Techniques of Empirical Econometrics

Oscar Jorda
UC Davis, FRB San Francisco

Karel Mertens
FRB Dallas, CEPR

AEA Continuing Education, January 8-10, 2022
The views expressed do not necessarily reflect the views of the Federal Reserve Bank of Dallas, San Francisco

or the Federal Reserve System.



Overview

1 Time Series Representations of Dynamic Macro Models
Structural State Space Models, MA, VARMA and VAR representations; Estimating Dynamic Causal Effects;
Misspecification: Nonfundamentalness, Nonlinearities, and Time Aggregation

2 State-Space Models and the Kalman Filter

State Space Models, Kalman Filter, Forecasting, Maximum Likelihood Estimation

3 Local Projections
Impulse Responses as Dynamic Treatment Effects, LP Estimation and Basic Inference, VAR-LP Impulse
Response Equivalence

4 ldentification of Dynamic Causal Effects
Identification with Covariance Restrictions or Higher Moments. Proxy SVAR/SVAR-IV, Internal instrument
SVAR

5 Inference for Impulse Responses
Inference methods for VAR/LP impulse responses. Detecting weak instruments; Robust Inference Methods;
Joint inference for VAR and LP impulse responses

6 Impulse Response Heterogeneity
Kitagawa Decomposition, Time Varying Impulse Responses

7 Other Uses of Impulse Responses
Impulse Response Matching and Indirect Inference; Estimating Structural Single Equations using Impulse
Responses, SP-IV; Counterfactuals with Impulse Responses, Optimal Policy Perturbations



2. Identification of Dynamic Causal Effects
2.1 Direct Measurement of Shocks

2.2 Covariance Restrictions

2.3 Instrumental Variables

2.4 Higher Order Moments



Dynamic Causal Effects/Structural Impulse Repsponse

Dynamic Causal Effect
The dynamic causal effect of a unit intervention in ¢ ; € € on z.y is
Elzepnleje = 1,€e—1,...] — E[zeqnleje = 0, €01, ...]

Also known as ‘structural’ impulse response function (IRF) coefficients and equal to
021 p/0¢€j ¢ for h=10,1,... in linear models.

The structural impulse response coefficients of z¢ to shock ¢;; at horizon h are the
elements in the j-th column of M in the SMA(o0) representation

oo
zz = M(L)ee=Y_ Myerp
h—0

The SMA(c0) representation contains the dynamic causal effects/structural impulse
responses to all shocks ¢;



Estimating Structural Impulse Responses

Shock realizations ¢; ; are observed:

o Distributed Lag Model: z; = >/ ' Mie; .y + we

. Y
o Local Projection: z;,, = My€j + + wp ¢

(Partial) Fundamentalness and known Mé = D; (j-th column in impact matrix D)
o VAR Model: B(L)z = uy = M/ = G,D;, G(L) = B(L)~*

o Local Projections: z; p = Gpze + > 50 6ize—j + Whe Mj; = G,D;j



2. Identification of Dynamic Causal Effects
2.1 Direct Measurement of Shocks

2.2 Covariance Restrictions

2.3 Instrumental Variables

2.4 Higher Order Moments



Direct Measurement of Shocks

One option is to obtain direct measures of an economic ‘shock’ ¢; ;

Relevance and Exogeneity Assumptions

Suppose we observe a scalar m; satisfying

E[miej ] = #0 (A1 Relevance)
E[mie_j ;] =0 (A2 Contemporaneous Exogeneity)
E[mies] =0 for all s < t (A3 Lag Exogeneity)
E[mtes] =0 forall s > t (A4 Lead Exogeneity)

Note: there is no assumption of (partial) fundamentalness of ¢; ; for z



Direct Measurement of Shocks

(Distributed Lag Projection on m; \

If z2 = > 32 Mher—p and Al-A4 hold, the distributed lag projection:
H-1

zt = E /Bﬁmt—h + we

h=0

Kyields Bl = ¢GyDj = oM )

The projection coefficients are the impulse responses to ¢; ; up to scale ¢




The Scale Factor ¢

Ideally, the shock measure m; has an interpretable scale

It is common to rescale the impulse response estimates to imply a fixed impact on one
of the variables in z;

However, this amounts to an instrumental variables procedure that scales all estimates
by a random variable in finite samples, see later in this Section

This can create problems in small samples (weak instrument bias and size distortions),
see later in Section 5.



