun (2019)

Not widely used, and an area of ongoing research



Inference based on Anderson and Rubin (1949)

Define (o) =y — Yo
Run the regression i(80) = X~ + w yielding 4(80) = X' d(Bo)/ T

The AR statistic is the (robust) Wald-statistic

AR(Bo) = 4(Bo)' Var(3(50)) ~*4(6o) AR(Bo) | Hy-5=p0 > X

Perform the test over a grid fo, the (1 — a) % confidence set is all grid points for
which AR(8o) < x% ,

Valid regardless of the value of I, even 1 = 0.

Optimal for N = K = 1, inefficient when N =1 and K > 1

@ For N > 1, subvector confidence sets for 3; given by min AR(ﬁé,ng) are very
B

o
conservative

Refinements available, but not under non-homoskedasticity

Can reject for all By if the model is misspecified and overidentified



Example: Mertens and Montiel Olea (2018)

LP-1V estimates of elasticity of taxable income to 1 — AMTR

AMTR is the average marginal tax rate

68% Confi dence Level 95% Confi dence Level

——-Standard
—-=-~Ander son- Rubi n
———Mertens Mbntiel -0 ea

per cent

o 1 2 3 4 5
hori zon (years) hori zon (years)

FIGURE B.II Confidence Intervals for LP-IV Estimates of Aggregate Tax Elasticities of Income
N =K =1, gmin = 'Effective’ F-statistic = 229.25
Well above critical value for « = 0.05 and 7 = .1

Download the code here


https://karelmertenscom.files.wordpress.com/2018/01/replication_programs.zip

Proxy SVAR/SVAR-IV Inference

Impulse estimation by LP-1V is an application of the general IV model discussed earlier

Very similar weak instrument problems also apply to impulse response estimation by
Proxy SVARs/SVAR-1V

SVAR Inference with strong instruments: See overview in Kilian and Liitkepohl (2017)

o Delta Method

@ Bootstrap Methods*

o Parametric Bootstrap Montiel Olea, Stock, and Watson (2021)
o Moving Block Bootstrap Jentsch and Lunsford (2019)
SVAR Inference with weak instruments: Montiel Olea, Stock, and Watson (2021)

* Avoid Mertens and Ravn (2013) wild bootstrap for impulse responses in SVAR
applications (regardless of identification scheme), see Jentsch and Lunsford (2019)



Example: Mertens and Montiel Olea (2018)

LP-IV estimates of elasticity of taxable income to 1 — AMTR

AMTR is the average marginal tax rate

Inference methods with strong instruments

68% Confi dence Level 95% Confi dence Level
5 5
45}~ ~Delta Method 45
—-==MR 2013 W1d Bootstrap
4} ——-—MSW2017 Bootstrap 4
JL 2016 Bootstrap
35 35

horizon (years) horizon (years)

Download the code here


https://karelmertenscom.files.wordpress.com/2018/01/replication_programs.zip

Proxy SVAR/SVAR-IV Recap

SVAR B(L)z: = De; with

di1 di2 Ut
1x1 1x(Na—1 1x1
D= x(Nz—1) U= X
d2 dx up, ¢
(N;—1)x1  (N;—1)x(N;—1) (N,—1)x1

Under fundamentalness, the following conditions on a scalar m;
E[mter,:] = ¢ # 0 (Relevance)
E[mte_1,:] = 0 (Contemporaneous Exogeneity)

provide N, — 1 covariance restrictions that suffice to identify D; = [d11 d};]’

The impulse response coefficients at horizon h are in G, D1 = M}, where G, are the
coefficients on L" in G(L) = B(L)™1, or

h
Gyo=1; G/-,:ZG/,_,'B;, h>0
i=1



Weak Instruments in Proxy SVAR/SVAR-IV

Define D1 = D1/di1 = [1 dél/dn]/

D; contains the impact coefficients scaled such that the impact on the first variable is
normalized to unity
Dl _ E[mtut]
E[myu ¢]

The associated impulse response of variable n at horizon h is

E
Anp = €,GpDy = e;G,,M
E[miur ]

where e, is the n-th column of the identity matrix

The natural estimator is

h
, éhzzéhfiéi: h>0
i=1

7
o Ao ~ um'/T
Anp =€ GyDy = ’Giu /
nh = €Gpl1 €n hu1 ’/T

where uis N, x T, uand marel x T, and é,- are the OLS estimates of the VAR
coefficients



Weak Instruments in Proxy SVAR/SVAR-IV

Local-to-Zero

E[mie1s] = ¢ with ¢ = c/VT

Asymptotic Normality Regularity Condition

vec(B) ¢
VT um’/T LN £ | ~N(0,Q)
vech(uu'/T) ®

LP-1V (i.e. 1V) assumes the IV reduced form parameters are (approximately) normal

Here, the assumption is instead that that VAR coefficients are approximately normal



Weak Instruments in Proxy SVAR/SVAR-IV

Weak IV Asymptotic Representation of the Impulse Response Estimator
Montiel Olea, Stock, and Watson (2021)

Under Local-to-Zero and the Regularity Condition,

~ % d (e’ Gh — /\nﬂhe{)’f
()‘n,h — /\n,h) — )‘n,h — ne*{T

The impulse response bias is asymptotically distributed as a ratio of correlated normal
variables.

The bias is decreasing in the concentration parameter ¢



Weak Instruments in Proxy SVAR/SVAR-IV

All of this is analogous to the standard IV framework with N = K =1 under
homoskedasticity (e.g. Staiger and Stock (1997))

Consider
oo
2= Bzt + Z Bizi—j+ wa ¢
i=1
The SVAR IV estimator of 8 = db1/d11 is the equation-by-equation 2SLS estimator of
[ using m¢ as the instrument
Weak instrument bias towards to OLS estimate of 3, which is also the estimate from

the lower triangular (Cholesky) factorization with uy ; ordered first

If Cholesky and SVAR-IV impulse response look similar, that is not evidence for the
recursivity restrictions unless the instrument is strong.

Existing tests are also suited for detecting weak instruments in the equation above



Robust Inference in Proxy SVAR/SVAR-IV

Montiel Olea, Stock, and Watson (2021) propose Anderson and Rubin (1949)
confidence sets

Under the null hypothesis A, , = A?z,h: E[miuy ] — )\S’he,’,GhE[mtut] =0

. ~ ’ . .
Define &(\° mh) = -0 he,’, Gp“F- and construct the Wald-statistic

é(>\2 0)?

AR )\ =
( h) — 2)\0 hw12 + ()\ )2@)22

where | 11 %12 1 g consistent for the asymptotic covariance of
w12 W22

[uinm’ )T €, Gy(um’/T)].



Example: Mertens and Montiel Olea (2018)
SVAR-IV estimates of elasticity of taxable income to 1 — AMTR
AMTR is the average marginal tax rate

68% Confi dence Level 95% Confi dence Level

——-Delta Method
3 —==NBW2017 Weak |V-robust

per cent
per cent

horizon (years)

horizon (years)

Download the code here


https://karelmertenscom.files.wordpress.com/2018/01/replication_programs.zip

Example: Montiel Olea, Stock, and Watson (2021)
Kilian (2008) proxy for oil shocks in a 3-variable SVAR

B. 95% Confidence Sets
Ci ive Percent Change in Global Crude Oil Productis
T T T T T T T

———— ggplugin

0 2 4 6 8 10 12 14 16 18 20
Month
Index of real economic activity

Oil supply have shocks have relatively little effect on oil prices under Cholesky
identification Kilian (2009).

Conclusion appears robust to using Proxy SVAR and robust inference

Download the code here


https://github.com/jm4474/SVARIV
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