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Objective

Review the foundations of the basic New Keynesian model without capital.

Derive the Equilibrium Conditions.

I Small number of equations and a small number of variables, which summarize

everything about the model (optimization, market clearing, gov’t policy, etc.).

Study some properties of the model.

I Do this using Dynare and ‘pencil and paper’ methods.



Outline

The model:

I Individual agents: their objectives, what they take as given, what they choose.

F Households, final good firms, intermediate good firms.

I Economy-wide restrictions:

F Market clearing conditions.

F Relationship between aggregate output and aggregate factors of production,

aggregate price level and individual prices.

Properties of Equilibrium:

I Classical Dichotomy - when prices flexible monetary policy irrelevant for real

variables.

I Monetary policy essential to determination of all variables when prices sticky.



Households

There are many identical households.

The problem of the typical (’representative’) household:

maxE0

∞∑
t=0

βt

(
logCt − exp (τt)

N1+ϕ
t

1 + ϕ

)
,

s.t. PtCt + Bt+1

≤WtNt + Rt−1Bt

+Profits net of government transfers and taxest .

Here, Bt denotes beginning-of-period t stock of bonds held by the household.



Households...

Law of motion of the shock to preferences:

τt = λτt−1 + ετt

Preference shock is in the model for pedagogic purposes only,

I Not an interesting shock from an empirical point of view.

The household first order conditions:

1

Ct
= βEt

1

Ct+1

Rt

π̄t+1
(5)

eτtCtN
ϕ
t =

Wt

Pt
.

All equations are derived by expressing the household problem in

Lagrangian form, substituting out the multiplier on budget constraint and

rearranging.



Consumption Smoothing

Later, we’ll see that consumption smoothing is an important principle for

understanding the role of monetary policy in the New Keynesian model.

Consumption smoothing is a characteristic of households’ consumption

decision when they expect a change in income and the interest rate is not

expected to change.

Peoples’ current period consumption increases by the amount that can,

according to their budget constraint, be maintained indefinitely.



Consumption Smoothing: Example

Problem:

maxc1,c2 log (c1) + βlog (c2)

subject to : c1 + B1 ≤ y1 + rB0

c2 ≤ rB1 + y2.

where y1 and y2 are (given) income



Consumption Smoothing: Example

After imposing equality (optimality) and substituting out for B1,

c1 +
c2

r
= y1 +

y2

r
+ rB0,

FONC for B1
1

c1
= βr

1

c2

Suppose βr = 1:

c1 =
y1 + y2

r

1 + 1
r

+
r

1 + 1
r

B0



Consumption Smoothing: Example, cnt’d

Solution to the problem:

c1 =
y1 + y2

r

1 + 1
r

+
r

1 + 1
r

B0.

Consider three polar cases:

I temporary change in income: ∆y1 > 0 and ∆y2 = 0 =⇒ ∆c1 = ∆c2 = ∆y1

1+ 1
r

I permanent change in income: ∆y1 = ∆y2 > 0 =⇒ ∆c1 = ∆c2 = ∆y1

I future change in income: ∆y1 = 0 and ∆y2 > 0 =⇒ ∆c1 = ∆c2 =
∆y2
r

1+ 1
r

Common feature of each example:

I When income rises, then - assuming r does not change - c1 increases by an

amount that can be maintained into the second period: consumption

smoothing.



Production

A homogeneous final good is produced using the following (Dixit-Stiglitz)

production function:

Yt =

[∫ 1

0

Y
ε−1
ε

i,t di

] ε
ε−1

.

Each intermediate good,Yi,t , is produced by a monopolist using the following

production function:

Yi,t = eatNi,t , at ∼ exogenous shock to technology.



Final Good Producers

Competitive firms maximize profits

PtYt −
∫ 1

0

Pi,tYi,tdj ,

subject to Pt , Pi,t given, all i ∈ [0, 1] , and the technology:

Yt =

[∫ 1

0

Y
ε−1
ε

i,t dj

] ε
ε−1

.

Foncs:

Yi,t = Yt

(
Pt

Pi,t

)ε
→

”aggregate price index”︷ ︸︸ ︷
Pt =

(∫ 1

0

P
(1−ε)
i,t di

) 1
1−ε

Yi,t = eatNi,t , at ∼ exogenous shock to technology.



Aggregate Price Index

To derive a price index, define nominal output as the sum of prices times

quantities:

PtYt =

∫ 1

0

PitYitdi

Plugging in the demand for each variety, we have

PtYt =

∫ 1

0

P1−ε
i Pεt Ytdi

Solving for Pt :
”aggregate price index”︷ ︸︸ ︷

Pt =

(∫ 1

0

P
(1−ε)
i,t di

) 1
1−ε



Intermediate Good Producers

The i th intermediate good is produced by a monopolist.

Demand curve for i th monopolist:

Yi,t = Yt

(
Pt

Pi,t

)ε
.

Production function:

Yi,t = eatNi,t , at ˜ exogenous shock to technology.

Calvo Price-Setting Friction: rotemberg

Pi,t =

{
P̃t with probability 1− θ
Pi,t−1 with probability θ

.