Examples of Direct Shock Measures

Examples of direct shock measures (including event dummies)

Narrative tax shocks

Narrative tax news shocks
Military spending changes
Military spending news

Narrative monetary policy events
High frequency monetary surprises
Oil shocks

Financial shocks

Housing credit policy shocks

Uncertainty Shocks

Romer and Romer (2010), Cloyne (2013)

Mertens and Ravn (2012)

Ramey and Shapiro (1998), Edelberg, Eichenbaum, and Fisher (1999)
Ramey (2011)

Friedman and Schwartz (1963), Romer and Romer (1989)

Kuttner (2001) . . . Bauer and Swanson (2022)

Hamilton (2003), Kilian (2008)

Gilchrist and Zakraj$ek (2012)

Fieldhouse, Mertens, and Ravn (2018)

Bloom (2009)



Example: Romer and Romer’s Narrative Tax Shocks

Romer and Romer (2010) classify US postwar tax reforms according to:

1. size as measured by the implied tax liability change
2. motivation (narrative identification)
o Endogenous; Countercyclical: "“A tax action designed to return output growth to
normal”
o Endogenous; Spending: “Tax change motivated by a change in government spending”
both correlated with current economic conditions
o Exogenous; Long-Run: "A tax change motivated by fairness, efficiency, incentives, belief
in smaller government”
o Exogenous; Deficit: "“A tax change designed to reduce an inherited budget deficit”
3. The dates at which:

o the tax act was signed by the President
o the tax change was implemented

Retain ‘unanticipated’ shocks , cfr. Mertens and Ravn (2012)

Divide tax liability changes by (lagged) GDP.



Example: Romer and Romer’s Narrative Tax Shocks
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Example: Romer and Romer’s Narrative Tax Shocks

Unit Innovation in 7¢ (Change in Tax Liabilities in % of GDP)

Output

percent

o 2 4 6 8 10 12 14 16 18 20
quarters

AYe = Bote + B17e—1 + oo + BrTe—n + Wt

Download the code here


https://karelmertenscom.files.wordpress.com/2017/09/replicationfilesjme2014.zip

2. Identification of Dynamic Causal Effects
2.1 Direct Measurement of Shocks

2.2 Covariance Restrictions

2.3 Instrumental Variables

2.4 Higher Order Moments



Covariance Restrictions: The ldentification Problem

Under fundamentalness

E[utu;] = ¥, = Var(De;) = DVar(e;)D' = DD’

Symmetric positive definiteness of X, provides N, x (N, -+ 1)/2 restrictions on the N2

elements of D. Not sufficient to uncover any of the columns of D.

(Identification Problem

Suppose € is orthonormal white noise and u; = De¢, then
Y, =DD' =DQQ'D =D*D*

where Q is any orthogonal matrix (QQ’" = Zy,).
\’D and D* = DQ are observationally equivalent

~

fConditions for (Local) Identification
o Order condition: We need at least N; x (N, — 1)/2 covariance
restrictions to identify all N2 elements of D

o Rank condition: The derivative w.r.t vec(D) of the system of identifying
\ equations needs to have full rank

)
N

J

Also need a signing convention for the diagonal elements of D



Covariance Restrictions

Various combinations of covariance restrictions can be imposed on
o the impact matrix D,
i.e. the contemporaneous response to shocks

o the inverse impact matrix D1,
i.e. the linear contemporaneous relationship between the variables in z;.

the horizon h-impulse response coefficients M, D,
i.e. the response after h periods

o the infinite horizon (cumulative) impulse responses M(1)D, i.e. the long run
(cumulative) response to the shock

Subject to order and rank conditions for (local/global) identification
Rubio-Ramirez, Waggoner, and Zha (2010)

Note, this generally involves solving a system of nonlinear equations.



Common Covariance Restrictions

@ Recursivity
@ Block Recursivity and Partial Identification
@ Nonrecursive Short-Run Restrictions

@ Long Run Restrictions

Sign Restrictions

Max Share Restrictions



Recursive ldentification Scheme

(Recursive Identification Sims (1980)\

Zero (or timing) restrictions on the impact matrix, lower triangular D:

di1 0 0
dy dp ... 0

L G )

Adds W restrictions such that all N2 elements of D are identified.

Easy computation through the lower triangular factorization (Cholesky
decomposition) of X, which factors a positive semi-definite matrix P into the
product of a lower triangular matrices and its transpose, ¥, = DD’.



Block Recursive Schemes and Partial Identification

Partition z; = [z1,¢, 22+, 23,¢]" and €r = [e1,r, €2,¢, €3,¢] and
consider the lower block triangular matrix

di1 0 0
ny X ny np X1 ny Xny
d: d. 0
Dy = 1><2%1 1>2<21 1xn N:=m+1+m

d31 d32 d33

ny X ny npx1 ny X ny

Block Recursive Partial Identification Christiano, Eichenbaum, and Evans (1999)

All Dy, satisfying X, = DbDL have the same elements in the n; + 1-th column

Block recursive structure (n1 4+ n2 + niny zero restrictions) suffices to identify the
n1 + 1-th column of Dy

WIlg assume di; and d33 are lower triangular and take the n; + 1-th column of the
Choleski decomposition of X,



Example: Christiano, Eichenbaum, and Evans (2005) Monetary SVAR

Block Recursive SVAR:

