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Overview

1 Time Series Representations of Dynamic Macro Models
Structural State Space Models, MA, VARMA and VAR representations; Estimating Dynamic Causal Effects;
Misspecification: Nonfundamentalness, Nonlinearities, and Time Aggregation

2 State-Space Models and the Kalman Filter
State Space Models, Kalman Filter, Forecasting, Maximum Likelihood Estimation

3 Local Projections
Impulse Responses as Dynamic Treatment Effects, LP Estimation and Basic Inference, VAR-LP Impulse
Response Equivalence

4 Identification of Dynamic Causal Effects
Identification with Covariance Restrictions or Higher Moments. Proxy SVAR/SVAR-IV, Internal instrument
SVAR

5 Inference for Impulse Responses
Inference methods for VAR/LP impulse responses. Detecting weak instruments; Robust Inference Methods;
Joint inference for VAR and LP impulse responses

6 Impulse Response Heterogeneity
Kitagawa Decomposition, Time Varying Impulse Responses

7 Other Uses of Impulse Responses
Impulse Response Matching and Indirect Inference; Estimating Structural Single Equations using Impulse
Responses, SP-IV; Counterfactuals with Impulse Responses, Optimal Policy Perturbations



2. Identification of Dynamic Causal Effects

2.1 Direct Measurement of Shocks

2.2 Covariance Restrictions

2.3 Instrumental Variables

2.4 Higher Order Moments



Dynamic Causal Effects/Structural Impulse Repsponse

Dynamic Causal Effect

The dynamic causal effect of a unit intervention in ϵj,t ∈ ϵt on zt+h is
E [zt+h|ϵj,t = 1, ϵt−1, ...]− E [zt+h|ϵj,t = 0, ϵt−1, ...]

Also known as ‘structural’ impulse response function (IRF) coefficients and equal to
∂zt+h/∂ϵj,t for h = 0, 1, ... in linear models.

The structural impulse response coefficients of zt to shock ϵj,t at horizon h are the
elements in the j-th column of Mh in the SMA(∞) representation

zt = M(L)ϵt =
∞∑
h=0

Mhϵt−h

The SMA(∞) representation contains the dynamic causal effects/structural impulse
responses to all shocks ϵt



Estimating Structural Impulse Responses

Shock realizations ϵj,t are observed:

Distributed Lag Model: zt =
∑H−1

h=0 M j
hϵj,t−h + wt

Local Projection: zt+h = M j
hϵj,t + wh,t

(Partial) Fundamentalness and known M j
0 = Dj (j-th column in impact matrix D)

VAR Model: B(L)zt = ut ⇒ M j
h = GhDj , G(L) = B(L)−1

Local Projections: zt+h = Ghzt +
∑∞

i=1 δizt−i + wh,t , M j
h = GhDj



2. Identification of Dynamic Causal Effects

2.1 Direct Measurement of Shocks

2.2 Covariance Restrictions

2.3 Instrumental Variables

2.4 Higher Order Moments



Direct Measurement of Shocks

One option is to obtain direct measures of an economic ‘shock’ ϵj,t

Relevance and Exogeneity Assumptions

Suppose we observe a scalar mt satisfying

E [mtϵj,t ] = ϕ ̸= 0 (A1 Relevance)

E [mtϵ−j,t ] = 0 (A2 Contemporaneous Exogeneity)

E [mtϵs ] = 0 for all s < t (A3 Lag Exogeneity)

E [mtϵs ] = 0 for all s > t (A4 Lead Exogeneity)

Note: there is no assumption of (partial) fundamentalness of ϵj,t for zt



Direct Measurement of Shocks

Distributed Lag Projection on mt

If zt =
∑∞

h=0 Mhϵt−h and A1-A4 hold, the distributed lag projection:

zt =

H−1∑
h=0

βj
hmt−h + wt

yields βj
h = ϕGhDj = ϕM j

h

The projection coefficients are the impulse responses to ϵj,t up to scale ϕ



The Scale Factor ϕ

Ideally, the shock measure mt has an interpretable scale

It is common to rescale the impulse response estimates to imply a fixed impact on one
of the variables in zt

However, this amounts to an instrumental variables procedure that scales all estimates
by a random variable in finite samples, see later in this Section

This can create problems in small samples (weak instrument bias and size distortions),
see later in Section 5.



Examples of Direct Shock Measures

Examples of direct shock measures (including event dummies)

Narrative tax shocks Romer and Romer (2010), Cloyne (2013)

Narrative tax news shocks Mertens and Ravn (2012)

Military spending changes Ramey and Shapiro (1998), Edelberg, Eichenbaum, and Fisher (1999)

Military spending news Ramey (2011)

Narrative monetary policy events Friedman and Schwartz (1963), Romer and Romer (1989)

High frequency monetary surprises Kuttner (2001) . . . Bauer and Swanson (2022)

Oil shocks Hamilton (2003), Kilian (2008)

Financial shocks Gilchrist and Zakraǰsek (2012)

Housing credit policy shocks Fieldhouse, Mertens, and Ravn (2018)

Uncertainty Shocks Bloom (2009)



Example: Romer and Romer’s Narrative Tax Shocks

Romer and Romer (2010) classify US postwar tax reforms according to:

1. size as measured by the implied tax liability change

2. motivation (narrative identification)
Endogenous; Countercyclical: “A tax action designed to return output growth to
normal”
Endogenous; Spending: “Tax change motivated by a change in government spending”
both correlated with current economic conditions
Exogenous; Long-Run: “A tax change motivated by fairness, efficiency, incentives, belief
in smaller government”
Exogenous; Deficit: “A tax change designed to reduce an inherited budget deficit”

3. The dates at which:
the tax act was signed by the President
the tax change was implemented

Retain ‘unanticipated’ shocks , cfr. Mertens and Ravn (2012)

Divide tax liability changes by (lagged) GDP.



Example: Romer and Romer’s Narrative Tax Shocks
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Example: Romer and Romer’s Narrative Tax Shocks

Unit Innovation in τt (Change in Tax Liabilities in % of GDP)
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∆Yt = β0τt + β1τt−1 + ...+ βhτt−h + wt

Download the code here

https://karelmertenscom.files.wordpress.com/2017/09/replicationfilesjme2014.zip


2. Identification of Dynamic Causal Effects

2.1 Direct Measurement of Shocks

2.2 Covariance Restrictions

2.3 Instrumental Variables

2.4 Higher Order Moments



Covariance Restrictions: The Identification Problem

Under fundamentalness

E [utu
′
t ] = Σu = Var(Dϵt) = DVar(ϵt)D′ = DD′

Symmetric positive definiteness of Σu provides Nz × (Nz + 1)/2 restrictions on the N2
z

elements of D. Not sufficient to uncover any of the columns of D.

