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Overview

1 Time Series Representations of Dynamic Macro Models
Structural State Space Models, MA, VARMA and VAR representations; Estimating Dynamic Causal Effects;
Misspecification: Nonfundamentalness, Nonlinearities, and Time Aggregation

2 State-Space Models and the Kalman Filter
State Space Models, Kalman Filter, Forecasting, Maximum Likelihood Estimation

3 Local Projections
Impulse Responses as Dynamic Treatment Effects, LP Estimation and Basic Inference, VAR-LP Impulse
Response Equivalence

4 Identification of Dynamic Causal Effects
Identification with Covariance Restrictions or Higher Moments. Proxy SVAR/SVAR-IV, Internal instrument
SVAR

5 Inference for Impulse Responses
Inference methods for VAR/LP impulse responses. Detecting weak instruments; Robust Inference Methods;
Joint inference for VAR and LP impulse responses

6 Impulse Response Heterogeneity
Kitagawa Decomposition, Time Varying Impulse Responses

7 Other Uses of Impulse Responses
Impulse Response Matching and Indirect Inference; Estimating Structural Single Equations using Impulse
Responses, SP-IV; Counterfactuals with Impulse Responses, Optimal Policy Perturbations



3. More Inference for Impulse Responses

3.1 Weak Identification

3.2 Detecting Weak Instruments

3.3 Robust Inference

3.4 Proxy SVAR/SVAR-IV Inference



Inference with Instrumental Variables

IV methods are commonly used in empirical macro

LP-IV

Proxy SVAR/SVAR-IV

But really, anytime you scale impulse responses to a fixed impact on an
endogenous outcome variable at some horizon

IV estimates of impulse responses are quotients of sample moments

The numerator may be non-zero (identified), but small relative to the sampling error
(weakly identified)

Division by deterministic zeros is not allowed

Division by statistics hard to distinguish from zero also creates problems

See Andrews, Stock, and Sun (2019), Keane and Neal (2022) for recent general
discussions



General Model

Model with N endogenous regressors, K ≥ N instrumental variables

y = Yβ + υ,

Y = XΠ+ v ,

y : T × 1 outcome variable of interest
Y : T × N endogenous regressors
X : T × K instrumental variables, K ≥ N
β : N × 1 parameters of interest
Π : K × N ‘first stage’ parameters
Γ = Πβ : K × 1 ‘reduced form’ parameters

All data is demeaned, wlg no exogenous regressors (Frisch Waugh), and X ′X/T = IK

Reduced form: y = XΓ + w , w = vβ + υ



2SLS and Ŵ

Two-Stage-Least-Squares:

β̂2SLS = (Y ′PXY )−1Y ′PX y

where PX = XX ′/T

Let Ŵ denote a robust estimator of the covariance matrix of the reduced-form and
first-stage parameter estimates [Γ̂′ vec(Π̂)′]′ with Ŵ

p→ W

Use Newey-West, Huber-White, clustered, etc estimate as suited to the application

Partition W =

[
W1 W12

W′
12 W2

]
(N + 1)K × (N + 1)K

So Ŵ2 is the robust covariance of the first-stage parameter estimates



Weak Instruments Recap

Given the X ′X/T = IK normalization, Π̂ = X ′Y /T and Γ̂ = X ′y/T

Consider the N = 1 case:

β̂2SLS =
Y ′PX y/T

Y ′PXY /T
=

Π̂′Γ̂

Π̂′Π̂

Since Γ = Πβ , the hope is that β̂2SLS ≈ β as Π′Π cancels out in population

However, this never happens exactly with finite T and β̂2SLS is biased

When Π̂′Π̂ is statistically small (the first stage is ‘weak’), division-by-zero problems
can cause the bias to be large

Since Π′Π > 0 by assumption, Y ′PXY /T = Π̂′Π̂ being small is a small sample
problem



Consequences of Weak Identification: Bias

Let’s model the small sample distribution of β̂2SLS using a weak instrument
asymptotic approximation

Local-to-Zero Assumption

Y = XΠ+ v with Π = C/
√
T where C is a fixed full rank K × N matrix

First-stage relationship is local-to-zero (Π̂′Π̂ stays random even as T → ∞)

β̂2SLS Asymptotics Lewis and Mertens (2022)

Under Local-to-Zero and otherwise standard assumptions

β̂2SLS − β
d→ β∗

2SLS =
(
R′
N,K (η2η

′
2 ⊗ IK )RN,K

)−1
R′
N,K vec(η1η

′
2)

where RN,K = IN ⊗ vec(IK ) and [η′1 η′2] ∼ N
(( 0K

vec(C ′)

)
,S

)

S is the covariance of T− 1
2 [X ′υ vec(X ′v)′]′ as T → ∞, and depends on W and β

β∗
2SLS is a (complicated) random variable and the asymptotic bias E [β∗

2SLS ] (when it
exists) is not zero in general.