71 di1 O 0 €1t
B(L)| ffre | = | da dn O el
23t d31  d3  diz €3t

z1¢: gross domestic product, consumption, the GDP deflator, investment, real wage,
and labor productivity (log levels)

ffry: effective federal funds rate

z3¢: real profits and the growth rate of M2 money supply

Quarterly data 1965Q3-1995Q3

Key assumptions:

o ffry equation is an interest rate (Taylor) rule, eff’ are suprise deviations

@ variables in z; ; do not respond contemporaneously to a monetary policy shock ngr

@ Monetary policy does not respond contemporaneously to variables in z3 ¢



Example: Christiano, Eichenbaum, and Evans (2005) Monetary SVAR
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Nonrecursive Covariance Restrictions

Recursivity assumptions on the impact matrix D often lack theoretical justification

For some variables, a recursive causal ordering is implausible even with higher
frequency data

For example, where to put indicators of financial conditions in the CEE system?
Before or after ffr:?

Nonrecursive Short Run Restrictions

Non-recursive restrictions are general restrictions on A and B in
Auy=Be , D=A"1B

where none of the elements in D are necessarily zeros

Example: ( Hausman and Taylor (1983))

e = Protor + e, U = Posuzt + € , Ut = P + €3t
ure 1 1 B12 B12823 err o1
Ut B3B3 1 Basz e |, Var(e) = 0

s, 1 — B128230631 Ba1 B12831 1 3t 0



Example: Blanchard and Perotti (2002) Fiscal Policy Shocks

Observables z; = [T, Gt, Yt]’, quarterly sample 1950Q1-2006Q4

T: : Log Real Federal Tax Revenues per capita

G; : Log Real Federal Government Spending on Final Goods per capita
Y: : Log Real GDP per capita

Estimate of ¥, provides six independent restrictions, need three more.

Blanchard and Perotti (2002) consider

ul = Ogogel +0yu) +orel
G T Y G
ug = TOTE tvU +OGeE
Y T G Y
u; = C(ru; +Ceus +ovye

and impose

@ vy =71 = 0 based on decision and recognition lags

@ Oy = 2.08 based on outside estimates



Example: Blanchard and Perotti (2002) Tax Shocks

Tax shock of 1% of GDP

Output

percent

s 0 12
quarters

Note: much smaller output effects than Romer and Romer (2010)

Download the code here


https://karelmertenscom.files.wordpress.com/2017/09/replicationfilesjme2014.zip

Long Run Restrictions

Suppose z; = Ax; are growth rates, then the long-run impact of €; on levels x; is
oo
> My =M(1) = Mo+ M + My + Mz + ...
h=0

M(1) is the cumulative impact of €; on z; at h = oo, and therefore the permanent
level effect on x;

Long Run Covariance Restrictions Blanchard and Quah (1989)

Let B(L)z: = Det, G(L) = B(L)~!. Restrictions on M(1) can identify D:

M(1) = G(1)D = D = G(1)"IM(1) = B(1)M(1)

Long run (zero) restrictions are often theoretically more appealing than zero
restrictions on impact matrix D

Recursivity of M(1) easily implemented by Cholesky decomposition of G(1)X,G(1)’

Examples: Blanchard and Quah (1989) (supply shocks), Gali (1999) (technology
shocks), Beaudry and Portier (2006) (technology news shocks)



Example: Blanchard and Quah (1989) SVAR

Assumption: supply shocks explain all output movements in the long run
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Max Share Restrictions

Long-run restrictions can be unreliable in realistic samples.
Chari, Kehoe, and McGrattan (2008), Kascha and Mertens (2009)

An alternative approach to identifying D; is to require that ¢; ; explains the largest
possible fraction of the FEV of variable z; ; € z; at some finite horizon h
Faust (1998), Uhlig (2004), Barsky and Sims (2011)

Forecast Error Variance (FEV) Decomposition

The share of the FEV for z; ; at horizon h explained by ¢; ; is

_ b o(mh(i))?
SN oo (mh(i))?

where ) (i) is the i-th element in M/

Qy

Angeletos, Collard, and Dellas (2020) similarly choose D; to maximize the
contribution of ¢; ; to the spectral density z; ; over a frequency band [w,d].



Example: Angeletos, Collard, and Dellas (2020) Business Cycle Anatomy

Assumption: shock €j; contains the maximal share of all the information in the data
about the volatility of macroeconomic variable j at business cycle frequencies (6 to 32
quarters in the time domain) .

Unemployment Output Hours worked Investment Consumption

Inflation Nominal interest rate

[— wshok —— vshook —— Ishock == Jishock — — Cshock]

All shocks have very similar impulse responses, suggesting a single ‘Main Business
Cycle Shock'.



Sign Restrictions

e | _ | du di2 €1,

u ¢ doy  dxm €t
Covariance restrictions can be inequalities on the elements of the impact matrix D,
e.g. di1,dz1,d2 >0, di2 <0

Inequalities can also be imposed on M}, for any h and across different h

Among all D that satisfy DD’ = ¥, only admit those that satisfy the inequality
restrictions

The estimates of M}, are no longer points, but sets containing all My's generated by
admissable D's.