Identification Problem

Suppose ϵ is orthonormal white noise and ut = Dϵt , then

Σu = DD′ = DQQ′D′ = D∗D∗

where Q is any orthogonal matrix (QQ′ = INz ).
D and D∗ = DQ are observationally equivalent

Conditions for (Local) Identification

Order condition: We need at least Nz × (Nz − 1)/2 covariance
restrictions to identify all N2

z elements of D
Rank condition: The derivative w.r.t vec(D) of the system of identifying
equations needs to have full rank

Also need a signing convention for the diagonal elements of D



Covariance Restrictions

Various combinations of covariance restrictions can be imposed on

the impact matrix D,
i.e. the contemporaneous response to shocks

the inverse impact matrix D−1,
i.e. the linear contemporaneous relationship between the variables in zt .

the horizon h-impulse response coefficients MhD,
i.e. the response after h periods

the infinite horizon (cumulative) impulse responses M(1)D, i.e. the long run
(cumulative) response to the shock

Subject to order and rank conditions for (local/global) identification
Rubio-Raḿırez, Waggoner, and Zha (2010)

Note, this generally involves solving a system of nonlinear equations.



Common Covariance Restrictions

Recursivity

Block Recursivity and Partial Identification

Nonrecursive Short-Run Restrictions

Long Run Restrictions

Sign Restrictions

Max Share Restrictions



Recursive Identification Scheme

Recursive Identification Sims (1980)

Zero (or timing) restrictions on the impact matrix, lower triangular D:

D =


d11 0 . . . 0
d21 d22 . . . 0
...

...
. . . . . .

dn1 . . . . . . dnn



Adds Nz×(Nz−1)
2

restrictions such that all N2
z elements of D are identified.

Easy computation through the lower triangular factorization (Cholesky
decomposition) of Σu , which factors a positive semi-definite matrix P into the
product of a lower triangular matrices and its transpose, Σu = DD′.



Block Recursive Schemes and Partial Identification

Partition zt = [z1,t , z2,t , z3,t ]′ and ϵt = [ϵ1,t , ϵ2,t , ϵ3,t ] and
consider the lower block triangular matrix

Db =


d11

n1×n1
0

n1×1
0

n1×n2

d21
1×n1

d22
1×1

0
1×n2

d31
n2×n1

d32
n2×1

d33
n2×n2

 Nz = n1 + 1 + n2

Block Recursive Partial Identification Christiano, Eichenbaum, and Evans (1999)

All Db satisfying Σu = DbD′
b have the same elements in the n1 +1-th column

Block recursive structure (n1 + n2 + n1n2 zero restrictions) suffices to identify the
n1 + 1-th column of Db

Wlg assume d11 and d33 are lower triangular and take the n1 + 1-th column of the
Choleski decomposition of Σu



Example: Christiano, Eichenbaum, and Evans (2005) Monetary SVAR

Block Recursive SVAR:

B(L)

 z1,t
ffrt
z3,t

 =

 d11 0 0
d21 d22 0
d31 d32 d33

 ϵ1t
ϵffrt
ϵ3t



z1,t: gross domestic product, consumption, the GDP deflator, investment, real wage,
and labor productivity (log levels)
ffrt: effective federal funds rate
z3,t: real profits and the growth rate of M2 money supply

Quarterly data 1965Q3-1995Q3

Key assumptions:

ffrt equation is an interest rate (Taylor) rule, ϵffrt are suprise deviations

variables in z1,t do not respond contemporaneously to a monetary policy shock ϵffrt

Monetary policy does not respond contemporaneously to variables in z3,t



Example: Christiano, Eichenbaum, and Evans (2005) Monetary SVAR

6

Fig. 1.—Model- and VAR-based impulse responses. Solid lines are benchmark model
impulse responses; solid lines with plus signs are VAR-based impulse responses. Grey areas
are 95 percent confidence intervals about VAR-based estimates. Units on the horizontal
axis are quarters. An asterisk indicates the period of policy shock. The vertical axis units
are deviations from the unshocked path. Inflation, money growth, and the interest rate
are given in annualized percentage points (APR); other variables are given in percentages.
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Fig. 1.—Continued

6

Fig. 1.—Model- and VAR-based impulse responses. Solid lines are benchmark model
impulse responses; solid lines with plus signs are VAR-based impulse responses. Grey areas
are 95 percent confidence intervals about VAR-based estimates. Units on the horizontal
axis are quarters. An asterisk indicates the period of policy shock. The vertical axis units
are deviations from the unshocked path. Inflation, money growth, and the interest rate
are given in annualized percentage points (APR); other variables are given in percentages.



Nonrecursive Covariance Restrictions

Recursivity assumptions on the impact matrix D often lack theoretical justification

For some variables, a recursive causal ordering is implausible even with higher
frequency data

For example, where to put indicators of financial conditions in the CEE system?
Before or after ffrt?

Nonrecursive Short Run Restrictions

Non-recursive restrictions are general restrictions on A and B in

Aut = Bϵt , D = A−1B

where none of the elements in D are necessarily zeros

Example: ( Hausman and Taylor (1983))

u1t = β12u2t + e1t , u2t = β23u3t + e2t , u3t = β31u1t + e3t u1t
u2t
u3t

 =
1

1 − β12β23β31

 1 β12 β12β23

β23β31 1 β23

β31 β12β31 1

 e1t
e2t
e3t

 ,Var(et) =

 σ1 0 0
0 σ2 0
0 0 σ3





Example: Blanchard and Perotti (2002) Fiscal Policy Shocks

Observables zt = [Tt ,Gt ,Yt ]′, quarterly sample 1950Q1-2006Q4

Tt : Log Real Federal Tax Revenues per capita
Gt : Log Real Federal Government Spending on Final Goods per capita
Yt : Log Real GDP per capita

Estimate of Σu provides six independent restrictions, need three more.

Blanchard and Perotti (2002) consider

uTt = θGσG ϵ
G
t + θY uYt + σT ϵ

T
t

uGt = γTσT ϵ
T
t + γY uYt + σG ϵ

G
t

uYt = ζTu
T
t + ζGu

G
t + σY ϵYt

and impose

γY = γT = 0 based on decision and recognition lags

θY = 2.08 based on outside estimates



Example: Blanchard and Perotti (2002) Tax Shocks

Tax shock of 1% of GDP
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Note: much smaller output effects than Romer and Romer (2010)

Download the code here

https://karelmertenscom.files.wordpress.com/2017/09/replicationfilesjme2014.zip


Long Run Restrictions

Suppose zt = ∆xt are growth rates, then the long-run impact of ϵt on levels xt is

∞∑
h=0

Mh = M(1) = M0 +M1 +M2 +M3 + ...