Consequences of Weak Identification: Size Distortions

Empirical rejection rates for nominal 5% two-sided t-statistics for the null that
β̂2SLS = β (y -axis) as a function of a measure of instrument strength (x-axis) across 5
million random DGPs

Figure 3: Size of t-statistic inference on β

N = 2,K = 2 N = 2,K = 3 N = 2,K = 4

N = 2,K = 6 N = 3,K = 5 N = 3,K = 9

Notes: For each specification, we consider five million DGPs as described in the text. For
each DGP we take 1000 samples, and for each sample we calculate the first-stage test statistic
gmin and conduct a two-sided t-test for each element of β. The figure shows the average and
95 percentiles of the t-test rejection rates as a function of the average gmin for 100 equally
spaced bins.

dard two-sided t-test in Figure 3. The t-tests are for the null hypothesis that
a given element in β̂2SLS equals the true value. Each panel shows binned av-
erages of the rejection rates across the N t-tests in the five million DGPs as a
function of the average ratio of gmin to the critical value of the first-stage test.
The shaded area plots the 95 percent interval of the rejection rates within
each bin. The full horizontal line shows the 0.05 nominal level of the t-test.
For reference, the dashed horizontal line marks the 0.15 level, corresponding
to a common tolerance level of 0.10 in size-based tests of weak instruments.

Figure 3 shows that the size distortions generally grow larger as gmin be-
comes smaller relative to the critical value. In addition, the size distortions
vanish – up to Monte Carlo error – as gmin grows larger. On average across the
DGPs, the t-tests lead to over-rejection for low values of gmin relative to the
critical value. The size distortions are relatively small in the N = 2, K = 2

model even when gmin is well below the critical value of the bias-based test.
The size distortions become more severe at low relative values of gmin as the
degree of overidentification increases. Overall, these patterns are qualita-
tively the same as those discussed in Stock and Yogo (2005) for conditionally
homoskedastic and serially uncorrelated models. They indicate that size dis-
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Weak instruments can cause serious size distortions for regular inference methods.
Same for N = 1 models.



Detecting Weak Instruments

How do we know whether instruments are weak or not?

When are instruments considered weak or strong?

What statistic is an indicator of instrument strength?

What is the limiting distribution of this test statistic?

Are critical values fast to obtain?



Detecting Weak Instruments

How do we know whether instruments are weak or not?

Stock and Yogo (2005): Homoskedasticity, any N

When are instruments considered weak or strong?

Bias criterion, Size criterion

What statistic is an indicator of instrument strength?

Cragg and Donald (1993) statistic
= non-robust F-statistic when N = 1

What is the limiting distribution of this test statistic?

For N = 1: non-central χ2

For N > 1: unknown, use bounding non-central χ2

Are critical values fast to obtain?

Yes, only depend on N and K . Look up in Stock and Yogo (2005) tables.



Detecting Weak Instruments

How do we know whether instruments are weak or not?

Montiel Olea and Pflueger (2013): Non-Homoskedasticity N = 1

When are instruments considered weak or strong?

Bias criterion

What statistic is an indicator of instrument strength?

‘Effective F-statistic’
= equals robust F-statistic when K = 1

What is the limiting distribution of this test statistic?

Unknown, weighted avg. of non-central χ2’s, use approx. distribution matching
first two cumulants

Are critical values fast to obtain?

Yes, obtained numerically in each application using a second order
approximation to the bias (weakivtest.ado)



Detecting Weak Instruments

How do we know whether instruments are weak or not?

Lewis and Mertens (2022): Non-Homoskedasticity, any N

When are instruments considered weak or strong?

Bias criterion

What statistic is an indicator of instrument strength?

Generalized First-Stage Statistic

What is the limiting distribution of this test statistic?

For N = 1, weighted avg. of non-central χ2’s, use approx. distribution
matching first three cumulants

For N > 1: unknown, mineval of matrix of traces, use approx. distribution
matching first three cumulants of a bounding distribution

Are critical values fast to obtain?