Example: Mountford and Uhlig (2009) Tax Shocks

Table 1. Identifying sign restrictions

Gov. revenue Gov. spending GDP, cons, non-res.inv. Interest rate Adjusted reserves Prices

Non-fiscal shocks

Business cycle + +

Monetary policy +
Basic fiscal policy shocks

Government re: e

Government spending +

This table shows the sign restrictions on the impulse responses for each identified shock. ‘Cons’ stands for private
consumption and ‘Non-res. inv.” stands for non-residential investment. A ‘+’ means that the impulse response of the
variable in question is restricted to be positive for four quarters following the shock, including the quarter of impact.
Likewise, a ‘—’ indicates a negative response. A blank entry indicates that no restrictions have been imposed.

A tax shock is identified as a shock that is orthogonal to the business cycle and
monetary policy shock and where government revenue rises for a year after the shock.



Example: Mountford and Uhlig (2009) Tax Shocks

Percent

Percent

Tax increase

CONSUMPTION

Percent

T
5 10 15 20 25
Quarters After the Shock

GOVERNMENT SPENDING

T T
5 10 15
Quarters After the Shock

GOVERNMENT REVENUE

Percent

Quarters After the Shock

Implied output effects are very large

T T T
5 10 15
Quarters After the Shock
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Identification with Instrumental Variables

Equivalence Between Covariance Restrictions and IV Hausman and Taylor (1983)

If a linear system of equations is identifiable, covariance restrictions cause resid-
uals to behave as instrumental variables

Covariance restrictions generate internal instruments, and the elements of D can also
be obtained by IV methods.

(IV estimation: \

ye=Bxt +wr , E[xtwt] #0

Let m; be a valid instrument for x; satisfying

E[mexe] #0 (relevance)
E[mewt] =0 (exogeneity)
Two Stage Least Squares (2SLS):
1. First Stage: Regress x; on m; and obtain fitted values X;

K 2. Second Stage: Regress y; on X; to obtain consistent estimate of 3 )




Example: (Block) Recursive Identification

up¢ is scalar, ujy and w3 are of arbitrary dimension

ui,e = aiil€i
Uy = axuirtex:
uzr = asiui+ azu ¢+ asses;:

1. Project z: on z;_1,z:_> to obtain prediction errors u;
2. Project uz,+ on vy and obtain ez ; = uz+ — ax1U1¢

3. Project u: on up+ using e ; as an instrument to obtain D>

The impact response to a unit innovation in e ; is given by D>
Multiply by std(ep,;) to get the impact D5 of a one std shock

Note projecting u; directly on e ; gives the same answer



Example: Blanchard and Perotti (2002) Fiscal Policy Shocks

ul = Ogogel +0yuY +ore]

T Y G
ug = rore +ayuy +oce
Y T G Y
ug = (rup +Ceu +ove;

Identification restrictions:
o vy = 7 = 0 based on decision and recognition lags

o Oy = 2.08 based on outside estimates

The other 6 unknown parameters can be obtained as follows:
o o¢ is the std of uf
o Project u] —2.08uY on uf to identify 0 and o1

° u{ — 2.08L7l_ty and L(J;tG are va\l(id instruments for identifying (1, (g and oy in
ul =(rul +Ccuf +oye/



Example: Shapiro and Watson (1988)

Block-recursive long run restrictions:

Ahours; 6{,5 mi 0 0 0

Aoutput, | ML etech M(1) = | Mt m2 0 0
aute |y || M) =

Tt €t m31  m32 M3z M3a

i — e €d? ma1 Mg Mgz Mgy

Demand shocks e‘tﬂ,e‘tﬂ have no permanent effect on hours and output

Permanent technology shocks €</ have no permanent effect on hours
The recursive IV approach is analogous to before but applied to i = G(1)ue.

Shapiro and Watson (1988) show a different IV implementation

Since D = B(1)M(1), define B(L) = B(1)~1B(L), and estimate the VAR
B(L)z: = M(1)er = uf

imposing the parameter constraints that B€(1) =7

In each equation, the parameter constraints free up one lag of the three
contemporaneous variables as instrumental variables to estimate the off-diagonal
coefficients in B<(0)



Identification with Proxy Variables/External Instruments

Shocks identified with internal instruments/covariance restrictions often look
unrelated to known historical events Rudebusch (1998)

‘Known historical events' are in direct measures of shocks m¢

Can we incorporate m; to help identify shocks?

