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Labor Economics and Applied Econometrics

I This course covers topics in modern labor economics

I We will also cover econometric tools that are commonly used
in contemporary applied microeconomics

I Instructors:

I Pat Kline, pkline@econ.berkeley.edu

I Chris Walters, crwalters@econ.berkeley.edu

I Schedule: January 6-7, 11:15AM-6:45PM (with breaks)

I Syllabus, schedule, and slides available on course website
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Human Capital and Education

I First topic: human capital and education

I Motivated by human capital paradigm

I Worker skills as a form of capital

I Choose how much to invest in skills, balancing increased
earnings in the future against opportunity cost of earnings
foregone in the present

I Key parameter: causal return to schooling

I The causal return to schooling answers a counterfactual question:
how much more would a particular person earn if s/he spent more
time in school?

I We will discuss such questions in the language of potential
outcomes
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Potential Outcomes

I Consider a person i deciding whether to attend college

I The indicator Di ∈ {0, 1} takes a value of 1 if i attends college, and
0 otherwise

I Yi (1) denotes i ’s potential earnings if she attends college

I Yi (0) denotes i ’s potential earnings if she does not attend college

I Potential outcomes are defined by a hypothetical manipulation:
what would happen to a particular person in one condition or the
other

I The causal effect of college on person i ’s earnings is defined as:

δi = Yi (1)− Yi (0).

I This simple model of causality is called the Rubin causal model
(Holland 1986)
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The Fundamental Problem of Causal Inference

I In the real world, a person either attends college, or she doesn’t

I This means only one potential outcome will ever be observed – the other
is counterfactual

I The observed outcome, Yi , equals Yi (0) if Di = 0 and Yi (1) if Di = 1.
We can then write

Yi = Yi (0) + (Yi (1)− Yi (0))Di

I Since we can never observe both Yi (0) and Yi (1), we can’t see δi for any
individual. This is known as the fundamental problem of causal
inference

I The econometric methods we will cover can be viewed as approaches to
imputing missing potential outcomes

I We can never hope to recover δi for an individual person, but sometimes
we can recover certain averages
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Average Treatment Effects

I The average treatment effect for a population is defined as:

ATE = E [Yi (1)− Yi (0)]

I “Treatment effects” language is adopted from medical trials

I Yi (1) is i ’s outcome if assigned the treatment (college)

I Yi (0) is i ’s outcome if assigned the control condition (no college)

I δi = Yi (1)− Yi (0) is i ’s treatment effect

I Other treatment effect parameters of interest include the effect of
treatment on the treated (TOT), and the effect of treatment on the
non-treated (TNT):

TOT = E [Yi (1)− Yi (0)|Di = 1]

TNT = E [Yi (1)− Yi (0)|Di = 0]
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Treatment Effects and Selection Bias

I Consider a comparison of average observed earnings for individuals
that attend college vs. those that don’t:

E [Yi |Di = 1]− E [Yi |Di = 0] = E [Yi (1)|Di = 1]− E [Yi (0)|Di = 0]

I Add and subtract E [Yi (0)|Di = 1] on the right-hand side:

E [Yi |Di = 1]− E [Yi |Di = 0] = E [Yi (1)− Yi (0)|Di = 1]

+E [Yi (0)|Di = 1]− E [Yi (0)|Di = 0]
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Treatment Effects and Selection Bias

E [Yi |Di = 1]− E [Yi |Di = 0] = E [Yi (1)− Yi (0)|Di = 1]︸ ︷︷ ︸
TOT

+E [Yi (0)|Di = 1]− E [Yi (0)|Di = 0]︸ ︷︷ ︸
Selection Bias

I This expression decomposes the observed treatment/control
difference into the TOT plus a selection bias term given by the
difference in average Yi (0)’s between treatment and control

I Selection bias arises if the observed outcome for the control group
fails to match the missing counterfactual for the treatment group
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Treatment Effects and Selection Bias

I Note that we could’ve written

E [Yi |Di = 1]− E [Yi |Di = 0] = E [Yi (1)− Yi (0)|Di = 0]︸ ︷︷ ︸
TNT

+E [Yi (1)|Di = 1]− E [Yi (1)|Di = 0]︸ ︷︷ ︸
Selection Bias

I Here selection bias arises if the observed outcome for the treatment
group fails to match the missing counterfactual for the control group

I Definition of selection bias depends on the question we’re asking –
which counterfactual outcome are we trying to impute?
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The RCT Ideal
I Suppose the treatment is assigned independently of potential outcomes:

(Yi (1),Yi (0)) ⊥⊥ Di

I Then

E [Yi |Di = 1]− E [Yi |Di = 0] = E [Yi (1)|Di = 1]− E [Yi (0)|Di = 0]

= E [Yi (1)]− E [Yi (0)]

= ATE .

I Assigning treatment randomly as in a randomized controlled trial
(RCT) guarantees independence of potential outcomes from treatment

I Randomization eliminates selection bias

I Implies treatment/control difference = ATE = TOT = TNT

I Often the treatment of interest is not randomized. Other research
designs aim to isolate comparisons that are as good as random
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Human Capital Investments

I Return to the idea of human capital investment

I Start with a simple model of schooling investments, as in Card (1999)

I Individual i chooses duration of schooling S to maximize the present
discounted value of earnings:∫ ∞

S

e−ri tYi (S)dt

I The potential earnings function Yi (S) now describes i ’s potential
earnings for every possible schooling level

I Attending S years of school results in zero earnings until S , and then
Yi (S) thereafter

I Interest rate ri determines how i discounts future earnings
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Optimal Schooling Choice

I Optimal schooling choice maximizes PDV :

S∗i = arg max
S

∫∞
S

e−ri tYi (S)dt

I First-order condition:

Y ′i (S∗i )

Yi (S∗i )
= ri

I Marginal benefit/marginal cost formula: at any S , can invest current
earnings Yi (S) and earn return ri , or defer earnings to earn more later,
with proportional return Y ′i (S)/Yi (S)

I Optimal schooling equalizes returns on these two investments

I Individual i ’s realized earnings are Yi (S
∗
i )
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Ability Bias

I Empirical literature tries to estimate features of the potential
earnings functions Yi (S)

I Problem: As usual, we only see one earnings level for each person,
corresponding to potential earnings at his/her chosen schooling level

I Why do people choose different levels of schooling? In the model
differences must be driven either by variation in the discount rate,
or in the potential earnings function

I “Ability bias:” Individuals that choose different schooling levels may
have different potential earnings functions, leading observed returns
to schooling to differ from causal returns

I Label for selection bias in the returns to schooling context

Chris Walters (UC Berkeley) Education and Human Capital



Observed Returns to Schooling

I Consider an ordinary least squares (OLS) regression of
observed earnings Yi on schooling Si :

Yi = a + bSi + ei

I The observed return to schooling is the OLS slope coefficient:

b =
Cov(Yi , Si )

Var(Si )

I Question: Should I be worried about whether Si is correlated
with the error term ei?
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OLS Approximates the CEF
I Answer: No. By definition, the OLS residual ei is orthogonal to the

regressor Si :

Cov(ei , Si ) = Cov(Yi − a− bSi , Si )

= Cov(Yi , Si )− bVar(Si )

= Cov(Yi , Si )− (Cov(Yi , Si )/Var(Si ))Var(Si )

= 0.

I OLS always gives a minimum mean squared error approximation to the
conditional expectation function (CEF), E [Yi |Si ]:

(a, b) = arg min
(a0,b0)

E
[
(E [Yi |Si ]− a0 − b0Si )

2] .
I OLS fits the CEF regardless of what model you have in mind. Better to

ask: is the CEF economically interesting?
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2.1 OLS Estimates of Earnings Functions

Our equation of interest is

log yi = α+ βSi + γ1Expi + γ2Exp
2
i + εi

A few stylized facts to know about earnings functions:

• The OLS return to schooling β is 7 to 8 percent in most data sets

• The empirical relationship between log earnings and schooling is surprisingly linear
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Fig. 2. Relationship between mean log hourly wages and completed education, men aged 40-45 in 1994 1996 
Current Population Survey. Mean education by degree category estimated from February 1990 CPS. 

exceptionally high return to tile 16th year of schooling). Apart f[Olil this feature, Park 
shows that the linear functional form provides a surprisingly good fit to the data. 

Despite economists' general satisfaction with the traditional measure of schooling, in 
the late 1980s the US Census Bureau decided to shift toward a degree-based system of 
measuring post-high-school education (see Kominski and Siegel, 1992). Thus, individuals 
in the 1990 Census and recent Current Population Surveys were no longer asked how 
many years of college they had completed: rather they were asked to report their college 
degrees. This change makes it more difficult to estimate the standard human capital earn- 
ings model with recent US data, or to measure changes in the structure of education-related 
wage differentials. Nevertheless, a concordance between the older years-of-education 
variable and the new degree-based variable can be constructed from a cross-tabulation 
of responses to the two questions included in a supplement to the February 1990 CPS. Use 
of this concordance provides some rather surprising support for the linearity assumption 
embedded in Mincer's original specification. 9 

Fig. 2 shows wage and schooling data for a sample of men age 40-55 in the 1994-1996 
CPS. m Mean log wages for each education group (e.g., men with a junior college or 
Associates degree in an academic program, denoted by "AA-Academic" in the graph) 
are graphed against the mean number of years of education for the group measured in the 
February 1990 concordance. Apart from men who report 11 years of schooling, or 12 years 

9 See Park (1994, 1996) for further analysis of the linearity assumption 
i01 use men in this age range to abstract from the effects of experience. As shown in Fig. la, after age 40 the 

age-earnings profiles of different education groups are roughly parallel. 

• An additively separable quadratic experience profile also fits the data pretty well
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Fig, 1. Age profiles of hourly wags for men (a) and women (b). 

men and women using pooled samples from the 1994, 1995, 1996 March Current Popula- 
tion Surveys. The data represent mean log hourly earnings by single year of age for 
individuals with 10, 12 and 16 years of education. Plotted along with the actual means 
are the fitted values obtained from models like (1/) that include a cubic term in potential 
experience. 5 Comparisons of the fitted and actual data suggest that age-earnings profiles 
for US men and women are fairly smooth, and are reasonably well-approximated by a 
simple variant of the standard human capital earnings function. Nevertheless, even a cubic 
version of Mincer 's  model has some trouble fitting the precise curvature of the age profiles 
for different education groups in recent US data. In particular, the fitted models tend to 
understate the growth rate of earnings for younger college-educated men and women 
relative to high-school graduates, suggesting the need for more flexible interactions 

5 The samples include 102,718 men and 95,360 women age 16-66 with positive potential experience and 
average hourly earnings between $2.00 and $150.00 in 1995 dollars. Fifty-tlu'ee percent of the sample have 10, 
12, or 16 years of schooling and are used in graphs. The regression models are fit by gender to all education groups 
and include a linear education term, a cubic in experience, and a dummy wtriable lbr individuals of black race. 

• This model typically explains around 30% of the variation in log earnings.
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Ability Bias

I Consider a constant effects potential earnings function:

Yi (S) = αi + βS

I The causal return β > 0 is the same for all people and
schooling levels

I This model implies

Y ′i (S∗i )

Yi (S∗i )
= ri =⇒ S∗i =

1

ri
− αi

β

I Suppose the interest rate ri is the same for everyone. Is the
observed return to schooling too big or too small relative to
the causal return?
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Negative Ability Bias

I The observed return is too small

I When ri = r for all i , everyone earns the same amount:

Yi (S
∗
i ) = αi + β

(
1

r
− αi

β

)
=
β

r
.

I The observed return is therefore zero, which is less than the
causal return β

I Intuition: The primary cost of schooling is the opportunity
cost of earnings foregone. Higher-ability people face higher
opportunity costs and so drop out earlier

I In this case “ability bias” is negative – the causal return
exceeds the observed return
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General Ability Bias
I More generally, the observed return to schooling is

b =
Cov(Yi (S

∗
i ), S∗i )

Var(Si )

=
Cov

(
β
ri
, 1
ri
− αi

β

)
Var

(
1
r
− αi

β

)

= β ×

(
σ2

1/r − σα,1/r/β
σ2

1/r − 2σα,1/r/β + σ2
α/β2

)
.

I Ability bias depends on variances and covariances of discount rates and
ability across people

I Direction is unclear a priori

I To get positive ability bias, need another force that overrides the basic
opportunity cost story
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Estimating Causal Returns

I The observed return to schooling may be contaminated by ability
bias of unclear sign and magnitude. How can we estimate the
causal return?

I Maintain the simple constant-effects model for potential earnings:

Yi (S) = αi + βS

I We can then write observed earnings as

Yi = ᾱ + βSi + εi .

I Here ᾱ = E [αi ] and εi = αi − ᾱ

I Question: Should I be worried about whether Si is correlated with
the error term εi?
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Observed and Causal Returns

Yi = ᾱ + βSi + εi .

I Answer: Yes. The coefficient β is now defined as a parameter
from a causal (potential outcomes) model, so there is no
guarantee that Cov(Si , εi ) = 0

I Schooling is not randomly assigned, so it may not be
independent of potential outcomes, summarized here by εi

I This means the OLS slope coefficient b may not coincide with
the causal effect β

I Instrumental variables (IV) is a common research design
that seeks to eliminate selection bias in nonexperimental data
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Instrumental Variables

Yi = ᾱ + βSi + εi .

I Suppose we have a third variable, Zi , that satisfies two
conditions:

1. First stage: Cov(Si ,Zi ) 6= 0.

2. Exclusion restriction: Cov(εi ,Zi ) = 0.

I First stage requires Zi (the instrument) to be correlated with
Si (the endogenous variable)

I Exclusion requires the instrument to be uncorrelated with
potential outcomes (here, εi )

I Zi must be as good as randomly assigned

I Zi cannot affect Yi through channels other than Si
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The Population IV Coefficient

I Covariance between outcome and instrument:

Cov(Yi ,Zi ) = Cov(ᾱ + βSi + εi ,Zi )

= βCov(Si,Zi ) + Cov(εi ,Zi )

I Exclusion implies the second term is zero, so
Cov(Yi ,Zi ) = βCov(Si ,Zi )

I First stage implies Cov(Si ,Zi ) 6= 0, so we can divide by this
covariance to solve for β:

Cov(Yi ,Zi )

Cov(Si ,Zi )
= β.

I The ratio of covariances on the left is the population instrumental
variables coefficient, βIV
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IV Interpretation

I Divide the top and bottom of the IV coefficient by Var(Zi ) to
obtain:

βIV =
Cov(Yi ,Zi )/Var(Zi )

Cov(Si ,Zi )/Var(Zi )

I The IV coefficient is a ratio of two regression coefficients:

I The reduced form regression of Yi on Zi

I The first stage regression of Si on Zi

I Suppose Zi is binary. Then the IV coefficient becomes a Wald ratio
of two differences in means:

βIV =
E [Yi |Zi = 1]− E [Yi |Zi = 0]

E [Si |Zi = 1]− E [Si |Zi = 0]
.
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IV Estimates of the Return to Schooling: Angrist and
Krueger (1991)

I Angrist and Krueger (QJE 1991): classic study reporting IV
estimates of the return to education

I Instrumental variables strategy motivated by interaction
between compulsory schooling and age-at-entry laws

I Students can typically drop out of school on the day they turn
16

I Birth date cutoff for starting age: Students usually start school
in the fall of the calendar year in which they turn six

I Generates differences in mean educational attainment by date
of birth
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2.2.2 AK Results

Basic argument
To construct their instrument, AK note that children usually begin school in the fall of the calendar year
they turn six; some states have an explicit birth date cutoff to determine when a child starts school. In
addition, compulsory schooling laws typically allow students to drop out on the day they reach a certain age
(often 16). This leads to different compulsory schooling requirements for children born at different times.
To see this, consider the following stylized comparison of two individuals, one born early in the year, and
one born late:

Birth date School start date Dropout date Schooling at dropout date
January 2, 1930 September 1, 1936 January 2, 1946 9.5 years

December 31, 1930 September 1, 1936 December 31, 1946 10.5 years

These two children are born at different dates in the same calendar year, but begin school at the same time.
They both complete their 9th year of schooling in Spring 1965. The child born January 2 is required to
attend the first half of 10th grade, but is then legally allowed to drop out on January 2, 1966. The child
born December 31 is required to attend all of 10th grade, and half of 11th before dropping out. If both
plan to drop out as soon as possible, the December child will end up with a full additional year of schooling.
This makes instruments based on birth date appealing, since birth date seems likely to be unrelated to other
determinants of earnings.
First stage
AK show that mean educational attainment across birth quarters follows a “racheting” pattern consistent
with this idea. Individuals born in the first quarter of the year have less education than individuals born in
later quarters. (They focus on quarter of birth – “QOB” – because this is the measure of birth date available
in the census.)
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This makes instruments based on birth date appealing, since birth date seems likely to be unrelated to other
determinants of earnings.
First stage
AK show that mean educational attainment across birth quarters follows a ratcheting pattern consistent
with this idea. Individuals born in the first quarter of the year have less education than individuals born in
later quarters. (They focus on quarter of birth – “QOB” – because this is the measure of birth date available
in the census.)

In the language of IV, this figure is a plot of the first stage. AK cite two more facts to argue that these
cross-quarter differences are likely due to the compulsory schooling channel:
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QOB Instruments

I AK’s instrument is date of birth

I Operationalize using quarter of birth (QOB), which is available in
US Census data

I Zi = 1 {i was born in first quarter}

I What do the first stage and exclusion restriction assumptions mean
for a QOB instrument?

Chris Walters (UC Berkeley) Education and Human Capital
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The return to schooling
AK then look at the relationship between QOB and earnings. Figure 5 shows that log weekly earnings follow
a similar ratcheting pattern to years of schooling:

Together with the first stage results in figure 1, this reduced form pattern implies that IV estimates using
QOB as an instrument for schooling in a log earnings equation will be positive. The following table shows
Wald estimates of the return to education for men:

The IV and OLS estimates are actually very similar. For the 1930-1939 cohort, the IV estimate is above the
OLS, though they are not statistically distinguishable.
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QOB Interpretation

I IV estimates based on QOB suggest a return to schooling of
7-10% per year

I IV estimates are comparable to or bigger than corresponding
OLS estimates

I Card (1999) finds a similar pattern for other IV strategies

I In our simple model, this suggests negative ability bias: people
with lower earnings potential attend school for longer

I Other interpretations?

Chris Walters (UC Berkeley) Education and Human Capital



Heterogeneous Treatment Effects

I Our simple model assumed constant effects of schooling across
people

I Return to general potential outcomes model with binary treatment
Di and potential outcomes Yi (1) and Yi (0)

I Suppose we have a binary instrument Zi , and consider two new
potential outcomes defined by a hypothetical manipulation of Zi :

I Di (1): i ’s treatment status if Zi = 1

I Di (0): i ’s treatment status if Zi = 0

I Observed treatment is Di = Di (0) + (Di (1)− Di (0))Zi

Chris Walters (UC Berkeley) Education and Human Capital



IV Assumptions

I IV assumptions in a heterogeneous treatment effects world:

1. Independence/exclusion: (Yi (1),Yi (0),Di (1),Di (0)) ⊥⊥ Zi

2. First stage: Pr[Di = 1|Zi = 1] > Pr[Di = 1|Zi = 0]

3. Monotonicity: Di (1) ≥ Di (0) ∀i

I Relative to our constant effects IV setup, monotonicity is the
novel assumption

I Monotonicity requires the instrument to affect everyone’s
treatment status in the same direction

Chris Walters (UC Berkeley) Education and Human Capital



Compliance Groups

I Under monotonicity, we can partition the population into
three groups defined by their behavioral responses to the
instrument (Angrist, Imbens, and Rubin 1996):

1. Always takers: Di (1) = Di (0) = 1

2. Never takers: Di (1) = Di (0) = 0

3. Compliers: Di (1) = 1, Di (0) = 0

I Compliers have Di (1) > Di (0): their treatment status
increases with the instrument

I Monotonicity rules out defiers with Di (1) = 0, Di (0) = 1

Chris Walters (UC Berkeley) Education and Human Capital



Local Average Treatment Effects

I Under these assumptions, IV identifies a local average
treatment effect (LATE):

E [Yi |Zi = 1]− E [Yi |Zi = 0]

E [Di |Zi = 1]− E [Di |Zi = 0]
= E [Yi (1)− Yi (0)|Di (1) > Di (0)]

I This is the LATE theorem of Imbens and Angrist (1994)

I LATE is the average treatment effect for compliers –
individuals whose treatment status is determined by the
instrument

Chris Walters (UC Berkeley) Education and Human Capital



LATE Theorem: Proof

I Note that Yi = Yi (Di ) = Yi (Di (Zi )), so by independence

E [Yi |Zi = 1]− E [Yi |Zi = 0] = E [Yi (Di (1))|Zi = 1]− E [Yi (Di (0))|Zi = 0]

= E [Yi (Di (1))− Yi (Di (0))].

I By monotonicity we either have Di (1) = Di (0) or Di (1) > Di (0), so

E [Yi |Zi = 1]− E [Yi |Zi = 0] = E [Yi (1)− Yi (0)|Di (1) > Di (0)] Pr[Di (1) > Di (0)]

I The same logic implies E [Di |Zi = 1]− E [Di |Zi = 0] = Pr[Di (1) > Di (0)], so

E [Yi |Zi = 1]− E [Yi |Zi = 0]

E [Di |Zi = 1]− E [Di |Zi = 0]
= E [Yi (1)− Yi (0)|Di (1) > Di (0)].

Chris Walters (UC Berkeley) Education and Human Capital



Interpreting IV Estimates

I LATE interpretation suggests that QOB instrument identifies
the causal effect of extra schooling for individuals on the
margin of dropping out early around mid-century

I Next, we will consider more recent evidence looking at other
schooling margins

Chris Walters (UC Berkeley) Education and Human Capital



Returns to College for Marginal Students: Zimmerman
(2014)

I Observed return to college has increased dramatically in recent decades

I College wage premium rose from 50% to 97% between 1980 and

2008 (Acemoglu and Autor, 2011)

I May reflect fast growth of skill demand coupled with slow growth of

skill supply (Goldin and Katz, 2008)

I At the same time, many students in the US start college but don’t finish

I 62% of students attending four-year colleges graduate within 6

years (NCES, 2020)

I Does college attendance improve earnings for academically marginal

students?

I Zimmerman (JOLE 2014) leverages a regression discontinuity design to
study returns for students on the margin of four-year college enrollment

Chris Walters (UC Berkeley) Education and Human Capital



Regression Discontinuity Designs

I Consider a setting with a binary treatment Di ∈ {0, 1}, and potential
outcomes Yi (1) and Yi (0)

I Suppose the treatment is a deterministic and discontinuous function of an
observed covariate Ri , such that

Di = 1 {Ri > c}.

I Ri is called the running variable or forcing variable

I This is a sharp RD because the probability of treatment switches from
zero to one at the threshold

I Zimmerman (2014): GPA cutoff for admission to state universities in
Florida

Chris Walters (UC Berkeley) Education and Human Capital



Regression Discontinuity Designs

I We get to observe Yi (1) when Ri > c and Yi (0) when Ri ≤ c

I Basic idea of the RD design: Compare observations just above and
just below the threshold to infer treatment effect

I Intuitively, the treatment may be as good as randomly assigned for
individuals in the neighborhood of Ri = c , so comparing treated and
nontreated near c reveals a treatment effect

Chris Walters (UC Berkeley) Education and Human Capital
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RD Identification

I Key assumption: potential outcomes are smooth at the threshold

I Formally:

lim
r→c+

E [Yi (d)|Ri = r ] = lim
r→c−

E [Yi (d)|Ri = r ], d ∈ {0, 1}

I Potential outcome CEFs must be continuous at the threshold

I The population just below must not be discretely different from the
population just above

Chris Walters (UC Berkeley) Education and Human Capital



RD Identification

I If this assumption holds we have

lim
r→c+

E [Yi |Ri = r ]− lim
r→c−

E [Yi |Ri = r ]

= lim
r→c+

E [Yi (1)|Ri = r ]− lim
r→c−

E [Yi (0)|Ri = r ]

= E [Yi (1)|Ri = c]− E [Yi (0)|Ri = c]

= E [Yi (1)− Yi (0)|Ri = c]

I When potential outcomes are smooth around the threshold, a comparison
of individuals just above and just below yields the average treatment
effect for those at the threshold

I Identification argument is nonparametric: we don’t need to assume
anything about the distribution of potential outcomes other than
continuity of CEFs

Chris Walters (UC Berkeley) Education and Human Capital



RD Interpretation

I Core RD intuition: for those near the threshold, things could have
gone either way

I Interpret RD as a local randomized trial among those sufficiently
close to Ri = c

I Explains why RD evidence can be especially compelling relative to
other research designs – close to RCT ideal

I “Local randomization” view motivates common RD diagnostics

I Check balance of pre-determined characteristics for
observations above and below the threshold

I Look for anomalies in the distribution of the running variable
around the threshold, which may indicate manipulation
(McCrary, 2008)
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Fuzzy RD

I Sometimes treatment is generated by a discontinuous assignment rule
that isn’t deterministic

I Suppose that

lim
r→c−

Pr [Di = 1|Ri = r ] < lim
r→c+

Pr [Di = 1|Ri = r ]

I The probability of treatment jumps at Ri = c, but not necessarily from
zero to one

I This is a fuzzy RD scenario because treatment is only partly determined
by the threshold

I Zimmerman (2014): Students above GPA cutoff are eligible for
admission, but not guaranteed

Chris Walters (UC Berkeley) Education and Human Capital





Fuzzy RD Assumptions

I As before, assume the distributions of Yi (1) and Yi (0) are smooth around
the threshold

I Let Di (1) and Di (0) denote potential treatment statuses for individual i if
s/he were located above and below the threshold. Assume these are also
smooth across the threshold, and

Di (1) ≥ Di (0) ∀i

I Crossing the threshold weakly increases the likelihood of treatment for
everyone

Chris Walters (UC Berkeley) Education and Human Capital



Fuzzy RD

I Under these assumptions, we have

lim
r→c+

E [Yi |Ri = r ]− lim
r→c−

E [Yi |Ri = r ]

lim
r→c+

E [Di |Ri = r ]− lim
r→c−

E [Di |Ri = r ]

= E [Yi (1)− Yi (0)|Di (1) > Di (0),Ri = c]

I The numerator on the left is the jump in outcomes at the threshold, as in
a sharp RD

I The denominator is the change in the probability of treatment at the
threshold

I The ratio of the jump in the outcome CEF to the jump in the treatment
probability identifies an average treatment effect for individuals who
switch treatment status at the threshold

I Sound familiar?