M(1) is the cumulative impact of ϵt on zt at h = ∞, and therefore the permanent
level effect on xt

Long Run Covariance Restrictions Blanchard and Quah (1989)

Let B(L)zt = Dϵt , G(L) = B(L)−1. Restrictions on M(1) can identify D:

M(1) = G(1)D ⇒ D = G(1)−1M(1) = B(1)M(1)

Long run (zero) restrictions are often theoretically more appealing than zero
restrictions on impact matrix D

Recursivity of M(1) easily implemented by Cholesky decomposition of G(1)ΣuG(1)′

Examples: Blanchard and Quah (1989) (supply shocks), Gaĺı (1999) (technology
shocks), Beaudry and Portier (2006) (technology news shocks)



Example: Blanchard and Quah (1989) SVAR

Assumption: supply shocks explain all output movements in the long run

[
∆outputt
unemplt

]
= M(L)

[
ϵst
ϵdt

]
, M(1) =

[
m11 0
m21 m22

]
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ment slightly. Following this increase, the 
effect is reversed after a few quarters, and 
unemployment slowly returns to its original 
steady-state value. The dynamic effects of a 
supply disturbance on unemployment are 
largely over by about five years. 

The qualitative results are similar across 
all alternative treatments of breaks and time 
trends. The only significant difference ap­
pears in the initial unemployment response 
to demand disturbances: in the case when 
neither break nor time trend is permitted, 
the response is initially negative rather than 
positive as in the base case. The one stan­
dard deviation band does however include 
po:5itive values. 

The response of unemployment and out­
put are suggestive of the presence of rigidi­
ties, both nominal and real. Nominal rigidi­
ties can explain why in response to a positive 
supply shock, say an increase in productiv­
ity, aggregate demand does not initially 
increase enough to match the increase in 
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output needed to maintain constant unem­
ployment; real wage rigidities can explain 
why increases in productivity can lead to a 
decline in unemployment after a few quar­
ters which persists until real wages have 
caught up with the new higher level of pro­
ductivity. 

Figures 1 and 2 also shed interesting light 
on the relation between changes in unem­
ployment and output known as Okun's law. 
The textbook value of Okun's coefficient is 
about 2.5. Under our interpretation, this co­
efficient is a mongrel coefficient, as the joint 
behavior of output and unemployment de­
pends on the type of disturbance affecting 
the economy. In the case of demand distur­
bances, Figure 1 suggests that there is indeed 
a tight relation between output and unem­
ployment. At the peak responses, the graph 
suggests an implied coefficient between out­
put and unemployment that is slightly greater 
than 2. In the case of supply disturbances, 



Max Share Restrictions

Long-run restrictions can be unreliable in realistic samples.
Chari, Kehoe, and McGrattan (2008), Kascha and Mertens (2009)

An alternative approach to identifying Dj is to require that ϵj,t explains the largest
possible fraction of the FEV of variable zi,t ∈ zt at some finite horizon h

Faust (1998), Uhlig (2004), Barsky and Sims (2011)

Forecast Error Variance (FEV) Decomposition

The share of the FEV for zi,t at horizon h explained by ϵj,t is

Ωh =

∑h
n=0(m

j
n(i))

2∑Nz
l=1

∑h
n=0(m

l
n(i))

2

where mj
h(i) is the i-th element in M j

h

Angeletos, Collard, and Dellas (2020) similarly choose Dj to maximize the
contribution of ϵj,t to the spectral density zi,t over a frequency band [ω, ω].



Example: Angeletos, Collard, and Dellas (2020) Business Cycle Anatomy

Assumption: shock ϵjt contains the maximal share of all the information in the data
about the volatility of macroeconomic variable j at business cycle frequencies (6 to 32
quarters in the time domain) .

3041ANGELETOS ET AL.: BUSINESS-CYCLE ANATOMYVOL. 110 NO. 10

Appendix G.7 reinforces this rationale by including in our VAR two familiar gap 
measures, the gap between actual and potential GDP and the gap between actual 
unemployment and NAIRU, and by showing that the shock that targets either gap is 
also indistinguishable from the shocks seen in Figure 2.

Table 2 and online Appendix Table 28 paint a complementary picture in terms of 
the variance contributions: the shock that targets any one of unemployment, GDP, the 
corresponding gaps, hours, and investment explains the bulk of the business-cycle 
volatility in all of these variables. The following caveat applies to consumption: the 
shock that targets consumption explains less than one-quarter of the fluctuations in 
unemployment, hours, or investment; and symmetrically, the other shocks that make 
up our MBC template account for less than one-quarter of the fluctuations in con-
sumption.13 Nonetheless, the consumption shock is very similar to the other shocks 
with regard to both the IRFs and the disconnect from TFP and inflation. That is, it 
shares roughly the same propagation mechanism.

Finally, the interchangeability property extends from the IRFs to the time series 
produced by the different versions of the MBC shock. This is shown in Table 3. The 
table reports, for any of the variables of interest, the correlations between the times 
series of that variable produced by the unemployment shock and that produced by 
any of its sister shocks. The nearly perfect correlations seen in this table mean that 
recovered shocks are essentially the same, not only in terms of IRFs, but also in 
terms of realizations, as manifested in the times series they produce for the main 
variables of interest.14

13 Recall that consumption excludes spending on durables, which is instead included in investment.
14 Let ​X  ∈  ​{u, Y, C, I, h}​​ denote any one of the variables of interest. Next, let ​​X​s​​​ denote the bandpass-filtered 

time series of the predicted value of that variable produced by the shock that targets the variable ​s  ∈  ​{u, Y, C, I, h}​​ 
(where ​s​ may or may not coincide with ​X​). We are using the band pass filter suggested by Christiano and Fitzgerald 
(2003). The typical cell in Table 3 reports, for a variable ​X​ (across rows) and a shock ​s  ≠  u​ (across columns), the 
correlation of ​​X​s​​​ and ​​X​u​​​. This summarizes the information seen in Appendix Figure B1, which depicts the full scat-
terplots of the series ​​X​s​​​ against the series ​​X​u​​​, for all ​X​ and ​s​. The similarity is also present in terms of the innovations 
that correspond to the different shocks. For instance, the correlation between the ε identified by targeting unemploy-
ment and that identified by targeting output is 0.86. But these innovations, and the corresponding column vectors 

Figure 2. The Various Facets of the MBC Shock, IRFs

Note: Shaded area: 68 percent HPDI.
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All shocks have very similar impulse responses, suggesting a single ‘Main Business
Cycle Shock’.



Sign Restrictions

[
u1,t
u2,t

]
=

[
d11 d12
d21 d22

] [
ϵ1,t
ϵ2,t

]

Covariance restrictions can be inequalities on the elements of the impact matrix D,
e.g. d11, d21, d22 > 0, d12 < 0

Inequalities can also be imposed on Mh for any h and across different h

Among all D that satisfy DD′ = Σu , only admit those that satisfy the inequality
restrictions

The estimates of Mh are no longer points, but sets containing all M̃h’s generated by
admissable D’s.