Yes, use m; as external instruments to generate covariance restrictions

Think of m; as ‘proxy’ measures of unobserved structural shocks

Identification with proxies avoids (often implausible) short run exclusion restrictions

See Stock (2008), Stock and Watson (2012), Mertens and Ravn (2013)



Identification with Proxy Variables/External Instruments

/External Instrument Validity \

Suppose we have access to a (mean zero) scalar variable m; satisfying

E[miej] =0 #0 (A1 Relevance)
\ E[mie_j ] =0 (A2 Contemporaneous Exogeneity)j
(Identification (up to scale) in Projection with VAR Residuals \

Fundamentalness and A1-A2 imply that E[um:] = E[Derm;] = ¢Dj. There-
fore the projection

ur = Bmy + wy
\yields B8 =Dj¢ j

The projection coefficient is the impact response up to an (unknown) scale ¢

Note that now lead/lag exogeneity assumptions are not required.
These are effectively replaced by the fundamentalness assumption



Identification with Proxy Variables/External Instruments

Identification (up to scale) in VARX Projection Paul (2020)

Under fundamentalness and A1-A2, the projection

2zt = Z Bizi—i + Bm: + we

i=1

yields 8 = D;¢

The projection coefficient 3 is the impact response up to an (unknown) scale ¢
In finite samples, this is not equivalent to regressing VAR residuals {i; on m;

Instead it is equivalent to regressing the VAR residuals ; on mi- where mi is the
residual in the regression of m; on z;_1,...,z—p (Frisch-Waugh Theorem)



Identification with Proxy Variables/External Instruments

Without loss of generality, suppose that j = 1, i.e. the shock of interest is ordered
first, and partition

diy di2 e
1x1 1x(N,—1) 1x1
D= =
da1 d2» o e Uzt
(N;—1)x1  (Ny—1)x(Nz—1) (N—1)x1
Proxy SVAR Identification Mertens and Ravn (2013)

Under fundamentalness, the conditions in A1 and A2 provide N, — 1 covariance
restrictions that suffice to identify D; = [d11 db;]’

Since Efuy,rmi] = ¢di1 and Efup tmi] = ¢dboy,
Elup tm:]/E[ur,em:] = do1/d11
which identifies D; up to the scalar di1

The scalar di; is pinned down by the restrictions provided by >, = DD’
See Mertens and Ravn (2013) for the closed form solution.



Identification with Proxy Variables/External Instruments

Eluz,em:]/E[u1,eme] = ch1/dn1
This is the impulse response to a unit innovation in z; ; driven by €1 ¢
This impulse is now on a specific scale, determined by the choice of z; ;
In finite samples, the estimate of d»1/d11 is simply the 2SLS estimate of ¢ in
0z, = 81,t + vt using m; as an instrumental variable.
In population, the following is equivalent
E[uz,emi"]/E[uremi-] = da1/chy
where th is the residual in the projection of m: on z_1,z_», ...
In finite samples, the estimate of db;/d11 is the 2SLS estimate of § in dp ¢ = §d1,+ + vt

using m- as an instrumental variable.

Proxy SVARs are also referred to as SVAR-IV (stock and Watson (2018))



Identification with Proxy Variables/External Instruments

Some Equivalence Results

o Proxy SVAR identification of db1/di1 with m; is equivalent to regressing
VAR residuals on m; and rescaling the coefficients to normalize the
impact on z+

@ Proxy SVAR identification of dp1/d11 with m#— is equivalent to OLS
estimation of the VARX and rescaling the coefficients on m; to normalize
the impact on zj;

The VAR residuals projection and the VARX projection are just the respective
‘reduced form’ representations

The rescaling step inevitably turns all impulse response estimators identified by proxies
into instrumental variable estimators



Example: Mertens and Ravn (2014) Fiscal Policy Shocks

Recall the (unanticipated) Romer and Romer (2010) narrative tax shocks ¢

25+
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Example: Mertens and Ravn (2014) Tax Shocks

Let's identify the parameters in the Blanchard and Perotti (2002) system using 7+ as a
proxy for e

utT = OGaGetG—i-OyutY—i—aTetT

_ T Y G
uZ = ~rore +yvu; +oge
Y T G \4
u, = C(ru; +Ccuf +oye;

Three identification restrictions:

] E['rtetG] = E[TtetY] =0

@ vy = 0 based on decision and recognition lags (yr remains unrestricted )



Example: Mertens and Ravn (2014) Tax Shocks

Cut in Tax Revenues of 1% of GDP

Proxy SVAR BP SVAR

Output Output

percent
percent

quarters quarters

Download the code here


https://karelmertenscom.files.wordpress.com/2017/09/replicationfilesjme2014.zip

What is the Difference Across the ldentification Schemes?