Chris Walters (UC Berkeley) Education and Human Capital



Fuzzy RD is IV

I Fuzzy RD is IV using a threshold indicator Zi = 1 {Ri > c} as an
instrument for treatment in the neighborhood of the threshold

I Think of fuzzy RD as a local randomized trial with non-compliance

I Implies fuzzy RD estimates are local in two senses

I Local to the threshold, Ri = c (also applies to sharp RD)

I Only apply to compliers at the threshold (that’s the “local” in
LATE)

Chris Walters (UC Berkeley) Education and Human Capital



RD Implementation

I Implementing RD requires estimating the left- and right-hand limits of
average outcomes and treatment probabilities

I Bias/variance tradeoff: using data away from the threshold increases
sample size, but may introduce bias if potential outcomes are related to
the running variable

I In practice RD is usually implemented with local linear regression

I Regress outcome on the running variable among observations within
a small bandwidth of the threshold, with weights that decline with
distance to threshold

I RD estimate is difference in fitted regression functions above and
below the threshold

I Recent econometric literature proposes optimal bandwidths that balance
bias and variance to minimize mean squared error, automated in rdrobust
Stata command (Imbens and Kalyanaraman, 2011; Calonico et al., 2014)
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Returns to College for Marginal Students: Zimmerman
(2014)

I Zimmerman (2014) uses a GPA cutoff to estimate the returns to
four-year college admission at public institutions in Florida

I Students above the cutoff are eligible for admission to schools in the
Florida State University System (SUS)

I In practice, the cutoff is relevant for admission to Florida
International University (FIU), a large SUS campus in Miami

I Population around the FIU admission cutoff has relatively low SAT
scores (21st percentile nationwide) and low graduation rates

I Estimates are therefore informative about returns to college for
marginal students

Chris Walters (UC Berkeley) Education and Human Capital



the case, the effect on overall SUS attendance ði.e., at attendance any campusÞ
would be less than the effect on FIU attendance.
Students affected by threshold-crossing attend state universities with

relatively low intensity. Threshold-crossing is associated with an addi-
tional 0.644 full-time-equivalent SUS terms, or 1.41 terms per year of
SUS attendance. This translates to delayed SUS graduation. As shown in

FIG. 4.—Admissions and FIU attendance. Lines are fitted values based on the
main specification. Dots, shown every .05 grade points, are rolling averages of val-
ues within .05 grade points on either side that have the same value of the threshold-
crossing dummy.

FIG. 5.—SUS attendance and persistence. Lines are fitted values based on the
main specification. Dots, shown every .05 grade points, are rolling averages of val-
ues within .05 grade points on either side that have the same value of the threshold-
crossing dummy.
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figure 6 and panel B of table 4, threshold-crossing has no effect on the
probability that students will have graduated from college by 4 or 5 years
after high school. However, by 6 years after high, school, a 5.7 percentage
point gap in SUS graduation has opened up.Note that the p-value associated
with this gap is 0.13. This corresponds to a 6-year graduation rate of 48%,
statistically indistinguishable from the 49% 6-year rate for all FIU students
reported in table A1.
Panel C of table 4 presents the effects of threshold-crossing on other

academic outcomes. Threshold-crossing substantially reduces community
college attendance. Threshold-crossers give up about 0.38 years of CC at-
tendance for each additional year of SUS attendance, and 0.52 full-time-
equivalent ðFTEÞ terms of CC attendance for each FTE term of SUS at-
tendance. The ratio of CC to SUS terms is larger in absolute value than the
ratio of CC to SUS years because threshold-crossing students often attend
SUS part time. Despite reduced CC attendance, there is no evidence that
threshold-crossing reduces students’ likelihood of receiving a 2-year de-
gree or vocational certificate. Students above the threshold are no less likely
to express the intent to attend an out-of-state or in-state private college
than students just below the threshold.

C. Earnings Effects

Before turning to regression discontinuity estimates of earnings effects,
it is informative to consider how earnings change over time for students
above and below the admissions threshold. The left panel of figure 7 dis-
plays mean quarterly earnings by year since high school completion for

FIG. 6.—SUS BA receipt by years elapsed since high school. Lines are fitted val-
ues based on the main specification. Dots, shown every .05 grade points, are roll-
ing averages of values within .05 grade points on either side that have the same value
of the threshold-crossing dummy.
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Table 5
Earnings Effects 8–14 Years after High School Completion

Main Controls BW5.5 BW5.15 Local Linear

Reduced-form estimates:
Above cutoff 372* 366** 409** 479** 410**

ð141Þ ð130Þ ð154Þ ð198Þ ð147Þ
Instrumental variables estimates:
FIU admission 1,593* 1,575** 1,665** 1,700** 2,001*

ð604Þ ð584Þ ð645Þ ð621Þ ð696Þ
Years of SUS attendance 815** 792** 833** 966*** 977**

ð276Þ ð262Þ ð271Þ ð305Þ ð306Þ
BA degree 6,547* 6,442* 7,366* 10,769 5,958**

ð2,496Þ ð2,411Þ ð2,998Þ ð5,726Þ ð2,024Þ
N 6,542 6,542 9,659 3,294 6,542

NOTE.—FIU5 Florida International University; SUS5 State University System; BA5 bachelor’s degree.
Standard errors are clustered within grade bins. The p-values are calculated using a clustered wild bootstrap-t
procedure described in Sec. III and app. B. The dependent variable in each regression is average quarterly
earmings in 2005 dollars. The “BW=.15” specification uses observations within .15 grade points above and
below the cutoff and allows for a linear trend in distance from the cutoff. The “BW=.5” specification uses
observations within the .5 grade points on either side of the cutoff and allows for a quartic polynomial in
distance from the cutoff. The “Local Linear” specification is identical to the main specification, but it allows
for linear slope terms in distance from the cutoff that differ above and below the threshold.

* Significant at the 10% level.
** Significant at the 5% level.
*** Significant at the 1% level.

FIG. 8.—Quarterly earnings by distance from GPA cutoff. Lines are fitted val-
ues based on the main specification. Dots, shown every .05 grade points, are roll-
ing averages of values within .05 grade points on either side that have the same
value of the threshold-crossing dummy.
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Human Capital vs. Signaling

I Evidence so far suggests that education increases earnings

I Conventional human capital view is that schooling investments raise
earnings by boosting productivity

I Signaling models (Spence, 1973) provide an alternative explanation for
the return to schooling

I If employers cannot observe ability, schooling may serve as a costly
signal that separates low- and high-ability types, rather than
increasing productivity

I Implies schooling is pure social waste: burns resources to create
inequality

I Distinguishing between human capital and signaling views is essential for
education policy

I Signaling models provide an explanation for “sheepskin effects:” observed
return to schooling is especially large for grade 12

Chris Walters (UC Berkeley) Education and Human Capital



2.1 OLS Estimates of Earnings Functions

Our equation of interest is

log yi = α+ βSi + γ1Expi + γ2Exp
2
i + εi

A few stylized facts to know about earnings functions:

• The OLS return to schooling β is 7 to 8 percent in most data sets

• The empirical relationship between log earnings and schooling is surprisingly linear
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Fig. 2. Relationship between mean log hourly wages and completed education, men aged 40-45 in 1994 1996 
Current Population Survey. Mean education by degree category estimated from February 1990 CPS. 

exceptionally high return to tile 16th year of schooling). Apart f[Olil this feature, Park 
shows that the linear functional form provides a surprisingly good fit to the data. 

Despite economists' general satisfaction with the traditional measure of schooling, in 
the late 1980s the US Census Bureau decided to shift toward a degree-based system of 
measuring post-high-school education (see Kominski and Siegel, 1992). Thus, individuals 
in the 1990 Census and recent Current Population Surveys were no longer asked how 
many years of college they had completed: rather they were asked to report their college 
degrees. This change makes it more difficult to estimate the standard human capital earn- 
ings model with recent US data, or to measure changes in the structure of education-related 
wage differentials. Nevertheless, a concordance between the older years-of-education 
variable and the new degree-based variable can be constructed from a cross-tabulation 
of responses to the two questions included in a supplement to the February 1990 CPS. Use 
of this concordance provides some rather surprising support for the linearity assumption 
embedded in Mincer's original specification. 9 

Fig. 2 shows wage and schooling data for a sample of men age 40-55 in the 1994-1996 
CPS. m Mean log wages for each education group (e.g., men with a junior college or 
Associates degree in an academic program, denoted by "AA-Academic" in the graph) 
are graphed against the mean number of years of education for the group measured in the 
February 1990 concordance. Apart from men who report 11 years of schooling, or 12 years 

9 See Park (1994, 1996) for further analysis of the linearity assumption 
i01 use men in this age range to abstract from the effects of experience. As shown in Fig. la, after age 40 the 

age-earnings profiles of different education groups are roughly parallel. 

• An additively separable quadratic experience profile also fits the data pretty well
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Fig, 1. Age profiles of hourly wags for men (a) and women (b). 

men and women using pooled samples from the 1994, 1995, 1996 March Current Popula- 
tion Surveys. The data represent mean log hourly earnings by single year of age for 
individuals with 10, 12 and 16 years of education. Plotted along with the actual means 
are the fitted values obtained from models like (1/) that include a cubic term in potential 
experience. 5 Comparisons of the fitted and actual data suggest that age-earnings profiles 
for US men and women are fairly smooth, and are reasonably well-approximated by a 
simple variant of the standard human capital earnings function. Nevertheless, even a cubic 
version of Mincer 's  model has some trouble fitting the precise curvature of the age profiles 
for different education groups in recent US data. In particular, the fitted models tend to 
understate the growth rate of earnings for younger college-educated men and women 
relative to high-school graduates, suggesting the need for more flexible interactions 

5 The samples include 102,718 men and 95,360 women age 16-66 with positive potential experience and 
average hourly earnings between $2.00 and $150.00 in 1995 dollars. Fifty-tlu'ee percent of the sample have 10, 
12, or 16 years of schooling and are used in graphs. The regression models are fit by gender to all education groups 
and include a linear education term, a cubic in experience, and a dummy wtriable lbr individuals of black race. 

• This model typically explains around 30% of the variation in log earnings.
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Signaling Value of a High School Diploma: Clark and
Martorell (2014)

I Clark and Martorell (JPE 2014) use an RD design to estimate the causal
effect of high school graduation on earnings

I CM use the fact that students in Texas must pass exams before
graduating high school

I Testing starts in 10th grade and students can try multiple times, but
eventually face a “last chance” exam at the end of 12th grade

I Students who just barely fail vs. barely pass should have similar human
capital, but differ in educational credentials

I RD therefore plausibly identifies the signaling value of a diploma

I There is some “slippage” even with last-chance exams – so the RD is
fuzzy

Chris Walters (UC Berkeley) Education and Human Capital



Park 1999Þ.36 One possible explanation is that these estimates are biased
upward by omitted variables. Omitted variable bias could also explain
why other studies find large returns to diploma receipt conditional on

TABLE 6
Associations between Diploma and Test Scores and Earnings

A. Mean Differences by Diploma Status

Last-Chance
Sample
ð1Þ

Complete Grade 12, No College

All
ð2Þ

T1
ð3Þ

T2
ð4Þ

T3
ð5Þ

Earnings years 7–11 1,814.7 2,867.8 1,780.3 1,752.0 2,385.3
ð138.1Þ ð79.3Þ ð111.8Þ ð176.1Þ ð228.5Þ

Observations 128,460 992,031 210,793 193,970 194,896
Mean earnings without
diploma 12,400 12,673 11,858 13,301 13,538

Difference ð%Þ 14.6 22.6 15.0 13.2 17.6
PDV earnings 8,054.5 8,731.0 7,280.7 7,459.4 10,546.3

ð632.3Þ ð341.9Þ ð501.9Þ ð779.8Þ ð951.4Þ
Observations 37,571 340,028 74,490 63,652 64,548
Mean earnings without
diploma 70,280 69,992 66,466 74,216 73,860

Difference ð%Þ 11.5 12.5 11.0 10.1 14.3

B. Correlation between Test Score and PDV

Earnings in Last-Chance Sample

ð1Þ ð2Þ ð3Þ ð4Þ
Last-chance score 870.6 983.2 968.8 962.7

ð40.0Þ ð60.6Þ ð61.0Þ ð103.6Þ
Last-chance score2 11.3 14.3 14.1

ð3.8Þ ð7.9Þ ð7.4Þ
Last-chance score3 .2 .2

ð.3Þ ð1.0Þ
Last-chance score4 .0

ð.0Þ
Polynomial degree 1 2 3 4
p -value slopes 5 0 .00 .00 .00 .00
R 2 .0126 .0129 .0129 .0129
Adjusted R 2 .0126 .0128 .0128 .0128

Note.—Panel A shows mean differences in earnings by high school diploma status. T1,
T2, and T3 refer to bottom, second-bottom, and third-bottom tertiles of the ability distri-
bution as measured by initial exam scores. No restrictions are placed on the last-chance
sample ði.e., we do not restrict to those with no collegeÞ. Panel B shows estimates of a
regression of PDV earnings through year 11 ðr 5 .05Þ on a polynomial in the last-chance
exam score ðeach column represents a separate regressionÞ for students in the last-chance
sample. All models are estimated with no additional covariates beyond those listed in the
table ðhigh school diploma in panel A and the test score polynomial terms in panel BÞ and
an intercept.

36 Since these studies measure signaling values using hourly wages, it is plausible to
suppose that they would have found even higher signaling values measured using annual
earnings ðthe metric used in this paperÞ. The reason is that these hourly wage differences
are likely magnified by labor supply responses.
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student’s score to be the minimum of these normalized scores. As such,
students pass if and only if this normalized score is nonnegative. The
dots are cell means, and the lines are fitted values from a regression of
diploma receipt on a fourth-order polynomial in the score ðestimated
separately on either side of the passing cutoffÞ. The fraction of students
with a diploma increases sharply as scores cross the passing threshold,
from around 0.4 to 0.9. This implies that barely passing the last-chance
exam substantially increases the probability of earning a diploma.

A. Main Estimates

We use fuzzy regression discontinuity methods ðAngrist and Lavy 1999;
Hahn et al. 2001Þ to exploit this discontinuity. In particular, we use pass-
ing status on the last-chance exam as an instrumental variable for di-
ploma receipt in models that control for flexible functions of the exam
scores ði.e., the variable on the horizontal axis in fig. 1Þ. More formally,
we estimate the following equations:

Yi 5 b0 1 b1Di 1 f ðpiÞ1 εi ; ð1Þ

FIG. 1.—Last-chance exam scores and diploma receipt. The graphs are based on the last-
chance sample. See table 1 and the text. Dots are test score cell means. The scores on the x -
axis are the minimum of the section scores ðrecentered to be zero at the passing cutoff Þ
that are taken in the last-chance exam. Lines are fourth-order polynomials fitted separately
on either side of the passing threshold.
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tus even in the last-chance sample of students who remain in school until
the end of grade 12. We return to this point in our discussion of the find-
ings. Third, there is no indication of any jump in earnings at the passing
cutoff.
The estimated discontinuities reported in table 3 are consistent with

this last assertion. For each earnings outcome ði.e., for each year group-
ingÞ, columns 1–4 report estimated discontinuities for first- through
fourth-order polynomials, where thepolynomials are fully interactedwith
an indicator for passing the last-chance exam. For each outcome, the
estimated discontinuities are small in magnitude, small relative to the
mean earnings of those who barely failed the exam ðcol. 1Þ and statis-
tically indistinguishable from zero. Moreover, the estimates are robust
to the choice of polynomial. Goodness-of-fit statistics suggest that the
second-order polynomial is the preferred specification, and column 5
reports estimates from a model that uses this preferred polynomial and
controls for baseline covariates. In column 6 we report estimates from a
model in which the coefficients of the polynomial are restricted to be the
same on either side of the passing cutoff. These estimates are more pre-

FIG. 2.—Earnings by last-chance exam scores. The graphs are based on the last-chance
samples. See table 1 and the text. Dots are test score cell means. The scores on the x-axis are
the minimum of the section scores ðrecentered to be zero at the passing cutoff Þ that are
taken in the last-chance exam. Lines are fourth-order polynomials fitted separately on
either side of the passing threshold.
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Returns to College Selectivity

I For many students the relevant choice margin is which college
to attend rather than years of schooling or college vs. no
college

I Very large differences in earnings between students attending
different US colleges

I But there is also a lot of selection into college choice

Chris Walters (UC Berkeley) Education and Human Capital



FIGURE II: Children’s Income Ranks by Age of Income Measurement
A. Mean Income Rank by Age and College Tier
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Notes: Panel A plots the mean income rank by age for students who attended colleges in various tiers. Children’s
earnings are measured as the sum of individual wage earnings and self-employment income. We measure childrens’
incomes at each age 25-36 and then assign percentile ranks based on their position in age-specific distribution
of incomes for children born in the same birth cohort. “Ivy-Plus” includes the Ivy-League colleges as well as the
University of Chicago, Stanford University, MIT, and Duke University. “Other Elite” is defined using all other colleges
(excluding the Ivy-Plus group) classified as “Most Competitive” (Category 1) by Barron’s Profiles of American
Colleges (2009). “Other 4-Year” includes all other 4 year institutions excluding the “Ivy plus” and “Other Elite”
groups, measured based on highest degree offered by the institution as recorded in IPEDS (2013). “2-Year” includes
all two-year institutions. Panel B plots the (enrollment-weighted) correlation between the college-level mean rank at
age 36 and the college-level mean rank at ages 25-36. The sample for both panels of this figure comprise the 1978
birth cohort, with individuals assigned to the college they were attending at age 22. Note that children cannot be
linked to parents before the 1980 birth cohort.

Source: Chetty et al. (2020)



FIGURE I: Distributions of Parent Income by College

A. Parental Income Distribution at Selected Colleges

Top 1%

0
20

40
60

80
Pe

rc
en

t o
f S

tu
de

nt
s

1 2 3 4 5
Parent Income Quintile

Harvard University
UC Berkeley
SUNY-Stony Brook
Glendale Community College

B. Parental Income Distribution at Ivy-Plus Colleges
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C. Distribution of Bottom-Quintile Share Across Colleges
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Notes: This figure presents the distribution of parent incomes for children in the 1980-1982 birth cohorts. Panel A
plots the percentage of students with parents in each income quintile at Harvard University, University of California at
Berkeley, State University of New York at Stony Brook, and Glendale Community College, as well as the percentage
of students with parents in the top income percentile for each school. Panel B plots the percentage of students with
parents in each income percentile across all Ivy-Plus colleges, which include the eight Ivy-League colleges as well as
the University of Chicago, Stanford University, MIT, and Duke University. Panel C plots the (enrollment-weighted)
distribution of the fraction of children with parents in the lowest income quintile across all colleges. Parent income is
defined as mean pre-tax Adjusted Gross Income in 2015 dollars during the period in which the child was ages 15-19.
Parent income percentiles are constructed using the parents’ rank in the national income distribution among parents
with a child in the same birth cohort. Children are assigned to colleges using the college that they attended for the
most years between ages 19 and 22, breaking ties by taking the college which a child first attends.



Returns to College Selectivity

I Hard to find good experiments and quasi-experiments that
induce variation in attendance at more vs. less selective
colleges

I Dale and Krueger (2002, 2014) use a matching approach
that compares outcomes for students who applied and were
admitted to the same sets of colleges, but attended different
schools

I Based on a selection on observables assumption: college
choice is independent of potential outcomes conditional on a
set of observed covariates

Chris Walters (UC Berkeley) Education and Human Capital



Potential Outcomes Model

I Return to our causal model with binary treatment Di ∈ {0, 1} and
potential outcomes Yi (1) and Yi (0)

I Suppose treatment isn’t randomly assigned

I As we’ve seen, the observed difference between average outcomes
for individuals with Di = 1 and Di = 0 may be contaminated by
selection bias

I Suppose we also have data on a vector of observed covariates Xi

I Dale and Krueger: Di is attending a more selective college, and Xi

is the lists of colleges where a student applied and was admitted

Chris Walters (UC Berkeley) Education and Human Capital



Selection on Observables

I Selection-on-observables approaches are based on a conditional
independence assumption (CIA):

(Yi (1),Yi (0)) ⊥⊥ Di |Xi

I CIA is also called “unconfoundedness,” “ignorability,” “exogeneity”

I The idea is that while potential outcomes and treatment may not
be independent in general, they are independent conditional on a set
of observed covariates - treatment is as good as random conditional
on Xi

I CIA necessarily holds in stratified RCTs, and may hold in
non-experimental data with the right controls

Chris Walters (UC Berkeley) Education and Human Capital



Full Covariate Matching
I Under CIA an obvious approach is to simply compare treatment and

control groups conditional on the covariates

I Let ∆(x) denote the observed treatment/control difference for a
particular value of the covariates:

∆(x) ≡ E [Yi |Di = 1,Xi = x ]− E [Yi |Di = 0,Xi = x ]

I CIA implies

∆(x) = E [Yi (1)|Di = 1,Xi = x ]− E [Yi (0)|Di = 0,Xi = x ]

= E [Yi (1)− Yi (0)|Xi = x ]

≡ ATE(x).

I Covariate-specific treatment/control contrasts capture conditional
average treatment effects

I By computing ∆(x) for every value of x and then weighting appropriately,
we can obtain any causal effect of interest. This is full covariate
matching

Chris Walters (UC Berkeley) Education and Human Capital



Computing Treatment Effects

I Under CIA, we can use full covariate matching to compute average
treatment effects:

ATE =
∑

x Pr [Xi = x ] ∆(x)

TOT =
∑

x Pr [Xi = x |Di = 1] ∆(x)

TNT =
∑

x Pr [Xi = x |Di = 0] ∆(x)

Chris Walters (UC Berkeley) Education and Human Capital



OLS Regression as Matching

I Consider an OLS regression of outcomes on a treatment indicator,
controlling for indicators for every value of the covariates Xi :

Yi = a + bDi +
∑

x πx1{Xi = x}+ ei

I This regression is saturated in the controls: there is a different coefficient
for every value of Xi

I With saturated controls, the OLS coefficient is

b =
∑

x

(
Pr[Xi=x]Var(Si |Xi=x)∑

x′ Pr[Xi=x′]Var(Si |Xi=x′)

)
∆(x).

I OLS with saturated controls is a version of full covariate matching

I “Saturate-and-weight” theorem (Angrist and Pischke, 2009)

I Under CIA, generates a variance-weighted average treatment effect

Chris Walters (UC Berkeley) Education and Human Capital



CIA Methods

I In practice, full covariate matching may not be feasible (e.g. many-valued
or continuous controls)

I There are a variety of approaches to controlling for Xi in such cases:

I OLS with additive controls

I Nearest-neighbor or kernel matching

I Propensity score matching/reweighting

I These methods are not qualitatively different

I All are approaches to adjusting for covariates

I Coincide when the controls are flexible enough

I Key to the research design is the underlying CIA assumption, not the
particular method used to control for Xi

Chris Walters (UC Berkeley) Education and Human Capital



Returns to College Selectivity: Dale and Krueger

I Dale and Krueger (QJE 2002, JHR 2014) take a matching/selection on
observables approach to estimating the returns to college selectivity

I Research design: compare students who applied to, and were admitted by,
the same colleges, but chose to attend different schools

I Intuition: Application choices capture a lot of students’ information
about their own ability, while admission decisions capture a lot of
colleges’ information about student ability

I Data: College and Beyond (C&B)

I Survey of students enrolled at 34 colleges, more selective than the
US average

I 2014 paper matches C&B to administrative earnings data from the
Social Security Administration (SSA)

Chris Walters (UC Berkeley) Education and Human Capital



TABLE I
ILLUSTRATION OF HOW MATCHED-APPLICANT GROUPS WERE CONSTRUCTED

Student

Matched-
applicant

group

Student applications to college

1
tzi
,...,
n'-:.,)

Application 1 Application 2 Application 3 Application 4

School
average

SAT

School
admissions

decision

School
average

SAT

School
admissions

decision

School
average

SAT

School
admissions

decision

School
average

SAT

School
admissions

decision

Student A 1 1280 Reject 1226 Accept* 1215 Accept na na 0

Student B 1 1280 Reject 1226 Accept 1215 Accept* na na
Student C 2 1360 Accept 1310 Reject 1270 Accept* 1155 Accept 0
Student D 2 1355 Accept 1316 Reject 1270 Accept* 1160 Accept txi
Student E 2 1370 Accept* 1316 Reject 1260 Accept 1150 Accept cn
Student F Excluded 1180 Accept* na na na na na na tti

t-,
Student G Excluded 1180 Accept* na na na na na na tzi

Student H 3 1360 Accept 1308 Accept* 1260 Accept 1160 Accept P--3
Student I 3 1370 Accept* 1311 Accept 1255 Accept 1155 Accept

tzi
Student J 3 1350 Accept 1316 Accept* 1265 Accept 1155 Accept n
Student K 4 1245 Reject 1217 Reject 1180 Accept* na na 0

t--,
Student L 4 1235 Reject 1209 Reject 1180 Accept* na na t..-
Student M 5 1140 Accept 1055 Accept* na na na na tzi

0
Student N 5 1145 Accept* 1060 Accept na na na na tzi

Student 0 No match 1370 Reject 1038 Accept* na na na na

* Denotes school attended.
na = did not report submitting application.
The data shown on this table represent hypothetical students. Students F and G would be excluded from the matched-applicant subsample because they applied to only one school

(the school they attended). Student 0 would be excluded because no other student applied to an equivalent set of institutions.
C71
O
CAD
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TABLE V
LINEAR REGRESSIONS PREDICTING WHETHER STUDENT ATTENDED MOST SELECTIVE

COLLEGE FOR C&B SAMPLE OF STUDENTS ADMITTED TO MORE THAN ONE SCHOOL

Parameter estimates

Matched-applicant
model*

Self-revelation
model

Predicted log (parental income) —0.024 —0.037
(0.026) (0.030)

Own SAT score/100 0.020 0.021
(0.005) (0.007)

Female 0.034 0.033
(0.014) (0.028)

Black 0.056 —0.005
(0.026) (0.037)

Hispanic —0.019 0.042
(0.064) (0.074)

Asian 0.019 0.074
(0.026) (0.050)

Other/missing race —0.095 0.010
(0.093) (0.081)

High school top 10 percent —0.014 —0.020
(0.021) (0.028)

High school rank missing —0.035 —0.040
(0.036) (0.058)

Athlete 0.056 0.059
(0.023) (0.045)

Average SAT score/100 of schools —0.122
applied to (0.040)

One additional application 0.149
(0.037)

Two additional applications 0.076
(0.033)

Three additional applications 0.020
(0.038)

N 5536 8257

Only students who were accepted by more than one school are included in the sample.
Each equation also includes a constant term. Standard errors are in parentheses, and are robust to

correlated errors among students who attended the same institution.
Equations are estimated by WLS; weights are designed to make the sample representative of the

population of students at the C&B institutions.
* Applicants are matched by the average SAT score (within 25 point intervals) of each school at which

they were accepted and rejected. Model includes 1,079 dummy variables indicating each set of matched
applicants.

dom, as students with higher values of an observed measure of
ability choose to attend more selective schools. If students with
higher values of unobserved ability also choose to attend more
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TABLE III
LOG EARNINGS REGRESSIONS USING COLLEGE AND BEYOND SURVEY,

SAMPLE OF MALE AND FEMALE FULL-TIME WORKERS

Model

Basic model:	 Matched-	 Alternative
no selection	 applicant	 matched-applicant

controls	 model	 models
Self-

Full	 Restricted Similar school- Exact school-	 Barron's	 revelation
sample sample	 SAT matches* SAT matches** matches***	 model

Variable 1 2 3 4 5 6

School-average SAT 0.076 0.082 -0.016 -0.106 0.004 -0.001
score/100 (0.016) (0.014) (0.022) (0.036) (0.016) (0.018)

Predicted log(parental 0.187 0.190 0.163 0.232 0.154 0.161
income) (0.024) (0.033) (0.033) (0.079) (0.028) (0.025)

Own SAT score/100 0.018 0.006 -0.011 0.003 -0.005 0.009
(0.006) (0.007) (0.007) (0.014) (0.005) (0.006)

Female -0.403 -0.410 -0.395 -0.476 -0.400 -0.396
(0.015) (0.018) (0.024) (0.049) (0.017) (0.014)

Black -0.023 -0.026 -0.057 -0.028 -0.057 -0.034
(0.035) (0.053) (0.053) (0.049) (0.039) (0.035)

Hispanic 0.015 0.070 0.020 -0.248 0.036 0.007
(0.052) (0.076) (0.099) (0.206) (0.066) (0.053)

Asian 0.173 0.245 0.241 0.368 0.163 0.155
(0.036) (0.054) (0.064) (0.141) (0.049) (0.037)

Other/missing race -0.188 -0.048 0.060 -0.072 -0.050 -0.192
(0.119) (0.143) (0.180) (0.083) (0.134) (0.116)

High school top 10 0.061 0.091 0.079 0.091 0.079 0.063
percent (0.018) (0.022) (0.026) (0.032) (0.024) (0.019)

High school rank 0.001 0.040 0.016 0.029 0.025 -0.009
missing (0.024) (0.026) (0.038) (0.066) (0.027) (0.022)

Athlete 0.102 0.088 0.104 0.169 0.093 0.094
(0.025) (0.030) (0.039) (0.096) (0.033) (0.024)

Average SAT score/ 0.090
100 of schools
applied to

(0.013)

One additional 0.064
application (0.011)

Two additional 0.074
applications (0.022)

Three additional 0.112
applications (0.028)

Four additional 0.085
applications (0.027)

Adjusted R2 0.107 0.110 0.112 0.142 0.106 0.113
N 14,238 6,335 6,335 2,330 9,202 14,238

Each equation also includes a constant term. Standard errors are in parentheses and are robust to
correlated errors among students who attended the same institution.