Example: Mountford and Uhlig (2009) Tax Shocks

WHAT ARE THE EFFECTS OF FISCAL POLICY SHOCKS? 965

Table I. Identifying sign restrictions

Gov. revenue Gov. spending GDP, cons, non-res.inv. Interest rate Adjusted reserves Prices

Non-fiscal shocks
Business cycle C C
Monetary policy C � �
Basic fiscal policy shocks
Government revenue C
Government spending C

This table shows the sign restrictions on the impulse responses for each identified shock. ‘Cons’ stands for private
consumption and ‘Non-res. inv.’ stands for non-residential investment. A ‘C’ means that the impulse response of the
variable in question is restricted to be positive for four quarters following the shock, including the quarter of impact.
Likewise, a ‘�’ indicates a negative response. A blank entry indicates that no restrictions have been imposed.

restriction that government revenues increase with output in the business cycle shock should
be emphasized. This is our crucial identifying assumption for fiscal policy shocks: when output
and government revenues move in the same direction, we essentially assume that this must be
due to some improvement in the business cycle generating the increase in government revenue,
not the other way around. We regard this is as a reasonable assumption and consistent with a
number of theoretical views. Furthermore, our identifying assumptions are close to minimal: some
assumptions are needed to say anything at all. The orthogonality assumption a priori excludes the
view that positive co-movements of government revenues and output are caused by some form of
short term ‘Laffer curve’ or ‘fiscal consolidation’ effect from a surprise rise in taxes.4

A monetary policy shock moves interest rates up and reserves and prices down for four quarters
after the shock. These identifying restrictions are close to those used in Uhlig (2005). We also
require the monetary policy shock to be orthogonal to the business cycle shock. The main purpose
of characterizing the business cycle and monetary shocks is to filter out the effects of these shocks
on the fiscal variables. The additional orthogonalization among these two shocks has no effect on
that.

Fiscal policy shocks are identified only through restricting the impulse responses of the fiscal
variables and through the requirement that they are orthogonal to both business cycle shocks
as well as monetary policy shocks. As stated above, we identify two basic fiscal shocks—a
‘government spending shock’ and a ‘government revenue shock’—employing tight identifying
restrictions where the responses of fiscal variables are restricted for a defined period after the
shock. For example, a basic government spending shock is defined as a shock where government
spending rises for a year after the shock. These tight restrictions are designed to rule out very
transitory shocks to fiscal variables where, for example, government spending rises on impact
but falls after one or two quarters. Nonetheless we have checked that our results are robust to
weaker identifying restrictions where responses are only restricted on impact. Finally, it should be
noted that we do not restrict the behavior of government revenue when identifying the government
spending shock or vice versa. This is not necessary since all that is required to describe the two-
dimensional space of fiscal policy shocks are two linearly independent vectors. However, it is

4 The ‘Laffer curve’ is a phenomenon which, if it exists, may be expected to operate over the medium term and so would
not be ruled out by the short-run sign restrictions imposed. Indeed Figure 11 shows that the responses of government
revenue in response to a tax cut can be positive in the medium term. See Trabandt and Uhlig (2006), Giavazzi et al.
(1990, 2000) and Perotti (1999) for analysis on this issue.

Copyright  2009 John Wiley & Sons, Ltd. J. Appl. Econ. 24: 960–992 (2009)
DOI: 10.1002/jae

A tax shock is identified as a shock that is orthogonal to the business cycle and
monetary policy shock and where government revenue rises for a year after the shock.



Example: Mountford and Uhlig (2009) Tax Shocks
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Figure 4. The basic government revenue shock, identified by orthogonality to the business cycle shock and
monetary policy shock as well as a positive impulse response function of government revenues for four
quarters after the shock. The restriction is indicated by the shaded area on the graph. This figure is available
in color online at www.interscience.wiley.com/journal/jae

are associated with a marginally lower interest rate and increases in income, consumption and
wages. These results are thus not inconsistent with the findings in Uhlig (2005): there, without
orthogonality to the business cycle shock, sign restriction methods do not deliver a clear direction
for real GDP in response to a surprise rise in interest rates.

What is a little surprising is the rise in government revenue in response to the rise in interest
rates. One plausible, although not the only, explanation for this is that over the sample period
monetary and fiscal policy was coordinated so that a monetary tightening was accompanied by a

Copyright  2009 John Wiley & Sons, Ltd. J. Appl. Econ. 24: 960–992 (2009)
DOI: 10.1002/jae

Implied output effects are very large



2. Identification of Dynamic Causal Effects

2.1 Direct Measurement of Shocks

2.2 Covariance Restrictions

2.3 Instrumental Variables

2.4 Higher Order Moments



Identification with Instrumental Variables

Equivalence Between Covariance Restrictions and IV Hausman and Taylor (1983)

If a linear system of equations is identifiable, covariance restrictions cause resid-
uals to behave as instrumental variables

Covariance restrictions generate internal instruments, and the elements of D can also
be obtained by IV methods.

IV estimation:

yt = βxt + wt , E [xtwt ] ̸= 0

Let mt be a valid instrument for xt satisfying

E [mtxt ] ̸= 0 (relevance)

E [mtwt ] = 0 (exogeneity)

Two Stage Least Squares (2SLS):

1. First Stage: Regress xt on mt and obtain fitted values x̂t

2. Second Stage: Regress yt on x̂t to obtain consistent estimate of β



Example: (Block) Recursive Identification

u2t is scalar, u1t and u3t are of arbitrary dimension

u1,t = a11e1,t

u2,t = a21u1,t + e2,t

u3,t = a31u1,t + a32u2,t + a33e3,t

1. Project zt on zt−1, zt−2 to obtain prediction errors ut

2. Project u2,t on u1,t and obtain e2,t = u2,t − a21u1,t

3. Project ut on u2,t using e2,t as an instrument to obtain D2

The impact response to a unit innovation in e2,t is given by D2

Multiply by std(e2,t) to get the impact D2 of a one std shock

Note projecting ut directly on e2,t gives the same answer



Example: Blanchard and Perotti (2002) Fiscal Policy Shocks

uTt = θGσG e
G
t + θY uYt + σT e

T
t

uGt = γTσT e
T
t + γY uYt + σG e

G
t

uYt = ζTu
T
t + ζGu

G
t + σY eYt

Identification restrictions:

γY = γT = 0 based on decision and recognition lags

θY = 2.08 based on outside estimates

The other 6 unknown parameters can be obtained as follows:

σG is the std of uGt

Project uTt − 2.08uYt on uGt to identify θG and σT

uTt − 2.08uYt and uGt are valid instruments for identifying ζT , ζG and σY in
uYt = ζTu

T
t + ζGu

G
t + σY eYt



Example: Shapiro and Watson (1988)

Block-recursive long run restrictions:
∆hourst
∆outputt

∆πt

i − πt

 = M(L)


ϵlst
ϵtecht

ϵd1t
ϵd2t

 , M(1) =


m11 0 0 0
m21 m22 0 0
m31 m32 m33 m34

m41 m42 m43 m44


Demand shocks ϵd1t , ϵd2t have no permanent effect on hours and output
Permanent technology shocks ϵtecht have no permanent effect on hours

The recursive IV approach is analogous to before but applied to ũt = G(1)ut .

