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BASIC IDEAS
Borrowing from applied micro to draw a parallel



Impulse responses: a comparison of two averages

R(h) = E(E[Yisn|St = S + 0, Xt] — E[Vin|St = S, X))

Viyp: outcome
Si: intervention
s: baseline, eg,s=0
6: dose, e.g, 6 = 1.6 = var(e)'/?; ...
X vector of exogenous and predetermined variables



Main issues to be solved

m |dentification: next section
m Estimation of E[yin|Se; X
m Interpretation: multipliers

m Inference: discussed later



A trivial example

Suppose s; € {0,1} is randomly assigned, then:

1T | T
R(h) = N, ;yt+hst N ;yt+h(1 —St)

T—h
Ny =) s; T—h=N+No
t=1
Remarks:
m inefficient (not using x;), but consistent
m could control for x; with Inverse Propensity score Weighting (IPW)
m feels like the potential outcomes paradigm used in micro
m could have regressed y;,4 on s, same thing (could add x; easily)



Estimation by Local projections
Linear case:

Vieh = op + BuSt + VXt + Vigh;  Vigh = Uph + P1Uepn—g + ... + whug

will see later why this residual MA(h)

As long as s¢, X; exogenous w.rt. v¢, then Bh — By, (identification) and then:
Resy(h) = Elyean|St = s1: %] — E[Vesn|St = So; Xi] = Bn(S1 — So)

General case:
Yieh = M(St, Xe; On) + Vign = Rsy(h) = M(S1, Xe; On) — M(So, X¢; On)

l.e. m(st, X¢; By) can be a nonlinear function



Remarks

m single equation estimation: easily scales to panel, easy to extend to
nonlinear specifications

m effects ‘local’ to each h: no cross-period restrictions
m errors serially correlated: needs fixing
m from binary to continuous treatment (dose)

Many assumptions implicit in linear formulation:
m symmetry: increase in dose same as decrease
m scale independence: double dose, double the effect
m state independence: the x; don't affect R(h)
m treatment does not affect covariate effects: v =~
m §|x randomly assigned

We will analyze/generalize each of these assumptions



A STATA illustration
LP_example.do

m simple illustration of different variable transformations:

m [evels vs. differences (e.g. price index vs inflation)
m levels = long-differences = cumulative of differences

AYipn+ .o+ AVt = Vieh = Yirh—1 +Virh—1 — Yeeh—2 + .- YVt — Vi1
=VYtrn — Yt

m shows a simple way to construct the loop and plot LPs
m maybe useful to build upon. Much left undone. Will come back to it



RELATION TO VARS REMINDER
Set aside identification discussion for now



Propagation in an AR(1)
suppose:

(Ve — 1) = (e — p) + Uy

by recursive substitution:

Vesh — 1) = 0" (Ve — o) + Utph + VU1 + .. + Mug

intrinsic MA residuals

suppose the intervention is Uy = §; (Utq = ... = Urep = 0); Veq = V*

R(h) = E(E[YrsnlUus = 0; Vi1 = V'] — Elyeen|Ue = 03 Y1 = V7))
= E({"( = p) + 9"} ="y — )
= E(y"6) = "0



Remarks

m iterative approach with AR(1): from ¢ obtain 4"

m inference based on delta method:
Ho:1 =0 = Hq:ATE(h) = R(h) =" =0
m direct approach with local projections:

Vieh = Qpyr + UniaYeor + Vern; h=0,1,...

note: Veyn = Upsh + YUrpng + ... +u;

hence E[yi_1,Visn] = 0 = thpsq = oM

inference: correct error serial correlation (we will see how)
Ho : ATE(h) = R(h) = ¢, = 0



propagation in a VAR(2)

just to see the details

Vi = Aq Vioq +A2yt_2 + Ut
Rx1 kxk
by recursive substitution:
Yipr = (AT + A2V q + AAY, , + Urr + Al

one more time:

Viro =(A] + AAT 4+ ALYy + (ATA + Ay, o+
Upyy + Agleyr + (A2 + Ay Uy

takeaway: R(h) a complicated function of Ay, A;
(more on this later, an issue also raised in recent Plagborg-Mgller papers)



FURTHER EXPLORATION OF THE VAR—LP NEXUS



A note on lag lengths

iterated VAR-based forecasts need correct specification

if not, responses will be biased

consistency of R(h) only if in VAR(p) s. t. p — has h — oo

local projections are approximations

no correct specification assumed

smaller lag lengths ok for consistency under mild assumptions
however, lag-augmentation can be very helpful for inference (later)