Equations are estimated by WLS and are weighted to make the sample representative of the population
of students at the C&B institutions.

* Applicants are matched by the average SAT score (within 25 point intervals) of each school at which
they were accepted or rejected. This model includes 1,232 dummy variables representing each set of matched
applicants.

** Applicants are matched by the average SAT score of each school at which they were accepted or
rejected. This model includes 654 dummy variables representing each set of matched applicants.

*** Applicants are matched by the Barron's category of each school at which they were accepted or
rejected. This model includes 350 dummy variables representing each set of matched applicants.
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Table 3 

Comparing Parameter Estimates of the Effect of College Average SAT Score on Earnings Using C&B and SSA Data, 1976 Cohort 

 

 

C&B samplea 

 

Merged C&B and SSA sampleb 

 

Log 1995 C&B 
earnings 

 

Log 1995 C&B 
earnings 

Log 1995 SSA 
earnings (topcoded) 

Log 1995 SSA 
earnings (not 

topcoded) 

Log (median of 1993 
to 1997 earnings), 

SSA data 

Log (median of 1993 
to 1997 earnings), SSA 

data  

  1 2 

 

3 4 5 6 7 8 9 10 11 12 

 

Basic 
Self –

revelation 

 

Basic 
Self -

revelation Basic 
Self –

revelation Basic 
Self -

revelation Basic 
Self –

revelation Basic 
Self –

revelation 
Parameter 
estimate for 
school 
SAT/100 

0.076 -0.001 
 

0.068 -0.007 0.048 -0.021 0.058 -0.015 0.059 -0.025 0.061   -0.023 
(.008) (.012) 

 
(.007) (.012) (.009) (.014) (.009) (.015) (.008) (.012) (.007) (.012) 

{.016} {.018} 
 

{.014} {.018} {.016} {.018} {.017} {.016} {.012} {.013} {.013} {.014} 
N 14,238   10,886 10,886 10,886 11,932 12,075 

Sample 
restriction 

Full-time workers 
(according to  C&B 

survey) 
 

Full-time workers 
(according to C&B 

survey) 

Full-time workers 
(according to C&B 

survey) 

Full-time workers 
(according to C&B 

survey) 

Median earnings 
greater than zero 

(SSA data) 

Median earnings 
greater than $13,822 in 

2007 dollars (SSA 
data) 

Source:  C&B Survey and SSA’s Detailed Earnings Records. 

Notes: Each cell corresponds to an estimate drawn from a different weighted least squares regression that controlled for race, 
student SAT score, high school GPA, dummies for whether high school GPA or SAT score is missing, predicted parental 
income, and student athlete; the self-revelation model also controls for the average SAT score of the schools to which the 
student applied and for the number of applications the student submitted. Two sets of standard errors are reported, one in 
parentheses and one in brackets; those in brackets are robust to correlated errors among students who attended the same 
colleges. The top earnings category for the C&B data (more than $200,000) was topcoded at $242,662; SSA earnings data in 
columns 5 and 6 were topcoded in the same way. 

aSample includes survey respondents from the 30 C&B institutions analyzed in Dale and Krueger (2002). 
bSample includes survey respondents from the 27 C&B institutions participating in this study that were matched to SSA data. 
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Table 8 

Effect of School Characteristics on 2007 Earnings (Black and Hispanic Students Only, 1989 
Cohort) 

 

  School SAT score/100   Log net tuition   Barron’s index 

Dependent variable Basic 
Self-

revelation   Basic 
Self-

revelation   Basic 
Self-

revelation 

All black and Hispanic students 

Parameter estimate for 0.067 0.076 
 

0.173 0.138 
 

0.063 0.049 
effect of quality measure  (.019) (.032) 

 
   (.056)  (.071) 

 
(.022)  (.036) 

on log 2007 earnings {.028} {.042} 
 

  {.076} { .092} 
 

{.033}  {.046} 

Sample size 1,508     1,508     1,508   

All black and Hispanic students, excluding historically black colleges and universities 

Parameter estimate for 0.122 0.120 
 

0.187 0.116 
 

0.158 0.143 
effect of quality measure  (.030) (.042) 

 
(.064) (.079) 

 
(.040) (.053) 

on log 2007 earnings {.035} {.056}   {.081} {.101}   {.038} {.051} 

Sample size 995     995     995   

Source: C&B Survey and Social Security Administration’s Detailed Earnings Records. 

Notes: Parameter estimates drawn from weighted least squares regression models. Weights 
were used to make the sample representative of the population of students at C&B 
schools. Both the basic and self-revelation models control for race, sex, predicted 
parental income, student SAT score, student high school grade point average, dummy 
variables indicating if high school grade point average or student SAT score was 
missing, and whether the student was a college athlete; the self-revelation model also 
controls for the average SAT score of the schools to which the student applied and 
dummies for the number of applications the student submitted. Two sets of standard 
errors are reported, one in parentheses and one in brackets. Standard errors in brackets 
are robust to correlated errors among students who attended the same institution.  The 
Barron’s measure is coded as a continuous measure, ranging from 2 (Competitive 
colleges) to 5 (Most Competitive colleges) for our sample. Individuals are excluded if 
they earned less than $13,822 in 2007. 



Updating Dale/Krueger: Mountjoy and Hickman (2020)

I A recent paper by Mountjoy and Hickman (2020) updates the
Dale/Krueger strategy using administrative data from Texas

I Rather than looking at overall return to selectivity, estimate a
“value-added” model with a different effect for every college, conditioning
on DK application/admission controls

I Relate college value-added to selectivity and other institution
characteristics

I Consistent with DK, Mountjoy and Hickman find limited returns to
selectivity

I Estimated college value-added is positively correlated with other inputs
like instructional expenditures and faculty/student ratio

Chris Walters (UC Berkeley) Education and Human Capital



Figure 3: Validating the Matched Applicant Approach: Ability Balance across College Treatments

UT-Dallas
TAMU

UT-Tyler
Texas Tech

Houston
TAMU-Galveston

UT-Arlington
Texas State-San Marcos

North Texas
West Texas A&M

UT-San Antonio
Sam Houston State

TAMU-Corpus Christi
UT-Permian Basin

Stephen F. Austin State
TAMU-Commerce

Tarleton State
Midwestern State

Angelo State
Lamar

TAMU-International
Texas Woman's

UT-El Paso
UT-Pan American

TAMU-Kingsville
Sul Ross State

Houston-Downtown
Prairie View A&M

Texas Southern
-2 -1.5 -1 -.5 0

10th Grade Standardized Math Score
Balance Relative to UT-Austin (UT-A Mean = .68)

Raw Means Baseline Specification:
Admission Portfolio FEs Only

TAMU
UT-Dallas

UT-Tyler
Texas Tech

Texas State-San Marcos
North Texas

TAMU-Galveston
UT-Arlington

Houston
Sam Houston State

TAMU-Corpus Christi
Stephen F. Austin State

UT-San Antonio
West Texas A&M

TAMU-Commerce
Texas Woman's

Midwestern State
Tarleton State

UT-Permian Basin
Angelo State

Lamar
UT-El Paso

TAMU-International
UT-Pan American

TAMU-Kingsville
Sul Ross State

Houston-Downtown
Prairie View A&M

Texas Southern
-2 -1.5 -1 -.5 0

10th Grade Standardized Reading Score
Balance Relative to UT-Austin (UT-A Mean = .55)

Raw Means Baseline Specification:
Admission Portfolio FEs Only

Notes: Each set of point estimates and robust 95% confidence intervals come from regressions of individual student standardized
test scores on college treatment indicators, omitting UT-Austin as the reference treatment (signified by the vertical line at
zero). The UT-Austin mean appears in parentheses below each plot. The Raw Means specification controls only for cohort
fixed effects. The Baseline Specification controls solely for college admission portfolio fixed effects (and cohort fixed effects).
See Appendix Table B.3 for the corresponding numerical estimates.
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Figure 2: Baseline Value-Added Estimates and Comparison to Other Approaches
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Notes: Each set of point estimates and robust 95% confidence intervals come from regressions of individual student outcomes
on college treatment indicators, omitting UT-Austin as the reference treatment (signified by the vertical line at zero). The
UT-Austin outcome mean appears in parentheses below each plot. All specifications control for cohort fixed effects. The
Raw Means specification controls for nothing else. The Typical Controls specification adds controls for demographics (gender,
race, FRPL), high school academic preparation (10th grade test scores, advanced coursework, and top high school GPA decile
indicator), and behavioral measures of non-cognitive skills (high-school attendance, disciplinary infractions, and an indicator
for ever being at risk of dropping out). The Baseline Specification controls solely for college admission portfolio fixed effects
(and cohort fixed effects). See Appendix Tables B.1 and B.2 for the corresponding numerical estimates.
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Figure 5: Predicting Raw Mean Earnings vs. Causal Value-Added with Selectivity
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Notes: The top panel plots raw mean earnings at each college, relative to UT-Austin, against the average SAT score of
incoming students at each college. The bottom panel replaces the vertical axis with our main value-added estimates from
Section 4. Correlations, regression slopes, and circle sizes are weighted by student enrollment.
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Figure 5: Predicting Raw Mean Earnings vs. Causal Value-Added with Selectivity
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Figure 7: Early Career Dynamics of the Return to College Selectivity
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Notes: Each point estimate and robust 95% confidence interval comes from a separate regression of individual log student
earnings, measured at a given number of years since college entry, on the mean incoming SAT score of the student’s college.
The coefficients are scaled to correspond to a 100-point increase in mean SAT scores. All specifications control for cohort fixed
effects. The Raw Specification controls for nothing else. The Main Specification controls for college admission portfolio fixed
effects and our core set of covariate controls: gender, FRPL, race, 10th grade test scores, and high school attendance.

students who attend higher “quality” colleges. A majority of papers in this vein—e.g., Brewer et al. (1999),

Black and Smith (2006), Long (2008), and Dillon and Smith (2018)—have found consistent evidence for

strong returns, while Dale and Krueger (2002, 2014) stand out as a notable exception. Our results highlight

the importance of carefully defining college “quality,” and provide some insight on why different strands

of the literature have reached different conclusions. While we confirm Dale and Krueger (2002, 2014)’s

main conclusion that college selectivity per se yields no meaningful economic returns (beyond a short-lived

initial premium), this does not imply that college-level value-added differentials—a more flexible notion

of quality—are absent. Rather, we document variation in causal value-added across colleges, and simply

show that selectivity is orthogonal to it. More broadly, by letting each college have its own unique impact

on student outcomes, our value-added approach lets the data determine the ordering of the quality space,

rather than imposing an ex-ante ordering based on a single-dimensional college observable.30

To conclude our results on selectivity, Figure 8 explores two additional outcomes: completing any

BA, and completing a BA in a STEM field. The two left panels show that, similar to earnings, raw BA

completion rates exhibit a very strong correlation with selectivity (top left), but this relationship weakens

dramatically when replacing raw outcomes with causal value-added (bottom left). A 100-point increase

30Black and Smith (2006) emphasize the need for multiple proxies to mitigate measurement error in univariate constructions
of college quality. In the following subsection we show that our causal value-added estimates do covary with non-peer college
inputs, while at the same time, they do not correspond perfectly to any one-dimensional observable college covariates.
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Figure 9: Peer vs. Non-Peer Inputs and Value-Added
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Notes: The top left panel plots earnings value-added against an index of non-peer inputs, constructed as the predicted factor
from an enrollment-weighted one-factor model of instructional expenditures, full-time faculty share, tenure-track faculty share,
and faculty-student ratio. The top right panel plots this non-peer inputs index against the average incoming SAT score at each
college. The bottom left panel plots earnings value-added against the residuals of a college-level regression of the non-peer
inputs index on average SAT scores. Likewise, the bottom right panel plots earnings value-added against the residuals of
a college-level regression of average SAT scores on the non-peer inputs index. All correlations, regressions, and circles are
weighted by student enrollment.

variation. The bottom left plot shows that the positive relationship between value-added and non-peer

inputs strengthens appreciably when controlling for selectivity: the partial correlation jumps to 0.67, and

the slope nearly doubles to $1,438 in extra predicted value-added for each standard deviation increase in

non-peer inputs, residualized on selectivity. The bottom right panel shows the joint implication of this

result and those from the previous subsection: selectivity, residualized on non-peer inputs, is actually a

negative predictor of earnings value-added, perhaps reflecting a within-campus competition channel that

becomes more apparent when comparing colleges with different peer composition but similar non-peer

resources. These results further challenge popular notions of measuring college “quality” as positively-

weighted indices of peer and non-peer inputs: although peer and non-peer inputs broadly move together,

they each offer contrasting partial correlations with causal college value-added.
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Self-selection

I Classic idea in labor economics: Self-selection

I Individuals choose between opportunities based on heterogeneous
unobserved returns

I We’ve already encountered some versions of this in the context of
the returns to schooling

I Applications: educational choice, occupational choice, labor force
participation, immigration

I We’ll start with general discussion of self-selection models and
related econometrics, then look at some applications

Chris Walters (UC Berkeley) Self-Selection



Roy Model

I Roy (1951) sought to understand the influence of occupational
choice on the observed distribution of earnings

I Consider individuals indexed by i choosing a binary variable
Di ∈ {0, 1} indicating occuption, e.g. hunting vs. fishing

I Yi1 and Yi0 are i ’s potential earnings associated with each choice

I Realized earnings are Yi = Yi0 + (Yi1 − Yi0)Di

I Pure Roy (1951) model: Individuals want to maximize Yi , so choose
the occupation with the best potential outcome:

Di = 1 {Yi1 > Yi0}

Chris Walters (UC Berkeley) Self-Selection



Roy Model

I Questions of interest:

I Will the best hunters hunt?

I Will the best fishermen/women fish?

I Suppose potential earnings are given by

Yid = pdSid , d ∈ {0, 1}

I Sid is skill in occupation d , and pd is price of output

I A worker who is indifferent between the two occupations satisfies

log Si1 = log p0 − log p1 + log Si0

Chris Walters (UC Berkeley) Self-Selection
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Roy Model: Special Cases

I Suppose there is no variation in potential earnings in sector 0, so
Si0 = S̄0 ∀i

I In this case the decision rule is

Di = 1
{
Si1 ≥

(
p0

p1

)
S̄0

}
I Those with the most skill in sector 1 choose Di = 1

I Everyone with Di = 1 earns more than anyone with Di = 0

Chris Walters (UC Berkeley) Self-Selection
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Roy Model: Special Cases

I Suppose we have perfect correlation between log Si0 and log Si1:

log Si1 = α0 + α1 log Si0, α1 > 0

I This is a one-factor model

I Decision rule:

Di = 1 {α0 + α1 log Si0 ≥ log p0 − log p1 + log Si0}

= 1 {(α1 − 1) log Si0 ≥ log p0 − log p1 − α0}

I Higher skilled choose Di = 1 iff α1 ≥ 1

I Note that Var(log Si1) = α2
1Var(log Si0). Higher skilled choose the sector

with higher variance of skill

Chris Walters (UC Berkeley) Self-Selection
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Generalized Roy Model

I Generalized Roy model (Eisenhauer et al., 2015): Preference for
alternative d depends on Yid as well as a heterogeneous cost Cid :

Di = 1 {Yi1 − Ci1 > Yi0 − Ci0}

I Allows us to ask richer questions about selection on both levels and gains

I Is average Yi1 higher or lower for individuals that choose Di = 1?

I Is average Yi0 higher or lower for individuals that choose Di = 1?

I Are average gains Yi1 − Yi0 larger or smaller for individuals that
choose Di = 1?

I Close link between generalized Roy model and econometric models of
treatment effect heterogeneity
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Self-Selection Example: Labor Supply

I Simple example of a selection model: Labor supply problem

max
c,h

c − v(h) s.t. c ≤ wh + V

I At interior solutions:

v ′(h∗) = w

I At corner solutions:

v ′(0) > w

I Reservation wage is w∗ = v ′(0); work if w ≥ w∗

Chris Walters (UC Berkeley) Self-Selection



Labor Supply Selection

I Suppose individuals’ reservation wages are described by

w∗i = X ′i θ + ηi

I Offered wages are

wi = X ′i β + εi

I Assume E [ηi |Xi ] = E [εi |Xi ] = 0, so X ′i θ and X ′i β are population CEFs

I Individual i works (Di = 1) when

X ′i β + εi ≥ X ′i θ + ηi

⇐⇒ X ′i (β − θ) + (εi − ηi ) ≥ 0

⇐⇒ X ′i ψ ≥ vi
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Labor Supply Selection

Di = 1{X ′i ψ ≥ vi}

I D∗i = X ′i ψ − vi is a latent index determining Di

I We observe outcomes in the sample with Di = 1. CEF in this sample is

E [wi |Xi ,Di = 1] = X ′i β + E
[
εi |Xi , vi < X ′i ψ

]
I If εi and vi are independent, the last term is E [εi |Xi ] = 0 and OLS recovers β

I This is equivalent to saying we have a random sample – selection into the
sample is unrelated to outcomes

I If εi and vi aren’t independent, we’ll have E [εi |Xi ,Di = 1] 6= 0, and OLS on
observed sample is inconsistent
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Selection with Normality

E [wi |Xi ,Di = 1] = X ′i β + E [εi |Xi , vi < X ′i ψ]

I Suppose that εi and vi are joint normal:

(εi , vi )|Xi ∼ N

(
(0, 0),

[
σ2
ε ρσε

ρσε 1

])

I Then we can work out the expected error conditional on Di = 1

I Under normality, conditional expectations are linear:

E [εi |Xi , vi ] = ρσεvi .
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Mills Ratios

I The CEF of wi in the observed sample is

E [wi |Xi ,Di = 1] = X ′i β + E [εi |Xi , vi < X ′i ψ]

= X ′i β + ρσεE [vi |Xi , vi < X ′i ψ]

= X ′i β + ρσε · λ (X ′i ψ)

I Here λ(x) is the conditional expectation of a standard normal random
variable truncated from above, also known as the inverse Mills ratio:

λ(x) = − φ(x)

Φ(x)
.
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Heckit

E [wi |Xi ,Di = 1] = X ′i β + ρσε · λ (X ′i ψ)

I ψ can be estimated via a first-step probit of Di on Xi

I Then run a second-step regression in the Di = 1 sample:

wi = X ′i β + ρσε · λ
(
X ′i ψ̂

)
+ ui

I The Mills ratio is a control function or selection correction that
accounts for selection into the observed sample

I This is Heckman’s (1974, 1976, 1979) two-step selection correction
(“Heckit”)
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Heckit Identification

I Suppose Xi is just a constant. Then the second-step regression is

wi = β + ρσε · λ
(
ψ̂
)

+ ui

= δ + ui

I The constant here is δ = (β + ρσελ(ψ)), so β and ρσε are not separately
identified

I More generally, if outcome and selection equations are saturated in Xi ,
main effects and Mills ratio term are not separately identified

I This is unattractive – there is typically no reason to believe E [wi |Xi ] is
linear in Xi
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Heckit Identification

I Solution: Suppose there are additional variables Zi in the selection
equation, so

Di = 1 {X ′i ψ + Z ′i π > vi}

I Assume E [εi |Xi ,Zi ] = 0. Then second-step CEF is

E [wi |Xi ,Zi ,Di = 1] = X ′i β + ρσελ (X ′i ψ + Z ′i π)

I If π 6= 0 this can be estimated even if Xi is saturated since variation in Zi

separately identifies the selection term

I Identifying a Heckit without relying on functional form restrictions
requires finding a Zi that shifts the probability of selection but is
excludable from the outcome equation

I Sound familiar?
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Heckit with Instruments

I The requirements for a good Zi in the Heckit model are the same as
the requirements for a good instrument when we’re doing IV

I This is not a coincidence. Control function and IV are methods for
solving the same problem
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Selection and Treatment Effects

I To see the connection between control function and IV, consider a
heterogeneous treatment effects model:

Yi (1) = α1 + εi1

Yi (0) = α0 + εi0

I Here αd = E [Yi (d)] so E [εid ] = 0

I If we had random samples of Yi (1) and Yi (0) we could run OLS
(i.e., take means) and estimate ATE = α1 − α0

Chris Walters (UC Berkeley) Self-Selection



Selection and Treatment Effects

Yi (1) = α1 + εi1

Yi (0) = α0 + εi0

I But we only observe Yi (1) when Di = 1, and we only observe Yi (0) when
Di = 0

I These are not random samples if treatment is not as good as randomly
assigned

I We therefore have sample selection problems for both Yi (1) and Yi (0)

I Treatment effects estimation is a two-sided sample selection problem

I An instrument is needed to solve this problem
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IV and Selection Models

I We have seen that IV and control function are two methods for
solving the same problem

I How should we think about the relationship between parametric
sample selection models and the nonparametric LATE model of
Imbens and Angrist (1994)?