Yes, obtained numerically in each application using a second order
approximation to the bias (gweakivtest.m)



Defining Weak Instruments

Bias Criterion

B =
√

E
[
β∗
2SLS

]′
ΦE

[
β∗
2SLS

]
/
√

Tr(S1)

S1 is the covariance of T− 1
2 [X ′υ]′ as T → ∞

B = 1 in a worst-case scenario when the instruments are completely uninformative
(Λ = 0) and υ is a perfect linear combination of second-stage regressors X Π̂

Bias criterion nests that in Stock and Yogo (2005) (under homoskedasticity) and
Montiel Olea and Pflueger (2013) (when N = 1)

Fraction of the OLS bias under homoskedasticity, but not in general

Weak Instruments Definition

Instruments are weak for β and C such that B ≥ τ , where τ is a tolerance level



Nagar Bias

β∗
2SLS has intractable distribution

E
[
β∗
2SLS

]
does not exist for K = N (and K = N + 1 depending on assumptions)

E
[
β∗
2SLS

]
has no known analytical form (except for N = 1 under homoskedasticity)

Two options:

(1) obtain B by Monte Carlo simulations

(2) Nagar (1959) approximation Bn (second-order Taylor around η2 = vec(C ′))

A function of W, so weakivtest.ado and gweakivtest.m use (2)

Nagar approximation reasonable for K > N + 1, but N ≤ K ≤ N + 1 can be
problematic



Nagar Bias versus Monte Carlo Bias

Figure A.1: Comparison of Nagar Bias and Monte Carlo Bias

N = 2,K = 2 N = 2,K = 3 N = 2,K = 4

N = 2,K = 6 N = 3,K = 5 N = 3,K = 9

Notes: For each specification, we consider five million DGPs as described in the main text.
For each DGP we take 1000 samples, and compute the Monte Carlo bias, B̂, by numerical
integration. The figure plots the (log of) Monte Carlo bias against the Nagar bias. The
heatmap indicates the density of DGPs with a particular combination of Nagar and Monte
Carlo biases. The dashed horizontal and vertical lines indicate bias levels of 0.05 and 0.15 to
demarcate the typically relevant region for first-stage tests.

A.2 The Importance of Using the More Conservative Bound on
the Bias in Models with K ≤ N + 1.

Figures A.2 and A.3 illustrate the need to use the more conservative upper
bound in the first stage test in models with degrees of overidentification less
than two, K ≤ N + 1. All panels in both figures plot rejection frequencies
against the Monte Carlo bias in blue. Panel (a) in figure A.2 repeats the first
two panels in Figure 2 for ease of comparison, and shows rejection frequencies
based on the more conservative bound in red. The rejection frequencies shown
in red in Panel (b) are instead based on the worst-case Nagar bias, i.e. as
in the models with K > N + 1. The results clearly indicate that the worst-
case Nagar bias is not a good criterion for a bias-based first-stage test in the
models with N = 2, K = 2 and N = 2, K = 3. In both cases, there are a
significant number of DGPs for which the Monte Carlo bias exceeds the bias
tolerance but the rejection rates lies above the nominal level of 0.05. These
positive size distortions are much more frequent in the just identified case
with N = K = 2 than in the model with N = 2, K = 3.
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Bounding the Bias

Nagar bias is a complicated function of β (N × 1), C (K × N) and W

We can estimate W consistently, but not β and C

Nagar Bias Bounds Lewis and Mertens (2022)

Bn has a sharp upper bound Bn ≤ λ−1
minB(W) (Worst-case Nagar bias)

Bn has an upper bound Bn < λ−1
minΨ(W)

where λmin = mineval{Λ} and Λ = Φ− 1
2 C ′CΦ− 1

2 is the concentration matrix

Both bounds depend only on a single unknown parameter λmin

In simulations (not a proof):

The worst-case Nagar bias is an effective upper bound on the Monte Carlo bias when
K > N + 1

The non-sharp bound is an effective upper bound on the Monte Carlo bias when
K ≤ N + 1 when N > 1 and when N = 1 and K = 2

When N = K = 1, use the size-based Stock-Yogo test (OK, even under
heteroskedasticity in this case)



Measuring Instrument Strength

We need a test statistic that is informative about λmin

Generalized First-Stage Statistic Lewis and Mertens (2022)