Marginal Cost of Production

An important input into the monopolist’s problem is its marginal cost:

MCt =
dCost

dOutput
=

dCost
dWorker
dOutput
dWorker

=
(1− ν)Wt

eat

=
(1− ν) eτtCtN

ϕ
t

eat
Pt

The tax rate, ν, represents a subsidy to hiring labor, financed by a lump-sum

government tax on households.

Firm’s job sets prices whenever it has the opportunity to do so.

Firm must always satisfy demand at its posted price.



Present Discounted Value of Intermediate Good Revenues

i th intermediate good firm’s objective:

E i
t

∞∑
j=0

βj υt+j

period t+j profits sent to household︷ ︸︸ ︷ revenues︷ ︸︸ ︷
Pi,t+jYi,t+j −

total cost︷ ︸︸ ︷
Pt+jst+jYi,t+j


υt+j - Lagrange multiplier on household budget constraint

Here, E i
t denotes the firm’s expectation over future variables, including the

probability that the firm gets to reset its price at future dates.



Firms that Can Change Price at t

Let P̃t denote the price set by the 1− θ firms who optimize at time t.

Expected value of future profits sum of two parts:

I future states in which price is still P̃t , so P̃t matters.

I future states in which the price is not P̃t , so P̃t is irrelevant.

That is,

E i
t

∞∑
j=0

βjυt+j [Pi,t+jYi,t+j − Pt+jst+jYi,t+j ]

=

Zt︷ ︸︸ ︷
Et

∞∑
j=0

(βθ)j υt+j

[
P̃tYi,t+j − Pt+jst+jYi,t+j

]
+Xt ,

I Zt is the present value of future profits over all future states in which the

firm’s price is P̃t .

I Xt is the present value over all other states, so dXt/dP̃t = 0.



Decision By Firm that Can Change Its Price

Substitute out demand curve, Yj,t = Yt

(
Pt

Pj,t

)ε
:

Et

∞∑
j=0

(βθ)j υt+j

[
P̃tYi,t+j − Pt+jst+jYi,t+j

]
= Et

∞∑
j=0

(βθ)j υt+jYt+jP
ε
t+j

[
P̃1−ε
t − Pt+jst+j P̃

−ε
t

]
.

Differentiate with respect to P̃t :

Et

∞∑
j=0

(βθ)j υt+jYt+jP
ε
t+j

[
(1− ε)

(
P̃t

)−ε
+ εPt+jst+j P̃

−ε−1
t

]
= 0,

→ Et

∞∑
j=0

(βθ)j υt+jYt+jP
ε+1
t+j

[
P̃t

Pt+j
− ε

ε− 1
st+j

]
= 0.

I When θ = 0, get standard result - price is fixed markup over marginal cost.



Decision By Firm that Can Change Its Price

Substitute out the multiplier:

Et

∞∑
j=0

(βθ)j

= υt+j︷ ︸︸ ︷
u′ (Ct+j)

Pt+j
Yt+jP

ε+1
t+j

[
P̃t

Pt+j
− ε

ε− 1
st+j

]
= 0.

I Using assumed log-form of utility,

Et

∞∑
j=0

(βθ)j
Yt+j

Ct+j
(Xt,j)

−ε
[
p̃tXt,j −

ε

ε− 1
st+j

]
= 0,

p̃t ≡
P̃t

Pt
, π̄t ≡

Pt

Pt−1
, Xt,j =

{
1

π̄t+j π̄t+j−1···π̄t+1
, j ≥ 1

1, j = 0.
,

’recursive property’: Xt,j = Xt+1,j−1
1

π̄t+1
, j > 0



Decision By Firm that Can Change Its Price

Want p̃t in:

Et

∞∑
j=0

(βθ)j
Yt+j

Ct+j
(Xt,j)

−ε
[
p̃tXt,j −

ε

ε− 1
st+j

]
= 0

Solving for p̃t , we conclude that prices are set as follows:

p̃t =
Et

∑∞
j=0 (βθ)j

Yt+j

Ct+j
(Xt,j)

−ε ε
ε−1 st+j

Et

∑∞
j=0

Yt+j

Ct+j
(βθ)j (Xt,j)

1−ε =
Kt

Ft
.

All firms who reset, face same MC, so they all choose the same reset price.

Need convenient expressions for Kt , Ft .



Decision By Firm that Can Change Its Price

After LOTS of algebra, we obtain

P̃t = Et

∞∑
j=0

ωt,j
ε

ε− 1
MCt+j , Et

∞∑
j=0

ωt,j = 1

where MCt is nominal marginal cost, and

ωt,j =
(βθ)j

Yt+j

Ct+j
(Xt,j)

1−ε

Ft
, Ft =

Yt

Ct
+ βθEt

(
1

π̄t+1

)1−ε

Ft+1 (2)

Xt,j =

{
1

π̄t+j π̄t+j−1···π̄t+1
, j ≥ 1

1, j = 0.
, π̄t ≡

Pt

Pt−1
.

P̃t is a weighted average of current and future marginal costs, where weights

depend on expected future demand and inflation.

Note that θ = 0 implies ωt,0 = 1, ωt,j = 0, for j > 0, so

P̃t =
ε

ε− 1
MCt .