I How should we think about the relationship between estimates
produced by IV and control function?
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IV and Selection Models

I To better understand the relationships between latent index models and
the LATE model, consider a treatment effects model with a binary
treatment and binary instrument:

Yi (1) = α1 + εi1

Yi (0) = α0 + εi0

I Suppose selection into the Di = 1 sample follows the rule

Di = 1 {ψ0 + ψ1Zi > vi}

(εi1, εi0, vi ) ⊥⊥ Zi

vi ∼ F (v)

I F (v) is some strictly increasing parametric distribution function (e.g. the
normal CDF)
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IV and Selection Models

Yi (1) = α1 + εi1

Yi (0) = α0 + εi0

Di = 1 {ψ0 + ψ1Zi > vi}

(εi1, εi0, vi ) ⊥⊥ Zi

vi ∼ F (v)

I This selection model appears to be more restrictive than the LATE
model, which involves no distributional assumptions
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LATE Model and Selection Model: Equivalence

I Vytlacil (2002) shows that this selection model is the LATE model,

in the sense that

I The selection model satisfies the LATE assumptions

I The LATE assumptions imply that the selection model
rationalizes the observed and counterfactual outcomes and
treatments
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LATE Model and Selection Model: Equivalence

I The first part of the proof is straightforward. Note that

Yi (0) = α0 + εi0, Yi (1) = α1 + εi1,

Di (0) = 1 {ψ0 > vi} , Di (1) = 1 {ψ0 + ψ1 > vi}

I Yi (d) and Di (z) are functions of (εi0, εi1, vi ) which are independent of Zi ,
so independence/exclusion are satisfied

I If ψ1 > 0, then Di (1) ≥ Di (0) and monotonicity is satisfied

I Pr [Di (1) > Di (0)] = Pr [ψ0 + ψ1 > vi ≥ ψ0] > 0 since F (·) is strictly
increasing, so there is a first stage

I The selection model therefore satisfies the assumptions of the LATE
framework
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LATE Model and Selection Model: Equivalence

I To show that the LATE model implies the selection model representation,
first note that with a binary Zi the “parametric” assumption vi ∼ F (v) is
not really a restriction

I For any strictly increasing distribution function G(·) we can write

Di = 1
{
G−1 (F (ψ0 + ψ1Zi )) > G−1(F (vi ))

}
= 1

{
ψ̃0 + ψ̃1Zi > ṽi

}
,

I where

ψ̃0 = G−1 (F (ψ0)), γ̃1 = G−1(F (ψ0 + ψ1))− G−1(F (ψ0))

ṽi = G−1(F (vi ))
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LATE Model and Selection Model: Equivalence

Di = 1
{
ψ̃0 + ψ̃1Zi > ṽi

}
,

I The new selection error ṽi = G−1(F (vi )) has CDF G(·)

I The same selection model can be represented with any distribution
function

I It is therefore sufficient to show that the LATE model implies a selection
model representation for SOME distribution function
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LATE Model and Selection Model: Equivalence

I Let ui ∼ U(0, 1) be independent of Zi , and define

Ui =


ui × Pr [Di (0) = 1] , Di (0) = 1

Pr [Di (0) = 1] + ui × Pr [Di (1) > Di (0)] , Di (1) > Di (0)

Pr [Di (1) = 1] + ui × Pr [Di (1) = 0] , Di (1) = 0

I Then we can write

Di = 1 {ψ0 + ψ1Zi > Ui}

I Here ψ0 = Pr [Di (0) = 1], ψ1 = Pr [Di (1) > Di (0)], and Ui ∼ U(0, 1)
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LATE Model and Selection Model: Equivalence

I Ui is uniform on (0, ψ0) for always takers, on (ψ0, ψ0 + ψ1) for compliers,
and on (ψ0 + ψ1, 1) for never takers

I This model implies the same observed and counterfactual treatment
choices and outcomes as the LATE model

I We can equivalently represent the selection model with the distribution
F (·) by applying F−1(·) to both sides of the treatment selection equation

I We have therefore shown that the LATE model and the selection model
are equivalent: They are two ways of representing the same information

I Vytlacil (2002) shows that this applies to the more general LATE model
with multiple instruments
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IV and Control Function

I Selection model with uniform representation of selection error:

Yi (1) = α1 + εi1

Yi (0) = α0 + εi0

Di = 1 {ψ0 + ψ1Zi > Ui}

Ui ∼ U(0, 1)

(εi1, εi0,Ui ) ⊥⊥ Zi

I We’ve shown that this is the LATE model

I Does this mean that IV and control function estimates of treatment
effects are also equivalent?
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IV and Control Function

I No. In fact, we cannot estimate this model by control function without
further assumptions

I To form control functions we need to specify E [εid |Ui ], which we haven’t
done

I Control function yields estimates of α1 and α0, and therefore the ATE
α1 − α0

I The ATE is not identified in the LATE model – we can only get the LATE

I We have to assume more if we want to extrapolate from LATE to ATE
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Complier Potential Outcomes

I To understand control function extrapolation, it’s useful to start with
what is nonparametrically identified in the LATE framework

I We know the average treatment effect for compliers is identified (LATE
theorem)

I It turns out that other features of complier potential outcomes are
identified as well (Imbens and Rubin, 1997; Abadie, 2003)

I Individuals with Di = Zi = 1 are a mix of always takers and compliers:

E [Yi |Di = Zi = 1] =

(
πAT

πAT + πC

)
E [Yi (1)|AT ] +

(
πC

πAT + πC

)
E [Yi (1)|C ]
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Complier Potential Outcomes

I Always taker outcome is observed directly as

E [Yi |Di = 1,Zi = 0] = E [Yi (1)|AT ]

I Population shares are also identified since

πAT = Pr[Di = 1|Zi = 0]

πC = Pr[Di = 1|Zi = 1]− Pr[Di = 1|Zi = 0]

I We can then back out the average complier Yi (1) as

E [Yi (1)|C ] =

(
πAT + πC

πC

)
E [Yi |Di = Zi = 1]−

(
πAT

πC

)
E [Yi (1)|AT ]

I By the same reasoning, we can back out E [Yi (0)|C ] from the
complier/never taker mix with Di = Zi = 0
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Control Function Extrapolation

I In the LATE framework we can identify:

I E [Yi (1)|AT ]

I E [Yi (0)|NT ]

I E [Yi (1)|C ]

I E [Yi (0)|C ]

I We can therefore identify means of Yi (1) and Yi (0) for two groups
each

I In selection model notation, this yields two points on the curve
E [Yi (d)|Ui ] for each potential outcome
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Extrapolation from LATE

I Without further assumptions we cannot identify any other
treatment effects

I But by specifying a functional form for E [Yi (d)|Ui ], we can
“connect the dots” and extrapolate to predict effects for always
takers and never takers

I This allows us to predict the effects of policies that affect different
subpopulations than the instrument at hand

I More generally, think of selection model as a device for
extrapolating from available research design to predict impacts of
other experiments
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Marginal Treatment Effects

I Letting Ui ∼ U(0, 1), choosing E [Yi (d)|Ui ] implies a functional form for
marginal treatment effects (MTE):

MTE(u) = E [Yi (1)− Yi (0)|Ui = u]

I MTEs are average treatment effects for individuals at a particular percentile of
the unobserved cost of taking treatment (Heckman et al., 1999, 2005, 2006;
Carneiro et al., 2009, 2010)

I MTE(u) can be thought of as the LATE associated with a hypothetical
instrument that shifts the probability of treatment from u to u + ∆ for small ∆

I With a continuous instrument, MTEs can be estimated as derivatives of average
Yi with respect to the conditional probability of treatment (local IV; Heckman
and Vytlacil, 1999)

I With a discrete instrument, estimation involves extrapolation/interpolation from
available LATEs (Brinch et al., 2017)
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Marginal Treatment Effects

I Many treatment effects of interest can be defined as weighted averages of
MTEs – useful for thinking about external validity:

∫ 1
0 ω(u)MTE(u)du

I Let π(z) = Pr [Di = 1|Zi = z], and p = Pr [Zi = 1]

I Weights for notable treatment effects:

ATE : ω(u) = 1

TOT : ω(u) =
p1 {u < π(1)}+ (1− p)1 {u < π(0)}

π(1)p + π(0)(1− p)

TNT : ω(u) =
p1 {u ≥ π(1)}+ (1− p)1 {u ≥ π(0)}

(1− π(1))p + (1− π(0))(1− p)

LATE : ω(u) =
1 {π(0) ≤ u < π(1)}

π(1)− π(0)
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MTE and Policy Counterfactuals

I Models for MTE can be used to predict the effects of policies that have not
been implemented

I Example: Suppose an experiment reduces the price of purchasing health
insurance from p0 to p1, and the probability of purchase rises from π0 to π1

I Individuals with Ui = π1 are on the margin between purchasing and not
purchasing – we might expect them to purchase in response to a further price
cut

I Heckit prediction of effect for marginal population:

̂MTE(π1) = α̂1 − α̂0 + (γ̂1 − γ̂0) Φ−1 (π̂1)

I Can also use estimates of MTEs to predict TOT , TNT , ATE , or effects of
other hypothetical policies
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Through the Looking Glass
I CF estimate of LATE:

L̂ATE = α̂1 − α̂0 + Ê [εi1 − εi0|ψ0 ≤ Ui < ψ0 + ψ1]

I In the binary treatment/binary instrument case with two-sided
non-compliance, the two-step estimate of LATE produced by any
parametric selection model is algebraically equal to the IV estimate (Kline
and Walters, 2019)

I The CF estimator exactly fits the IV estimates of mean potential
outcomes regardless of functional form – it connects the dots in sample

I In binary/binary case IV and CF coincide when both are used to estimate
LATE

I Equivalence serves as a natural benchmark for assessing
overidentified selection models

I The assumption for E [εid |Ui ] only matters when it is used to predict
treatment effects for other subpopulations
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When to Extrapolate?

I When is it reasonable to extrapolate from LATE and predict the effects of
new policies?

I It depends on the interpretation of Ui , and hence on the instrument

I Equivalent to asking: when is the relationship between always
taker/complier Yi (1)’s likely to be a reliable guide to the relationship
between complier/never taker Yi (1)’s?

I If Zi is a price shift, Ui may be viewed as (minus) willingness to pay and
extrapolation may be sensible

I What would extrapolation mean in other IV examples?

Chris Walters (UC Berkeley) Self-Selection



Selection into Preschool: Kline and Walters (2016)

I Selection model example: Kline and Walters (QJE 2016) investigate

effect heterogeneity with respect to counterfactual treatment choices

I Setting: Randomized evaluation of Head Start program

I Public preschool for disadvantaged children

I Largest preschool program in the US

I Basic experimental impacts less impressive than earlier
non-experimental analyses of HS

I But alternative publicly subsidized preschools are now widely
available for HS-eligible children. Are effects larger for kids who
would otherwise stay home?
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TABLE II

EXPERIMENTAL IMPACTS ON TEST SCORES

Three-year-old cohort Four-year-old cohort Cohorts pooled

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Time period Reduced form First stage IV Reduced form First stage IV Reduced form First stage IV

Year 1 0.194 0.699 0.278 0.141 0.663 0.213 0.168 0.682 0.247
(0.029) (0.025) (0.041) (0.029) (0.022) (0.044) (0.021) (0.018) (0.031)

N 1,970 1,601 3,571
Year 2 0.087 0.356 0.245 �0.015 0.670 �0.022 0.046 0.497 0.093

(0.029) (0.028) (0.080) (0.037) (0.023) (0.054) (0.024) (0.020) (0.049)
N 1,760 1,416 3,176
Year 3 �0.010 0.365 �0.027 0.054 0.666 0.081 0.019 0.500 0.038

(0.031) (0.028) (0.085) (0.040) (0.025) (0.060) (0.025) (0.020) (0.050)
N 1,659 1,336 2,995
Year 4 0.038 0.344 0.110 — —

(0.034) (0.029) (0.098)
N 1,599

Notes. This table reports experimental estimates of the effects of Head Start on test scores. The outcome is the average of standardized PPVT and WJIII scores, with each score
standardized to have mean 0 and standard deviation 1 in the control group separately by applicant cohort and year. Columns (1), (4), and (7) report coefficients from regressions of
test scores on an indicator for assignment to Head Start. Columns (2), (5), and (8) report coefficients from first-stage regressions of Head Start attendance on Head Start
assignment. The attendance variable is an indicator equal to 1 if a child attends Head Start at any time prior to the test. Columns (3), (6), and (9) report coefficients from
two-stage least squares (2SLS) models that instrument Head Start attendance with Head Start assignment. All models weight by the reciprocal of a child’s experimental assign-
ment, and control for sex, race, Spanish language, teen mother, mother’s marital status, presence of both parents in the home, family size, special education status, income quartile
dummies, urban, and a cubic polynomial in baseline score. Missing values for covariates are set to 0, and dummies for missing are included. Standard errors are clustered by center
of random assignment.
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TABLE III

PRESCHOOL CHOICES BY YEAR, COHORT, AND OFFER STATUS

Offered Not offered

(1) (2) (3) (4) (5) (6) (7)
Time period Cohort Head Start Other centers No preschool Head Start Other centers No preschool C-complier share

Year 1 3-year-olds 0.851 0.058 0.092 0.147 0.256 0.597 0.282
4-year-olds 0.787 0.114 0.099 0.122 0.386 0.492 0.410
Pooled 0.822 0.083 0.095 0.136 0.315 0.550 0.338

Year 2 3-year-olds 0.657 0.262 0.081 0.494 0.379 0.127 0.719

Notes. This table reports shares of offered and nonoffered students attending Head Start, other center-based preschools, and no preschool, separately by year and age cohort.
All statistics are weighted by the reciprocal of the probability of a child’s experimental assignment. Column (7) reports estimates of the share of compliers drawn from other
preschools, given by minus the ratio of the offer’s effect on attendance at other preschools to its effect on Head Start attendance.
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Kline and Walters (2016): Notation

I Zi ∈ {0, 1}: Randomized experimental offer

I Di (z): Potential preschool choice.

I h: Head Start
I c: Other preschool center
I n: No preschool

I Monotonicity restriction:

Di (1) 6= Di (0) =⇒ Di (1) = h

I People only respond to a Head Start offer by enrolling in Head Start
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Kline and Walters (2016): Compliance Groups

I Monotonicity implies that the population can be partitioned into five

groups:

I n-compliers: Di (1) = h, Di (0) = n

I c-compliers: Di (1) = h, Di (0) = c

I n-never takers: Di (1) = Di (0) = n

I c-never takers: Di (1) = Di (0) = c

I Always takers: Di (1) = Di (0) = h
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Kline and Walters (2016): LATE

I The Head Start experiment identifies a LATE:

E [Yi |Zi = 1]− E [Yi |Zi = 0]

E [1 {Di = h} |Zi = 1]− E [1 {Di = h} |Zi = 0]

= E [Yi (h)− Yi (Di (0))|Di (1) 6= Di (0)]

≡ LATEh

I This is an effect relative to a mix of counterfactuals:

LATEh = ScLATEch + (1− Sc )LATEnh

I LATEnh and LATEch are effects for n and c compliers relative to specific
counterfactuals

I Sc is the share of c-compliers among all compliers
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Kline and Walters (2016): Policy Relevant Parameters

I LATEh is the policy-relevant parameter for a marginal expansion of Head
Start

I Policymaker does not control substitution from other programs

I Not feasible to target policies based on unobserved behavioral
responses

I Effect heterogeneity is not always policy-relevant

I Need a clear motivation for decomposing into “subLATEs” LATEch and
LATEnh

I Scientific interest in understanding small experimental impacts

I Relevant for policies that change the counterfactual or nature of
selection

Chris Walters (UC Berkeley) Self-Selection



Kline and Walters (2016): Selection Model

I SubLATEs aren’t nonparametrically identified by the experiment

I Estimate via 3-alternative selection model:

Ui (h) = ψh(Xi ,Zi ) + vih

Ui (c) = ψc(Xi ) + vic

Ui (n) = 0

(vih, vic)|Xi ,Zi ∼ N

(
0,

[
1 ρ(Xi )

ρ(Xi ) 1

])

I Xi is a vector of covariates, including demographics and experimental sites

Chris Walters (UC Berkeley) Self-Selection



Kline and Walters (2016): Control Functions

I Restrictions on potential outcome CEFs:

E [Yi (d)|Xi ,Zi , vih, vic ] = µd (Xi ) + γdhvih + γdcvic

I Averaging over individuals in a particular care alternative gives

E [Yi (d)|Xi ,Zi ,Di = d ] = µd (Xi ) + γdhλh (Xi ,Zi , d) + γdcλc (Xi ,Zi , d)

I λd (Xi ,Zi ,Di ) are bivariate versions of the Heckit Mills ratio

I Additive separability between observables and unobservables is key

I Estimates of µd (x), γdh, and γdc are used to construct model-based estimates of
subLATEs

Chris Walters (UC Berkeley) Self-Selection
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9. MODEL EVALUATION

In practice, researchers often estimate selection models that impose additive separabil-
ity assumptions on exogenous covariates, combine multiple instruments, and employ ad-
ditional smoothness restrictions that break the algebraic equivalence of structural LATE
estimates with IV. The equivalence results developed above provide a useful conceptual
benchmark for assessing the performance of structural models in such applications. An
estimator derived from a properly specified model of treatment assignment and potential
outcomes should come close to matching a nonparametric IV estimate of the same pa-
rameter. Significant divergence between these estimates would signal that the restrictions
imposed by the structural model are violated.

Figure 3 shows an example of this approach to model assessment from Kline and Wal-
ters’ (2016) reanalysis of the Head Start Impact Study (HSIS)—a randomized experiment
with two-sided non-compliance (Puma, Bell, Cook, and Heid (2012)). On the vertical axis
are nonparametric IV estimates of the LATE associated with participating in the Head
Start program relative to a next best alternative for various subgroups in the HSIS defined
by experimental sites and baseline child and parent characteristics. On the horizontal axis
are two-step control function estimates of the same parameters derived from a heavily
over-identified selection model involving multiple endogenous variables, baseline covari-
ates, and excluded instruments. Had this model been saturated, all of the points would lie
on the 45 degree line. In fact, a Wald test indicates these deviations from the 45 degree
line cannot be distinguished from noise at conventional significance levels, suggesting that
the approximating model is not too far from the truth.

Passing a specification test does not obviate the fundamental identification issues in-
herent in interpolation and extrapolation exercises. As philosophers of science have long
argued, however, models that survive empirical scrutiny deserve greater consideration
than those that do not (Popper (1959), Lakatos (1976)). Demonstrating that a tightly re-
stricted model yields a good fit to IV estimates not only bolsters the credibility of the

FIGURE 3.—Model-based and IV estimates of LATE. Notes: This figure reproduces Figure A.III from Kline
and Walters (2016). The figure is constructed by splitting the Head Start Impact Study sample into vingtiles of
the predicted LATE based on the control function estimates reported in Section VIII of the paper. The hori-
zontal axis displays the average predicted LATE in each group, and the vertical axis shows corresponding IV
estimates. The dashed line is the 45-degree line. The chi-squared statistic and p-value come from a bootstrap
Wald test of the hypothesis that the 45 degree line fits all points up to sampling error. See Appendix F of Kline
and Walters (2016) for more details.



(i.e., subLATEs).18 Estimates of the subLATE for n-compliers,
LATEnh, are stable across specifications and indicate that the
impact of moving from home care to Head Start is large—on the
order of 0.37 standard deviations. By contrast, estimates of
LATEch, though more variable across specifications, never differ
significantly from zero.

Our estimates of LATEnh are somewhat smaller than the
average treatment effects of Head Start relative to home care
displayed in Table VII. This is a consequence of the reverse Roy
pattern captured by the control function coefficients: families
willing to switch from home care to Head Start in response to
an offer have stronger than average tastes for Head Start, imply-
ing smaller than average gains. We can reject that predicted

TABLE VIII

TREATMENT EFFECTS FOR SUBPOPULATIONS

Control function

(1) (2) (3) (4)
Parameter IV Covariates Sites Full model

LATEh 0.247 0.261 0.190 0.214
(0.031) (0.032) (0.076) (0.042)

LATEnh 0.386 0.341 0.370
(0.143) (0.219) (0.088)

LATEch 0.023 �0.122 �0.093
(0.251) (0.469) (0.154)

Lowest predicted
quintile:

LATEh 0.095 0.114 0.027
(0.061) (0.112) (0.067)

LATEh with fixed Sc 0.125 0.125 0.130
(0.060) (0.434) (0.119)

Highest predicted
quintile:

LATEh 0.402 0.249 0.472
(0.042) (0.173) (0.079)

LATEh with fixed Sc 0.364 0.289 0.350
(0.056) (1.049) (0.126)

Notes. This table reports estimates of treatment effects for subpopulations. Column (1) reports an IV
estimate of the effect of Head Start. Columns (2)–(4) show estimates of treatment effects computed from
the control function models displayed in Table VII. The bottom rows show effects in the lowest and highest
quintiles of model-predicted LATE. Rows with fixed c-complier shares weight subLATEs using the full-
sample estimate of this share (0.34). Standard errors are bootstrapped and clustered at the center level.

18. We compute the subLATEs by integrating over the relevant regions of Xi,
vih, and vic as described in Online Appendix F.
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Payoffs to Field of Study: Kirkeboen et al. (2016)

I Kirkeboen, Leuven and Mogstad (QJE 2016) study the payoffs to
field of study in Norway

I Substantive questions:

I What are the payoffs to different fields of study, e.g., social
science vs. engineering?

I Do individuals sort across fields according to comparative
advantage?

I Different angle on returns to institutions and selectivity we saw
earlier

Chris Walters (UC Berkeley) Self-Selection



Kirkeboen et al. (2016): Context

I Context: Norwegian higher education

I Norway has a centralized admissions process

I Apply to field/institution simultaneously (e.g. teaching at
University of Oslo)

I Rank up to 15 choices

I Applications scored based on high school GPA, then ranked by
application score

I Then places are assigned in turn: Best applicant gets favorite
choice, next best gets highest choice for which he qualifies,
and so on

I Rank cutoffs generate instruments for every field

Chris Walters (UC Berkeley) Self-Selection
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Note: This figure reports mean earnings by field for our sample of ap-
plicants and for all applicants. Earnings are measured eight years after
application. The measures of earnings are regression adjusted for year of
application.

Figure 2. Mean earnings by field: Sample and all applicants

normalized so that zero on the x-axis represents the admission cutoff to the preferred

field, and observations to the left (right) of this cutoff have therefore an application score

that is lower (higher) than the cutoff. We plot the unrestricted means in bins and include

estimated local linear regression lines on each side of the admission cutoff.

The probability of being offered the preferred field increases by about 50 percentage

points at the admission cutoff.16 There is also a sharp jump in the probability of gradu-

ating with a degree in the preferred field at the cutoff, with graduation rates increasing

from roughly 0.46 to 0.62. There are two reasons why the jump in the offer rate is larger

than the jump in the graduation rate: Some individuals are offered but never complete

their preferred field; others do not initially get an offer but they re-apply in the following
16Because some slots are reserved for special quotas and some fields have ad-hoc conditions unrelated to

academic requirements, the probability of being offered the preferred field is not a deterministic function
of application score. See the discussion of institutional details in Section 3.
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Note: This figure shows the sample fraction that is offered or complete
the preferred field by application score. We pool all admission cutoffs and
normalize the data so that zero on the x-axis represents the admission
cutoff to the preferred field. We plot unrestricted means in bins and
include estimated local linear regression lines on each side of the cutoff.

Figure 3. Admission thresholds and preferred field offer and completion

years and end up graduating with a degree in the preferred field. Since our treatment

variables are defined as graduating with a degree in a given field, the former group of

individuals are never takers (i.e. they do not complete their preferred field even when the

instrument is switched on) while the latter group are always takers (i.e. they complete

their preferred field even when the instrument is switched off). Our IV estimates are not

informative about the payoffs to field of study for never or always takers.

5.2 Admission cutoffs and sorting

A potential threat to our research design is that people might try to sort themselves to

the right of the cutoff in order to receive an offer for their preferred field of study. If such

sorting occurs, we would expect to see discontinuities in the observed characteristics and

in the density of applicants around the cutoffs.

Figure 4 shows the estimated density when we pool all the fields and admission cut-

offs. What matters for our research design is that there is not a discontinuous jump in

probability mass at zero, since that would point to sorting. As can be seen in Figure 4,
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Kirkeboen et al. (2016): Notation

I Consider a potential outcomes model with J + 1 fields of study

I Potential outcomes: Yi (0), Yi (1), ..., Yi (J)

I Interested in estimating averages of treatment effects:

∆i (j , k) = Yi (j)− Yi (k)

I Instrument is assigned field: Zi ∈ {0, 1, ..., J}

I Potential treatment choices: Di (0), Di (1),...,Di (J)

I Treatment and instrument indicators: Dij(z) = 1{Di (z) = j},
Zij = 1{Zi = j}

Chris Walters (UC Berkeley) Self-Selection



Kirkeboen et al. (2016): Framework

I Assumptions:

(Yi (0), ...,Yi (J),Di (0), ...,Di (J)) ⊥⊥ Zi

Dij(j) ≥ Dij(k) , ∀i , j , k

I The second assumption says that moving the instrument from k to j
makes everyone more likely to choose j - extension of monotonicity

I Think of this as an “encouragement design” where Zi is offered field
and Di is enrolled field

Chris Walters (UC Berkeley) Self-Selection



Kirkeboen et al. (2016): Empirical Strategy

I Tempting to estimate a 2SLS model with J endogenous variables:

Yi = α +
∑J

j=1 βjDij + εi

Dij = λj +
∑J

k=1 πjkZik + ηij

I It turns out that βj is not generally interpretable as an average treatment
effect under our assumptions – LATE theorem doesn’t generalize to
multiple endogenous variables

I Issue: Moving Zi from k to j makes everyone more likely to choose j but
may shift people across all other pairs of fields, creating (J + 1)J
compliance groups

I Need restrictions on effect heterogeneity or substitution patterns to
interpret βj as a LATE

Chris Walters (UC Berkeley) Self-Selection



Kirkeboen et al. (2016): Empirical Strategy

I Convenient feature of centralized assignment: the fallback field is
known for everyone

I Conditional on fallback (below-threshold) field k , can identify LATE
for compliers who switch from k to j at the threshold:

βjk = E [Yi (j)− Yi (k)|Di (j) = j ,Di (k) = k , j ranked above k]

I Similarly, conditional on fallback j , can identify LATE for compliers
who switch from j to k :

βkj = E [Yi (k)− Yi (j)|Di (k) = k ,Di (j) = j , k ranked above j ]

I A constant-effects model implies βjk = −βkj . What about a Roy
model?

Chris Walters (UC Berkeley) Self-Selection



TABLE IV

2SLS ESTIMATES OF THE PAYOFFS TO FIELD OF STUDY (USD 1,000)

Next Best Alternative (k)

Humanities Soc Science Teaching Health Science Engineering Technology Business Law

Completed field (j)
Humanities 21.4� �4.7 �22.9� 5.0 �38.5�� 6.9 �42.2�� �156.3

(11.0) (9.8) (12.1) (11.9) (14.7) (48.3) (10.6) (437.3)
Social Science 18.7�� 9.8 �10.8 55.5�� �55.4�� �110.4 �28.4�� �76.1

(6.7) (11.6) (13.0) (21.5) (20.6) (103.0) (10.7) (86.4)
Teaching 22.3�� 31.4�� 1.8 23.5�� �33.9�� �35.3 �21.1�� 22.8

(5.0) (7.9) (6.6) (9.5) (12.5) (37.1) (7.1) (127.9)
Health 18.8�� 30.7�� 7.7�� 28.9�� �27.9�� �43.4�� �17.4�� �55.2

(6.3) (7.6) (2.8) (7.6) (10.4) (20.8) (4.0) (97.7)
Science 53.7�� 69.6�� 38.6�� 29.6�� �2.2 16.8 �4.9 148.3

(18.4) (22.4) (14.2) (11.5) (14.6) (18.1) (10.5) (276.2)
Engineering 59.8 �5.5 75.2�� 0.2 52.4�� �46.0 �13.0 �57.7

(50.6) (58.2) (37.5) (16.4) (21.0) (43.9) (23.7) (166.6)
Technology 41.9�� 58.7�� 22.1� 32.5�� 68.1�� �5.6 7.0 �53.1

(10.8) (10.1) (12.4) (10.1) (9.6) (12.0) (9.5) (147.5)
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The first is that field of study may affect employment proba-
bilities, which could bias the estimates with log earnings as de-
pendent variable. However, we find fairly small impacts of field of
study on employment. Furthermore, if marginal workers have
lower potential earnings, any bias coming from employment ef-
fects should make it less likely to find evidence of comparative
advantage.

Second, one might be worried that the conclusions drawn
about selection patterns are driven by heterogeneity across sub-
fields within our broader definition of fields (see Table II). To
address this concern, we have reestimated the model given by
equations (14) and (15) with treatment variables defined accord-
ing to subfields instead of broader fields. These estimates,
reported in Online Appendix Figure B.V, suggest that aggrega-
tion to broader fields is not driving the conclusion that compliers
tend to prefer fields in which they have comparative advantage.31

FIGURE XII

Testable Implication of Sorting Based on Comparative Advantage

This figure graphs the distribution of the differences in relative payoffs to field
j versus k between individuals whose preferred field is j and next-best alterna-
tive is k, and those with the reverse ranking. To construct this graph, we use
the complier-weighted distribution of estimates in Online Appendix Table B.VI.

31. The results are also robust to including the set of applicants who apply to
only one broad field but have a preferred subfield with a cutoff.
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Selection into Charter School Lotteries: Walters (2018)

I Selection models can be useful for thinking about external validity: who
participates in the experiment?