Some results derived more formally later



Using a VAR to construct E[y;, p|St, X¢]
Reduced-form only to explain VAR(p) vs. VAR(co) issues

consider a VAR(p): (assume s; and x; in y,)
Ve = MY+ FAY U E(uur) = 5y
kx1 kxR

by recursive substitution, VMA(oo):

Vi = Ut + Bille_q ... + B(00)Yy;
B(oo)y, — 0 if |A(z)| # 0 for |z] <1  MA invertibility

B(co) = B(Ay,...,Ap), eg, see Slide 13
Y, Is distant initial condition. MA invertibility = B(cc) — 0



Relation between VAR(p) and VMA(oo)

Recall the impulse response representation

Bi = A
B, =ABi +A;

Bi =ABi_1+AA_,+ ... —I—ADB,‘_p; | > p

or compactly

i
B,’:ZB,’,I‘A]; i:1,2,...; BOZI/?
j=1




Constructing E[y; p|St, X;] using VMA(o0)
from:

Vieh = Utpn + .o+ Boqleyr + Bple + Brpqe 1+

then:

ElViten|Ujr = 1, U, . ..] = Bn(i,))

where, sy = uj; and X; = Ui_q, U;_,, ... hence
h
R(h) = Bn(i,j)); Bn=> BnjA; A from VAR(p)
j=1

Important: in reduced form, E(u;u;) # 0 for i # [, usually

hence, this is not yet a well defined experiment



Fitting a finite VAR(p) to a VAR(0) (1 of 2)
A good assumption if true DGP is VARMA (e.g. many DSGE models)

Suppose the DGP is:
Vo= Ay i+us with > Al < oo
i=1 i=1
hence:

Yo=Y Bitj; Bo=1I; det (Z B,-zi> £ 0
i=0

i=0

for |z1 <1 and ) i”|B| < oo

i=0



Fitting a finite VAR(p) to a VAR(o0) (2 of 2)
Results from Lewis and Reinsel (1985), a key paper in this literature
Let pr denote the order of the VAR(py). If:

3 oo
pr — 00; %—m; VT Y JIAll=0 as T—oo

i=pr+1
then:
VTIvec(Ay. . ALY —vec(Ar... Ap)] 5 N(0,S5); S5 # %,

where X, refers to finite VAR(p), and

h—1
VT|vec(B}) — vec(Bp)] & N (O, Yy ® Z B,EUBj’> :h <pr

j=0

Note: consistency not guaranteed for h > pr



Takeaways and references

VAR(co) results in, e.g,, Litkepohl (2005, Chapter 15)
many DSGE have VARMA reduced form or VAR(o0)
note pr grows with T but at a slower rate
consistency of B, only guaranteed up to h = pr
unlike VAR(p), response S.E.s — 0 as h — oo

Plagborg-Mgller and Wolf (2021): for h < p; VARs and LPs estimate the
same response

m Jorda, Singh, and Taylor (2020): for h > pr VAR responses are biased,
but LPs are not (under certain conditions)



VAR vs. LP Bias in infinite lag processes

Or why LPs can be more reliable for long-horizon responses
Intuition:

m suppose D.G.P. is:

Ve = ZAfyt—j + Ut Z [Aj]| < o0
=0 =

m fit VAR(1)

m true vs. VAR(1) IRFs
VAR(0) VAR(1)
81 - A'| Bflk - A1
B, = A2 + A, B; = A?
B; = A3 + 2AA, + As B = A3

B, = Al + 3424, + 2AAs + A, Bf = A



VAR bias
Consistency guaranteed up to p only for VAR(oo)

objective: truncate VAR(oo) so that remaining lags are "small”
,] oo
25 D Al =05 p.T— oo
j=p+1

however, from the usual VAR — VMA recursion, these terms are missing for
h > p:

BIAS : AppiBh_(pst) + - +An1Bi+Ap; h>p

problem: in practice VARs are truncated too early



LP bias

or lack thereof

when is the LP consistent? i,e, when is this condition met:
|Ans — Byl| & 0; p,T— o0
in the LP:

Yern =AnVia + o T AnpYip + Uin

turns out same as consistency of VAR(p), i.e.