Scaling the Marginal Price Setter’s Price

Let

st ≡
MCt

Pt
=

(1− ν) Wt

Pt

eat
= (1− ν) eτtCtN

ϕ
t /e

at ..

Denoting pt ≡ P̃t/Pt :

p̃t =
Kt

Ft

where

Kt = Et

∞∑
j=0

(βθ)j
Yt+j

Ct+j
(Xt,j)

−ε ε

ε− 1
st+j

=
ε

ε− 1

Yt

Ct

(1− ν) eτtCtN
ϕ
t

eat
+ βθEt

(
1

π̄t+1

)−ε
Kt+1 (1)

derive



Calibrating the Calvo Parameter φ

The bigger is φ,the stickier are prices

I The bigger will be the effects of nominal shocks and the more distorted will be

the response of variables to real shocks

There exists a close mapping between φ and the expected duration of a price

change.



Calibrating the Calvo Parameter φ

Consider a firm that gets to update its price in a period.

Probability of getting to adjust its price one period from now is (1− φ).

Probability of adjusting in two periods is φ(1− φ).

Probability of adjusting in three periods is φ2(1− φ)

Expected duration=(1− φ)
∞∑
j=1

φj j

S = 1 + 2φ+ 3φ2 + 4φ3 + ...

φS = φ+ 2φ2 + 3φ3...

(1− φ)S = 1 + φ+ φ2 + ...

(1− φ)S =
1

1− φ

S =
1

(1− φ)2

Expected duration =
1

1− φ



Moving On to Aggregate Restrictions

Link between aggregate price level, Pt , and Pi,t , i ∈ [0, 1].

I Potentially complicated because there are MANY prices, Pi,t , i ∈ [0, 1].

I Important: Calvo result.

Link between aggregate output, Yt , and aggregate employment, Nt .

I Complicated, because Yt depends not just on Nt but also on how employment

is allocated across sectors.

I Important: Tack Yun distortion.

Market clearing conditions.

I Bond market clearing.

I Labor and goods market clearing.



Aggregate Price Index: Calvo Result

Trick: rewrite the aggregate price index.

I let p ∈ (0,∞) the set of logically possible prices for intermediate good

producers.

I let gt (p) ≥ 0 denote the measure (e.g., ’number’) of producers that have

price, p, in t

I let gt−1,t (p) ≥ 0, denote the measure of producers that had price, p, in t − 1

and could not re-optimize in t

I Then,

Pt =

(∫ 1

0

P
(1−ε)
i,t di

) 1
1−ε

=

(∫ ∞
0

gt (p) p(1−ε)dp

) 1
1−ε

.

Note:

Pt =

(
(1− θ) P̃1−ε

t +

∫ ∞
0

gt−1,t (p) p(1−ε)dp

) 1
1−ε

.



Aggregate Price Index: Calvo Result

Calvo randomization assumption:

measure of firms that had price, p, in t−1 and could not change︷ ︸︸ ︷
gt−1,t (p)

= θ ×

measure of firms that had price p in t−1︷ ︸︸ ︷
gt−1 (p)



Aggregate Price Index: Calvo Result

Using gt−1,t (p) = θgt−1 (p) :

=

Pt =

(
(1− θ) P̃1−ε

t +

∫ ∞
0

gt−1,t (p) p(1−ε)dp

) 1
1−ε

=

Pt =

(1− θ) P̃1−ε
t + θ

=P1−ε
t−1︷ ︸︸ ︷∫ ∞

0

gt−1 (p) p(1−ε)dp


1

1−ε

This is the Calvo result:

Pt =
(

(1− θ) P̃1−ε
t + θP1−ε

t−1

) 1
1−ε

Simple!: Only two variables: P̃t and Pt−1.



Inflation and Marginal Price Setter

Calvo result: derive

Pt =
(

(1− θ) P̃1−ε
t + θP1−ε

t−1

) 1
1−ε

Divide by Pt :

1 =

(
(1− θ) p̃1−ε

t + θ

(
1

π̄t

)1−ε
) 1

1−ε

p̃t is relative price of marginal price setter.

Then,

p̃t =

[
1− θ (π̄t)

ε−1

1− θ

] 1
1−ε



Tack Yun Distortion (JME1996)

Define Y ∗t :

Y ∗t ≡
∫ 1

0

Yi,tdi

(
=

∫ 1

0

eatNi,tdi = eatNt

)
demand curve︷︸︸︷

= Yt

∫ 1

0

(
Pi,t

Pt

)−ε
di = YtP

ε
t

∫ 1

0

(Pi,t)
−ε di

= YtP
ε
t (P∗t )−ε .

P∗t =

(∫ 1

0

P−εi,t di

)−1
ε

So,

Yt = p∗t Y
∗
t , p

∗
t =

(
P∗t
Pt

)ε
= ‘Tack Yun Distortion’

Then:

Yt = p∗t e
atNt .



Understanding the Tack Yun Distortion

Relationship between aggregate inputs and outputs:

Yt = p∗t e
atNt .

Note that p∗t is a function of the ratio of two averages (with different

weights) of Pi,t , i ∈ (0, 1) :

p∗t =

(
P∗t
Pt

)ε
,

where

P∗t =

(∫ 1

0

P−εi,t di

)−1
ε

, Pt =

(∫ 1

0

P
(1−ε)
i,t di

) 1
1−ε

The Tack Yun distortion, p∗t , is a measure of dispersion in prices, Pi,t ,

i ∈ [0, 1] .