I Walters (JPE 2018) studies this question in the context of charter schools

I Publicly funded schools operating outside of traditional public
school districts

I When oversubscribed, admit applicants by random lottery

I Studies based on lottery applicants show that urban charters boost
achievement (Abdulkadiroglu et al., 2011; Dobbie and Fryer, 2011)

I But lottery applicants are a small, highly-selected population.
Would charter expansion produce gains for broader groups of
students?

I Walters (2018) models selection into charter application with a dynamic
generalized Roy model

Chris Walters (UC Berkeley) Self-Selection



Walters (2018): Setting

I Setting: charter schools in Boston

I Boston charters employ “No Excuses” practices

I Extended instructional time, strict discipline, high expectations

I Earlier lottery studies demonstrate large improvements in
achievement for applicants (Abdulkadiroglu et al., 2011)

I Continuing controversy over charter expansion

I Decentralized application process, separate for every school

I Students must take steps outside of normal enrollment process

I May apply to as many charters as desired, or none

Chris Walters (UC Berkeley) Self-Selection



Walters (2018): Selection Process

I Three stage selection process:

1. Students decide whether to apply to charter schools, Ai ∈ {0, 1}

2. Charters randomize offers among applicants, Zi ∈ {0, 1}

3. Applicants with Zi = 1 decide whether to attend charter; students
with Zi = 0 remain in traditional public school

I Once enrolled in a school, students earn test scores Yi

I Randomization at stage 2 makes Zi a good instrument for charter
attendance in the population with Ai = 1

Chris Walters (UC Berkeley) Self-Selection



this sample appear in table 1. As shown in panel A, 18 percent of Boston
students applied to at least one charter lottery, 13 percent were offered a
charter seat, and 11 percent attended a charter school. Five percent of
students applied to more than one charter.
Charter applicants tend to have higher socioeconomic status and fewer

academic problems than nonapplicants. Panel B of table 1 shows that ap-
plicants are less likely to be eligible for subsidized lunch (a proxy for pov-
erty), to have special education status, or to be classified as limited English
proficient. The last two rows of panel B report statistics for fourth-grade
math and reading test scores, normed to have mean zero and standard

TABLE 1
Descriptive Statistics for Boston Middle School Students

All Boston Students Charter Applicants

Mean
Standard
Deviation Mean

Standard
Deviation

(1) (2) (3) (4)

A. Charter School Applications and Attendance

Applied to charter school .175 .380 1.000 .000
Applied to more than one charter .046 .210 .265 .442
Received charter offer .125 .331 .718 .450
Attended charter school .112 .316 .600 .490

B. Student Characteristics

Female .492 .500 .490 .500
Black .460 .498 .518 .500
Hispanic .398 .490 .317 .465
Subsidized lunch .821 .383 .723 .448
Special education .226 .418 .170 .376
Limited English proficiency .212 .409 .136 .343
4th-grade math score 2.520 1.070 2.314 .990
4th-grade reading score 2.636 1.137 2.413 1.036

C. Nearby Schools

Miles to closest charter school 2.105 1.168 1.859 1.087
Miles to closest district school .512 .339 .580 .372
Value-added of closest district school .032 .154 .022 .167
Observations 9,156 1,601

Note.—This table shows descriptive statistics for students attending fourth grade at tra-
ditional public schools in Boston between 2006 and 2009. Columns 1 and 2 report means
and standard deviations for the full sample. Columns 3 and 4 display corresponding statis-
tics for charter applicants. The sample excludes students without eighth-grade test scores.
Fourth-grade test scores are normalized to have mean zero and standard deviation one in
the population of all Massachusetts students. District school value-added is measured as
the average residual from a regression of sixth-grade math scores on sex, race, subsidized
lunch, special education, limited English proficiency, and fourth-grade math and reading
scores in the sample of students enrolled in traditional public schools. The value-added
calculation is jackknifed to remove the influence of a student’s own score.
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As can be seen in column 1, both instruments generate strong first-
stage shifts in charter enrollment. A lottery offer increases the probabil-
ity of charter attendance by 64 percentage points, while a 1-mile increase
in differential distance decreases the probability of charter attendance
by 2.6 percentage points. Columns 2 and 3 show that the two instru-
ments produce roughly similar estimates of the effects of charter atten-
dance, though the distance estimates are less precise. The distance in-
strument generates estimates of 0.45j and 0.38j in math and reading
compared to lottery estimates of 0.55j and 0.49j.
The argument in Section IV.A suggests that the interaction of lotteries

and distance can be used to describe the nature of selection on unob-
servables. Figure 2 presents an empirical sketch of this idea by splitting
the charter applicant sample into terciles of differential distance. Lottery
estimates for these three groups show smaller test score gains for stu-
dents who apply from farther away. The hypothesis that effects are equal
across terciles is rejected at marginal significance levels in math (p5 .08)
though not in reading (p5 .33). This pattern suggests that students who
are willing to travel farther to attend charter schools experience smaller

TABLE 3
Two-Stage Least Squares Estimates of Charter School Effects

Instrument

First Stage

Second Stage

Math Scores Reading Scores
(1) (2) (3)

Lottery offer .641 .553 .492
(.025) (.087) (.092)

Observations 1,601
Differential distance 2.026 .453 .380

(.002) (.212) (.217)
Observations 9,156

Note.—This table reports 2SLS estimates of the effects of charter school attendance on
eighth-grade test scores. The endogenous variable is an indicator equal to one if a student
attended a charter school at any time prior to the test. The first row instruments for charter
attendance using a lottery offer indicator, and the second row instruments for charter at-
tendance using distance to the closest charter school minus distance to the closest district
school. Column 1 reports first-stage impacts of the instruments on charter school atten-
dance, and cols. 2 and 3 report second-stage effects on math and reading scores. The lot-
tery sample is restricted to charter school applicants, while the distance sample includes all
Boston students. The lottery models control for lottery portfolio indicators. The distance
models control for sex, race, subsidized lunch, special education, limited English profi-
ciency, the value-added of the closest traditional public school, and fourth-grade math
and reading scores.

separately by lottery offer status and predicted test score as measured by fourth-grade covar-
iates. Follow-up rates are high for the full sample and for lottery applicants (85 and 81 per-
cent for eighth-grade outcomes). Follow-up rates are slightly higher for higher-achieving
students in the full sample, but there is no difference in follow-up rates for lottery winners
and losers.
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Walters (2018): Single-Charter Selection Model

I Student i ’s utility from attending a charter school (Si = 1):

Ui1 = µ(di ) + vi

I di is distance to charter

I vi : Unobserved taste for charter schools

I Decompose into vi = θi + ξi , with ξi learned after application

I Utility of attending traditional public school normalized to Ui0 = 0

I Charter applicants pay utility cost γ

I Generalized Roy model: vi may be related to potential outcomes in
charter and traditional schools, Yi (1) and Yi (0)

Chris Walters (UC Berkeley) Self-Selection
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Walters (2018): Enrollment Stage

I Solve the model by backward induction

I At the enrollment stage, students choose schools to maximize utility:

Si = arg max
j∈C(Zi )

Uij

I Choice set depends on whether the student has received a charter offer:

C(Zi ) = {0} ∪ {Zi}

I Before learning ξi , expected utility is:

w(Zi |di , θi ) = E

[
max

j∈C(Zi )
Uij |di , θi

]

=

{
0, Zi = 0

E [max {µ(di ) + θi + ξi , 0} |di , θi ] , Zi = 1

Chris Walters (UC Berkeley) Self-Selection



Walters (2018): Emax

I Expected utility w(Zi |di , θi ) is increasing in Zi because a charter offer
provides an option value at the school enrollment stage

I Example of Emax, key concept in dynamic discrete choice

I Students can reoptimize in response to new information, so
E [maxUij ] ≥ maxE [Uij ]

I Students plan ahead, knowing they will later make an Emax decision

I If ξi ∼ logistic, we have

w(Zi |di , θi ) = log (1 + Zi × [µ(di ) + θi ])

Pr [Si = 1|Zi , di , θi ] =
Zi × exp(µ(di ) + θi )

1 + Zi × exp(µ(di ) + θi )

Chris Walters (UC Berkeley) Self-Selection



Walters (2018): Lottery Stage

I Random assignment makes the lottery stage simple

I The probability that student i receives a lottery offer is

Pr[Zi = 1|Ai ] = πAi

I Applicants receive offers with probability π, non-applicants do not receive
offers

Chris Walters (UC Berkeley) Self-Selection



Walters (2018): Application Stage

I Forward-looking students choose applications to maximize expected
utility:

Ai = 1 {πw(1, di , θi )− γ > 0}

I With logistic ξi , the application rule is:

Ai = 1 {θi > exp (γ/π)− 1− µ(di )}

I If θi ∼ N(0, σ2
θ), application stage becomes a probit:

Pr [Ai = 1|di ] = Φ
(
µ(di )+1−exp(γ/π)

σθ

)

Chris Walters (UC Berkeley) Self-Selection



Walters (2018): Interpreting IV

I Lottery compliers apply to charter schools, then accept offers if admitted

I LATE for lottery compliers conditional on distance is:

LATE(di ) = E [Yi (1)− Yi (0)|θi > exp (γ/π)− 1− µ(di ), µ(di ) + θi + ξi > 0]

I If distance di is independent of potential outcomes, we can use variation
in LATEs by distance to understand the nature of selection (requires
exclusion restriction)

I Students who apply from far away are more selected than students who
apply from close by

I LATE(di ) traces out the relationship between unobserved
preferences and treatment effects

I Informative about external validity
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Walters (2018): Choice Model Estimation

I In practice, Walters (2018) takes a parametric approach to estimation

I Likelihood of student i ’s choices:

L(Ai ,Zi ,Si |di ) =
∫

Φ
(
µ(di )−exp(γ/π)−1

σθ

)Ai
[
1− Φ

(
µ(di )−exp(γ/π)−1

σθ

)]1−Ai

×πAiZi (1− π)Ai (1−Zi )

×
[

exp(µ(di )+θi )
1+exp(µ(di )+θi )

]AiZiSi
[

1
1+exp(µ(di )+θi )

]AiZi (1−Si )

dF (θi )

I Estimate parameters by simulated maximum likelihood, approximating
integral by drawing from the distribution of θi
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Walters (2018): Control Function Estimation

I Suppose potential outcomes are given by:

E [Yi (s)|di , θi ] = αd + βdθi , s ∈ {0, 1}

I We can estimate these parameters via the OLS regression:

Yi = α0 + (α1 − α0)Si + β0θ
∗(Ai ,Zi , Si , di ) + (β1 − β0)Siθ

∗(Ai ,Zi , Si , di ) + ei

I Control function θ∗(Ai ,Zi , Si , di ) is predicted value of unobserved taste θi
given i ’s observed choices and instruments – generalization of Heckit
Mills ratio

I α1 − α0 is the ATE, while β1 and β0 govern selection
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The homogeneous charter model includes 43 parameters and generates a
log likelihood valueof212,917. Allowing charterheterogeneity adds seven
parameters and increases the log likelihood by 854. A likelihood ratio test
therefore rejects the model with homogeneous charter schools (p < .01).
Likewise, the single normal model is decisively rejected in a test against
the two-mass mixture model (p < .01). I therefore focus on estimates from
the mixture model with heterogeneous charter schools and report results
for the other two models when these comparisons are useful. Appendix B
provides further goodness-of-fit diagnostics for the mixture model.
Table 5 displays utility and application cost estimates from the mixture

model. Column 1 shows estimates of the utility parameters aj and b, while

TABLE 5
Charter School Preference Parameter Estimates

Charter School

Utility

Disutility

of Distance

Application Costs

Log Fixed
Cost

Log Marginal
Cost

(1) (2) (3) (4)

Constant/main effect 21.099 .182 22.098 2.664
(.095) (.016) (.187) (.016)

Female 2.046 2.018 2.006 .027
(.097) (.011) (.130) (.026)

Black 2.465 2.156 1.286 2.241
(.152) (.018) (1.035) (.047)

Hispanic 2.376 2.128 1.713 2.232
(.164) (.019) (1.041) (.051)

Subsidized lunch 2.298 2.008 .379 .091
(.124) (.014) (.210) (.032)

Special education 2.228 2.025 .098 .025
(.137) (.015) (.162) (.039)

Limited English proficiency 2.118 .024 .038 .100
(.148) (.014) (.182) (.040)

Value-added of closest
district school 21.156 2.177 .429 2.075

(.306) (.035) (.392) (.075)
4th-grade math score .138 .007 2.028 .009

(.070) (.008) (.092) (.019)
4th-grade reading score .161 .008 2.067 .022

(.073) (.008) (.097) (.019)
Distance squared . . . .001 . . . . . .

(.001)

Note.—This table reports MSL estimates of the parameters of student preferences for
charter schools. Estimates come from the two-mass mixture model in col. 3 of table 4. Co-
variates are demeaned in the estimation sample so that main effects are effects at the mean.
Column 1 reports estimates of the utility function for charter attendance relative to tradi-
tional public schools. The constant in this column is the average of school-specific utility
intercepts. Column 2 reports estimates of the disutility of distance to school. The constant
in this column is the main effect of differential distance between a charter school and the
closest traditional public school. The subsequent rows show coefficients on interactions be-
tween differential distance and observed characteristics. The bottom row shows the effect
of the difference in squared distances. Column 3 reports estimates of the charter school
application fixed cost function, and col. 4 reports estimates of the marginal cost function.
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The main effects in columns 2 and 4 of table 7 imply that charter atten-
dance raises eighth-grade math and reading scores by 0.71j and 0.52j
on average. Nonwhite students, poor students, and students with lower
past achievement lag behind other students in traditional public schools
and receive larger benefits from charter school attendance. In this sense,
charter schools tend to reduce achievement gaps between racial and socio-
economic groups. This finding is consistent with previous lottery-based es-
timates showing larger charter impacts for poorer and lower-achieving ap-

TABLE 7
Selection-Corrected Estimates of Charter School Effects

on Eighth-Grade Test Scores

Math Scores Reading Scores

Public School
Outcome Charter Effect

Public School
Outcome Charter Effect

(1) (2) (3) (4)

Constant/main effect 2.390 .705 2.508 .522
(.015) (.092) (.016) (.096)

Female 2.024 .060 .184 2.019
(.015) (.046) (.016) (.048)

Black 2.193 .250 2.087 .199
(.025) (.073) (.026) (.077)

Hispanic 2.100 .260 2.041 .243
(.025) (.078) (.027) (.081)

Subsidized lunch 2.128 .192 2.126 .149
(.022) (.056) (.023) (.059)

Special education 2.370 .097 2.397 .134
(.020) (.065) (.021) (.068)

Limited English proficiency .075 2.091 .044 2.074
(.020) (.069) (.021) (.072)

Value-added of closest
district school .136 .003 .113 2.041

(.049) (.138) (.051) (.145)
4th-grade math score .476 2.122 .165 2.043

(.011) (.033) (.011) (.035)
4th-grade reading score .066 2.019 .366 2.078

(.011) (.034) (.011) (.036)
Charter school preference, vi .058 2.096 .046 2.039

(.016) (.047) (.017) (.049)
Idiosyncratic preference, tij . . . 2.017 . . . .010

(.052) (.055)
p-values: no selection on
unobservables .001 .051

Note.—This table reports selection-corrected estimates of the effects of charter school
attendance on eighth-grade math and reading test scores. Estimates come from regression
of test scores on indicators for attendance at traditional public and charter schools, covar-
iates and their interactions with charter attendance, and control functions correcting for
selection on unobservables. The control functions are posterior means from the two-mass
mixture model in col. 3 of table 4. Columns 1 and 3 display public school coefficients,
while col. 2 and 4 display interactions with charter attendance. Main effects of charter at-
tendance are enrollment-weighted averages of effects for the seven schools. The p -values
are from tests of the hypothesis that the control function coefficients equal zero. Standard
errors are adjusted for estimation of the control functions.
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FIG. 2.—Relationship between distance to charter schools and lottery estimates. This fig-
ure displays relationships between lottery-based IV estimates of charter school effects on
eighth-grade test scores and distance that applicants travel to apply. Panel A shows results
for math scores, and panel B displays results for reading. Estimates come from a 2SLS model
that interacts charter school attendance with indicators for terciles of the differential distance
between the closest charter school and the closest traditional public school. The instruments
are interactions of a lottery offer indicator with differential distance terciles, and both stages
control for lottery portfolio indicators and tercile main effects. Dashed lines indicate 95 per-
cent confidence intervals.
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Equation (10) also has implications for heterogeneity across charter
schools. Specifically, average utilities should be larger for charters that
generate larger test score gains. Figure 3 plots school-specific ATE esti-
mates against school-specific mean utilities. In contrast to the prediction
of equation (10), this relationship is downward sloping in bothmath and
reading, implying that less popular charter schools tend to produce larger
test score impacts. The hypothesis that these parameters lie on a line with
weakly positive slope is rejected in both math and reading (p < .01).

B. Selection and Charter School Effects

These test results imply that students do not sort into charter schools to
maximize test scores. To further explore the pattern of selection into the
charter sector, I next consider a summary measure of the relationship
between achievement impacts and preferences for charter schools. De-
fine the preference index

P i ; 2 X 0
i b 1 við Þ:

TABLE 8
Test of Restrictions Implied by Test Score Maximization

Preference

Coefficient

Math Scores Reading Scores

Test Score Gain
Coefficient Ratio

Test Score Gain
Coefficient Ratio

(1) (2) (3) (4) (5)

Female 2.046 .060 21.313 2.019 .407
Black 2.465 .250 2.538 .199 2.429
Hispanic 2.376 .260 2.691 .243 2.646
Subsidized lunch 2.298 .192 2.644 .149 2.499
Special education 2.228 .097 2.426 .134 2.588
Limited English proficiency 2.118 2.091 .773 2.074 .626
Value-added of closest
district school 21.156 .003 2.003 2.041 .036

4th-grade math score .138 2.122 2.883 2.043 2.315
4th-grade reading score .161 2.019 2.117 2.078 2.481
Charter school
preference, vi 1.000 2.096 2.096 2.039 2.039

Idiosyncratic preference, tij 1.000 2.017 2.017 .010 .010
p-values: test score
maximization <.001 <.001

Note.—This table reports tests of restrictions implied by test score maximization based
on coefficients for observed characteristics and unobserved tastes. Estimates come from
the two-mass mixture model in col. 3 of table 4. Column 1 reports the coefficient on each
variable in the charter school utility function, and cols. 2 and 4 report the additional test
score gain resulting from charter attendance for students with each characteristic. Col-
umns 3 and 5 report ratios of impacts on test score gains to impacts on preferences. The
p-values come from Wald tests of the hypothesis that all ratios in a column are equal and
weakly positive. The tests are based on methods described by Kodde and Palm (1986) for
jointly testing equality and inequality constraints.
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To focus on marginal students drawn into the charter sector by expan-
sion, panel D also plots a variant of the average marginal treatment effect
(AMTE) parameter discussed by Heckman et al. (2016, 2018). For a stu-
dent i receiving at least one charter offer, let

j* ið Þ 5 arg max
j∈O Zið Þ,j≠0

Vij

denote the preferred charter school among those offering seats. Define

D* tð Þ 5 E ½Yij* ið Þ 2 Yi0j jVij* ið Þ 2 Vi0j ≤ t,O Zið Þ ≠ 0f g�: (18)

For small t, this parameter describes causal effects for students who are
on themargin of deciding whether to remain in traditional public schools
and would be induced to enter the charter sector by a small increase in
the attractiveness of charter schools. Figure 6 reports D*(t) in each coun-

FIG. 6.—Counterfactual simulations. This figure displays simulated effects of charter
school expansion. The dotted vertical line in each panel corresponds to the number of
charter schools in the sample, while the dashed/dotted line corresponds to Boston’s sub-
sequent expansion. Locations for new charters are chosen at random in zip codes without a
charter school. The baseline simulation is based on the two-mass mixture model of charter
preferences. The reduced cost simulation sets marginal application costs to zero. The al-
tered preference counterfactual truncates charter preferences from above at the median.
Effects of treatment on the treated are average effects of charter attendance for students
who attend charter schools in each counterfactual. Average marginal treatment effects
are average effects of charter attendance for students who are approximately indifferent
between attending and not attending charter schools in each counterfactual. Results are
based on 1 million simulations of the each model.
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Labor Market Discrimination

I This lecture covers labor market discrimination

I Large gaps in labor market outcomes across demographic groups, e.g. by
race, sex, and age

I Wages

I Labor force participation

I Unemployment rates

I Occupations, job mobility, non-wage compensation

I Theories of discrimination offer explanations for why group membership
per se might be important

I Evidence looks at effects of group membership on outcomes

I See Altonji and Blank (1999), Lang and Lehmann (2012), and Guryan
and Charles (2013) for reviews
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declining labor force participation of black
men (Brown 1984; Chandra 2000; Juhn
2003). In addition, early improvements can
also be credited to both the rise in the rela‑
tive level of educational attainment (Smith
and Welch 1989) and the relative quality of
the schools attended by blacks (Card and
Krueger 1993). Nevertheless, it is difficult
to come up with plausible estimates of the
effects of human capital that would fully
explain the wage convergence in the 1960s
and early 1970s. On the other hand, they
make the absence of further convergence in
the late 1970s and much of the 1980s even
more surprising.

The very large gains made by black 
men after the mid-to-late 1980s cannot be 
accounted for by nonearners in the Current 
Population Survey (CPS) since there was 
little change during this period. While the 
the proportion of black men age 22–64 
who were in prison or jail (and thus not in 

the CPS sample) grew (Western 2006, table 
1.1; Western and Pettit 2005), the increase 
in incarceration rates cannot explain the 
large convergence from a black–white earn‑
ings ratio of 0.62 in 1987 to 0.77 in 2000. 
Moreover, Neal (2006) shows that skill con‑
vergence between young black and white 
men stopped and may even have reversed 
itself among those born after 1960. Thus, 
overall skill convergence should have slowed 
after 1990, making it difficult to explain why 
earnings convergence reasserted itself.

3.2 Employment Differentials

Much less attention has been paid to racial 
employment and unemployment differen‑
tials than to wage differentials although the 
former are in many ways more dramatic. In 
2008, the labor force participation rate of 
black men age 25–54 was 83.7 percent com‑
pared with 91.5 percent among white men. 
The unemployment rate was 9.1 percent 
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against blacks. Figure 3 documents the 
decline in prejudice as measured by national 
polls and surveys.15 The data show large 
declines since the 1950s and 1960s in whites’ 
expression of prejudiced views on school 
segregation, social interaction, and blacks 
in politics. While we cannot completely dis‑
count the possibility that whites are merely 
becoming more cautious in expressing what 

15 Survey responses are drawn from the General Social 
Society Survey 1972–2008 and Naemi, Mueller, and Smith 
(1989). 

are now socially unacceptable views, there is 
behavioral evidence to support the change. 
In the late 1950s, over half of whites said they 
would not vote for a black president. The 
evidence of the 2008 election suggests that 
this proportion has declined significantly.

In 1958, 94 percent of Americans disap‑
proved of marriage between a white and a 
black. By 2007, this figure was 17 percent.16 

16  http://www.gallup.com/poll/28417/most-americans-
approve-interracial-marriages.aspx, downloaded January 
5, 2010.
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Defining Discrimination

I What is discrimination? Arrow (1973):

“The fact that different groups of workers, be they skilled or unskilled,
black or white, male or female, receive different wages, invites the
explanation that the different groups must differ according to some
characteristic valued on the market. In standard economic theory, we
think first of differences in productivity. The notion of discrimination
involves the additional concept that personal characteristics of the
worker unrelated to productivity are also valued in the market.”

I This is a starting point, but as Altonji and Blank (1999) point out:

I Defining “productivity” is not straightforward

I Human capital investments (or technological changes) that affect
productivity may be altered by discrimination

Chris Walters (UC Berkeley) Discrimination



Theories of Discrimination

I Theories of discrimination generally fall into two broad categories:

I Taste-based discrimination: Employers have prejudices that
favor one group over another (Becker, 1957)

I Statistical discrimination: Employers use group membership
to make inferences about productivity (Aigner and Cain, 1977)

I N.B.: Both are illegal with respect to treatment of protected groups
– race, color, religion, sex (including gender identity and
pregnancy), national origin, age, disability, genetic information,
sexual orientation, or parental status

I We will mostly focus on empirical evidence regarding the effects of
protected characteristics rather than trying to distinguish between
types of discrimination
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Oaxaca-Blinder Decompositions

I Classic tool for measuring discrimination: the Oaxaca-Blinder
decomposition (Oaxaca, 1973; Blinder, 1973)

I OB method decomposes a difference between groups into a
component explained by observed characteristics, and a component
explained by returns to characteristics

I Consider individuals in two groups, Gi ∈ {A,B}

I Group average outcomes are ȲA and ȲB , where Ȳg ≡ E [Yi |Gi = g ]

I We hope to explain group differences with a vector of observed
covariates Xi
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Oaxaca-Blinder Decompositions

I Quantity to be explained:

∆ ≡ ȲA − ȲB

I Run a separate regression for each group:

I Group A: Yi = X ′i βA + εi

I Group B: Yi = X ′i βB + εi

I Xi includes a constant

I OLS coefficient vector for group g :

βg = E [XiX
′
i |Gi = g ]

−1
E [XiYi |Gi = g ]
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Oaxaca-Blinder Decompositions
I By construction OLS fits each group’s average:

Ȳg = X̄ ′gβg .

I Therefore we can write

∆ = X̄ ′AβA − X̄ ′BβB

=
(
X̄A − X̄B

)′
βA︸ ︷︷ ︸

Explained by X ′s

+ X̄ ′B (βA − βB)︸ ︷︷ ︸
Explained by β′s

I First term answers the question: How much more would A’s make than
B’s if both groups were paid like A’s for observables?

I Second term answers the question: How much more would A’s make than
B’s if both groups had the B’s observables?

I If X includes all characteristics relevant to productivity, second term may
be attributable to discrimination
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Oaxaca-Blinder Decompositions

∆ =
(
X̄A − X̄B

)′
βA︸ ︷︷ ︸

Explained by X ′s

+ X̄ ′B (βA − βB)︸ ︷︷ ︸
Explained by β′s

I Can also write the alternative decomposition:

∆ =
(
X̄A − X̄B

)′
βB︸ ︷︷ ︸

Explained by X ′s

+ X̄ ′A (βA − βB)︸ ︷︷ ︸
Explained by β′s

I New first term answers the question: How much more would A’s make
than B’s if both groups were paid like B’s for observables?