P> 1Akl = 0

j=0

see proof in Jorda, Singh, Taylor (2020)



[llustration of VAR vs. LP bias
Based on MA(24) model

Cumulative response

Horizon

— — - AR(6) AR(12)

LpP




Another example
Figure 2 in Palgborg-Mgller and Wolf (2021, ECTA)

RESPONSE OF BOND SPREAD TO MONETARY SHOCK: VAR AND LP ESTIMATES
p=4 p=12

28 28

% deviation
% deviation

o5+

L] 5

10 16 »w 15
Horizon (monthly) Horizon (monthly)



MULTIPLIERS AND COUNTERFACTUALS



Two models, same response, different conclusions
Alloza, Gonzalo, Sanz (2020)

Ay, = BA ! Ay, = BA AYiq+ Ul
()4t BAS: + Uy TR ek BAS: + pAy: R Do,
AS; = pASi_1+ U3 As; =Uu;

Note: RS, (h) = Bp" = R, (h). Both can be estimated with the LP:

AViih = ASt + YpAYe_q + Vign
Propagation in (a), due to correlated treatment, in (b) correlated outcome.
Consider augmenting LP with treatment leads:

h
AVirh = ASt + YpAyr_g + Z GiASei + Vigh;

i=1

Ry (h)=8; Rey(h)=pp"



What is going on?

m in both cases, As; is strictly exogenous. Leads are allowed in the LP

m in model (a), including leads removes the effect from future potential
treatments (due to treatment serial correlation)

m in model (b), on average, there is no expectation of additional
treatment. The leads do not matter

m what is the effect of a single treatment? In (a) 3, in (b) Bp"

m think of the LP MA(h) residual structure. In general, the MA would

have terms in u{,; and ug, ;. But in model (b) coeffs on u;_; are all zero

m another way to think about these effects is using multipliers



From previous example

Consider the following model (model (a) earlier):
Ayt = BAS{ + U{ ((O) (O'y 0 ))
; Ur~D ;
ASt = pASt_'] + U‘ts 0 0 Os
Trivially: Rsy(h) = 8p"; Rss(h) = p"

The cumulative impact, C;(h) = S20_, R;;(k) can be directly estimated from:

Vigh = Vie1 = ApYipn = OpAS + V¥+h; t+h ~ MA(h)
St4h — St—1 = AnSten = YnASt + Vip;  Vien ~ MA(h)

with Csy(h) = 6y = BZ& op Css(h) = vn = ZZ:O pk



Calculating the multiplier

Define:

CCylh) B

my = =
' Css(h) ZZ:OP/?

= fB;cum. change in y due to cum. change in s

Suppose Az; is a valid instrument for As; then:

E<Ahyt+h7 AZt) == ehE(AStAZt)
E(Ahst+h, AZt) - ’QUhE(AStAZt)

hence my, can be directly estimated from the IV projection:

AnYirh = MpApSeen + meen;  instrumented with Az,



References
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causal effects in macroeconomics using external instruments. Economic journal,
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PANEL DATA APPLICATIONS



LPs in panels
The set-up

Viteh = Qi+ 0t + SitBn + XitYn + Viewn; 1=T1,...,m;

m o; unit-fixed effects

m ), time-fixed effects

m X;; exogenous and pre-determined variables
m s;; treatment variable

m (3, response coefficient of interest

Sample code: LP_example_panel.do



Panel-LPs

Remarks: usual panel data issues appear here too

m LP is costly in short-panels (lost time dimension cross-sections)
m but cross-section brings more power

m incidental parameter issues (fixed effects):

m beware of high autocorr and low T (Alvarez and Arellano, 2003 ECTA)
m will need Arellano-Bond or similar estimator

m inference
m n,T large — two-way clustering helps MA(h) and heteroscedasticity
n large, T small — cluster by unit helps with MA(h)
T large, n small — cluster by time helps heteroscedasticity
else, Driscoll-Kraay is like Newey-West for panel data
when clustering with small n, T, may need bootstrap.
See papers here and here.
See also summclust and boottest STATA ado files


https://www.econ.queensu.ca/sites/econ.queensu.ca/files/wpaper/qed_wp_1483.pdf
https://journals.sagepub.com/doi/abs/10.1177/1536867X19830877?journalCode=stja
https://github.com/mattdwebb/summclust
https://github.com/droodman/boottest/blob/master/boottest.ado

COINTEGRATION
A brief detour



What is cointegration?
Idea: two variables can be I(1) but their linear combination is 1(0). Example:

{Qi i;f:__zg:t o VinYar~ (1) but zi =y — Yo ~ 1(0)
In general:

Vi=a+ Py +...+ Doy, + Ut
cointegration means:

() =1—D1—...— @, then rank(®(1)=g<n

that is, the system has n — g unit roots and g cointegrating vectors, s.t.
®(1) = BA” with A, B n x g matrices, and A'y, = z; cointegrating vectors