Understanding the Tack Yun Distortion
Why is a ratio of two different weighted averages of prices a measure of

dispersion?

I Example

x̄

x̃
=

1
2
x1 + 1

2
x2

1
4
x1 + 3

4
x2

=

1 if x1 = x2

6= 1 x1 6= x2.

But, the Tack Yun distortion is not the ratio of just any two different

weighted averages.

I In fact, simple Jensen’s inequality argument shows: proof

p∗t ≤ 1, with equality iff Pi,t = Pj,t for all i , j .

I Actually, it must be that proof

Yt =


average of concave functions of Yi,t , i ∈ [0, 1]︷ ︸︸ ︷∫ 1

0

Y
ε−1
ε

i,t dj


ε

ε−1

≤ eatNt .



Law of Motion of Tack Yun Distortion

We have, using the Calvo result:

P∗t =
[
(1− θ) P̃−εt + θ

(
P∗t−1

)−ε]−1
ε

Dividing by Pt :

p∗t ≡
(
P∗t
Pt

)ε
=

[
(1− θ) p̃−εt + θ

π̄εt
p∗t−1

]−1

=

(1− θ)

[
1− θ (π̄t)

ε−1

1− θ

] −ε
1−ε

+ θ
π̄εt
p∗t−1

−1

(4)

using the restriction between p̃t and aggregate inflation developed earlier.



Market Clearing

We now summarize the market clearing conditions of the model.

Labor, bond and goods markets.



Other Market Clearing Conditions

Bond market clearing:

Bt+1 = 0, t = 0, 1, 2, ...

Labor market clearing:

supply of labor︷︸︸︷
Nt =

demand for labor︷ ︸︸ ︷
1∫

0

Ni,tdi

Goods market clearing:

demand for final goods︷ ︸︸ ︷
Ct + Gt =

supply of final goods︷︸︸︷
Yt ,

and, using relation between Yt and Nt :

Ct + Gt = p∗t e
atNt (6)



Equilibrium Conditions

6 equations in 7 unknowns: Ct , p
∗
t ,Ft ,Kt ,Nt ,Rt , π̄t

Kt =
ε

ε− 1

Yt

Ct

(1− ν) eτtCtN
ϕ
t

At
+ βθEt π̄

ε
t+1Kt+1 (1)

Ft =
Yt

Ct
+ βθEt π̄

ε−1
t+1 Ft+1 (2),

Kt

Ft
=

[
1− θπ̄(ε−1)

t

1− θ

] 1
1−ε

(3)

p∗t =

(1− θ)

(
1− θπ̄(ε−1)

t

1− θ

) ε
ε−1

+
θπ̄εt
p∗t−1

−1

(4)

1

Ct
= βEt

1

Ct+1

Rt

π̄t+1
(5), Ct + Gt = p∗t e

atNt (6)

System underdetermined! Flexible price case, θ = 0 is interesting.



Classical Dichotomy Under Flexible Prices

Classical Dichotomy : when prices flexible, θ = 0, then real variables

determined.

I Equations (2),(3) imply:

Ft = Kt =
Yt

Ct
,

which, combined with (1) implies

ε (1− ν)

ε− 1
×

Marginal Cost of work︷ ︸︸ ︷
eτtCtN

ϕ
t =

marginal benefit of work︷︸︸︷
eat

I Expression (6) with p∗t = 1 (since θ = 0) is

Ct + Gt = eatNt .

Thus, we have two equations in two unknowns, Nt and Ct .



Classical Dichotomy: No Uncertainty

Real interest rate, R∗t ≡ Rt/π̄t+1, is determined:

R∗t =
1
Ct

β 1
Ct+1

.

So, with θ = 0, the following are determined:

R∗t ,Ct ,Nt , t = 0, 1, 2, ...

What about the nominal variables?

I Suppose the central bank wants a given sequence of inflation rates, π̄t ,

t = 0, 1, ... .

I Then it must produce the following sequence of interest rates:

Rt = π̄t+1R
∗
t , t = 0, 1, 2, ...



How Does the CB Set the Interest Rate?

When NK model leaves out money demand, modeler implicitly has in mind

that money enters preferences additively separably:

maxE0

∞∑
t=0

βt

(
logCt − exp (τt)

N1+ϕ
t

1 + ϕ
+ γlog

(
Mt+1

Pt

))
,

s.t. PtCt + Bt+1 + Mt+1

≤WtNt + Rt−1Bt + Mt

where Mt+1 is the beginning of period t + 1 stock of money.

Labor and bond first order conditions same as before.

Money first order condition: proof

Mt+1

Pt
=

(
Rt

Rt − 1

)
γCt ,

which looks like a standard undergrad money demand equation.



Classical Dichotomy versus New Keynesian Model

When θ = 0, then the Classical Dichotomy occurs.

I In this case, Central Bank cannot affect R∗t ,Ct ,Nt .

I Monetary policy simply affects the split in the real interest rate between

nominal and real rates:

R∗t =
Rt

π̄t+1
.