The elasticity of tax revenues wrt GDP

Proxy SVAR Blanchard-Perotti SVAR
Equation Benchmark Oy =2.08 0y =3.13
Tax Revenue e —0.20 —0.06 —0.13
[—0.35, —0.07] [—0.12, —0.03] [—0.19, —0.09]
Oy 3.13 2.08 3.13
[2.73, 3.55] - -
o1 X 100 2.54 2.24 2.56
[2.23,2.62] [2.04, 2.19] [2.34, 2.51]
Spending YT . 0 0
[—0.06, 0.17] - -
vy 0 0 0
oG x 100 2.35 2.36 2.36
[2.12, 2.30] [2.13,2.31] [2.13,2.31]
Output <r —0.36 —0.08 —0.36
[—0.57, —0.24] [—0.11, —0.06] [—0.43, —0.31]
¥ 0.10 0.07 0.10
[0.06, 0.13] [0.06, 0.09] [0.07,0.12]
oy X 100 1.54 0.97 1.54

[1.21,1.03]

[0.89, 0.98]

[1.37, 1.64]

Values in parenthesis are 95% percentiles computed using 10, 000 bootstrap replications.



What is the Difference Across the ldentification Schemes?

BP SVAR with 0y = 3.13

Output

percent

——Proxy SVAR TEEEEEEeET
—— Blanchard Perotti SVAR with eY:3.13
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Little Difference for Spending Shocks ef
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Example: Gertler and Karadi (2015) Monetary Policy Shocks

Block-recursive schemes are not plausible for many variables, e.g. financial indicators
Omitting financial indicators likely leads to a violation of fundamentalness

Gertler and Karadi (2015) use HF ffr futures surprises as proxies for MP shocks

One-year rate One-year rate
SN £
8 02 g 02 8
NN 3
e 0 ~ — & ° K
—02 - -02 oo
i 20 30 40 0 20 80 40 20 30 40
02 ol 02, /\QET
e [ Y T B
S o TTm—— 8 0T 8
g [ S S— S
o ~~_ o ——— 3
-02 Te————_—— 02 a
0 20 30 40 0 20 30 40

Rate increase tightens financial conditions in the Proxy SVAR, but not in recursive
scheme with credit spreads order below ffr;



Multiple External Instruments

(Multiple External Instruments

Let €t be a K x 1 subvector of shocks, and m: a K x 1 vector of external
instruments

E[mtej/-yt] =¢ (A1m)
E[mte/ijt] =0 (A2m)

\where ® is K X K, unknown and nonsingular, but not necessarily diagonal.

~

J

Each element in m; is potentially correlated with multiple shocks

;?lt ;h
. x1 X1
Partition u; = , €t = ,
2t €2t
(N;—K)x1 (N;—K)x1

€1; are the shocks of interest.



Multiple External Instruments

Proxy SVAR Identification with Multiple Proxies Mertens and Ravn (2013)

Under fundamentalness, Alm and A2m provide (N; — K) x K covariance re-
strictions that identify the first K columns of D up to a K X K rotation

D11 D12 Dy
Partiton D = | ‘XK kxnk , D= | kx*
Dn Doo Dxn

n—kxk n—kxn—k n—kxk

Assumptions Alm/A2m imply N, x K conditions
D] = E[m;u}]
from which we extract (N, — K) X K covariance restrictions
Dy = (E[meut, )" E[meuh,]) D1

that can be used for identifying the first K columns of D

These restrictions identify Dy; D13 1

An additional K(K — 1)/2 restrictions are needed to fully identify Dy



Multiple External Instruments

We still need to find the remaining K(K — 1)/2 restrictions required to identify D
and extract €1

In many applications, however, meaningful impulse responses do not require further
restrictions, even if the shocks are not individually identified

Suppose p1,: and pp; are two scalar policy instruments that are set according to the
feedback rules

_ / p
pie = PBupy:t+yiul + o1€] ;

_ / P
P2 = PBapiet+yul + 0265 4

Let uf = &1p1,e + E2pa,e + Cyel and ue = [pr,e po,e ()]
We have m; = [my,¢ mo ¢] with
E[m,-,teﬁt] # Ofori,j=1,2
E[me(ef)] = 0



Multiple External Instruments

{ P1,t } o 1 { 1 + B1275 } y 1 o1 B1202 } { Elf,t }
= / 7 |us + P
P2t 1 — B12621 Bo1vi + 75 1 — B12621 Bo101 02 € ¢
% C/J

The proxies m; identify «, i.e. all the endogenous feedback from u? to the policy
instruments, and ¥, = G, C,

The proxies m; are one restriction short of identifying the four unknowns in C,.
The mutual feedback across policy instruments 312 and (21 is not identified

Consider the upper and lower triangular factorizations of ¥,

Ug Uy U 77{/1 Usz U Uyt | e
ZP:n (77),77 = 0 nélz vet:(n)(cp) P

LoLyv L nh 0 L Inig o1 | e
Y, = R = , e = (e )
A a Rl I A B GO LT [



Multiple External Instruments

U
P1,t au! + nyo g et
t U U
P2,t 0 by
L L
P1,t v n 0 €1t
[ } aup + { oL oL
p2,t 21 M2 2.t
eIUt is the linear combination of ef . and eg ¢ such that there is an exogenous
innovation in p; ; but not in po;

eQLt is the linear combination of e’l’ . and eg . such that there is an exogenous
Innovation in pa ¢ but not in Pt

We can still trace the dynamic causal effects of exogenous changes in p1; and po¢!