Shapiro and Watson (1988) show a different IV implementation

Since D = B(1)M(1), define Bc (L) = B(1)−1B(L), and estimate the VAR

Bc (L)zt = M(1)ϵt = uct

imposing the parameter constraints that Bc (1) = I
In each equation, the parameter constraints free up one lag of the three
contemporaneous variables as instrumental variables to estimate the off-diagonal
coefficients in Bc (0)



Identification with Proxy Variables/External Instruments

Shocks identified with internal instruments/covariance restrictions often look
unrelated to known historical events Rudebusch (1998)

‘Known historical events’ are in direct measures of shocks mt

Can we incorporate mt to help identify shocks?

Yes, use mt as external instruments to generate covariance restrictions

Think of mt as ‘proxy’ measures of unobserved structural shocks

Identification with proxies avoids (often implausible) short run exclusion restrictions

See Stock (2008), Stock and Watson (2012), Mertens and Ravn (2013)



Identification with Proxy Variables/External Instruments

External Instrument Validity

Suppose we have access to a (mean zero) scalar variable mt satisfying

E [mtϵj,t ] = ϕ ̸= 0 (A1 Relevance)

E [mtϵ−j,t ] = 0 (A2 Contemporaneous Exogeneity)

Identification (up to scale) in Projection with VAR Residuals

Fundamentalness and A1-A2 imply that E [utmt ] = E [Dϵtmt ] = ϕDj . There-
fore the projection

ut = βmt + wt

yields β = Djϕ

The projection coefficient is the impact response up to an (unknown) scale ϕ

Note that now lead/lag exogeneity assumptions are not required.
These are effectively replaced by the fundamentalness assumption



Identification with Proxy Variables/External Instruments

Identification (up to scale) in VARX Projection Paul (2020)

Under fundamentalness and A1-A2, the projection

zt =
∞∑
i=1

Bizt−i + βmt + wt

yields β = Djϕ

The projection coefficient β is the impact response up to an (unknown) scale ϕ

In finite samples, this is not equivalent to regressing VAR residuals ût on mt

Instead it is equivalent to regressing the VAR residuals ût on m⊥
t where m⊥

t is the
residual in the regression of mt on zt−1, . . . , zt−p (Frisch-Waugh Theorem)



Identification with Proxy Variables/External Instruments

Without loss of generality, suppose that j = 1, i.e. the shock of interest is ordered
first, and partition

D =

 d11
1×1

d12
1×(Nz−1)

d21
(Nz−1)×1

d22
(Nz−1)×(Nz−1)

 , ut =

 u1,t
1×1

u2,t
(Nz−1)×1


Proxy SVAR Identification Mertens and Ravn (2013)

Under fundamentalness, the conditions in A1 and A2 provide Nz −1 covariance
restrictions that suffice to identify D1 = [d11 d ′

21]
′

Since E [u1,tmt ] = ϕd11 and E [u2,tmt ] = ϕd21,

E [u2,tmt ]/E [u1,tmt ] = d21/d11

which identifies D1 up to the scalar d11

The scalar d11 is pinned down by the restrictions provided by Σu = DD′

See Mertens and Ravn (2013) for the closed form solution.



Identification with Proxy Variables/External Instruments

E [u2,tmt ]/E [u1,tmt ] = d21/d11

This is the impulse response to a unit innovation in z1,t driven by ϵ1,t

This impulse is now on a specific scale, determined by the choice of z1,t

In finite samples, the estimate of d21/d11 is simply the 2SLS estimate of δ in
û2,t = δû1,t + vt using mt as an instrumental variable.

In population, the following is equivalent

E [u2,tm
⊥
t ]/E [u1tm

⊥
t ] = d21/d11

where m⊥
t is the residual in the projection of mt on zt−1, zt−2, ...

In finite samples, the estimate of d21/d11 is the 2SLS estimate of δ in û2,t = δû1,t + vt
using m⊥

t as an instrumental variable.

Proxy SVARs are also referred to as SVAR-IV (Stock and Watson (2018))



Identification with Proxy Variables/External Instruments

Some Equivalence Results

Proxy SVAR identification of d21/d11 with mt is equivalent to regressing
VAR residuals on mt and rescaling the coefficients to normalize the
impact on z1t

Proxy SVAR identification of d21/d11 with m⊥
t is equivalent to OLS

estimation of the VARX and rescaling the coefficients on mt to normalize
the impact on z1t

The VAR residuals projection and the VARX projection are just the respective
‘reduced form’ representations

The rescaling step inevitably turns all impulse response estimators identified by proxies
into instrumental variable estimators



Example: Mertens and Ravn (2014) Fiscal Policy Shocks

Recall the (unanticipated) Romer and Romer (2010) narrative tax shocks τt
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Example: Mertens and Ravn (2014) Tax Shocks

Let’s identify the parameters in the Blanchard and Perotti (2002) system using τt as a
proxy for eTt

uTt = θGσG e
G
t + θY uYt + σT e

T
t

uGt = γTσT e
T
t + γY uYt + σG e

G
t

uYt = ζTu
T
t + ζGu

G
t + σY eYt

Three identification restrictions:

E [τteGt ] = E [τteYt ] = 0

γY = 0 based on decision and recognition lags (γT remains unrestricted )



Example: Mertens and Ravn (2014) Tax Shocks

Cut in Tax Revenues of 1% of GDP

Proxy SVAR BP SVAR
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Download the code here

https://karelmertenscom.files.wordpress.com/2017/09/replicationfilesjme2014.zip


What is the Difference Across the Identification Schemes?

The elasticity of tax revenues wrt GDP

Proxy SVAR Blanchard-Perotti SVAR

Equation Benchmark θY = 2.08 θY = 3.13

Tax Revenue θG −0.20 −0.06 −0.13
[−0.35,−0.07] [−0.12,−0.03] [−0.19,−0.09]

θY 3.13 2.08 3.13
[2.73, 3.55] – –

σT × 100 2.54 2.24 2.56
[2.23, 2.62] [2.04, 2.19] [2.34, 2.51]

Spending γT 0.06 0 0
[−0.06, 0.17] – –

γY 0 0 0
– – –

σG × 100 2.35 2.36 2.36
[2.12, 2.30] [2.13, 2.31] [2.13, 2.31]

Output ζT −0.36 −0.08 −0.36
[−0.57,−0.24] [−0.11,−0.06] [−0.43,−0.31]

ζG 0.10 0.07 0.10
[0.06, 0.13] [0.06, 0.09] [0.07, 0.12]

σY × 100 1.54 0.97 1.54
[1.21, 1.93] [0.89, 0.98] [1.37, 1.64]

Values in parenthesis are 95% percentiles computed using 10, 000 bootstrap replications.