The VECM representation

Using general representation of a VAR(p)

yt+1 = (b1yt + + ¢p+1yt—p + (81 + Ut+1
Yepr = VAY + o+ VAY, g+ 1Y+ a+ Ury

With U) = —[®jq + ... + Bppa); forj=1,.,pand I = 37 @,
subtracting y, on both sides:

Ayt+1 = \ILIAyt + + \IIpAyt,p+1 + \Ijoyt _|_ (8% _|‘ Ut_;’_'l

Note: ¥o = —®(1) = BA” when there is cointegration, and z; = Ay,

AYr = UAY + .+ UpAY, 1 — BZi+ a + Uy




How does cointegration affect impulse responses?
Remarks

m responses from levels VAR always correct

m responses from differenced VAR only correct if
no cointegration

m cointegration improves efficiency ...
m .. but estimation and inference more dificult

m responses often not used to investigate
LR equilibrium relationships but should

m useful to impose LR exclusion identification restrictions



Cointegrated systems in state-space form
notice:

Uo=11—1=—&(1);
if rank (¥y) < n — ®(1) = BA’; cointegrating vector: z; = A'y,

Ziyq A'TI A/\I/1 C A/\I/p_q A/\I/p Zt A/ut—H
Ayt+1 -B U, Ce \I/p_1 \I/p Ayt Uiy
Ay, - |0 [ 0 0 Ay | 4 0

AY;_piq 0 0o ... I 0 Ay, 0

Liyr =Wl + Vi



Usefulness of state-space representation

Calculating impulse responses through recursive substitution
long-run dynamics:

p—2
Zeeon = W2+ WHo AV + Y BRAYC 42 + Vi
j=3

Vieh =AUin + A1+ T)Uiinq+ oo + A1+ T+ o+ T 1) Uppa

short-run dynamics:

p—2
h h h
AYiih =Wz + WP 5 Ay, + Z W0 Ao + Vitn
j=3
Utph = Uppp + Dilepp o + oo+ ThoqUeg

where

Ayt = Z Fjut_j
j=0



Responses to equilibrium shocks

equilibrium dynamics, short- vs. long-run effects:

Ro(h AU =1) = (1 + 11+ .+ DA = T), + 0,4
LR SR

short-run dynamics, short- vs long-run effects:

Ray(h; Aty =1) =TpA = U + Tf A
LR SR
remarks:
m note shock cointegrating vector, z, not a variable

m cach response, 2 parts:

return to equilibrium (LR)
short-run frictions  (SR)



Application

Chong, Yanping, Oscar Jorda, and Alan M. Taylor. 2012. The Harrod-Balassa-Samuelson Hypothesis: Real

Exchange Rates and their Long-Run Equilibrium. International Economic Review, 53(2): 609—634

Incorrect response of z to 1% z shock Correct response of z to 1% z shock
Half-life=11.6 quarters Half-life=6 quarters

Quarters Quarters



VARIANCE DECOMPOSITIONS



intuition

two important recent references:

m Gorodnichenko, Yuriy and Byoungchan Lee. 2020. Forecast error variance decompositions with local
projections. Journal of Business and Economics Statistics

m Plaghorg Mgller, Mikkel and Christian K. Wolf. 2022. Instrumental variable identification of dynamic
variance decompositions. Journal of Political Economy.

can always write yi,n = Ec(Vern) + Vign

then R? of regression of Vi, ON €j¢yp, ..., €+ Measures percent of FEV
explained by j-shock

assumes structural shock ¢;; available



SMOOTH LOCAL PROJECTIONS



Smoothing

relevant references:

m Barnichon, Regis and Christian Brownlees. 2018. Impulse response estimation by smooth local
projections. Available at: https://sites.google.com/site/regisbarnichon/research

m Barnichon, Regis and Christian Matthes. 2018. Functional approximations of impulse responses (FAIR).
Journal of Monetary Economics, forthcoming.