I For a careful treatment when there is uncertainty, see.

When θ > 0 (NK model) we can’t pin down any of the 7 endogenous

variables using the 6 available equations.

I In this case, monetary policy matters for R∗t ,Ct ,Nt .

http://faculty.wcas.northwestern.edu/~lchrist/d16/d1614/Labor_market_handout.pdf


Monetary Policy in New Keynesian Model

Suppose θ > 0, so that we’re in the NK model and monetary policy matters.

The standard assumption is that the monetary authority sets money growth to

achieve an interest rate target, and that that target is a function of inflation:

Rt/R = (Rt−1/R)α exp {(1− α) [φπ(π̄t − π̄) + φxxt ]} (7)’,

where xt denotes the log deviation of actual output from target (more on this

later).

This is a Taylor rule, and it satisfies the Taylor Principle when φπ > 1.

Smoothing parameter: α.

I Bigger is α the more persistent are policy-induced changes in the interest rate.



Equilibrium Conditions of NK Model with Taylor Rule

Kt =
ε

ε− 1

Yt

Ct

(1− ν) eτtCtN
ϕ
t

At
+ βθEt π̄

ε
t+1Kt+1 (1)

Ft =
Yt

Ct
+ βθEt π̄

ε−1
t+1 Ft+1 (2),

Kt

Ft
=

[
1− θπ̄(ε−1)

t

1− θ

] 1
1−ε

(3)

p∗t =

(1− θ)

(
1− θπ̄(ε−1)

t

1− θ

) ε
ε−1

+
θπ̄εt
p∗t−1

−1

(4)

1

Ct
= βEt

1

Ct+1

Rt

π̄t+1
(5), Ct + Gt = p∗t e

atNt (6)

Rt/R = (Rt−1/R)α exp {(1− α) [φπ(π̄t − π̄) + φxxt ]} (7).



Natural Equilibrium

When θ = 0, then

ε (1− ν)

ε− 1
×

Marginal Cost of work︷ ︸︸ ︷
eτtCtN

ϕ
t =

marginal benefit of work︷︸︸︷
eat

Nt = (eτt )−(+

so that we have a form of efficiency when ν is chosen to that

ε (1− ν) / (ε− 1) = 1.

In addition, we have allocative efficiency in the flexible price equilibrium. proof

Nt = e−τt/(1+ϕ)

So, the flexible price equilibrium with the efficient setting of ν represents a

natural benchmark for the New Keynesian model, the version of the model in

which θ > 0.

I We call this the Natural Equilibrium.

To simplify the analysis, from here on we set Gt = 0.



Natural Equilibrium

With Gt = 0, equilibrium conditions for Ct and Nt :

Marginal Cost of work︷ ︸︸ ︷
eτtCtN

ϕ
t =

marginal benefit of work︷︸︸︷
eat

Aggregate production relation: Ct = eatNt .

Substituting,

eτt eatN1+ϕ
t = eat → Nt = exp

(
−τt

1 + ϕ

)
Ct = exp

(
at −

τt
1 + ϕ

)
R∗t =

1
Ct

βEt
1

Ct+1

=
1

βEt
Ct

Ct+1

=
1

βEtexp
(
−∆at+1 + ∆τt+1

1+ϕ

)



Natural Equilibrium, cnt’d

Natural rate of interest:

R∗t =
1
Ct

βEt
1

Ct+1

=
1

βEtexp
(
−∆at+1 + ∆τt+1

1+ϕ

)
Two models for at :

DS : ∆at+1 = ρ∆at + εat+1

TS : at+1 = ρat + εat+1

Model for τt :

τt+1 = λτt + ετt+1



Natural Equilibrium, cnt’d

Suppose the εt ’s are Normal. Then,

Etexp

(
−∆at+1 +

∆τt+1

1 + ϕ

)
= exp

(
−Et∆at+1 + Et

∆τt+1

1 + ϕ
+

1

2
V

)

V = σ2
a +

σ2
τ

(1 + ϕ)2

Then, with r∗t ≡ logR∗t : r∗t = − log β + Et∆at+1 − Et
∆τt+1

1+ϕ −
1
2V .

Useful: consider how natural rate responds to εat shocks under DS and TS

models for at and how it responds to ετt shocks.

I To understand how r∗t responds, consider implications of consumption

smoothing in absence of change in r∗t .

I Hint: in natural equilibrium, r∗t steers the economy so that natural equilibrium

paths for Ct and Nt are realized.



Conclusion

Described NK model and derived equilibrium conditions.

I The usual version of model represents monetary policy by a Taylor rule.

When θ = 0, so that prices are flexible, then monetary policy has no impact

on Ct ,Nt ,R
∗
t .

I Changes in money growth move prices and wages in such a way that real

wages do not change and employment and output don’t change.



Conclusion...

When prices are sticky, then a policy-induced reduction in the interest rate

encourages more nominal spending.

I The increased spending raises Wt more than Pt because of the sticky prices,

thereby inducing the increased labor supply that firms need to meet the extra

demand.
I Firms are willing to produce more goods because:

F The model assumes they must meet all demand at posted prices.

F Firms make positive profits, so as long as the expansion is not too big they still

make positive profits, even if not optimal.