For arbitrary N and Ŵ, the test statistic

gmin = mineval{Φ̂− 1
2 Y ′PXY Φ̂− 1

2 },

measures instrument strength, Φ̂ = (IN ⊗ vec(IK ))′(Ŵ2 ⊗ IK )(IN ⊗ vec(IK ))

Φ̂ is the N × N matrix consisting of traces of the K × K partitions of Ŵ2

The key property of the test statistic is that E [gmin] = 1 + λmin

Test the null of weak instruments by testing whether gmin ≤ 1 + B(W)/τ (or
gmin ≤ 1 + Ψ(W)/τ for K ≤ N + 1)



Measuring Instrument Strength

gmin = mineval{Φ̂− 1
2 Y ′PXY Φ̂− 1

2 }

Special cases:

Under homoskedasticity and N = 1, Ŵ2 = σ̂2
v ⊗ IK , Φ̂ = K σ̂2

v

gmin = Y ′PXY /(K σ̂2
v ) is the non-robust F-statistic

Under homoskedasticity and N ≥ 1, Ŵ2 = Σ̂v ⊗ IK , Φ̂ = K Σ̂v

gmin = K−1 mineval{Σ̂− 1
2

v Y ′PXY Σ̂
− 1

2
v } is the Cragg and Donald (1993) test

statistic of the Stock and Yogo (2005) tests

Under non-homoskedasticity and N = K = 1, Ŵ2 = (σ̂rob
v )2, Φ̂ = (σ̂rob

v )2

gmin = Y ′PXY /(K(σ̂rob
v )2) is the robust F-statistic

Under non-homoskedasticity and N = 1 and K ≥ 1, Φ̂ = Tr(Ŵ2)

gmin = Y ′PXY /Tr(Ŵ2) is the the effective F-statistic of Montiel Olea and
Pflueger (2013)

So gmin always gets it right (do not use Kleibergen and Paap (2006))



Critical Values

Under the null, gmin is the minimum eigenvalue of a matrix consisting of traces of the
K × K partitions of W2

Lewis and Mertens (2022) derive analytical expressions for all the cumulants, and
upper bounds on the cumulants that depend only on λmin

Critical values are obtained from a three-parameter approximating Imhof (1961)
distribution that match the first three cumulants of the bounding limiting distribution

As in Stock and Yogo (2005), this makes the test conservative (false rejections with at
most α probability, e.g. α = 5%)

The generalized test nevertheless has power



Size and Power

α = 5%, τ = 0.10
Figure 2: Size and Power of the First-Stage Test

N = 2,K = 2 N = 2,K = 3 N = 2,K = 4

N = 2,K = 6 N = 3,K = 5 N = 3,K = 9

Notes: Figure shows rejection rates across 1,000 samples for each of five million DGPs gen-
erated as explained in the main text. The red dots shows the rejection rates as a function of
the worst-case Nagar bias or the alternative conservative bound on the bias. The blue dots
show the rejection rates as a function of the Monte Carlo bias. The vertical full line marks
the bias tolerance level τ = 0.10 in the null hypothesis, the dashed vertical line marks a bias
level of 0.05 for reference, and the horizontal full line plots the nominal size α = 0.05.

instead not well-controlled.
Overall, these simulation results show that our testing procedures perform

as intended, including in models with K ≤ N + 1 as long as the more conser-
vative threshold is used in those cases. Ultimately, the theoretical justification
of a bias-based test is on a much weaker foundation whenever K ≤ N + 1,
since the first moment of the 2SLS bias generally does not exist, and the
Monte Carlo bias can exceed one. This is no different than for Stock and
Yogo (2005), who do not report critical values for K ≤ N + 1, or Montiel
Olea and Pflueger (2013), who proceed with the Nagar bias in these cases,
motivated by its existence alone.

3.3 Size Distortions of t-Statistic Inference on β

Alternative testing strategies for weak instruments can be based on control-
ling size distortions of Wald or t-statistic inference on β. The generalization
of the size-based test of Stock and Yogo (2005) to heteroskedastic and serially
correlated models is beyond the scope of this paper. Nevertheless, we explore
the relationship between the test statistic gmin and the distortions of a stan-
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Example: Ramey and Zubairy (2018) LP-IV

Ramey and Zubairy (2018) estimate state-dependent government spending multipliers
using

h∑
j=0

yt+j =It−1

γA,h + ϕA,h(L)zt−1 +mA,h

h∑
j=0

gt+j


+ (1− It−1)