What is the Difference Across the Identification Schemes?

BP SVAR with θY = 3.13
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Little Difference for Spending Shocks ϵGt

Spending Increase of 1% if GDP
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Example: Gertler and Karadi (2015) Monetary Policy Shocks

Block-recursive schemes are not plausible for many variables, e.g. financial indicators

Omitting financial indicators likely leads to a violation of fundamentalness

Gertler and Karadi (2015) use HF ffr futures surprises as proxies for MP shocks

Vol.7 No.1� 61Gertler and Karadi: Monetary Policy Surprises

We begin with the external instruments case. As noted earlier, we use the three 
month ahead funds rate future surprise FF4 to identify monetary policy shock. As a 
check to ensure that this instrument is valid, we report the F-statistic from the first 
stage regression of the one-year bond rate residual on FF4. We find an F-value of 21 
and half. We also compute a robust F-statistic (which allows for heteroskedasticity) 
of 17.5. Both values are safely above the threshold suggested by Stock et al. (2002) 
to rule out a reasonable likelihood of a weak instruments problem.

As the top left panel shows, a one standard deviation surprise monetary tight-
ening induces a roughly 25 basis point increase in the one-year government bond 
rate. Consistent with conventional theory, there is a significant decline in industrial 
production that reaches a trough roughly a year and a half after the shock. Similarly 
consistent with standard theory, there is a small decline in the consumer price index 
that is not statistically significant. Note that in contrast to the Cholesky identifica-
tion, we do not impose zero restrictions on the contemporaneous responses of output 
and inflation. The identification of the monetary policy shock is entirely due to the 
external instrument.

regression is incorporated in the reported confidence bands, because both stages of the estimation are included in 
the bootstrapping procedure. Thereby, we avoid any potential “generated regressor” problem. 
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Figure 1. One-Year Rate Shock with Excess Bond Premium
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Figure 1. One-Year Rate Shock with Excess Bond Premium

Rate increase tightens financial conditions in the Proxy SVAR, but not in recursive
scheme with credit spreads order below ffrt



Multiple External Instruments

Multiple External Instruments

Let ϵj,t be a K × 1 subvector of shocks, and mt a K × 1 vector of external
instruments

E [mtϵ
′
j,t ] = Φ (A1m)

E [mtϵ
′
−j,t ] = 0 (A2m)

where Φ is K × K , unknown and nonsingular, but not necessarily diagonal.

Each element in mt is potentially correlated with multiple shocks

Partition ut =

 u1t
K×1

u2t
(Nz−K)×1

, ϵt =
 ϵ1t

K×1

ϵ2t
(Nz−K)×1

,
ϵ1t are the shocks of interest.



Multiple External Instruments

Proxy SVAR Identification with Multiple Proxies Mertens and Ravn (2013)

Under fundamentalness, A1m and A2m provide (Nz − K) × K covariance re-
strictions that identify the first K columns of D up to a K × K rotation

Partition D =

 D11
k×k

D12
k×n−k

D21
n−k×k

D22
n−k×n−k

 , D1 =

 D11
k×k

D21
n−k×k


Assumptions A1m/A2m imply Nz × K conditions

ΦD′
1 = E [mtu

′
t ]

from which we extract (Nz − K)× K covariance restrictions

D21 = (E [mtu
′
1t ]

−1E [mtu
′
2t ])

′D11

that can be used for identifying the first K columns of D

These restrictions identify D21D11
−1

An additional K(K − 1)/2 restrictions are needed to fully identify D1



Multiple External Instruments

We still need to find the remaining K(K − 1)/2 restrictions required to identify D1

and extract ϵ1t

In many applications, however, meaningful impulse responses do not require further
restrictions, even if the shocks are not individually identified

Suppose p1,t and p2,t are two scalar policy instruments that are set according to the
feedback rules

p1,t = β12p2,t + γ′
1u

y
t + σ1ϵ

p
1,t

p2,t = β21p1,t + γ′
2u

y
t + σ2ϵ

p
2,t

Let uyt = ξ1p1,t + ξ2p2,t + Cy ϵ
y
t and ut = [p1,t p2,t (uyt )

′]′.

We have mt = [m1,t m2,t ] with

E [mi,tϵ
p
j,t ] ̸= 0 for i , j = 1, 2

E [mt(ϵ
y
t )

′] = 0



Multiple External Instruments

[
p1,t
p2,t

]
=

1

1− β12β21

[
γ′
1 + β12γ

′
2

β21γ
′
1 + γ′

2

]
︸ ︷︷ ︸

α

uyt +
1

1− β12β21

[
σ1 β12σ2

β21σ1 σ2

]
︸ ︷︷ ︸

Cp

[
ϵp1,t
ϵp2,t

]

The proxies mt identify α, i.e. all the endogenous feedback from uyt to the policy
instruments, and Σp = CpC ′

p

The proxies mt are one restriction short of identifying the four unknowns in Cp .
The mutual feedback across policy instruments β12 and β21 is not identified

Consider the upper and lower triangular factorizations of Σp

Σp = ηU(ηU)′ , ηU =

[
ηU11 ηU12
0 ηU22

]
, eUt = (ηU)′(C ′

p)
−1

[
ϵp1,t
ϵp2,t

]
Σp = ηL(ηL)′ , ηL =

[
ηL11 0
ηL21 ηL22

]
, eLt = (ηL)′(C ′

p)
−1

[
ϵp1,t
ϵp2,t

]



Multiple External Instruments

[
p1,t
p2,t

]
= αuyt +

[
ηU11 ηU12
0 ηU22

][
eU1,t
eU2,t

]
[

p1,t
p2,t

]
= αuyt +

[
ηL11 0
ηL21 ηL22

][
eL1,t
eL2,t

]

eU1,t is the linear combination of ϵp1,t and ϵp2,t such that there is an exogenous
innovation in p1,t but not in p2,t

eL2,t is the linear combination of ϵp1,t and ϵp2,t such that there is an exogenous
innovation in p2,t but not in p1,t

We can still trace the dynamic causal effects of exogenous changes in p1t and p2t !

The lower/upper triangularizations are (harmless) rotations that provide what we are
typically most interested in, the causal effects of surprise innovations in single policy
instrument at a time.