Calvo versus Rotemberg

“Why don’t we just do Rotemberg adjustment costs? It’s much easier and

gives the same reduced form anyway”.

One answer:
I When people do Rotemberg adjustment costs, they are implicitly actually

doing Calvo.

F Rotemberg has an coefficient, φ, on the price adjustment cost term,

(Pt − Pt−1)2, and it is hard to think about what is an empirically plausible

value for it. So, in practice, when you do Rotemberg (whether estimating or

calibrating) you have to convert to Calvo to evaluate the value of φ that you

are using.

F Why? From the perspective of Calvo, the parameter φ is a function of the

Calvo parameter, θ, and that is something that people have strong views about

because it can be directly estimated from observed micro data.

I Similarity of Calvo and Rotemberg only reflects that people have the habit of

linearizing around zero inflation. Different in empirically plausible case of

inflation. Difference is small in the simple model, but not in more plausible

models.
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Calvo versus Rotemberg

Rotemberg is completely against the Zeitgeist of modern macroeconomics.

Modern macro is increasingly going to micro data (see, for example, HANK)

to look for guidance about how to build macro models.

I Another example (besides HANK) is the finding that the network nature of

production (see Christiano et. al. 2011 and Christiano (2016)) matters for key

properties of the New Keynesian model, including (i) the cost of inflation, (ii)

the slope of the Phillips curve and (iii) the value of the Taylor Principle for

stabilizing inflation. This is a growing area of research in macroeconomics.

I Another example is the importance of networks in financial firms for the

possibility of financial crisis.

Calvo’s interesting implications for the distribution of prices in micro data has

launched an enormous literature (see Eichenbaum, et al, Nakamura and

Steinsson and many more papers). It is generating a picture of what kind of

model is needed to eventually replace the Calvo model. Go Back

http://www.princeton.edu/~moll/HANK.pdf
http://faculty.wcas.northwestern.edu/~lchrist/course/Gerzensee_2011/published_draft.pdf
http://faculty.wcas.northwestern.edu/~lchrist/course/CIED_2019/MacroAnnualonAcemogludetal2015


Calvo versus Rotemberg

Rotemberg is completely against the Zeitgeist of modern macroeconomics.

Modern macro is increasingly going to micro data (see, for example, HANK)

to look for guidance about how to build macro models.

I Another example (besides HANK) is the finding that the network nature of

production (see Christiano et. al. 2011 and Christiano (2016)) matters for key

properties of the New Keynesian model, including (i) the cost of inflation, (ii)

the slope of the Phillips curve and (iii) the value of the Taylor Principle for

stabilizing inflation. This is a growing area of research in macroeconomics.

I Another example is the importance of networks in financial firms for the

possibility of financial crisis.

Calvo’s interesting implications for the distribution of prices in micro data has

launched an enormous literature (see Eichenbaum, et al, Nakamura and

Steinsson and many more papers). It is generating a picture of what kind of

model is needed to eventually replace the Calvo model. Go Back

http://www.princeton.edu/~moll/HANK.pdf
http://faculty.wcas.northwestern.edu/~lchrist/course/Gerzensee_2011/published_draft.pdf
http://faculty.wcas.northwestern.edu/~lchrist/course/CIED_2019/MacroAnnualonAcemogludetal2015


Calvo versus Rotemberg

Rotemberg is completely against the Zeitgeist of modern macroeconomics.

Modern macro is increasingly going to micro data (see, for example, HANK)

to look for guidance about how to build macro models.

I Another example (besides HANK) is the finding that the network nature of

production (see Christiano et. al. 2011 and Christiano (2016)) matters for key

properties of the New Keynesian model, including (i) the cost of inflation, (ii)

the slope of the Phillips curve and (iii) the value of the Taylor Principle for

stabilizing inflation. This is a growing area of research in macroeconomics.

I Another example is the importance of networks in financial firms for the

possibility of financial crisis.

Calvo’s interesting implications for the distribution of prices in micro data has

launched an enormous literature (see Eichenbaum, et al, Nakamura and

Steinsson and many more papers). It is generating a picture of what kind of

model is needed to eventually replace the Calvo model. Go Back

http://www.princeton.edu/~moll/HANK.pdf
http://faculty.wcas.northwestern.edu/~lchrist/course/Gerzensee_2011/published_draft.pdf
http://faculty.wcas.northwestern.edu/~lchrist/course/CIED_2019/MacroAnnualonAcemogludetal2015


Calvo versus Rotemberg

Rotemberg is completely against the Zeitgeist of modern macroeconomics.

Modern macro is increasingly going to micro data (see, for example, HANK)

to look for guidance about how to build macro models.

I Another example (besides HANK) is the finding that the network nature of

production (see Christiano et. al. 2011 and Christiano (2016)) matters for key

properties of the New Keynesian model, including (i) the cost of inflation, (ii)

the slope of the Phillips curve and (iii) the value of the Taylor Principle for

stabilizing inflation. This is a growing area of research in macroeconomics.

I Another example is the importance of networks in financial firms for the

possibility of financial crisis.