γB,h + ϕB,h(L)zt−1 +mB,h

h∑
j=0

gt+j

+ ωt+h,

where It is an indicator of recession/boom or binding/non-binding ZLB

N = 2, K = 4



Example: Ramey and Zubairy (2018) LP-IV

Figure 4: Test Results for the Ramey and Zubairy (2018) Regression Across Horizons

(a) Government Spending Interacted with Indicator of Slack

Full sample Post-WWII Excluding WWII

(b) Government Spending Interacted with ZLB Indicator

Full sample Excluding WWII

Notes: Panel (a) reports results for specifications with government spending interacted with
an indicator for whether the economy was in a state of slack, using combined instruments
for different sample periods: 1890-2015, 1947-2015 (post-WWII), and 1890-2015 excluding
WWII. The starred blue line plots the difference between the robust test statistic and robust
critical values for τ = 0.10 and α = 0.05 across horizons. As in Ramey and Zubairy (2018),
we cap the results at 30 for visibility. The circled red line shows the difference between the
Cragg and Donald (1993) statistic and critical values from Stock and Yogo (2005). Panel
(b) reports analogous results for specifications with government spending interacted with an
indicator for whether monetary policy is constrained by the zero lower bound for different
sample periods, 1890-2015 and 1890-2015 excluding WWII.

instruments at all horizons considered. For the remaining two specifications,
the Stock and Yogo (2005) test rejects weak instruments for an additional 3
to 4 quarters compared to the robust test.

The comparison of our robust test results to the regime-specific results in
Ramey and Zubairy (2018), reported in the Online Appendix, is also informa-
tive. Since the point estimates (and thus the bias) in the interacted regression
are the same as those obtained from the regressions in the regime subsamples,
it is not surprising that when each regime-specific regression appears to be
separately strongly identified, the interacted regression generally is too.9 The
more interesting cases occur when one state is strongly identified, but the

9In just a few cases where one state is only marginally strongly identified, the interacted specification
is weakly identified. We attribute this to the fact that the test is more conservative for N > 1.
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Comments

Download by clicking here: gweakivtest.m

Same test statistic as Stock and Yogo (2005) and Montiel Olea and Pflueger
(2013)

Similar critical values to bias based test in Stock and Yogo (2005) under
homoskedasticity (Nagar vs Monte Carlo)

Virtually the same critical values as Montiel Olea and Pflueger (2013) when
N = 1

Except when K = 2:

A more conservative bias bound is required when K = 2

Example: Under homoskedasticity, the worst case nagar bias is zero when K = 2!

Selection on first-stage statistics creates additional size distortions, e.g. Andrews,
Stock, and Sun (2019)

https://karelmertenscom.files.wordpress.com/2022/12/webprograms.zip


3. More Inference for Impulse Responses

3.1 Weak Identification

3.2 Detecting Weak Instruments

3.3 Robust Inference

3.4 Proxy SVAR/SVAR-IV Inference



Robust Inference Methods

When instruments are weak, several other robust inference methods are available

All work by test inversion

Suppose you have a test that correctly rejects at α % under the null that β = β0

Perform the test over a set of possible values for β0, the acceptance region contains β
with 1− α % probability

Options under Non-Homoskedasticity:

AR statistic, Anderson and Rubin (1949), Chernozhukov and Hansen (2008)

KLM statistic, Kleibergen (2007), Chernozhukov and Hansen (2008)

CLR statistic See overview in Andrews, Stock, and Sun (2019)

Not widely used, and an area of ongoing research



Inference based on Anderson and Rubin (1949)

Define û(β0) = y − Yβ0

Run the regression û(β0) = Xγ + w yielding γ̂(β0) = X ′û(β0)/T

The AR statistic is the (robust) Wald-statistic

AR(β0) = γ̂(β0)
′Var(γ̂(β0))

−1γ̂(β0) AR(β0)|H0:β=β0

d→ χ2
K

Perform the test over a grid β0, the (1− α) % confidence set is all grid points for
which AR(β0) < χ2

K ,α

Valid regardless of the value of Π, even Π = 0.