I New second term answers the question: How much more would A’s make
than B’s if both groups had the A’s observables?
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OB Decompositions and Causality

I There is a close connection between OB decompositions and our
discussion of estimating treatment effects under CIA

I Let Di = 1{Gi = A} denote membership in group A, and re-interpret
group as treatment status in a selection on observables scenario

I Let Yi (1) and Yi (0) denote i ’s potential outcomes, and suppose CIA
holds: (Yi (1),Yi (0)) ⊥⊥ Di |Xi

I Consider a linear model for the conditional mean of each potential
outcome:

E [Yi (d)|Xi ] = X ′i βd , d ∈ {0, 1}

I CIA implies βd can be obtained by regressing Yi on Xi in the sample with
Di = d

Chris Walters (UC Berkeley) Discrimination



Oaxaca Treatment Effects

I Once we have the βd ’s, we can use them to compute any treatment
effect of interest

I Oaxaca-Blinder versions of average treatment effect parameters:

TOTOB = E [Yi |Di = 1]− E [Xi |Di = 1]′ β0

ATEOB = E [Xi ]
′ (β1 − β0)

TNTOB = E [Xi |Di = 0]′ β1 − E [Yi |Di = 0]

I Oaxaca uses a linear model to impute missing potential outcomes
using each group’s regression function

Chris Walters (UC Berkeley) Discrimination



Alternative Decompositions

I Oaxaca decomposition of observed difference between treatment and
control:

E [Yi |Di = 1]− E [Yi |Di = 0] = E [Xi |Di = 1]′ β1 − E [Xi |Di = 0]′ β0

= E [Xi |Di = 1]′ (β1 − β0)︸ ︷︷ ︸
TOT

+ (E [Xi |Di = 1]− E [Xi |Di = 0])′ β0︸ ︷︷ ︸
Selection bias

I We could’ve instead written

E [Xi |Di = 0]′ (β1 − β0)︸ ︷︷ ︸
TNT

+ (E [Xi |Di = 1]− E [Xi |Di = 0])′ β1︸ ︷︷ ︸
Selection bias

I The OB decomposition is not unique for the same reason the definition of
selection bias is not unique: there are multiple counterfactuals we might
like to impute

Chris Walters (UC Berkeley) Discrimination



Oaxaca as Reweighting

I Oaxaca-Blinder counterfactual for the treament group:

E [Yi (0)|Di = 1] = E [Xi |Di = 1]′β0

I Kline (2011): Can rewrite the OB counterfactual as a weighted average
of control outcomes:

E [Xi |Di = 1]′ β0 = E [w̃(Xi )Yi |Di = 0]

I Weights are

w̃(Xi ) = X ′i E [XiX
′
i |Di = 0]

−1 × E

[
Xi

p (Xi )

1− p(Xi )

(
1− π
π

)
|Di = 0

]

I Here p(Xi ) ≡ Pr[Di = 1|Xi ] is the propensity score and π = Pr [Di = 1]
is the unconditional probability of treatment

I Oaxaca is a version of propensity-score reweighting

Chris Walters (UC Berkeley) Discrimination



Oaxaca as Reweighting

w̃(Xi ) = X ′i E [XiX
′
i |Di = 0]

−1 × E

[
Xi

p (Xi )

1− p(Xi )

(
1− π
π

)
|Di = 0

]

I Weights are fitted values from an OLS regression of the conditional odds
of treatment on Xi in the control group

I Oaxaca-Blinder estimator is doubly robust: works if either E [Yi (0)|Xi ] or
(p(Xi )/(1− p(Xi ))) is linear in Xi

I Note that if controls are saturated linearity is guaranteed (not a
restriction)

I Think of Oaxaca as another method of adjusting for observables under
CIA – one that is particularly easy to implement and interpret

Chris Walters (UC Berkeley) Discrimination



Decomposing Racial Income Gaps: Chetty et al. (2020)

I Chetty et al. (2020) perform Oaxaca-style decompositions of racial
differences in income into components explained and unexplained by
parent income

I Combine data from the 2000 and 2010 decennial census with federal tax
returns from 1989, 1994, 1995, 1998-2015 to study variation in
intergenerational mobility by race and gender

I Look at child/parent income for cohorts born 1978-1983

I Parent income averaged over five years

I Child income averaged over two years, at ages between 31 and 37

I Race measured in 2010 census

I Also match to American Community Survey (ACS) data – provides data
on hours, wages, education, occupation

Chris Walters (UC Berkeley) Discrimination



FIGURE III: Intergenerational Mobility by Race
A. All Children
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B. Children with Mothers Born in the U.S.
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Notes: Panel A replicates Figure IIa, including series for Hispanics, Asians, and American Indians. Panel B replicates Panel
A for children whose mothers were born in the U.S. Panel B is based on the subsample of children whose mothers appear
in the 2000 Census long form or the 2005-2015 American Community Survey because information on parental birthplace is
available only for those individuals. See notes to Figure II for further details.



FIGURE V: Black-White Gaps in Individual Income, by Gender
A. Males
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B. Females

Diff. at p=25: -1.4

Diff. at p=75: -1.0

20
40

60
80

M
ea

n 
C

hi
ld

 In
di

vi
du

al
 In

co
m

e 
R

an
k

0 20 40 60 80 100
Parent Household Income Rank

White (Intercept: 33.30, Slope: 0.25)
Black (Intercept: 34.86, Slope: 0.25)

Notes: These figures replicate Figure IVb separately for male children (Panel A) and female children (Panel B). Individual
income ranks are computed within a child’s cohort pooling across race and gender. See notes to Figure IV for further details.
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Notes: These figures replicate Figure IVb separately for male children (Panel A) and female children (Panel B). Individual
income ranks are computed within a child’s cohort pooling across race and gender. See notes to Figure IV for further details.







FIGURE VI: Black-White Gaps in Wage Rates, Hours, and Employment, by Gender

A. Wage Rank, Females
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Notes: This figure shows the relationship between children’s employment outcomes and their parents’ household income, by
race and gender. All children’s outcomes in this figure are obtained from the American Community Survey and all panels
include only children observed in the 2005-15 ACS at age 30 or older. Panels A and B plot mean wage ranks vs. parental
household income percentile, by race and gender. Panels C and D replicate A and B using mean weekly hours of work as the
outcome, while Panels E and F use annual employment rates as the outcome. Wages are computed as self-reported annual
earnings divided by total hours of work; they are missing for those who do not work. We convert wages to percentile ranks
by ranking individuals relative to others in the same birth cohort who received the ACS survey in the same year. Hours of
work are defined as total annual hours of work divided by 51 and are coded as zero for those who do not work. Employment
is defined as having positive hours of work in the past 12 months. To protect confidentiality, bins in which there are fewer
than 10 children who are employed or not employed are suppressed in Panels E and F. In each figure, the best-fit lines are
estimated using OLS regressions on the binned series. We report white-black differences based on the best-fit lines at the 25th
and 75th parent income percentiles.
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Notes: This figure shows the relationship between children’s employment outcomes and their parents’ household income, by
race and gender. All children’s outcomes in this figure are obtained from the American Community Survey and all panels
include only children observed in the 2005-15 ACS at age 30 or older. Panels A and B plot mean wage ranks vs. parental
household income percentile, by race and gender. Panels C and D replicate A and B using mean weekly hours of work as the
outcome, while Panels E and F use annual employment rates as the outcome. Wages are computed as self-reported annual
earnings divided by total hours of work; they are missing for those who do not work. We convert wages to percentile ranks
by ranking individuals relative to others in the same birth cohort who received the ACS survey in the same year. Hours of
work are defined as total annual hours of work divided by 51 and are coded as zero for those who do not work. Employment
is defined as having positive hours of work in the past 12 months. To protect confidentiality, bins in which there are fewer
than 10 children who are employed or not employed are suppressed in Panels E and F. In each figure, the best-fit lines are
estimated using OLS regressions on the binned series. We report white-black differences based on the best-fit lines at the 25th
and 75th parent income percentiles.
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Notes: This figure shows the relationship between children’s employment outcomes and their parents’ household income, by
race and gender. All children’s outcomes in this figure are obtained from the American Community Survey and all panels
include only children observed in the 2005-15 ACS at age 30 or older. Panels A and B plot mean wage ranks vs. parental
household income percentile, by race and gender. Panels C and D replicate A and B using mean weekly hours of work as the
outcome, while Panels E and F use annual employment rates as the outcome. Wages are computed as self-reported annual
earnings divided by total hours of work; they are missing for those who do not work. We convert wages to percentile ranks
by ranking individuals relative to others in the same birth cohort who received the ACS survey in the same year. Hours of
work are defined as total annual hours of work divided by 51 and are coded as zero for those who do not work. Employment
is defined as having positive hours of work in the past 12 months. To protect confidentiality, bins in which there are fewer
than 10 children who are employed or not employed are suppressed in Panels E and F. In each figure, the best-fit lines are
estimated using OLS regressions on the binned series. We report white-black differences based on the best-fit lines at the 25th
and 75th parent income percentiles.
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Notes: This figure shows the relationship between children’s employment outcomes and their parents’ household income, by
race and gender. All children’s outcomes in this figure are obtained from the American Community Survey and all panels
include only children observed in the 2005-15 ACS at age 30 or older. Panels A and B plot mean wage ranks vs. parental
household income percentile, by race and gender. Panels C and D replicate A and B using mean weekly hours of work as the
outcome, while Panels E and F use annual employment rates as the outcome. Wages are computed as self-reported annual
earnings divided by total hours of work; they are missing for those who do not work. We convert wages to percentile ranks
by ranking individuals relative to others in the same birth cohort who received the ACS survey in the same year. Hours of
work are defined as total annual hours of work divided by 51 and are coded as zero for those who do not work. Employment
is defined as having positive hours of work in the past 12 months. To protect confidentiality, bins in which there are fewer
than 10 children who are employed or not employed are suppressed in Panels E and F. In each figure, the best-fit lines are
estimated using OLS regressions on the binned series. We report white-black differences based on the best-fit lines at the 25th
and 75th parent income percentiles.
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Notes: This figure shows the relationship between children’s employment outcomes and their parents’ household income, by
race and gender. All children’s outcomes in this figure are obtained from the American Community Survey and all panels
include only children observed in the 2005-15 ACS at age 30 or older. Panels A and B plot mean wage ranks vs. parental
household income percentile, by race and gender. Panels C and D replicate A and B using mean weekly hours of work as the
outcome, while Panels E and F use annual employment rates as the outcome. Wages are computed as self-reported annual
earnings divided by total hours of work; they are missing for those who do not work. We convert wages to percentile ranks
by ranking individuals relative to others in the same birth cohort who received the ACS survey in the same year. Hours of
work are defined as total annual hours of work divided by 51 and are coded as zero for those who do not work. Employment
is defined as having positive hours of work in the past 12 months. To protect confidentiality, bins in which there are fewer
than 10 children who are employed or not employed are suppressed in Panels E and F. In each figure, the best-fit lines are
estimated using OLS regressions on the binned series. We report white-black differences based on the best-fit lines at the 25th
and 75th parent income percentiles.



FIGURE VI: Black-White Gaps in Wage Rates, Hours, and Employment, by Gender
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B. Wage Rank, Males
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C. Hours Worked, Females
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D. Hours Worked, Males
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E. Employment Rates, Females
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F. Employment Rates, Males
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Notes: This figure shows the relationship between children’s employment outcomes and their parents’ household income, by
race and gender. All children’s outcomes in this figure are obtained from the American Community Survey and all panels
include only children observed in the 2005-15 ACS at age 30 or older. Panels A and B plot mean wage ranks vs. parental
household income percentile, by race and gender. Panels C and D replicate A and B using mean weekly hours of work as the
outcome, while Panels E and F use annual employment rates as the outcome. Wages are computed as self-reported annual
earnings divided by total hours of work; they are missing for those who do not work. We convert wages to percentile ranks
by ranking individuals relative to others in the same birth cohort who received the ACS survey in the same year. Hours of
work are defined as total annual hours of work divided by 51 and are coded as zero for those who do not work. Employment
is defined as having positive hours of work in the past 12 months. To protect confidentiality, bins in which there are fewer
than 10 children who are employed or not employed are suppressed in Panels E and F. In each figure, the best-fit lines are
estimated using OLS regressions on the binned series. We report white-black differences based on the best-fit lines at the 25th
and 75th parent income percentiles.



FIGURE VII: Black-White Gaps in Educational Attainment and Incarceration, by Gender
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B. High School Completion Rates, Males
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C. College Attendance Rates, Females
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D. College Attendance Rates, Males
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E. Incarceration, Females
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F. Incarceration, Males
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Notes: Panels A-D show the relationship between children’s educational attainment and their parents’ household income, by
race and gender. Data on educational attainment is obtained from the American Community Survey. Panels A and B plot
the fraction of children who complete high school by parental income percentile, by race and gender. Panels C and D replicate
Panels A and B using college attendance as the outcome. Panels A-B include only children observed in the 2005-15 ACS at
age 19 or older, while Panels C-D include those observed at age 20 or older. High school completion is defined as having a
high school diploma or GED. College attendance is defined as having obtained “at least some college credit”. Panels E and
F plot incarceration rates vs. parent income percentile, by race and gender. Incarceration is defined as being incarcerated
on April 1, 2010 using data from the 2010 Census short form. The children in our sample are between the ages of 27-32 at
that point. The best-fit lines in Panels A-D are estimated using OLS regressions on the binned series. We report white-black
differences based on the best-fit lines (in Panels A-D) and based directly on the non-parametric estimates (in Panel F) at the
25th and 75th parent income percentiles. To protect confidentiality, bins in which there are fewer than 10 children who exhibit
the outcome or who do not exhibit the outcome are suppressed.
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B. High School Completion Rates, Males
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C. College Attendance Rates, Females
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D. College Attendance Rates, Males
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F. Incarceration, Males
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Notes: Panels A-D show the relationship between children’s educational attainment and their parents’ household income, by
race and gender. Data on educational attainment is obtained from the American Community Survey. Panels A and B plot
the fraction of children who complete high school by parental income percentile, by race and gender. Panels C and D replicate
Panels A and B using college attendance as the outcome. Panels A-B include only children observed in the 2005-15 ACS at
age 19 or older, while Panels C-D include those observed at age 20 or older. High school completion is defined as having a
high school diploma or GED. College attendance is defined as having obtained “at least some college credit”. Panels E and
F plot incarceration rates vs. parent income percentile, by race and gender. Incarceration is defined as being incarcerated
on April 1, 2010 using data from the 2010 Census short form. The children in our sample are between the ages of 27-32 at
that point. The best-fit lines in Panels A-D are estimated using OLS regressions on the binned series. We report white-black
differences based on the best-fit lines (in Panels A-D) and based directly on the non-parametric estimates (in Panel F) at the
25th and 75th parent income percentiles. To protect confidentiality, bins in which there are fewer than 10 children who exhibit
the outcome or who do not exhibit the outcome are suppressed.
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C. College Attendance Rates, Females
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D. College Attendance Rates, Males
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E. Incarceration, Females
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F. Incarceration, Males
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Notes: Panels A-D show the relationship between children’s educational attainment and their parents’ household income, by
race and gender. Data on educational attainment is obtained from the American Community Survey. Panels A and B plot
the fraction of children who complete high school by parental income percentile, by race and gender. Panels C and D replicate
Panels A and B using college attendance as the outcome. Panels A-B include only children observed in the 2005-15 ACS at
age 19 or older, while Panels C-D include those observed at age 20 or older. High school completion is defined as having a
high school diploma or GED. College attendance is defined as having obtained “at least some college credit”. Panels E and
F plot incarceration rates vs. parent income percentile, by race and gender. Incarceration is defined as being incarcerated
on April 1, 2010 using data from the 2010 Census short form. The children in our sample are between the ages of 27-32 at
that point. The best-fit lines in Panels A-D are estimated using OLS regressions on the binned series. We report white-black
differences based on the best-fit lines (in Panels A-D) and based directly on the non-parametric estimates (in Panel F) at the
25th and 75th parent income percentiles. To protect confidentiality, bins in which there are fewer than 10 children who exhibit
the outcome or who do not exhibit the outcome are suppressed.
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C. College Attendance Rates, Females
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D. College Attendance Rates, Males
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E. Incarceration, Females
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Notes: Panels A-D show the relationship between children’s educational attainment and their parents’ household income, by
race and gender. Data on educational attainment is obtained from the American Community Survey. Panels A and B plot
the fraction of children who complete high school by parental income percentile, by race and gender. Panels C and D replicate
Panels A and B using college attendance as the outcome. Panels A-B include only children observed in the 2005-15 ACS at
age 19 or older, while Panels C-D include those observed at age 20 or older. High school completion is defined as having a
high school diploma or GED. College attendance is defined as having obtained “at least some college credit”. Panels E and
F plot incarceration rates vs. parent income percentile, by race and gender. Incarceration is defined as being incarcerated
on April 1, 2010 using data from the 2010 Census short form. The children in our sample are between the ages of 27-32 at
that point. The best-fit lines in Panels A-D are estimated using OLS regressions on the binned series. We report white-black
differences based on the best-fit lines (in Panels A-D) and based directly on the non-parametric estimates (in Panel F) at the
25th and 75th parent income percentiles. To protect confidentiality, bins in which there are fewer than 10 children who exhibit
the outcome or who do not exhibit the outcome are suppressed.
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B. High School Completion Rates, Males
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C. College Attendance Rates, Females
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D. College Attendance Rates, Males
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E. Incarceration, Females
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F. Incarceration, Males
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Notes: Panels A-D show the relationship between children’s educational attainment and their parents’ household income, by
race and gender. Data on educational attainment is obtained from the American Community Survey. Panels A and B plot
the fraction of children who complete high school by parental income percentile, by race and gender. Panels C and D replicate
Panels A and B using college attendance as the outcome. Panels A-B include only children observed in the 2005-15 ACS at
age 19 or older, while Panels C-D include those observed at age 20 or older. High school completion is defined as having a
high school diploma or GED. College attendance is defined as having obtained “at least some college credit”. Panels E and
F plot incarceration rates vs. parent income percentile, by race and gender. Incarceration is defined as being incarcerated
on April 1, 2010 using data from the 2010 Census short form. The children in our sample are between the ages of 27-32 at
that point. The best-fit lines in Panels A-D are estimated using OLS regressions on the binned series. We report white-black
differences based on the best-fit lines (in Panels A-D) and based directly on the non-parametric estimates (in Panel F) at the
25th and 75th parent income percentiles. To protect confidentiality, bins in which there are fewer than 10 children who exhibit
the outcome or who do not exhibit the outcome are suppressed.
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B. High School Completion Rates, Males
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C. College Attendance Rates, Females
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D. College Attendance Rates, Males
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E. Incarceration, Females
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Notes: Panels A-D show the relationship between children’s educational attainment and their parents’ household income, by
race and gender. Data on educational attainment is obtained from the American Community Survey. Panels A and B plot
the fraction of children who complete high school by parental income percentile, by race and gender. Panels C and D replicate
Panels A and B using college attendance as the outcome. Panels A-B include only children observed in the 2005-15 ACS at
age 19 or older, while Panels C-D include those observed at age 20 or older. High school completion is defined as having a
high school diploma or GED. College attendance is defined as having obtained “at least some college credit”. Panels E and
F plot incarceration rates vs. parent income percentile, by race and gender. Incarceration is defined as being incarcerated
on April 1, 2010 using data from the 2010 Census short form. The children in our sample are between the ages of 27-32 at
that point. The best-fit lines in Panels A-D are estimated using OLS regressions on the binned series. We report white-black
differences based on the best-fit lines (in Panels A-D) and based directly on the non-parametric estimates (in Panel F) at the
25th and 75th parent income percentiles. To protect confidentiality, bins in which there are fewer than 10 children who exhibit
the outcome or who do not exhibit the outcome are suppressed.



Experimental and Non-Experimental Approaches

I Observational decompositions provide valuable descriptive evidence,
but suffer from the usual issues with non-experimental research
designs

I Link between Oaxaca and treatment effect estimation under CIA is
useful for thinking about potential issues

I Oaxaca decompositions can overstate or understate the extent of
discrimination

I Productivity-relevant characteristics that differ across groups
may be excluded from Xi (= omitted variable bias)

I Discrimination may affect the distribution of Xi (= bad
control)

I Motivating by these issues, a parallel strand of literature uses
experimental approaches to measure discrimination

Chris Walters (UC Berkeley) Discrimination



Audit and Correspondence Studies

I Common experimental approach to studying discrimination: audit
and correspondence studies

I In-person audit studies: send pairs of auditors matched on personal
characteristics but different on some dimension of interest (e.g.
race) to apply for a real job

I Resume correspondence studies: send fictitious resumes to real jobs
with randomly assigned names that signify protected characteristics

I Pioneered by Bertrand and Mullainathan (2004) to study racial
discrimination

I Baert (2018) counts 90 correspondence studies on hiring
discrimination since 2005

I See Bertrand and Duflo (2017) for a survey of audit and
correspondence studies in economics

Chris Walters (UC Berkeley) Discrimination



Bertrand and Mullainathan (2004)

I BM sent four fake resumes to (almost) every employment ad posted

in the Boston Globe or Chicago Tribune between summer 2001 and

spring 2002 in sales, administrative support, clerical and customer

services

I Choose racially distinctive names based on empirical likelihood
ratios among all children born in MA 1974-79

I Resume “bank” built from characteristics of real resumes
posted on job search web sites

I Every job receives two resumes with white names and two
resumes with black names

I Main outcome: Employer callback

Chris Walters (UC Berkeley) Discrimination
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TABLE Al FIRST NAMES USED IN EXPERIMENT 

White female African-American female 
Name L(W)/L(B) Perception White Name L(B)/L(W) Perception Black 

Allison oo 0.926 Aisha 209 0.97 
Anne oo 0.962 Ebony oo 0.9 
Carrie 00 0.923 Keisha 116 0.93 
Emily oo 0.925 Kenya oo 0.967 
Jill oo 0.889 Lakisha oo 0.967 
Laurie oo 0.963 Latonya oo 1 
Kristen oo 0.963 Latoya xo 1 
Meredith oo 0.926 Tamika 284 1 
Sarah oo 0.852 Tanisha 0o 1 

Fraction of all births: Fraction of all births: 

3.8 percent 7.1 percent 

White male African-American male 
Name L(W)/L(B) Perception White Name L(B)/L(W) Perception Black 

Brad oo 1 Darell 0o 0.967 
Brendan oo 0.667 Hakim 0.933 
Geoffrey oo 0.731 Jamal 257 0.967 
Greg oo 1 Jermaine 90.5 1 
Brett oo 0.923 Kareem 0o 0.967 
Jay oo 0.926 Leroy 44.5 0.933 
Matthew o0 0.888 Rasheed oo 0.931 
Neil oo 0.654 Tremayne 0o 0.897 
Todd oo 0.926 Tyrone 62.5 0.900 

Fraction of all births: Fraction of all births: 

1.7 percent 3.1 percent 

Notes: This table tabulates the different first names used in the experiment and their identifiability. The first column reports 
the likelihood that a baby born with that name (in Massachusetts between 1974 and 1979) is White (or African-American) 
relative to the likelihood that it is African-American (White). The second column reports the probability that the name was 
picked as White (or African-American) in an independent field survey of people. The last row for each group of names shows 
the proportion of all births in that race group that these names account for. 
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BERTRAND AND MULLAINATHAN: RACE IN THE LABOR MARKET 

TABLE 1-MEAN CALLBACK RATES BY RACIAL SOUNDINGNESS OF NAMES 

Percent callback Percent callback for Percent difference 
for White names African-American names Ratio (p-value) 

Sample: 
All sent resumes 9.65 6.45 1.50 3.20 

[2,435] [2,435] (0.0000) 
Chicago 8.06 5.40 1.49 2.66 

[1,352] [1,352] (0.0057) 
Boston 11.63 7.76 1.50 4.05 

[1,083] [1,083] (0.0023) 
Females 9.89 6.63 1.49 3.26 

[1,860] [1,886] (0.0003) 
Females in administrative jobs 10.46 6.55 1.60 3.91 

[1,358] [1,359] (0.0003) 
Females in sales jobs 8.37 6.83 1.22 1.54 

[502] [527] (0.3523) 
Males 8.87 5.83 1.52 3.04 

[575] [549] (0.0513) 

Notes: The table reports, for the entire sample and different subsamples of sent resumes, the callback rates for applicants with 
a White-sounding name (column 1) an an African-American-sounding name (column 2), as well as the ratio (column 3) and 
difference (column 4) of these callback rates. In brackets in each cell is the number of resumes sent in that cell. Column 4 
also reports the p-value for a test of proportion testing the null hypothesis that the callback rates are equal across racial groups. 

employers rarely, if ever, contact applicants via 
postal mail to set up interviews. 

E. Weaknesses of the Experiment 

We have already highlighted the strengths of 
this experiment relative to previous audit stud- 
ies. We now discuss its weaknesses. First, our 
outcome measure is crude, even relative to the 
previous audit studies. Ultimately, one cares 
about whether an applicant gets the job and 
about the wage offered conditional on getting 
the job. Our procedure, however, simply mea- 
sures callbacks for interviews. To the extent that 
the search process has even moderate frictions, 
one would expect that reduced interview rates 
would translate into reduced job offers. How- 
ever, we are not able to translate our results into 
gaps in hiring rates or gaps in earnings. 

Another weakness is that the resumes do not 
directly report race but instead suggest race 
through personal names. This leads to various 
sources of concern. First, while the names are 
chosen to make race salient, some employers 
may simply not notice the names or not recog- 
nize their racial content. On a related note, 
because we are not assigning race but only 
race-specific names, our results are not repre- 
sentative of the average African-American 
(who may not have such a racially distinct 

name).28 We return to this issue in Section IV, 
subsection B. 

Finally, and this is an issue pervasive in both 
our study and the pair-matching audit studies, 
newspaper ads represent only one channel for 
job search. As is well known from previous 
work, social networks are another common 
means through which people find jobs and one 
that clearly cannot be studied here. This omis- 
sion could qualitatively affect our results if 
African-Americans use social networks more or 
if employers who rely more on networks differ- 
entiate less by race.29 

III. Results 

A. Is There a Racial Gap in Callback? 

Table 1 tabulates average callback rates by 
racial soundingness of names. Included in 
brackets under each rate is the number of re- 
sumes sent in that cell. Row 1 presents our 
results for the full data set. Resumes with White 

28 As Appendix Table Al indicates, the African- 
American names we use are, however, quite common 
among African-Americans, making this less of a concern. 

29 In fact, there is some evidence that African-Americans 
may rely less on social networks for their job search (Harry 
J. Holzer, 1987). 