Calvo’s interesting implications for the distribution of prices in micro data has

launched an enormous literature (see Eichenbaum, et al, Nakamura and

Steinsson and many more papers). It is generating a picture of what kind of

model is needed to eventually replace the Calvo model. Go Back

http://www.princeton.edu/~moll/HANK.pdf
http://faculty.wcas.northwestern.edu/~lchrist/course/Gerzensee_2011/published_draft.pdf
http://faculty.wcas.northwestern.edu/~lchrist/course/CIED_2019/MacroAnnualonAcemogludetal2015


Calvo versus Rotemberg

Rotemberg is completely against the Zeitgeist of modern macroeconomics.

Modern macro is increasingly going to micro data (see, for example, HANK)

to look for guidance about how to build macro models.

I Another example (besides HANK) is the finding that the network nature of

production (see Christiano et. al. 2011 and Christiano (2016)) matters for key

properties of the New Keynesian model, including (i) the cost of inflation, (ii)

the slope of the Phillips curve and (iii) the value of the Taylor Principle for

stabilizing inflation. This is a growing area of research in macroeconomics.

I Another example is the importance of networks in financial firms for the

possibility of financial crisis.

Calvo’s interesting implications for the distribution of prices in micro data has

launched an enormous literature (see Eichenbaum, et al, Nakamura and

Steinsson and many more papers). It is generating a picture of what kind of

model is needed to eventually replace the Calvo model. Go Back

http://www.princeton.edu/~moll/HANK.pdf
http://faculty.wcas.northwestern.edu/~lchrist/course/Gerzensee_2011/published_draft.pdf
http://faculty.wcas.northwestern.edu/~lchrist/course/CIED_2019/MacroAnnualonAcemogludetal2015


Firms that Can Change Price at t

Let P̃t denote the price set by the 1− θ firms who optimize at time t.

Expected value of future profits sum of two parts:

I future states in which price is still P̃t , so P̃t matters.

I future states in which the price is not P̃t , so P̃t is irrelevant.

That is,

E i
t

∞∑
j=0

βjυt+j [Pi,t+jYi,t+j − Pt+jst+jYi,t+j ]

=

Zt︷ ︸︸ ︷
Et

∞∑
j=0

(βθ)j υt+j

[
P̃tYi,t+j − Pt+jst+jYi,t+j

]
+Xt ,

where

I Zt is the present value of future profits over all future states in which the

firm’s price is P̃t .

I Xt is the present value over all other states, so dXt/dP̃t = 0.
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Decision By Firm that Can Change Its Price

Substitute out demand curve:

Et

∞∑
j=0

(βθ)j υt+j

[
P̃tYi,t+j − Pt+jst+jYi,t+j

]
= Et

∞∑
j=0

(βθ)j υt+jYt+jP
ε
t+j

[
P̃1−ε
t − Pt+jst+j P̃

−ε
t

]
.

Differentiate with respect to P̃t :

Et

∞∑
j=0

(βθ)j υt+jYt+jP
ε
t+j

[
(1− ε)

(
P̃t

)−ε
+ εPt+jst+j P̃

−ε−1
t

]
= 0,

→ Et

∞∑
j=0

(βθ)j υt+jYt+jP
ε+1
t+j

[
P̃t

Pt+j
− ε

ε− 1
st+j

]
= 0.

I When θ = 0, get standard result - price is fixed markup over marginal cost.
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Decision By Firm that Can Change Its Price

Substitute out the multiplier:

Et

∞∑
j=0

(βθ)j

= υt+j︷ ︸︸ ︷
u′ (Ct+j)

Pt+j
Yt+jP

ε+1
t+j

[
P̃t

Pt+j
− ε

ε− 1
st+j

]
= 0.

I Using assumed log-form of utility,

Et

∞∑
j=0

(βθ)j
Yt+j

Ct+j
(Xt,j)

−ε
[
p̃tXt,j −

ε

ε− 1
st+j

]
= 0,

p̃t ≡
P̃t

Pt
, π̄t ≡

Pt

Pt−1
, Xt,j =

{
1

π̄t+j π̄t+j−1···π̄t+1
, j ≥ 1

1, j = 0.
,

’recursive property’: Xt,j = Xt+1,j−1
1

π̄t+1
, j > 0
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Decision By Firm that Can Change Its Price

Want p̃t in:

Et

∞∑
j=0

(βθ)j
Yt+j

Ct+j
(Xt,j)

−ε
[
p̃tXt,j −

ε

ε− 1
st+j

]
= 0

Solving for p̃t , we conclude that prices are set as follows:

p̃t =
Et

∑∞
j=0 (βθ)j

Yt+j

Ct+j
(Xt,j)

−ε ε
ε−1 st+j

Et

∑∞
j=0

Yt+j

Ct+j
(βθ)j (Xt,j)

1−ε =
Kt

Ft
.

Need convenient expressions for Kt , Ft .
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Decision By Firm that Can Change Its Price

Recall,

p̃t =
Et
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−ε ε
ε−1 st+j

Et

∑∞
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Ft

The numerator has the following simple representation:

Kt = Et

∞∑
j=0

(βθ)j
Yt+j

Ct+j
(Xt,j)

−ε ε

ε− 1
st+j

=
ε

ε− 1

Yt

Ct

(1− ν) eτtCtN
ϕ
t

eat
+ βθEt

(
1

π̄t+1

)−ε
Kt+1 (1),

after using st = (1− ν) eτtCtN
ϕ
t /e

at .