Optimal for N = K = 1, inefficient when N = 1 and K > 1

For N > 1, subvector confidence sets for βj given by min
β
−j
0

AR(βj
0, β

−j
0 ) are very

conservative

Refinements available, but not under non-homoskedasticity

Can reject for all β0 if the model is misspecified and overidentified



Example: Mertens and Montiel Olea (2018)

LP-IV estimates of elasticity of taxable income to 1− AMTR

AMTR is the average marginal tax rate
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Standard
Anderson-Rubin
Mertens Montiel-Olea
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FIGURE B.II Confidence Intervals for LP-IV Estimates of Aggregate Tax Elasticities of Income

Point estimates are obtained using the SVAR-IV model as in Figure VI. Broken lines compare Anderson and Rubin (1949) confidence
intervals and the LP-IV intervals under the VAR high-level assumption, with the standard confidence intervals. All confidence bands are
based on Newey and West (1987) HAC-robust standard errors.

73

N = K = 1, gmin = ‘Effective’ F-statistic = 229.25

Well above critical value for α = 0.05 and τ = .1

Download the code here

https://karelmertenscom.files.wordpress.com/2018/01/replication_programs.zip


Proxy SVAR/SVAR-IV Inference

Impulse estimation by LP-IV is an application of the general IV model discussed earlier

Very similar weak instrument problems also apply to impulse response estimation by
Proxy SVARs/SVAR-IV

SVAR Inference with strong instruments: See overview in Kilian and Lütkepohl (2017)

Delta Method

Bootstrap Methods∗

Parametric Bootstrap Montiel Olea, Stock, and Watson (2021)

Moving Block Bootstrap Jentsch and Lunsford (2019)

SVAR Inference with weak instruments: Montiel Olea, Stock, and Watson (2021)

∗ Avoid Mertens and Ravn (2013) wild bootstrap for impulse responses in SVAR
applications (regardless of identification scheme), see Jentsch and Lunsford (2019)



Example: Mertens and Montiel Olea (2018)

LP-IV estimates of elasticity of taxable income to 1− AMTR

AMTR is the average marginal tax rate

Inference methods with strong instruments
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Delta Method

MSW 2017 Weak IV-robust
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Delta Method

MR 2013 Wild Bootstrap

MSW 2017 Bootstrap

JL 2016 Bootstrap
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FIGURE B.I Confidence Intervals for SVAR-IV Estimates of Aggregate Tax Elasticities of Income

Point estimates are obtained using the SVAR-IV model as in Figure V. Top Panel: Broken lines compare the weak-iv robust confidence
interval suggested in Montiel-Olea, Stock and Watson (2017) with the standard confidence interval based on the Delta Method. In both
cases, the Newey and West (1987) HAC-robust residual covariance matrix with 8 lags is used to estimate asymptotic covariances. Bottom
Panel: Broken lines compare the bootstrap intervals suggested in Mertens and Ravn (2013), Montiel-Olea, Stock and Watson (2017) and
Jentsch and Lunsford (2016), respectively, with the standard confidence interval based on the Delta Method.
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Download the code here

https://karelmertenscom.files.wordpress.com/2018/01/replication_programs.zip


Proxy SVAR/SVAR-IV Recap

SVAR B(L)zt = Dϵt with

D =

 d11
1×1

d12
1×(Nz−1)

d21
(Nz−1)×1

d22
(Nz−1)×(Nz−1)

 , ut =

 u1,t
1×1

u2,t
(Nz−1)×1



Under fundamentalness, the following conditions on a scalar mt

E [mtϵ1,t ] = ϕ ̸= 0 (Relevance)

E [mtϵ−1,t ] = 0 (Contemporaneous Exogeneity)

provide Nz − 1 covariance restrictions that suffice to identify D1 = [d11 d ′
21]

′

The impulse response coefficients at horizon h are in GhD1 = M1
h where Gh are the

coefficients on Lh in G(L) = B(L)−1, or

G0 = I ; Gh =
h∑

i=1

Gh−iBi , h > 0



Weak Instruments in Proxy SVAR/SVAR-IV

Define D1 = D1/d11 = [1 d ′
21/d11]

′

D1 contains the impact coefficients scaled such that the impact on the first variable is
normalized to unity

D1 =
E [mtut ]

E [mtu1,t ]

The associated impulse response of variable n at horizon h is

λn,h = e′nGhD1 = e′nGh
E [mtut ]

E [mtu1,t ]

where en is the n-th column of the identity matrix

The natural estimator is

λ̂n,h = e′nĜhD̂1 = e′nĜh
um′/T

u1m′/T
, Ĝh =

h∑
i=1

Ĝh−i B̂i , h > 0

where u is Nz × T , u and m are 1× T , and B̂i are the OLS estimates of the VAR
coefficients