Many solutions. A simple one: Gaussian Basis Functions

Intuition: impose some cross-horizon discipline to smooth LP wiggles. Can
improve efficiency

Other options: bayesian shrinkage
see, e.g. Miranda-Agrippino and Rico. 2018. Bayesian Local Projections


https://sites.google.com/site/regisbarnichon/research
https://www.ofce.fr/pdf/dtravail/OFCEWP2021-13.pdf

A general approach to smoothing
GMM provides local projection estimates of the response R given by 4 and
X5
a natural solution is minimum distance

let (4, @) be a function that returns a smoothed estimate of 4 based on
auxiliary parameters 6, then:

A

min [§ — ()] 3y [y — 9(0)]

delivering, 8,3, and if dim(y) > dim(0), a test of overidentifying
restrictions for ¢(8)



Smoothing with Gaussian Basis Functions
suppose no controls to simplify
R(h;a,b,c) =¢(h) = ae (")

Using GMM set-up, two estimators: direct v. 2-step
Direct estimator:

mln [Zz ytH Stw ] [Zzl yt/-/ St@b( ))]

2-step: Step-1is usual LP, get ’y,f)w then min. distance

min [ — ¢(h)]' 3, [¥ — ¢(h)]

a,b,c



GBF-GMM

Remarks

direct method requires NL estimation techniques
however, problem is reasonably well behaved
2-step method provides useful intuition

note H-period LP, but 3 parameters so (H + 1) — 3 overidentifying
restrictions

regardless of method, J-test natural specification test
considerable gain in parsimony = efficiency
GBF approximation works well with "single humps”

multiple "humps” require more basis functions = GBF approach no
longer as practical



approximation using gaussian basis functions

recall:

what does each parameter do?
m a scales the entire response
m b dates the peak effect
m C measures the half-life



gaussian basis functions
the picture

b

$(h) = ae™ ("

h—b\2

SN

Sample code: LP_GBF.do



GBF-GMM example

unemployment v. inflation

0.8
0.6
0.4

0.2

response to monetary policy shock

I | . . . )
10 15 20 25 30 35
Quarters

10 25 30 35

Quarters



NONLINEARITIES AND OTHER POTENTIAL EXTENSIONS



The principle
What we are after:
Rsy(h) = E[Yin|St = So + 0; Xt — E[Yean|St = So; X
No reason to assume the conditional expectation is linear
Example:

Yt+h = YnSt + 72h5? + Xt + Vigen —
Rsy(h) = vn(So + ) + 72n(So + ) 4+ Xt — (inSo + '72h55 + YXt)
= Y1n + ’72h(52 -+ 2505)

Hence, Rs (h) depends on ¢ and sy, just like NL regression



Binary dependent variable

Example: response probability of financial crisis to today’s credit shock
Rsy(h) = P(Yern = 1St = So + 6; Xt) — P(Yern = 1[St = So; Xt)

Remarks:
m logit/probit — Rs,(h) depends on sg,d and x;
m can estimate a linear probability model. But crises are tail events

Another example: Text-based recession probabilities
Ferrari Minesso, M., Lebastard, L. & Le Mezo, H. Text-Based Recession Probabilities. IMF
Econ Rev (2022).



Response of recession probability
Marginal effect of 1% increase in newspaper-based index

0.3 T T
[ IB95% confidence interval
\—Marginal effect (Index)

0 | L |
6 8 10 12 14 16
Months ahead prediction

Fig.2 Marginal effects from Eq. (4.1). Notes: Marginal effects { 220ce=110 ) g the probit regres-
sion fora 1% i in the paper-based index (i.e., a 1% increase in the share of newspaper articles

discussing a recession in the USA). Grey shaded areas report 95% confidence intervals

57/60



Quantile LPs

Example: does high corporate debt increase risk of left tail GDP draws?
Does it depend on legal bankruptcy framework?

t(P)

A, = argmin Z (7 U AWYitpy+h = Sitp)Vh,r) | AnYit(o)+h — Sit(p)Vhi|
Yh,r 1

+ (1= 7) UAWYitpy+h < Sit(p)Vhir) | AnYit(o)+h — Sito)Vh,r| )

Jorda, Kornejew, Schularick, and Taylor. 2022. Zombies at large? Corporate debt overhang and the

macroeconomy. Review of Financial Studies



Figure A.4: Business and household debt, responses at 20" percentile of real GDP per capita growth

10

Average cycle path

= == 25D Business credit/GDP shock
— — 25D Household credit/GDP shock

Change in real GDP per capita since peak (%)

-101

Horizon (years)

Notes: Figures show the predictive effects on growth of a two-SD business/household debt buildup in the five years preceding the
recession based on a LP series of quantile regressions. Business credit booms shown in the left-hand side panel and household debt
booms shown in the right-hand side panel. Shaded areas denote the 95% confidence interval based on bootstrap replications. See text.



Factor models

Idea: control for many covariates using factor model. Suppose:

kx1 gx1 ; kR>>q; E(e;) =E(n) =0; E(em;_;) =0V

{Xt =AL)f, +e
foo =rOfq+m

Then LP can be specified as:

p
Yirh = BnSt + Z Yifej + Vern
j=0