VOL. 94 NO. 4 997 



BERTRAND AND MULLAINATHAN: RACE IN THE LABOR MARKET 

TABLE 2-DISTRIBUTION OF CALLBACKS BY EMPLOYMENT AD 

Equal Treatment: No Callback 1W + lB 2W + 2B 
88.13 percent 83.37 3.48 1.28 
[1,166] [1,103] [46] [17] 
Whites Favored (WF): 1W + OB 2W + OB 2W + 1B 
8.39 percent 5.59 1.44 1.36 
[111] [74] [19] [18] 
African-Americans Favored (BF): 1B + OW 2B + OW 2B + 1W 
3.48 percent 2.49 0.45 0.53 
[46] [33] [6] [7] 
Ho: WF = BF 
p = 0.0000 

Notes: This table documents the distribution of callbacks at the employment-ad level. "No Callback" is the percent of ads for 
which none of the fictitious applicants received a callback. "1W + 1B" is the percent of ads for which exactly one White and 
one African-American applicant received a callback. "2W + 2B" is the percent of ads for which exactly two White applicants 
and two African-American applicants received a callback. "Equal Treatment" is defined as the sum of "No Callback," "1W + 
1B," and "2W + 2B." "1W + OB" is the percent of ads for which exactly one White applicant and no African-American 
applicant received a call back. "2W + OB" is the percent of ads for which excatly two White applicants and no 
African-American applicant received a callback. "2W + 1B" is the percent of ads for which exactly two White applicants and 
one African-American applicant received a callback. "Whites Favored" is defined as the sum of "1W + OB," "2W + OB," 
and "2W + 1B." "1B + OW" is the percent of ads for which exactly one African-American applicant and no White applicant 
received a callback. "2B + OW" is the percent of ads for which exactly two African-American applicants and no White 
applicant received a callback. "2B + 1W" is the percent of ads for which exactly two African-American applicants and one 
White applicant received a callback. "African-Americans Favored" is defined as the sum of "1B + OW," "2B + OW," and 
"2B + 1W." In brackets in each cell is the number of employment ads in that cell. "Ho: WF = WB" reports the p-value for 
a test of symmetry between the proportion of employers that favor White names and the proportion of employers that favor 
African-American names. 

no callbacks are recorded (83 percent of the 
ads). Whites are favored by nearly 8.4 percent 
of the employers, with a majority of these em- 
ployers contacting exactly one White applicant. 
African-Americans, on the other hand, are fa- 
vored by only about 3.5 percent of employers. 
We formally test whether there is symmetry in 
the favoring of Whites over African-Americans 
and African-Americans over Whites. We find 
that the difference between the fraction of em- 
ployers favoring Whites and the fraction of 
employers favoring African-Americans is sta- 
tistically very significant (p = 0.0000). 

B. Do African-Americans Receive Different 
Returns to Resume Quality? 

Our results so far demonstrate a substantial 
gap in callback based on applicants' names. 
Next, we would like to learn more about the 
factors that may influence this gap. More spe- 
cifically, we ask how employers respond to im- 
provements in African-American applicants' 
credentials. To answer this question, we exam- 
ine how the racial gap in callback varies by 
resume quality. 

As we explained in Section II, for most of the 

employment ads we respond to, we send four 
different resumes: two higher-quality and two 
lower-quality ones. Table 3 gives a better sense 
of which factors enter into this subjective clas- 
sification. Table 3 displays means and standard 
deviations of the most relevant resume charac- 
teristics for the full sample (column 1), as well 
as broken down by race (columns 2 and 3) and 
resume quality (columns 4 and 5). Since appli- 
cants' names are randomized, there is no differ- 
ence in resume characteristics by race. Columns 
4 and 5 document the objective differences be- 
tween resumes subjectively classified as high 
and low quality. Higher-quality applicants have 
on average close to an extra year of labor mar- 
ket experience, fewer employment holes (where 
an employment hole is defined as a period of at 
least six months without a reported job), are 
more likely to have worked while at school, 
and to report some military experience. Also, 
higher-quality applicants are more likely to 
have an e-mail address, to have received some 
honors, and to list some computer skills and 
other special skills (such as a certification 
degree or foreign language skills) on their re- 
sume. Note that the higher- and lower-quality 
resumes do not differ on average with regard to 
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TABLE 8-CALLBACK RATE AND MOTHER'S EDUCATION BY FIRST NAME 

White female African-American female 

Name Percent callback Mother education Name Percent callback Mother education 

Emily 7.9 96.6 Aisha 2.2 77.2 
Anne 8.3 93.1 Keisha 3.8 68.8 
Jill 8.4 92.3 Tamika 5.5 61.5 
Allison 9.5 95.7 Lakisha 5.5 55.6 
Laurie 9.7 93.4 Tanisha 5.8 64.0 
Sarah 9.8 97.9 Latoya 8.4 55.5 
Meredith 10.2 81.8 Kenya 8.7 70.2 
Carrie 13.1 80.7 Latonya 9.1 31.3 
Kristen 13.1 93.4 Ebony 9.6 65.6 

Average 91.7 Average 61.0 
Overall 83.9 Overall 70.2 

Correlation -0.318 (p = 0.404) Correlation -0.383 (p = 0.309) 

White male African-American male 

Name Percent callback Mother education Name Percent callback Mother education 

Todd 5.9 87.7 Rasheed 3.0 77.3 
Neil 6.6 85.7 Tremayne 4.3 
Geoffrey 6.8 96.0 Kareem 4.7 67.4 
Brett 6.8 93.9 Darell 4.8 66.1 
Brendan 7.7 96.7 Tyrone 5.3 64.0 
Greg 7.8 88.3 Hakim 5.5 73.7 
Matthew 9.0 93.1 Jamal 6.6 73.9 
Jay 13.4 85.4 Leroy 9.4 53.3 
Brad 15.9 90.5 Jermaine 9.6 57.5 

Average 91.7 Average 66.7 
Overall 83.5 Overall 68.9 

Correlation -0.0251 (p = 0.949) Correlation -0.595 (p = 0.120) 

Notes: This table reports, for each first name used in the experiment, callback rate and average mother education. Mother 
education for a given first name is defined as the percent of babies born with that name in Massachusetts between 1970 and 
1986 whose mother had at least completed a high school degree (see text for details). Within each sex/race group, first names 
are ranked by increasing callback rate. "Average" reports, within each race-gender group, the average mother education for 
all the babies born with one of the names used in the experiment. "Overall" reports, within each race-gender group, average 
mother education for all babies born in Massachusetts between 1970 and 1986 in that race-gender group. "Correlation" reports 
the Spearman rank order correlation between callback rate and mother education within each race-gender group as well as the 
p-value for the test of independence. 

1986.46 For each first name in our experiment, 
we compute the fraction of babies with that 

46 This longer time span (compared to that used to assess 
name frequencies) was imposed on us for confidentiality 
reasons. When fewer than 10 births with education data 
available are recorded in a particular education-name cell, 
the exact number of births in that cell is not reported and we 
impute five births. Our results are not sensitive to this 
imputation. One African-American female name (Latonya) 
and two male names (Rasheed and Hakim) were imputed in 
this way. One African-American male name (Tremayne) 
had too few births with available education data and was 
therefore dropped from this analysis. Our results are quali- 

name and, in that gender-race cell, whose moth- 
ers have at least completed a high school 
degree. 

In Table 8, we display the average callback 
rate for each first name along with this proxy for 
social background. Within each race-gender 
group, the names are ranked by increasing call- 
back rate. Interestingly, there is significant 

tatively similar when we use a larger data set of California 
births for the years 1989 to 2000 (kindly provided to us by 
Steven Levitt). 
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Critiques of Audit Studies

I Audit and correspondence studies have been criticized for a variety of
reasons (e.g. by Heckman and Siegelman, 1993 and Heckman, 1998)

I Demand effects in in-person audit experiments

I Behavior of average vs. marginal firms

I Distinctively black names may signify attributes other than race
(Gaddis, 2017)

I Economic significance of callback outcome

I Effects may be due to statistical rather than taste-based
discrimination (do we care?)

I As noted by Guryan and Charles (2013), despite issues with
interpretation, results from correspondence studies appear to demonstrate
firms illegally use protected characteristics in the hiring process

Chris Walters (UC Berkeley) Discrimination



Variation in Discrimination: Kline and Walters
(forthcoming)

I Correspondence studies typically focus on market-level averages of
discrimination

I Distribution of discrimination across employers is important for both
research and policy

I Economic models imply equilibrium impact of discrimination
depends on prejudice of marginal employer rather than the average
(Becker, 1957)

I Enforcement of anti-discrimination law requires identifying
individual offenders (e.g., EEOC charges)

I Kline and Walters (forthcoming) revisit correspondence evidence to study
variation across employers

I Basic idea: Correspondence studies sending multiple applications per job
provide a window into employer heterogeneity

Chris Walters (UC Berkeley) Discrimination



Kline and Walters (forthcoming): Bernoulli Trials

I Starting point is a model for callbacks as independent Bernoulli trials

I Potential outcomes of application i ∈ {1, ...,N} to job j ∈ {1, ..., J} as a
function of race r ∈ {b,w}:

Yij(r)
iid∼ Bernoulli(pjr )

I Key restriction is iid assumption: repeated trials at the same job are
draws from a stable callback process

I A job is defined by its callback probabilities, pjb and pjw

I Discriminators have pjb 6= pjw

Chris Walters (UC Berkeley) Discrimination



Kline and Walters (forthcoming): Hierarchical Model

I Independent trials implies callback counts Cjw and Cjb are binomial:

f (Cjw ,Cjb|pjw , pjb) =
(Nw
Cjw

)
p
Cjw

jw (1− pjw )Nw−Cjw ×
(Nb
Cjb

)
p
Cjb

jb (1− pjb)Nb−Cjb

I Next, think about the joint distribution of pjw and pjb across jobs:

(pjw , pjb) ∼ G(pw , pb)

I This is a hierarchical model

I Binomial trials for each job

I Heterogeneous success probabilities across jobs

Chris Walters (UC Berkeley) Discrimination



Kline and Walters (forthcoming): Importance of G (·)
I Distribution function G(·) describes heterogeneity in callback levels and

discrimination. Share of jobs that discriminate is:

π̄ =

∫
pw 6=pb

dG(pw , pb)

I G(·) can also help us interpret evidence for individual jobs

I By Bayes’ rule, share of non-discriminators among jobs with callback
counts (Cjw ,Cjb) is:

Pr[pjw 6= pjb|Cjw ,Cjb] =
f (Cjw ,Cjb|pjw 6= pjb) Pr(pjw 6= pjb)

f (Cjw ,Cjb)

=

∫
pw 6=pb

f (Cjw ,Cjb|pw , pb)dG(pw , pb)π̄

f (Cjw ,Cjb)

I If we knew G(·), we could calculate this probability

I Empirical Bayes approach: plug in an estimator Ĝ(·) of the cross-job
distribution to form posteriors for individual jobs

Chris Walters (UC Berkeley) Discrimination



Kline and Walters (forthcoming): Identification of G (·)

I It turns out that some features of G(·) are identified with only a few
applications per job

I Share of jobs with callback counts (cw , cb):

f (cw , cb) =
(
Nw
cw

)(
Nb
cb

)
E
[
pcw
jw (1− pjw )Nw−cw pcb

jb (1− pjb)Nb−cb
]

=
(Nw
cw

)(Nb
cb

)Nw−cw∑
m=0

Nb−cb∑
n=0

(−1)m+n
(Nw − cw

m

)(Nb − cb

n

)
E
[
pcw +m
jw p

cb+n
jb

]

I Unconditional callback probabilities are functions of moments of G(·)

I Can solve for all moments E [pm
jwp

n
jb] for 0 ≤ m ≤ Nw and 0 ≤ n ≤ Nb

I With two or more apps per race at each job, can identify measures of
heterogeneity, e.g. Var(pjb − pjw )

Chris Walters (UC Berkeley) Discrimination



p b p w p b  - p w

(1) (2) (3)
Mean 0.063 0.094 -0.031

(0.006) (0.007) (0.006)

Standard deviation 0.152 0.199 0.082
(0.012) (0.012) (0.016)

Correlation with p w or p f 0.927 1.00 -0.717
(0.051) - (0.119)

Table III.A: Treatment effect variation in BM (2004)



p b p w p b  - p w

(1) (2) (3)
Mean 0.153 0.177 -0.023

(0.007) (0.007) (0.005)

Standard deviation 0.290 0.308 0.102
(0.008) (0.007) (0.012)

Correlation with p w or p f 0.944 1.00 -0.336
(0.017) - (0.066)

Skewness 3.76 3.65 -4.45
(0.08) (0.08) (0.82)

Table III.B: Treatment effect variation in NPRS (2015)



Kline and Walters (forthcoming): Bounds

I Calculating discrimination probabilities requires more than a few moments
of G(·)

I But we can use the moments we have to calculate bounds

I Let µ(G) denote list of moments for distribution G(·), and f the list of
observed callback probabilities

I Lower bound on the share of jobs that discriminate:

π̄ ≥ min
G

∫
pw 6=pb

dG(pw , pb) s.t. f = Bµ(G)

I Discretize G =⇒ this is a tractable linear programming problem

I We can use this approach to bound the overall share of discriminators,
and the share of jobs with particular callback configurations that
discriminate
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Figure I: Lower bounds on posterior probabilities of discrimination, BM data



Figure II: Lower bounds on posterior probabilities of discrimination, Nunley et al. data



Kline and Walters (forthcoming): Decisions

I Results so far suggest it is possible to obtain informative posteriors for
some individual jobs

I Can we use correspondence evidence to make decisions about which
employers to investigate?

I Let δ(Cjw ,Cjb) ∈ {0, 1} indicate decision to investigate as a function of
callbacks

I Consider a simple loss function:

Lj(δ(Cjw ,Cjb)) = γ1δ(Cjw ,Cjb)1{pjw = pjb}+ γ2(1− δ(Cjw ,Cjb))1{pjw 6= pjb}

I γ1 and γ2 reflect costs of type I and type II errors

I Optimal decision rule minimizes risk (expected loss):

δ∗(Cjw ,Cjb) = arg min
δ(·)

E [Lj(δ(Cjw ,Cjb))]
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Kline and Walters (forthcoming): Decisions

I Optimal decision is to investigate when posterior exceeds a cost-based
threshold:

δ∗(Cjw ,Cjb) = 1
{

Pr[pwj 6= pbj |Cjw ,Cjb] > γ1
γ1+γ2

}
.

I Unlike frequentist hypothesis testing, posterior threshold rule controls the
false discovery rate, FDR ≡ Pr [pwj = pbj |δ(Cjw ,Cjb) = 1]

I Close link to literature on multiple testing (Benjamini and Hochberg,
1995; Storey, 2002; Efron, 2012)

I With knowledge of G(·), can trace out tradeoff between type I and II
errors (detection/error tradeoff curve)

Chris Walters (UC Berkeley) Discrimination



Kline and Walters (forthcoming): Parametric Model
I Study detection/error tradeoffs with a parametric model for G(·)

I Mixed logit model for callback to application i at job j :

Pr (Yij = 1|αj , βj ,Rij ,Xij) =
exp

(
αj − βj1{Rij = b}+ X ′ijψ

)
1 + exp

(
αj − βj1{Rij = b}+ X ′ijψ

) .

I Rij indicates race, Xj` includes other randomly-assigned characteristics
(GPA, experience, etc.)

I Two-type mixing:

αj ∼ N
(
α0, σ

2
α

)
,

βj =

{
β0, with prob.

exp(τ0+τααj )

1+exp(τ0+τααj )

0, with prob. 1
1+exp(τ0+τααj )

.

I Kline and Walters (forthcoming) also consider decisions with continuous
loss and partial identification of G(·) (minimax analysis)
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Constant No selection Selection
(1) (2) (3)

      Distribution of logit(pw):   𝛼0 -4.71 -4.93 -4.93
(0.22) (0.24) (0.28)

𝜎𝛼 4.74 4.99 4.98
(0.22) (0.25) (0.29)

  Discrimination intensity:  𝛽0 0.456 4.05 4.05
(0.108) (1.56) (1.58)

   Discrimination logit:      𝜏0 - -1.59 -1.56
(0.42) (1.10)

𝜏𝛼 - - -0.005
(0.180)

Fraction with p w  ≠ p b  : 1.00 0.168 0.170

Log-likelihood -2,792.1 -2,788.2 -2,788.2
Parameters 15 16 17
Sample size 2,305 2,305 2,305

Table V: Mixed logit parameter estimates, NPRS data
Types



Figure V: Detection/error tradeoffs, NPRS data

.9
88

.9
9

.9
92

.9
94

.9
96

.9
98

1
Sh

ar
e 

of
 n

on
-d

isc
rim

in
at

or
s 

no
t i

nv
es

tig
at

ed

0 .05 .1 .15
Share of discriminators investigated

2 pairs
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Disparate Impacts of Probation: Rose (forthcoming)

I Large racial disparities in criminal justice outcomes motivate studies
of discrimination in the criminal justice system

I Concerns that formally neutral policies may have disproportionate
effects on protected groups

I Disparate treatment vs. disparate impact

I Algorithmic fairness and bias (Kleinberg et al., 2017; Yang and
Dobbie, 2020)

I Rose (forthcoming QJE) studies the impacts of probation rules on
racial gaps in incarceration

Chris Walters (UC Berkeley) Discrimination



Rose (forthcoming): Background

I Most convicted offenders in the US serve sentences on probation
(“community supervision”) rather than in prison

I While on probation, violations of technical rules (e.g. failure to pay
fees or fines) may result in incarceration

I Probation revocations account for 25% of prison admissions, and
are more common among black probationers

I Technical rules are meant to serve two purposes:

I Support reintegration/rehabilitation of offenders

I Identify those who are likely to offend again

I Key question: Do probation violations accurately target high-risk
offenders?
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Rose (forthcoming): Probation reform

I Rose (forthcoming) studies a 2011 North Carolina reform that
reduced punishments for technical probation violations

I Prior to reform, revocations for nonpayment of fees/fines or failing
drug/alcohol tests were common

I Afterwards, revocations were reserved for new crimes or absconding
(fleeing supervision)

I Using administrative data from NC, Rose (forthcoming) employs a
difference-in-differences design to study the impacts of this reform

I Treatment group: Offenders on supervised probation in NC

I Control group: unsupervised probationers (less serious
offenses/not monitored for violations)

Chris Walters (UC Berkeley) Discrimination



Difference-in-Differences

I Consider individuals in two groups g ∈ {A,B} observed in two time
periods t ∈ {pre, post}

I Treatment switches on for group A in the post period:
Digt = 1{g = A, t = post}

I Let Yigt(d) denote potential outcome for individual i in group g in
period t with treatment status d ∈ {0, 1}

I We observe E [Yi,A,post(1)], and E [Yigt(0)] for
(g , t) ∈ {(A, 0), (B, 0), (B, 1)}

I Objective: calculate the treatment effect for group A in the post
period, E [Yi,A,post(1)− Yi,A,post(0)]

I Requires imputing the unobserved counterfactual for the treated
group in the post period, E [Yi,A,post(0)]

Chris Walters (UC Berkeley) Discrimination



Difference-in-Differences

I The core of a diff-in-diff design is an additive model for non-treated
potential outcomes:

E [Yigt(0)] = αg + γt

I αg is a time-invariant group effect

I γt is a group-invariant time effect

I Groups can be different, and time periods can be different. Key is no
time-varying group-specific confounders

I Additive model implies parallel trends in non-treated potential outcomes
across groups:

E [Yi,A,post(0)]− E [Yi,A,pre(0)] = E [Yi,B,post(0)]− E [Yi,B,pre(0)]

= γ1 − γ0.

Chris Walters (UC Berkeley) Discrimination



Difference-in-Differences
I With an additive model, the observed change in outcomes for group B

captures the counterfactual change in outcomes for group A, so:

E [Yi,A,post(0)] = E [Yi,A,pre(0)] + (E [Yi,B,post(0)]− E [Yi,B,pre(0)])

I The treatment effect for group A in the post period is then:

E [Yi,A,post(1)− Yi,A,post(0)] = (E [Yi,A,post(1)]− E [Yi,A,pre(0)])

− (E [Yi,B,post(0)]− E [Yi,B,pre(0)])

I Diff-in-diff looks at the change in outcomes for the treated group,
subtracting off the change for the control group to eliminate time effects

I Implement with linear regression:

Yigt = αg + γt + βDgt + εigt

I Coefficient β captures difference in changes over time for treatment vs.
control

Chris Walters (UC Berkeley) Discrimination
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Figure II
Effects of Reform on Technical Revocation and Crime

A. Technical revocation B. Arrests
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Notes. This figure plots e↵ects of the 2011 JRA reform on technical revocation and arrests. Panels A
and B include all supervised probationers starting their spells within four years of the reform. Each
line represents a three-month cohort of probationers who start their spells where the line intersects
the x-axis. The y-axis measures the share of this cohort experiencing the relevant outcome over
the following year. That is, each line is the failure function for that cohort and outcome. Technical
revocation is an indicator for having probation revoked with no intervening criminal arrest. Arrest
is an indicator for a criminal arrest before revocation for any rule violations. Events are therefore
mutually exclusive. Panel C plots mean one-year technical revocation and arrest rates for supervised
probationers minus the same measure for unsupervised probationers. The same cohort definitions
are used. E↵ects are normalized relative to the cohort starting four quarters before the reform,
indicated by the solid red line. This is the last cohort to spend the full first year of their probation
spells under the pre-reform regime. The dotted red line indicates the first cohort whose first year
of probation falls completely post-reform. Dashed lines indicate 95% confidence intervals formed
from standard errors clustered at the individual level.
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are used. E↵ects are normalized relative to the cohort starting four quarters before the reform,
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Figure III
Effects of Reform by Race

A. Technical revocation B. Arrests
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Notes. This figure plots e↵ects of the 2011 JRA reform on technical revocation and arrests separately
by race. It includes all supervised probationers starting their spells either 1-3 years before (pre)
or 0-2 years after the reform (post). “B” refers to black probationers, while “W” refers to non-
black. The y-axis measures the share of each group experiencing the relevant outcome over the
first year of their probation spell. Technical revocation is an indicator for having probation revoked
for rule violations with no intervening criminal arrest. Arrest is an indicator for a criminal arrest
before revocation for any rule violations. Shaded areas reflect 95% confidence intervals formed using
standard errors clustered at the individual level.
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TABLE III
Difference-in-Differences Estimates of Reform Impacts

A. All o↵enders

Technical revoke Arrest

(1) (2) (3) (4)
Post-reform -0.00172⇤⇤⇤ -0.00205⇤⇤⇤ -0.00793⇤⇤⇤ -0.00705⇤⇤⇤

(0.000273) (0.000288) (0.00167) (0.00159)

Treated 0.143⇤⇤⇤ 0.133⇤⇤⇤ 0.0316⇤⇤⇤ -0.0155⇤⇤⇤

(0.00103) (0.00102) (0.00166) (0.00164)

Post-x-treat -0.0532⇤⇤⇤ -0.0530⇤⇤⇤ 0.0196⇤⇤⇤ 0.0194⇤⇤⇤

(0.00135) (0.00135) (0.00242) (0.00233)
N 546006 546006 546006 546006
Pre-reform treated mean .149 .149 .287 .287
Accuracy .369 (0.045) .369 (0.063)
False negative rate .936 (0.01) .936 (0.01)
False positive rate .056 (0.004) .056 (0.004)

B. Non-black o↵enders

Post-reform -0.000522 -0.000875⇤⇤ -0.00693⇤⇤⇤ -0.00666⇤⇤⇤

(0.000317) (0.000334) (0.00199) (0.00190)

Treated 0.122⇤⇤⇤ 0.112⇤⇤⇤ 0.0450⇤⇤⇤ -0.000334
(0.00130) (0.00126) (0.00209) (0.00207)

Post-x-treat -0.0356⇤⇤⇤ -0.0360⇤⇤⇤ 0.0198⇤⇤⇤ 0.0179⇤⇤⇤

(0.00173) (0.00172) (0.00304) (0.00295)
N 328784 328784 328784 328784
Pre-reform treated mean .127 .127 .265 .265
Accuracy .556 (0.085) .55 (0.081)
False negative rate .93 (0.01) .931 (0.01)
False positive rate .025 (0.005) .026 (0.005)

C. Black o↵enders

Post-reform -0.00387⇤⇤⇤ -0.00412⇤⇤⇤ -0.0118⇤⇤⇤ -0.0112⇤⇤⇤

(0.000509) (0.000534) (0.00295) (0.00281)

Treated 0.167⇤⇤⇤ 0.160⇤⇤⇤ -0.00496 -0.0464⇤⇤⇤

(0.00167) (0.00167) (0.00274) (0.00268)

Post-x-treat -0.0741⇤⇤⇤ -0.0736⇤⇤⇤ 0.0228⇤⇤⇤ 0.0233⇤⇤⇤

(0.00215) (0.00214) (0.00399) (0.00383)
N 217222 217222 217222 217222
Pre-reform treated mean .176 .176 .315 .315
Accuracy .308 (0.053) .309 (0.051)
False negative rate .932 (0.01) .932 (0.01)
False positive rate .091 (0.007) .091 (0.007)

Notes. This table includes all treated and untreated probation spells beginning 1-3 years before the
reform and 0-2 years afterwards. Post is indicator for starting probation after Dec. 1, 2011, the date
JRA reforms took e↵ect. Technical revocation is an indicator for having probation revoked with
no intervening criminal arrest. Arrest is an indicator for a criminal arrest before revocation for any
rule violations. Demographic controls include five-year age bins and indicators for race and gender.
Criminal history controls include fixed e↵ects for criminal history points and prior sentences to
supervised probation or incarceration. Controls are included in columns 2 and 4. Standard errors
in parentheses are clustered at the individual level. ⇤ p < 0.05, ⇤⇤ p < 0.01, ⇤⇤⇤ p < 0.001.
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Post-x-treat -0.0356⇤⇤⇤ -0.0360⇤⇤⇤ 0.0198⇤⇤⇤ 0.0179⇤⇤⇤

(0.00173) (0.00172) (0.00304) (0.00295)
N 328784 328784 328784 328784
Pre-reform treated mean .127 .127 .265 .265
Accuracy .556 (0.085) .55 (0.081)
False negative rate .93 (0.01) .931 (0.01)
False positive rate .025 (0.005) .026 (0.005)

C. Black o↵enders

Post-reform -0.00387⇤⇤⇤ -0.00412⇤⇤⇤ -0.0118⇤⇤⇤ -0.0112⇤⇤⇤

(0.000509) (0.000534) (0.00295) (0.00281)

Treated 0.167⇤⇤⇤ 0.160⇤⇤⇤ -0.00496 -0.0464⇤⇤⇤

(0.00167) (0.00167) (0.00274) (0.00268)