Weak Instruments in Proxy SVAR/SVAR-IV

Local-to-Zero

E [mtϵ1,t ] = ϕ with ϕ = c/
√
T

Asymptotic Normality Regularity Condition

√
T

 vec(B̂)
um′/T

vech(uu′/T )

 d→

 ζ
ξ
φ

 ∼ N (0,Ω)

LP-IV (i.e. IV) assumes the IV reduced form parameters are (approximately) normal

Here, the assumption is instead that that VAR coefficients are approximately normal



Weak Instruments in Proxy SVAR/SVAR-IV

Weak IV Asymptotic Representation of the Impulse Response Estimator
Montiel Olea, Stock, and Watson (2021)

Under Local-to-Zero and the Regularity Condition,

(λ̂n,h − λn,h) → λ∗
n,h

d→
(e′nGh − λn,he

′
1)

′ξ

e′1ξ + c

The impulse response bias is asymptotically distributed as a ratio of correlated normal
variables.

The bias is decreasing in the concentration parameter c



Weak Instruments in Proxy SVAR/SVAR-IV

All of this is analogous to the standard IV framework with N = K = 1 under
homoskedasticity (e.g. Staiger and Stock (1997))

Consider

z2,t = βz1,t +
∞∑
i=1

Bizt−i + w2,t

The SVAR IV estimator of β = d21/d11 is the equation-by-equation 2SLS estimator of
β using mt as the instrument

Weak instrument bias towards to OLS estimate of β, which is also the estimate from
the lower triangular (Cholesky) factorization with u1,t ordered first

If Cholesky and SVAR-IV impulse response look similar, that is not evidence for the
recursivity restrictions unless the instrument is strong.

Existing tests are also suited for detecting weak instruments in the equation above



Robust Inference in Proxy SVAR/SVAR-IV

Montiel Olea, Stock, and Watson (2021) propose Anderson and Rubin (1949)
confidence sets

Under the null hypothesis λn,h = λ0
n,h: E [mtu1,t ]− λ0

n,he
′
nGhE [mtut ] = 0

Define ê(λ0
n,h) =

u1m
′

T
− λ0

n,he
′
nĜh

um′

T
and construct the Wald-statistic

AR(λ0
n,h) =

ê(λ0
n,h)

2

ω̂11 − 2λ0
n,hω̂12 + (λ0

n,h)
2ω̂22

where

[
ω̂11 ω̂12

ω̂12 ω̂22

]
is consistent for the asymptotic covariance of

[u1m′/T e′nĜh(um
′/T )]′.



Example: Mertens and Montiel Olea (2018)

SVAR-IV estimates of elasticity of taxable income to 1− AMTR

AMTR is the average marginal tax rate
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FIGURE B.I Confidence Intervals for SVAR-IV Estimates of Aggregate Tax Elasticities of Income

Point estimates are obtained using the SVAR-IV model as in Figure V. Top Panel: Broken lines compare the weak-iv robust confidence
interval suggested in Montiel-Olea, Stock and Watson (2017) with the standard confidence interval based on the Delta Method. In both
cases, the Newey and West (1987) HAC-robust residual covariance matrix with 8 lags is used to estimate asymptotic covariances. Bottom
Panel: Broken lines compare the bootstrap intervals suggested in Mertens and Ravn (2013), Montiel-Olea, Stock and Watson (2017) and
Jentsch and Lunsford (2016), respectively, with the standard confidence interval based on the Delta Method.
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Download the code here

https://karelmertenscom.files.wordpress.com/2018/01/replication_programs.zip


Example: Montiel Olea, Stock, and Watson (2021)

Kilian (2008) proxy for oil shocks in a 3-variable SVAR

84 J.L. Montiel Olea, J.H. Stock and M.W. Watson / Journal of Econometrics 225 (2021) 74–87

Fig. 1. Impulse response coefficients for an oil-supply shock.

covariance of the instrument and the reduced-form errors) are normally distributed in large samples. We provide formulas
for SVAR parameters like impulse response coefficients or variance decompositions as a function of these reduced-form
parameters. The analysis shows that the large-sample distribution of such SVAR-IV parameter estimators depends on

Oil supply have shocks have relatively little effect on oil prices under Cholesky
identification Kilian (2009).

Conclusion appears robust to using Proxy SVAR and robust inference

Download the code here

https://github.com/jm4474/SVARIV
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