The lower/upper triangularizations are (harmless) rotations that provide what we are
typically most interested in, the causal effects of surprise innovations in single policy
instrument at a time.

This is poorly understood in some of the literature

Note that pi; (p2¢) still responds on impact to ef, (e’,) through the impact on u)”



Example: Mertens and Ravn (2013) Personal/Corporate Income Tax Shocks

Decomposition of (unanticipated) Romer and Romer (2010) shocks

Personal Income Tax Corporate Income Tax

—— Average Tax Rate (Left axis) Avevage Tax Rate (Left axis) N
—— Narrative Shocks (Right axis) 70| —— Narrative shocks (mgm axis)

60| 6
5
15 50
- - s
5 g
4 14
g os &%
10
55
A A I l
| ' [T w0
P
s ;
20

1950 1960 1970 1980 1990 2000 o 1950 1960 1970 1990




Example: Mertens and Ravn (2013) Personal/Corporate Income Tax Shocks

Personal Income Tax Cut Corporate Income Tax Cut
Output . Output
;. /\ ;.
o

O
quarters

Download the code here


https://karelmertenscom.files.wordpress.com/2017/09/mertens_ravn_replication_files.zip

pp change PP change pp change

pp change

All Tax Units

Example: Mertens and Montiel Olea (2018) Marginal Tax Rate Shocks

Proxies for shocks to marginal tax rates across the income distribution

Top 1% Tax Units

L b e w o s

Top 5% Tax Units

Top 10% Tax Units

s s s mes e s

Top 5%=1% Tax Units

e aws wes s aws

Top 10%~5% Tax Units

95 s a5 1 w208

Observed Annual Change in AMTR
[ Impact of Selected Statutory Changes
[ Impact of Omitted Statutory Changes



Example: Mertens and Montiel Olea (2018) Top 1% Tax Shocks

1/(1-AMTR) Top 1% Tax Units

1/(1-AMTR) Bottom 99% Tax Units

year

Income (Top 1% Tax Units)

year

percent

percent

Download the code here

year

year


https://karelmertenscom.files.wordpress.com/2017/12/web_programs.zip

How Fundamental is Fundamentalness?

o DL projection (or Local projections) on me:

Relevance A1+ Contemp. Exo A2+ Lag Exo A3 (+ Lead Exo A4 for LP)

@ Proxy SVAR with my:

Relevance A1+ Contemp. Exo A2 + Fundamentalness

Is partial fundamentalness enough for Proxy SVARs?

Partial Invertibility/Fundamentalness

€j.¢ is fundamental for z; if ¢; ; is a linear combination of u; in z: = G(L)ut
J>t Jst

Semi-Structural VAR Representation Stock and Watson (2018), Miranda-Agrippino and Ricco
(2019)

Let € + be fundamental for z¢ such that ¢ ; = )\J’.ut. Thereexistsa A = [Aj A_j]
where A_j is N; X (N; — 1) and 'Y, A = Z such that

B(L)Zt = Dj€j,t + gt N where Dj = ZUAJ', 'Et = ZUA,jA/_jut, E[Ej‘t.ﬁé] =0




How Fundamental is Fundamentalness?

Limited Lead/Lag Exogeneity Miranda-Agrippino and Ricco (2019)

If €1:n,¢ is fundamental for z:, but €,y1.n, ¢ is nonfundamental for z:;, the ex-
ogeneity requirements for Proxy SVARs to identify the causal effect of shock
€j,t € €1:p,¢ Are

E[mie_j ] =0 (A2 Contemporaneous Exogeneity)
E[mienti:n,,s] =0 for all s #0 (A5 Limited Lag/Lead Exogeneity)

So lead/lag exogeneity is required wrt to the non-invertible shocks

Again, the same for LP-1V but lead exogeneity is required with respect to all the
shocks, not just the noninvertible shocks

If the shock of interest ¢; ; is nonfundamental for z:, then Proxy SVAR/SVAR-IV
cannot correctly estimate the dynamic causal effects as these are distorted by the
Blaschke matrix



Internalizing External Instruments

If € + is nonfundamental for z;, a solution is to internalize the external instrument

Internal Instrument (11) VAR Projection Plagborg-Mgller and Wolf (2021)

Define Z; = [m; z,_f]/. Define the internal instrument VAR projection

oo
Et = E B,’Et71 + ﬁt
i=1

Partial Invertibility/Fundamentalness of 1I-VAR Plagborg-Mgller and Wolf (2021)

Under A1-A2 and A4, €t is fundamental for Z;

The impulse response function to ¢; ; is identified up to scale by the lower triangular
~ o

factorization (Cholesky decomposition) of X; = E[i:i;] (ordering m; first)

Note: lead exogeneity needed, unlike in Proxy SVAR/SVAR IV



Some Additional Comments

Lag/lead exogeneity and fundamentalness are testable assumptions,
contemporaneous exogeneity is not testable when dim(m:) = dim(e; ;)

All examples were just-identified dim(m:) = dim(e; ;). Extensions to
dim(m¢) > dim(e; ;) are straighforward

Relevance requires only non-zero covariance, so m; can be dummies, signed
dummies, measurement-error ridden, censored, ...