This is poorly understood in some of the literature

Note that p1t (p2t) still responds on impact to eL2,t (eU1,t) through the impact on uYt



Example: Mertens and Ravn (2013) Personal/Corporate Income Tax Shocks

Decomposition of (unanticipated) Romer and Romer (2010) shocks
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Example: Mertens and Ravn (2013) Personal/Corporate Income Tax Shocks

Personal Income Tax Cut Corporate Income Tax Cut
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Download the code here

https://karelmertenscom.files.wordpress.com/2017/09/mertens_ravn_replication_files.zip


Example: Mertens and Montiel Olea (2018) Marginal Tax Rate Shocks

Proxies for shocks to marginal tax rates across the income distribution
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Example: Mertens and Montiel Olea (2018) Top 1% Tax Shocks
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Download the code here

https://karelmertenscom.files.wordpress.com/2017/12/web_programs.zip


How Fundamental is Fundamentalness?

DL projection (or Local projections) on mt :

Relevance A1+ Contemp. Exo A2+ Lag Exo A3 (+ Lead Exo A4 for LP)

Proxy SVAR with mt :

Relevance A1+ Contemp. Exo A2 + Fundamentalness

Is partial fundamentalness enough for Proxy SVARs?

Partial Invertibility/Fundamentalness

ϵj,t is fundamental for zt if ϵj,t is a linear combination of ut in zt = G(L)ut

Semi-Structural VAR Representation Stock and Watson (2018), Miranda-Agrippino and Ricco

(2019)

Let ϵj,t be fundamental for zt such that ϵj,t = λ′
jut . There exists a Λ = [λj λ−j ]

where λ−j is Nz × (Nz − 1) and Λ′ΣuΛ = I such that

B(L)zt = Dj ϵj,t + ξt , where Dj = Σuλj , ξt = Σuλ−jλ
′
−jut , E [ϵj,tξ

′
t ] = 0



How Fundamental is Fundamentalness?

Limited Lead/Lag Exogeneity Miranda-Agrippino and Ricco (2019)

If ϵ1:n,t is fundamental for zt , but ϵn+1:Nz ,t is nonfundamental for zt , the ex-
ogeneity requirements for Proxy SVARs to identify the causal effect of shock
ϵj,t ∈ ϵ1:n,t are

E [mtϵ−j,t ] = 0 (A2 Contemporaneous Exogeneity)

E [mtϵn+1:Nz ,s ] = 0 for all s ̸= 0 (A5 Limited Lag/Lead Exogeneity)

So lead/lag exogeneity is required wrt to the non-invertible shocks

Again, the same for LP-IV but lead exogeneity is required with respect to all the
shocks, not just the noninvertible shocks

If the shock of interest ϵj,t is nonfundamental for zt , then Proxy SVAR/SVAR-IV
cannot correctly estimate the dynamic causal effects as these are distorted by the
Blaschke matrix



Internalizing External Instruments

If ϵj,t is nonfundamental for zt , a solution is to internalize the external instrument

Internal Instrument (II) VAR Projection Plagborg-Møller and Wolf (2021)

Define z̃t = [mt z ′t ]
′. Define the internal instrument VAR projection

z̃t =
∞∑
i=1

B̃i z̃t−1 + ũt

Partial Invertibility/Fundamentalness of II-VAR Plagborg-Møller and Wolf (2021)

Under A1-A2 and A4, ϵj,t is fundamental for z̃t

The impulse response function to ϵj,t is identified up to scale by the lower triangular
factorization (Cholesky decomposition) of Σũ = E [ũt ũ′t ] (ordering mt first)

Note: lead exogeneity needed, unlike in Proxy SVAR/SVAR IV



Some Additional Comments

Lag/lead exogeneity and fundamentalness are testable assumptions,
contemporaneous exogeneity is not testable when dim(mt) = dim(ϵj,t)

All examples were just-identified dim(mt) = dim(ϵj,t). Extensions to
dim(mt) ≥ dim(ϵj,t) are straighforward

Relevance requires only non-zero covariance, so mt can be dummies, signed
dummies, measurement-error ridden, censored, ...

Relevance/exogeneity conditions can also be imposed on prediction errors at
other horizons Ghut , including h = ∞

VAR-LP Equivalence leads to SVAR-IV and LP-IV Equivalence (with additional
lead exogeneity requirements for LP-IV)

II-VAR is asymptotically valid under what are likely the weakest assumptions in
practice, small sample performance is another matter



Narrative Sign Restrictions

Narrative Sign Restrictions Antoĺın-D́ıaz and Rubio-Raḿırez (2018)

ϵj,τ+ > 0 for τ+ ∈ 1, ...,T , ϵj,τ− < 0 for τ− ∈ 1, ...,T\τ+

Narrative sign restrictions incorporate information about the sign of shocks at certain
dates in the sample

Examples: October 1979 Volcker contractionary monetary policy shock, oil shocks

These and other narrative sign restrictions (e.g. on historical decompositions)
eliminate admissible D’s in Σu = DD′.

Another approach is to construct a proxy mt with signed dummies
Plagborg-Møller and Wolf (2021) Giacomini, Kitagawa, and Read (2022)



2. Identification of Dynamic Causal Effects

2.1 Direct Measurement of Shocks

2.2 Covariance Restrictions

2.3 Instrumental Variables

2.4 Higher Order Moments



Identification with Higher Order Moments

So far, all identification schemes have relied on covariance restrictions

Identification can also rely on higher-order moments:

Heteroskedasticity Sentana and Fiorentini (2001), Rigobon (2003), Lewis (2021)

Mutually Independent Non-Gaussian Shocks
Lanne, Meitz, and Saikkonen (2017), Gouriéroux, Monfort, and Renne (2019)

See also Montiel Olea, Plagborg-Møller, and Qian (2022).



Identification with Heteroskedasticity

Example from Lewis (2021)[
u1t
u2t

]
=

[
1 h12
h21 1

]
︸ ︷︷ ︸

H

[
e1t
e2t

]
︸ ︷︷ ︸

et

, E [ete
′
t ] =

[
σ1 0
0 σ2t

]
︸ ︷︷ ︸

Σ
1/2
t

, E [utu
′
t ] = HΣtH

u1tu2t = h12e
2
2t + w1t , w1t = h21e

2
1t + (1 + h12h21)e1te2t

u22t = e22t + w2t , w2t = h221e
2
1t + 2h21e1te2t

This suggest regressing u1tu2t on u22t and a constant to estimate h12.

Since Var(w2t) ̸= 0, OLS is generally biased (measurement error bias)

However lagged values of u22,t are valid instruments for u22,t if σ2t is persistent and e1t
is homoskedastic.