Similarly,

Ft =
Yt

Ct
+ βθEt

(
1

π̄t+1

)1−ε

Ft+1 (2)
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Simplifying Numerator
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where
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Aggregate Price Index: Calvo Result

Trick: rewrite the aggregate price index.

I let p ∈ (0,∞) the set of logically possible prices for intermediate good

producers.

I let gt (p) ≥ 0 denote the measure (e.g., ’number’) of producers that have

price, p, in t

I let gt−1,t (p) ≥ 0, denote the measure of producers that had price, p, in t − 1

and could not re-optimize in t

I Then,

Pt =

(∫ 1

0

P
(1−ε)
i,t di

) 1
1−ε

=

(∫ ∞
0

gt (p) p(1−ε)dp

) 1
1−ε

.

Note:

Pt =

(
(1− θ) P̃1−ε

t +

∫ ∞
0

gt−1,t (p) p(1−ε)dp

) 1
1−ε

.
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Aggregate Price Index: Calvo Result

Calvo randomization assumption:

measure of firms that had price, p, in t−1 and could not change︷ ︸︸ ︷
gt−1,t (p)

= θ ×

measure of firms that had price p in t−1︷ ︸︸ ︷
gt−1 (p)



Aggregate Price Index: Calvo Result

Using gt−1,t (p) = θgt−1 (p) :

Pt =

(
(1− θ) P̃1−ε

t +

∫ ∞
0

gt−1,t (p) p(1−ε)dp

) 1
1−ε

Pt =

(1− θ) P̃1−ε
t + θ

=P1−ε
t−1︷ ︸︸ ︷∫ ∞

0

gt−1 (p) p(1−ε)dp


1

1−ε

This is the Calvo result:

Pt =
(

(1− θ) P̃1−ε
t + θP1−ε

t−1

) 1
1−ε

Wow, simple!: Only two variables: P̃t and Pt−1. Go Back
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Tack Yun Distortion

Let f (x) = x4, a convex function. Then,

convexity: αx4
1 + (1− α) x4

2 > (αx1 + (1− α) x2)4

for x1 6= x2, 0 < α < 1.

Applying this idea:

convexity:

∫ 1

0

(
P

(1−ε)
i,t

) ε
ε−1

di ≥
(∫ 1

0

P
(1−ε)
i,t di

) ε
ε−1

⇐⇒
(∫ 1

0

P−εi,t di

)
≥
(∫ 1

0

P
(1−ε)
i,t di

) ε
ε−1

⇐⇒

P∗
t︷ ︸︸ ︷(∫ 1

0

P−εi,t di

)−1
ε

≤

Pt︷ ︸︸ ︷(∫ 1

0

P
(1−ε)
i,t di

) 1
1−ε

Go Back
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Efficient Sectoral Allocation of Resources

Consider the following problem

max
Ni,t ,i∈[0,1]

[∫ 1

0

(eatNi,t)
ε−1
ε di

] ε
ε−1

subject to a given amount of total employment:

Nt =

∫ 1

0

Ni,tdi

In Lagrangian form:

max
Ni,t ,i∈[0,1]

Yt︷ ︸︸ ︷[∫ 1

0

(eatNi,t)
ε−1
ε di

] ε
ε−1

+λ

[
Nt −

∫ 1

0

Ni,t

]
,

where λ ≥ 0 denotes the Lagrange multiplier.



Efficient Sectoral Allocation of Resources

Lagrangian problem:

max
Ni,t ,i∈[0,1]

Yt︷ ︸︸ ︷[∫ 1

0

(
eatNi,t

) ε−1
ε di

] ε
ε−1

+λ

[
Nt −

∫ 1

0
Ni,t

]
,

where λ ≥ 0 denotes the Lagrange multiplier.

First order necessary condition for optimization:(
Yt

Ni,t

) 1
ε

(eat )
ε−1
ε = λ→ Ni,t = Nj,t = Nt , for all i , j ,

so Yt is as big as it possibly can be for given aggregate employment, when

Yt =

[∫ 1

0

(
eatNi,t

) ε−1
ε di

] ε
ε−1

= eatNt .

Result is obvious because
(
Ni,t

) ε−1
ε is strictly concave in Ni,t . Go Back



Money Demand

The Lagrangian representation of the household problem is (λt ≥ 0 is multiplier):

maxE0

∞∑
t=0

βt{
(

log Ct − exp (τt)
N1+ϕ
t

1 + ϕ
+ γlog

(
Mt+1

Pt

))
+λt (WtNt + Rt−1Bt + Mt − PtCt − Bt+1 −Mt+1)}.

First order conditions:

Ct : u′ (Ct) = λtPt ; Bt+1 : λt = βEtλt+1Rt

Mt+1 :λt =
γ

Mt+1
+ βEtλt+1

I Substitute out for βEtλt+1 in Mt+1 equation from Bt+1 equation; then substitute out

for λt from Ct equation and rearrange, to get

Mt+1

Pt
=

(
Rt

Rt − 1

)
γCt .

Go Back