Relevance/exogeneity conditions can also be imposed on prediction errors at
other horizons Gpu;, including h = oo

VAR-LP Equivalence leads to SVAR-IV and LP-1V Equivalence (with additional
lead exogeneity requirements for LP-IV)

II-VAR is asymptotically valid under what are likely the weakest assumptions in
practice, small sample performance is another matter



Narrative Sign Restrictions

Narrative Sign Restrictions Antolin-Diaz and Rubio-Ramirez (2018)

€y > Oforry €1,..,T €.r_ < 0form— €1,.., T\T+

Narrative sign restrictions incorporate information about the sign of shocks at certain
dates in the sample

Examples: October 1979 Volcker contractionary monetary policy shock, oil shocks

These and other narrative sign restrictions (e.g. on historical decompositions)
eliminate admissible D's in X, = DD’.

Another approach is to construct a proxy m: with signed dummies
Plagborg-Mgller and Wolf (2021) Giacomini, Kitagawa, and Read (2022)



2. Identification of Dynamic Causal Effects
2.1 Direct Measurement of Shocks

2.2 Covariance Restrictions

2.3 Instrumental Variables

2.4 Higher Order Moments



Identification with Higher Order Moments

So far, all identification schemes have relied on covariance restrictions

Identification can also rely on higher-order moments:

@ Heteroskedasticity Sentana and Fiorentini (2001), Rigobon (2003), Lewis (2021)

o Mutually Independent Non-Gaussian Shocks
Lanne, Meitz, and Saikkonen (2017), Gouriéroux, Monfort, and Renne (2019)

See also Montiel Olea, Plagborg-Mgller, and Qian (2022).



Identification with Heteroskedasticity

Example from Lewis (2021)

u 1 h e 0
(2L ][] e[ 4] oo
N ———

uzt €2t o2t
H et ):1/2
2 2
uieny =  hpey +wie , wir = hotef, + (1 + hiohoi)errer:
2 2 2 2
uy, = e+ wy , wy = hyef; +2hoerren

This suggest regressing uisup; on ugt and a constant to estimate hio.
Since Var(wa:) # 0, OLS is generally biased (measurement error bias)

However lagged values of ug’t are valid instruments for “g,t if oot is persistent and e
is homoskedastic.

Under time-varying volatility, we can identify h;» without any other restrictions based
on the dynamic covariances of the squared prediction errors

The approach works in general even with time-varying volatility in all the shocks, see
Lewis (2021)



Example: Lewis (2021) Fiscal Policy Shocks

Observables z¢ = [T, Gt, Y:]', quarterly sample 1950Q1-2006Q4

T: : Log Real Federal Tax Revenues per capita

G; : Log Real Federal Government Spending on Final Goods per capita
Y: : Log Real GDP per capita

ul = Ogogel +0yu) +orel
G T Y G
uy YTOTE +YyUr + OGES

Y T G Y
u; = (ru; +Ccuy +ovye

Identification based on Time-Varying Volatility as in Lewis (2021)



Example: Lewis (2021) Tax Shocks

Table 1: Estimates of structural parameters

Oc: Oy r Y &r 3¢}
TVV-ID —0.13 1.58%** 0.11 0.02 —0.00 0.06
(0.10)  (0.18)  (0.13)  (0.39)  (0.02)  (0.045)
BP -0.06 2.08 0 0 -0.08 0.07
MR -0.20 3.13 0.06 0 -0.35 0.10
35
3
25
2
? 15
=
C
0.5
0
-05

5 10 15 20
quarters



Non-Gaussianity

Another approach is to assume that ¢; are mutually independent and non-Gaussian

Darmois-Skitovich Theorem

If € is independently distributed, than linear combinations a’¢; and ’¢; with
a # 0,8 # 0 are independent only when €; have normal distributions.

The normal distribution is the only distribution with all cumulants equal to zero except
the first two (mean and variance)

If €; is non-Gaussian i.i.d than the white noise prediction errors u = De; cannot be
mutually independent white noise.

Higher order properties of u; can in that case provides additional identifying
information

Key is that e; are independently distributed (not just uncorrelated) and non-Gaussian.



Non-Gaussianity

Statistical identification, not based on theoretical or institutional restrictions

Identified shocks in general do not have interpretation without additional economic
information.

Example from Montiel Olea, Plagborg-Mgller, and Qian (2022):
€1t = TtClt , €2t = Tt<2t

where 7¢, (1t, (ot are iid, 7+ is a shared stochastic volatility process
Model is no longer linear in the independent shocks.

The impulse response to the (uncorrelated) shocks €1 and ep; are still of interest
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