Under time-varying volatility, we can identify h12 without any other restrictions based
on the dynamic covariances of the squared prediction errors

The approach works in general even with time-varying volatility in all the shocks, see
Lewis (2021)



Example: Lewis (2021) Fiscal Policy Shocks

Observables zt = [Tt ,Gt ,Yt ]′, quarterly sample 1950Q1-2006Q4

Tt : Log Real Federal Tax Revenues per capita
Gt : Log Real Federal Government Spending on Final Goods per capita
Yt : Log Real GDP per capita

uTt = θGσG ϵ
G
t + θY uYt + σT ϵ

T
t

uGt = γTσT ϵ
T
t + γY uYt + σG ϵ

G
t

uYt = ζTu
T
t + ζGu

G
t + σY ϵYt

Identification based on Time-Varying Volatility as in Lewis (2021)



Example: Lewis (2021) Tax Shocks

Table 1: Estimates of structural parameters
θG θY γT γY ξT ξG

TVV-ID −0.13
(0.10)

1.58∗∗∗

(0.18)
0.11

(0.13)
0.02

(0.39)
−0.00
(0.02)

0.06
(0.045)

BP -0.06 2.08 0 0 -0.08 0.07
MR -0.20 3.13 0.06 0 -0.35 0.10

The first row maps estimates of H obtained via TVV-ID to the parameters of BP and MR using (13). TVV-
ID is implemented using the AR(1) SV model, described in Section 3, with details provided in Supplement
Section 2. The remaining rows are estimates from Mertens and Ravn (2014), for comparison.

closest match to BP and MR.23 Table 1 reports the results, with BP and MR estimates for
comparison.24 The automatic stabilizer effect for tax revenues, θY , is estimated to be 1.58,
and is statistically significant. The 95% confidence interval, [1.23, 1.94], does not include
the BP or MR value. While the estimate for the instantaneous response of output to tax
revenues, ξT , is not statistically distinct from zero, it is estimated precisely enough to reject
the negative values of both BP and MR at the 1% level. The remaining parameters are quite
similar across specifications; I do not reject the zeros assumed by BP and MR as identifying
restrictions. However, the two parameters for which I do obtain distinct values represent
the novel identifying information in BP and MR: BP externally calibrate the automatic
stabilizers, θY , while MR estimate ξT using an external instrument. Caldara and Kamps
(2017) show that these two parameters are crucial for determining fiscal multipliers. Higher
values of θY mechanically dictate higher multipliers by implying negative values for ξT to
match reduced form covariances. Moreover, ξT , the contemporaneous response of output to
tax revenues, directly implies the size of the tax multiplier.

One might be concerned that the validity of statistical inference is impacted by the use
of pre-tests for identification. However, given the p−values of the identification tests in this
application, it turns out that any statistical test that rejects at the 5% level – like that of the
BP or MR values for θY – can be jointly rejected with the identification pre-tests at the 10%
level, using the Bonferroni-Holm adjustment.25 All subsequent results that are significant at
the 5% level can also be interpreted accordingly.

23In this application, this is the one clear labeling. As a further check, Figure 10 in the Supplement plots
dynamic multipliers for all alternative labelings; it is clear that the labeling selected is the only one that
produces results of plausible sign and magnitude.

24It is well-known that EM algorithms can be sensitive to start values; thus, optimization was carried out
across a grid of start values and the median estimates were used to initialize a final optimization. The range
of estimates across start values is very small, see Table 7 in the Supplement. As an additional check, the
estimates from alternative volatility models (same Table) are quite similar.

25For a family of three hypotheses, the Bonferroni-Holm p−values for a 10% test are 0.10, 0.05, and 0.03.
The test of rnull = 1 meets the first p−value, and the test of rnull = 2 meets the third. Thus, for a joint
rejection at the 10% level, any additional test must have a p−value of 0.05 or smaller.
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Figure 3: Response to a $1 tax cut

Dashed lines are 95% confidence intervals. The BP estimates in the left panel use their elasticity θY = 2.08;
the right uses the value of 1.58 estimated via TVV-ID.

The implications of the estimates for θY and ξT are evident in the dynamic multipliers.
The left panel of Figure 3 plots the dynamic multiplier to a $1 tax cut based on TVV-ID
(in blue), with a 95% confidence interval.26 The responses obtained using the BP and MR
approaches are plotted for reference (red and gold). The point estimate of the response of
output to a tax cut remains approximately zero for the first two quarters, before rising. It
peaks at 0.86 after 8 quarters. In contrast, BP and MR obtain responses on impact of 0.48
and 1.99 respectively, with peak effects of 1.35 (7 quarters) and 3.19 (4 quarters) respectively.
The near-zero estimated value of ξT under TVV-ID means that there is a response lag for
output, with effects coming through the lag structure of the VAR. The very large multiplier
of MR is rejected at all horizons, while the BP response is only rejected through 2 quarters.
The right panel plots the BP response, with the calibrated θY replaced by the value estimated
via TVV-ID. With this alteration, the responses are essentially identical. This finding bears
out the argument of Caldara and Kamps (2017) that θY essentially pins down the multiplier
in this model.

Figure 4 plots the government spending multiplier. The multiplier is 0.65 on impact,
peaks at 0.75 after 2 quarters, and is quite persistent, although the response is imprecisely
estimated. Recall that the parameters linking spending and output in Table 1 are very similar
across models; accordingly, so too are the multipliers. BP and MR yield 0.69 and 0.80 on
impact, respectively, and 0.81 and 0.96 after two quarters. Figure 13 in the Supplement
reports both dynamic multipliers for subsamples of the data. The results are fairly robust to
omitting periods featuring key episodes. Spending multipliers peak as high as 1.2 (1980-2000
subsample), while peak tax cut multipliers fall as low as 0.5 (1970-2000 subsample).

26As described in Section 3.3, I compute the confidence intervals based on a Gonçalves and Kilian (2004)
wild bootstrap variance for the reduced form parameters, as in Mertens and Ravn (2014), the methods
described in Section 2 of the Supplement for the structural parameters, and the delta method.
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Non-Gaussianity

Another approach is to assume that ϵt are mutually independent and non-Gaussian

Darmois-Skitovich Theorem

If ϵt is independently distributed, than linear combinations α′ϵt and β′ϵt with
α ̸= 0, β ̸= 0 are independent only when ϵt have normal distributions.

The normal distribution is the only distribution with all cumulants equal to zero except
the first two (mean and variance)

If ϵt is non-Gaussian i.i.d than the white noise prediction errors ut = Dϵt cannot be
mutually independent white noise.

Higher order properties of ut can in that case provides additional identifying
information

Key is that ϵt are independently distributed (not just uncorrelated) and non-Gaussian.



Non-Gaussianity

Statistical identification, not based on theoretical or institutional restrictions

Identified shocks in general do not have interpretation without additional economic
information.

Example from Montiel Olea, Plagborg-Møller, and Qian (2022):

ϵ1t = τtζ1t , ϵ2t = τtζ2t

where τt , ζ1t , ζ2t are iid, τt is a shared stochastic volatility process

Model is no longer linear in the independent shocks.

The impulse response to the (uncorrelated) shocks ϵ1t and ϵ2t are still of interest
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