Post-x-treat -0.0741⇤⇤⇤ -0.0736⇤⇤⇤ 0.0228⇤⇤⇤ 0.0233⇤⇤⇤

(0.00215) (0.00214) (0.00399) (0.00383)
N 217222 217222 217222 217222
Pre-reform treated mean .176 .176 .315 .315
Accuracy .308 (0.053) .309 (0.051)
False negative rate .932 (0.01) .932 (0.01)
False positive rate .091 (0.007) .091 (0.007)

Notes. This table includes all treated and untreated probation spells beginning 1-3 years before the
reform and 0-2 years afterwards. Post is indicator for starting probation after Dec. 1, 2011, the date
JRA reforms took e↵ect. Technical revocation is an indicator for having probation revoked with
no intervening criminal arrest. Arrest is an indicator for a criminal arrest before revocation for any
rule violations. Demographic controls include five-year age bins and indicators for race and gender.
Criminal history controls include fixed e↵ects for criminal history points and prior sentences to
supervised probation or incarceration. Controls are included in columns 2 and 4. Standard errors
in parentheses are clustered at the individual level. ⇤ p < 0.05, ⇤⇤ p < 0.01, ⇤⇤⇤ p < 0.001.
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Rose (forthcoming): Interpretation

I Rose finds that eliminating technical violations led to large
reductions in probation revocation and modest increases in
re-offending

I Effects on revocation are much larger for black probationers than
white probationers, while effects on re-offending are comparable

I Reform eliminated large racial gap in revocations with no impact on
racial gap in re-offending

I This suggests technical revocations target re-offenders more
accurately for white probationers

Chris Walters (UC Berkeley) Discrimination



Rose (forthcoming): Targeting

I To formally analyze targeting accuracy, ignore time dimension and
consider LATE setup:

I Zi : indicator equal to one if i is subject to technical rules

I Ri (1), Ri (0): i ’s potential revocations as a function of Zi

I Yi (1), Yi (0): i ’s potential re-offending as a function of Ri

I Probability of a technical revocation among those who would not
otherwise be revoked:

Pr(Ri (1) = 1|Ri (0) = 0)

I This is the share of compliers (Ri (1) > Ri (0)) among the population of
compliers and never takers (Ri (0) = 0)

Chris Walters (UC Berkeley) Discrimination



Rose (forthcoming): Targeting

I By the law of total probability, we can write

Pr(Ri (1) = 1|Ri (0) = 0) = µ0π0 + µ1π1

I µk = Pr(Yi (0) = k|Ri (0) = 0) describes the distribution of re-offending
risk among compliers and never-takers

I π0 = Pr(Ri (1) = 1|Ri (0) = 0,Yi (0) = 0): False positive rate (Type I
error)

I π1 = Pr(Ri (1) = 1|Ri (0) = 0,Yi (0) = 1): True positive rate (one minus
Type II error)

I Note that under the LATE model assumptions, all of these terms are
identified

Chris Walters (UC Berkeley) Discrimination



Rose (forthcoming): Targeting

I Oaxaca decomposition of racial difference in revocation rates:

Pr(Ri (1) = 1|Ri (0) = 0,Bi = 1)− Pr(Ri (1) = 1|Ri (0) = 0,Wi = 1)

=
1∑

k=0

µk,W (πk,B − πk,W )︸ ︷︷ ︸
Targeting

+
1∑

k=0

(µk,B − µk,W )πk,B︸ ︷︷ ︸
Risk

I First term is due to differences in targeting accuracy (true/false positive

rates)

I Second term is due to differences in re-offending risk

Chris Walters (UC Berkeley) Discrimination



TABLE IV
Decomposition of Racial Gaps in Revocations

Overall rates Decomposition

White Black Gap
Share of gap

explained

0.039 0.082 0.043 100.0%

0.313 0.376 0.063 9.8%
0.687 0.624 -0.063 -13.3%

Probability of technical revoke:
Pr(R(1) = 1)

Distribution of risk:
    Pr(Y(0) = 1)
    Pr(Y(0) = 0)

True / false positive rates:
    Pr(R(1)=1|Y(0) = 1)
    Pr(R(1)=1|Y(0) = 0)

0.070 0.068 -0.002 -1.5%
0.025 0.091 0.066 104.9%

Notes. This table decomposes the di↵erence in technical revocation between black and white
probationers into the contributions of di↵erences in reo↵ending risk and di↵erences in the likelihood
of revocation conditional on arrest risk. The decomposition applies to the population with Ri(1) = 0
(⇠ 90% of the population). These are individuals who are not revoked for breaking rules even after
the reform. Estimates are based on core di↵erence-in-di↵erences results without controls from Table
III. The decomposition calculates the contribution of di↵erences in risk using black targeting rates
as baseline, and di↵erences in targeting using white risk as baseline. The first row is -1 times the
race-specific post-x-treat e↵ect for technical violations. The second row is the sum of the constant,
treat, and post-x-treat e↵ects from di↵erence-in-di↵erences estimates for arrests. Both rows are
re-scaled by 1 minus the sum of the constant, treat, and post-x-treat e↵ects for technical violations,
since this measures Pr(Ri(1) = 0). The final two rows are calculated as described in the text.
Appendix Section A4 provides complete details on how the decomposition is calculated.
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Figure V
Efficiency and Equity of Technical Violation Rule Types

Notes. This figure plots estimates of the share of potential reo↵enders over a three year period who
break technical rules before they reo↵end (x-axis) against the share of non-reo↵enders who do not
break technical rules. Estimates come from simulating the model estimated in Section VD using a
di↵erent set of rules. Each point is labeled with a combination of “F” for fees / fines violations, “D”
for drug / alcohol violations, “R” for reporting violations, and “O” for all other, reflecting the sets
of rules enforced in the simulation. The points labeled “FDRO” therefore reflect the set of rules
punishable with incarceration before the 2011 reform, and “R” reflect the set punishable afterwards.
The dotted gray line starts at (1, 0) and has a slope of -1. This line reflects what would be achieved
by randomly revoking a fraction of probationers at the start of their spells, which naturally would
catch equal shares of reo↵enders and non-reo↵enders.
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Minimum wages: Background

Long presumption that minimum wages reduce employment (e.g.,
Stigler, 1946)

Evidence from time series / state panel regressions on aggregates
typically find small but significant disemployment effects (Brown,
1999)

Some limitations of older literature

1. Exogeneity of min wage changes (who is the control group?)

2. Aggregates mask distributional impacts

3. Selective reporting bias

Important advances in methods and data in recent years have
changed views on costs/benefits of min wage



Elite views circa Sept 2015



Card and Krueger (1995): Do all t-stats = 2?



Andrews and Kasy (2019): spikes at t = 2 a decade later



Selection correct the t-stats

A selection model for reporting results

Pr (report | Z ) ∝


βp,1 if Z < −1.96

βp,2 if −1.96 ≤ Z < 0

βp,3 if 0 < Z ≤ 1.96

1 if Z < 1.96

Selection bias when βp’s <1.

Latent population model of Z stats

Θ ∼ θ̄ + t (ν) · τ

where θ̄ is unselected mean, τ is scale parameter and ν is degrees
of freedom for Student’s t-distribution (low ν means fat tails)

Estimate by maximum likelihood treating studies as independent



Maximum likelihood estimates

I Severe selection: ∼ 30% chance of reporting an insignificant
result!

I Mean employment-MW elasticity borderline significant (the
irony!)
I Incredibly fat tails (ν < 2⇒variance doesn’t exist!)
I No accounting for study quality



Card and Krueger (1994): a trip down memory lane

Evaluate effects of April 1992 increase in NJ min wage from $4.25
to $5.05

Surveyed 410 fast-food restaurants in NJ and PA before and after
change

Two designs:

1. Diff in diff: compare NJ to PA

2. Exposure (gap) design: compare initially low wage to high
wage establishments

Key findings:

I No (dis-)employment effect (possibly positive)

I Some evidence of cost pass-through to consumers



First stage looks good!



Two designs

I Diff in Diff
∆Ei = a + X ′i b + cNJi + εi

where Xi is baseline store characteristics

I Exposure design

∆Ei = ã + X̃ ′i b̃ + c̃GAPi + ε̃i

where X̃i may include NJi and

GAPi = NJi ·max

{
5.05−W1i

W1i
, 0

}



Zero or positive?



Do consumers pay more?



Imprecise positive effects on store openings



The power of zero

A carefully thought out and transparent attempt to evaluate a min
wage change w/ microdata

I Results a bit under-powered to detect clear positive but
precise enough to reject big negative

I Inferential issue: no clustering

I Debatable if we want to cluster (Abadie et al, 2020)
I Are we conducting inference on the effect in this state or some

hypothetical new state drawn from a super-population?
I Does every DiD paper need to be a meta-analysis?

I Either way dependence less of an issue for GAP design



Outrage ensues

Businessweek: “A Minimum Wage Study with Minimum Credibility”

Political correctness seems to have crept into the inner sanctum of
the AEA, discrediting its scholarly journal and debasing its top prize.
Unless the association cleans up its act, it can kiss its credibility
goodbye

James Buchanan in the WSJ
Just as no physicist would claim that ’water runs uphill,’ no self-
respecting economist would claim that increases in the minimum wage
increase employment. Such a claim, if seriously advanced, becomes
equivalent to a denial that there is even minimal scientific content in
economics, and that, in consequence, economists can do nothing but
write as advocates for ideological interests.

Merton Miller in the WSJ
Raising the minimum wage by law above its market determined
equilibrium, they argue, actually costs nobody anything. (Or at worst,
costs nobody very much because it’s only a small, marginal increment,
after all.) Is all this too good to be true? Damn right. But it sure
plays well in the opinion polls. I tremble for my profession.



Aftermath

What to make of these results?

I Card-Krueger argue that positive employment effects reflect
monopsony power

I Brown (1999) argues that monopsony would imply output
expands so prices should fall. Concludes that:

“Based on the available evidence, the monopsony model
will not replace the competitive diagram in the souls of
labor economists.”

Unresolved: do GAP design and diff in diff identify the same
parameter?

I Diff in diff measures market-wide response

I GAP measures effect of raising wage on a single firm holding
market constant



One funeral at a time?

A new scientific truth does not triumph by convincing
its opponents and making them see the light, but rather
because its opponents eventually die, and a new generation
grows up that is familiar with it. – Max Planck (1948)



Giuliano (2013)

Study the effect of 1996 fed min wage hike on a large
multi-establishment retailer

Leverage high frequency data to assess validity of GAP design

Contrast overall employment effect with relative employment effect
(teenage vs adult labor)

Main finding: insignificant aggregate disemployment effect but
small increase in relative employment of teenage workers



Two Gaps

Gap of employee i at store j is:

Gapij = max {0, (MWj − wij) /wij}

Store j ’s average gap is:

Gapj =
1

Nj

∑
i

Gapij

Store j ’s relative gap is:

Gapteenj − Gapadultj

1 + Gapadultj

Assess validity of design via monthly cross sectional regression of
outcomes on each gap + controls. Plot coefficients on gap.



Modest effect of avg gap on wage, nothing on employment



Substantial increase in relative wages and employment of
teenagers



Quality upgrading?



Little evidence of an effect on productivity

Note: shrinkage = inventory loss due to shoplifting / theft, etc



Summary

Gap / exposure design seems unconfounded

No discernable effect on overall employment

Relative employment of teens increased slightly

I Many possible explanations: compositional changes, changes
in application behavior, monopsony

I Hard to distinguish between them

Limitations:

I Average gap was small

I Difficult to adjust for seasonal in retail employment

I Employment effects might grow over longer horizons..



Harasztosi and Lindner (2019)

US min wage variation tends to be small and short run in nature

Hungary experienced a large (60%) and persistent (∼8 years)
increase in min wage in 2001

Use firm level exposure design to infer MW effects

Findings:

1. Small disemployment effects

2. Substantial cost pass-through to consumers



Huge, permanent, change..



Firm level exposure design

Estimating equations:

yit − yi2000

yi2000
= αt + βtFAit + γtXit + εit

I yit gives firm i ’s outcome (employment, wages) in year t

I FAit (“fraction affected”) gives the fraction of firm i ’s
employees in 2000 whose wage was below year t minimum

I Weight by log firm revenue in 2000 (logs address extreme
skew in revenue)



Firm exposure in 2002 raises wages but lowers employment



Wage-employment elasticities are small, trivial dynamics



Bias vs Variance



Bigger effects in tradeable sectors



Effect on prices



Poor only slightly more likely to consume MW-intensive
goods



Consumers pay for the min wage



A rationalizing framework
I Monopsonistic competition: each firm produces a different

product variety ω

I Three factors of production: labor, capital, materials. Derived
labor demand is l (ω)

I Model yields firm-level demand elasticities

∂ ln l (ω)

∂ lnMW
= −sLη︸ ︷︷ ︸

scale effect

− sKσKL︸ ︷︷ ︸
K-L substitution

− sMσML︸ ︷︷ ︸
ML substitution

∂ ln p (ω) q (ω)

∂ lnMW
= sL︸︷︷︸

price effect

− sLη︸︷︷︸
scale effect

∂ ln k (ω)

∂ lnMW
= sL (−η + σKL) ,

∂ lnm (ω)

∂ lnMW
= sL (−η + σML)

Note: η is determined in equilibrium and depends on fraction of
firms affected by min wage. It is smallest when all firms are
affected by min wage.



Estimation

Calibrate shares (sL, sK , sM) from microdata leaving 3 unknown
structural elasticities:

η, σKL, σML

I Proxy elasticity wrt MW with treatment effects
I Recall that MW change is large, so implicitly assuming

iso-elastic demand
I 4 equations and 3 unknowns ⇒ over-determined system

I Fit via classical minimum distance (see Wooldridge, 2010)
I Equivalent to stacking moments and treating as an SUR



SUR representation

Dataset of four moments, 3 regressors (sL,sK ,sM), no intercept:

̂∂ ln l (ω)

∂ lnMW
= −η · sL − σKL · sK − σML · sM + εL

̂∂ ln p (ω) q (ω)

∂ lnMW
= (1− η) · sL − 0 · sK − 0 · sM + εR

̂∂ ln k (ω)

∂ lnMW
= (σKL − η) · sL − 0 · sK − 0 · sM + εK

̂∂ lnm (ω)

∂ lnMW
= (σML − η) · sL − 0 · sK − 0 · sM + εM

where Cov (εL, εR , εK , εM) = Σ is estimated from microdata

I Here SUR = multivariate weighted least squares

I Coefficient restrictions exploited in conjunction w/ Σ to
improve precision



Materials key to getting neoclassical model to work..



Summary

Cost effects of min wage largely passed through to consumers!
(cost-push inflation / redist thru prod market)
Materials share key to rationalizing small losses

Policy implications

I Price increases in tradeable sectors are a win for small country
like Hungary

I Price increases to domestic consumers more problematic

Generalizability:

I What about the U.S.? What are the effects of smaller less
persistent MW changes?

I How to distinguish effects of firm-specific from aggregate MW
changes?
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Cengiz, Dube, Lindner, and Zipperer (2019)

Examine 138 state minimum wage changes in the U.S.

Assess impact on state-wide frequency distribution of wages via
DiD

I Publicly available data! CPS benchmarked to QCEW

Methodological insight: use distributional impacts to infer
employment losses

I How does this work?

I Recall: impact on distribution 6= distribution of impacts!



The basic idea

Key assumptions: exclusion restriction (no effect above W̄ ) + sign
restrictions (emp gains in

[
MW , W̄

]
, losses in (0,MW ))



Estimating job loss

Distributional event study specification:

Esjt

Nst
=

4∑
τ=−3

17∑
k=−4

ατk I
τk
sjt + µsj + ρjt + Ωsjt + usjt

I Esjt is employment in $0.25 wage bin j of state s at time t

I Nst is population in state s at time t

I ατk effect of min wage hike τ periods ago on bins $[k, k + 1]
above state min wage

I µsj state by wage bin FE

I ρjt bin by year FE

I Ωsjt controls for “small” min wage changes

I Cluster on state (i.e., meta-analysis std errors)



Target parameters

Distributional event study specification:

Esjt

Nst
=

4∑
τ=−3

17∑
k=−4

ατk I
τk
sjt + µsj + ρjt + Ωsjt + usjt

I Scaled decrease in employment below new minimum

∆aτ =

∑−1
k=−3 (ατk − α−1k)

EPOP−1

I Scaled increase above new minimum (setting W̄ −MW = 4)
due to “bunching”:

∆bτ =

∑4
k=0 (ατk − α−1k)

EPOP−1

I Net (scaled) employment change at horizon τ is ∆aτ + ∆bτ



No net employment losses 5 years out..



Not much in the way of dynamics



No net employment effect on new entrants or incumbents



Substantial wage spillovers above minimum
Except among new entrants and tradeable sectors..



Reconciling with conventional panel estimates
The behavior of the mean is sensitive to the response of very high wages



Summary

Market-wide fluctuations in state min wages seem to generate tiny
employment losses or even small employment gains

No appreciable dynamics

Prior time series analyses of aggregates likely confounded by
sensitivity of mean to top quantiles



Methodological lesson: power of going beyond the mean

Key insight of paper was that MW fluctuations should not strongly
affect top quantiles of the wage distribution ⇒ sufficient to evalute
MW impact on jobs with W < W̄

I Used distributional regressions to find threshold W̄ above
which treatment effects are trivial

I See Fortin, Lemieux, and Lloyd (2018) for other approaches to
distributional regression

Implicitly a restriction on joint distribution of potential outcomes:
workers pushed from wages levels below to just above new MW

I Reforms only affecting attractiveness of some options and not
others often yield similar identification of adjustment margins

I Papers estimating “flows” between counterfactual choices:
Kline and Tartari (2016), Kline and Walters (2016), Pinto
(2018)



Little support in 2015 for view that MW increases
productivity



Dustmann, Lindner, Schoenberg, Umkehrer, vom Berge (2019)

I Min wage lit has focused on market level tradeoff between
employment and wage inequality

I But in principle there can also be a beneficial reallocation
effect of the minimum wage: workers move from less to more
productive firms.

I Can potentially raise total productivity in the economy if
market imperfections “protected” unproductive firms in the
first place (Hsieh and Klenow, 2009) or if capital intensity was
inefficiently low to begin with (Acemoglu, 2001).

I Germany instituted first national minimum wage in January
2015
I NOT indexed to local cost of living so disproportionately hit

less productive East German firms
I Study reallocation effect of policy



Distributional DiD (initially low vs high wage workers)
Wages of affected individuals go up, no effect on employment probs



Initially low wage workers move to better firms



Higher firm wage FEs and lower churn rates





Big effects on market wages, nothing on employment



Reallocation from smaller to bigger firms



Bigger effects among workers initially in non-tradeables



Summary

I Labor markets are frictional and, when left to their own, can
generate misallocation

I The minimum wage seems to kill less productive firms in less
competitive industries

I But no effect on aggregate employment because workers are
reallocated to more productive businesses

I Possible that total output rose (allocative efficiency)



References

1. Abadie, A., Athey, S., Imbens, G. W., & Wooldridge, J. M. (2020).
Sampling-Based versus Design-Based Uncertainty in Regression Analysis.
Econometrica, 88(1), 265-296.

2. Acemoglu, D. (2001). Good jobs versus bad jobs. Journal of labor
Economics, 19(1), 1-21.

3. Andrews, I., & Kasy, M. (2019). Identification of and correction for
publication bias. American Economic Review, 109(8), 2766-94.

4. Brown, C. (1999). Minimum wages, employment, and the distribution of
income. Handbook of labor economics, 3, 2101-2163.

5. Card, D., & Krueger, A. B. (1994). Minimum Wages and Employment: A
Case Study of the Fast-Food Industry in New Jersey and Pennsylvania.
American Economic Review, 84, 772-793.

6. Card, D., & Krueger, A. B. (1995). Time-series minimum-wage studies: a
meta-analysis. The American Economic Review, 85(2), 238-243.

7. Cengiz, D., Dube, A., Lindner, A., & Zipperer, B. (2019). The effect of
minimum wages on low-wage jobs. The Quarterly Journal of Economics,
134(3), 1405-1454.



8. Dustmann, C., Lindner, A., Schonberg, U., Umkehrer, M., and vom
Berge, P. (2019) “Reallocation Effects of the Minimum Wage: Evidence
From Germany” working paper.

9. Giuliano, L. (2013). Minimum wage effects on employment, substitution,
and the teenage labor supply: Evidence from personnel data. Journal of
Labor Economics, 31(1), 155-194.

10. Harasztosi, P., & Lindner, A. (2019). Who Pays for the minimum Wage?.
American Economic Review, 109(8), 2693-2727.

11. Hsieh, C. T., & Klenow, P. J. (2009). Misallocation and manufacturing
TFP in China and India. The Quarterly journal of economics, 124(4),
1403-1448.

12. Fortin, N., Lemieux, T., & Lloyd, N. (2018). Labor market institutions
and the distribution of wages: the role of spillover effects.

13. Kline, P., & Tartari, M. (2016). Bounding the labor supply responses to a
randomized welfare experiment: A revealed preference approach.
American Economic Review, 106(4), 972-1014.

14. Kline, P., & Walters, C. R. (2016). Evaluating public programs with close
substitutes: The case of Head Start. The Quarterly Journal of
Economics, 131(4), 1795-1848.

15. Pinto, R. (2018). Noncompliance as a rational choice: A framework that
exploits compromises in social experiments to identify causal effects.



16. Stigler, G. J. (1946). The economics of minimum wage legislation. The
American Economic Review, 36(3), 358-365.

17. Wooldridge, J. M. (2010). Econometric analysis of cross section and
panel data. MIT press.



AEA Continuing Education 2021: Labor
Economics and Applied Econometrics

Lecture #2: Firm Wage Premia

Patrick Kline

UC Berkeley



Slichter (1950): a 1940 wage survey from Boston

Slichter: “neither wage rates nor hourly earnings represent the
price of labor”



I Slichter studies “structure of wages” using industry-level data
from 1939 Economic Census (firm data was not available)

I Discovers 7 regularities about wages of unskilled men:

1. Positive correlation with wages of skilled co-workers

2. Negative correlation with % female

3. Positive correlation with industry value-added / worker-hour

4. Positive correlation with sales / worker-hour

5. Negative correlation with payroll / sales

6. Positive correlation with sales margin (i.e. value added / sales)

7. Stable over time (high correlation of industry wage rank)

I Interpretation: “the results of this study give strong support
to the proposition that managerial policy is important in
determining inter-industry wage differences.”



Krueger and Summers (1988)

I Was Slichter right that some industries pay higher wages?

I Use panel data to study what happens when workers switch
industries

I Compare to cross-sectional estimates of wage premia to infer
degree of unobserved sorting



Bias correcting the variance of fixed effect estimates
All models amount to:

yi = D ′i β + Xiδ + εi

where Di is a vector of industry dummies and Xi is a vector of controls
that may or may not include individual fixed effects

I If each industry fixed effect β̂j ∼ N
(
βj , σ

2
j

)
, then

E
[
β̂2
j

]
= β2

j + σ2
j .

I Suppose we have consistent standard error estimates {σ̂j}Jj=1

I Then a consistent bias corrected standard deviation of industry
wage premia is

√√√√ 1

J − 1

J∑

j=1

(
β̂j − β̄

)2

− 1

J

J∑

j=1

σ̂2
j

Note: ignoring variability in β̄ = 1
J

∑J
j=1 βj which is of smaller order.



Substantial cross sectional variability



Worker FE estimates ≈ Cross-Sectional Estimates!



No evidence of compensating differentials



People don’t quit high wage jobs



Gibbons and Katz (1992)

Even first differenced estimates of industry wage premia biased if
there is sorting based on match effects

Basic idea:

I Good workers work in more productive industries but would be
paid the same amount everywhere if known to be good

I When a worker is revealed to be “good” she moves to the
good industry and experiences a wage change

I But the causal mechanism is the revelation that she is good,
not the industry

Test by looking at exogenous separations associated with plant
closings (as measured in CPS Displaced Workers Survey)



Mild evidence of endogenous mobility

Industry premia estimates from switchers very close to cross-sectional:

I Plant closing sample (pictured above): Slope=0.79, R2 = 0.72

I Layoffs sample (not pictured): Slope = .91, R2 = 0.81

Suggests variance of industry wage effects somewhat overstated due to
endogenous mobility

I Perhaps also treatment effect heterogeneity?



Abowd, Kramarz, Margolis (1999)

Industry is just a linear combination of firms. Are there big pay
differences within the same industry?

I Use Employer-Employee data to study firm switchers

I Fixed effects specification:

yit = αi︸︷︷︸
worker eff

+ψJ(i ,t)︸ ︷︷ ︸
firm eff

+ X ′itβ︸︷︷︸
covariates

+εit

I Computational problem: millions of fixed effects. Can’t invert
X ′X !
I Approximate solution method

I Key findings: 90% of industry wage premia attributable to
person effects
I Explanation: industry switching estimates biased by

nonrandom sorting of workers to firms within industry
(Really??)



Abowd, Creecy, Kramarz (2002)

I Approx FEs very weakly correlated with exact FEs in French
data ⇒ original AKM results invalid!

I Exact results find
Var(ψJ(i,t))
Var(yit)

≈ 55% in France and 45% in
Washington state

I Note: Cov
(
ψJ(i ,t), αi

)
< 0 – negative assortative matching!



Abowd, Lengermann, and McKinney (2003)

I Use a 100% extract from LEHD of 7 states instead of small
subsamples

I Correlation becomes positive! (limited-mobility bias)

I Var(ψJ(i,t))
Var(yit)

≈ 20% (less inflation due to sampling error)



Critiques of AKM

Not theoretically motivated

I Why same firm effect for different types of workers?

I Why wages monotone in productivity?

Negative assortativeness implausible

Endogenous mobility:

I Selection on match

I Selection on firm shocks

Person and firm effects inconsistent in short panels (Abowd,
Creecy, Kramarz, 2002; Andrews, 2008)

I Variances biased upwards (same issue as Krueger-Summers)

I Correlation between FE,PE biased downwards



Card, Heining, and Kline (2013)

Study changes in German wage structure

I Earlier work by Dustmann, Ludsteck, and Schoenberg (2009)
documented an increase in German wage dispersion

I Interpreted within traditional SDI framework – supply /
demand / institutions

I Typical view: S+D influence price of skill, I is barrier to price
adjustment

I Need SDI-(F) for firms/frictions?

“Rolling”-AKM over 6-7 year intervals

I Each decomposition gives us a “snapshot” of labor market

I Did sorting change? Did importance of firms change?

I Check for endogenous mobility
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interval	1:	1985-91	
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interval	3:	1996-2002	

interval	4:	2002-2009	

Interval timing coincides with waves of liberalization of German
labor market:

I Labor Law Act for Promotion of Employment: 1996

I Hartz reforms: 2003-2005



Growth in wage inequality primarily between establishments



Wage dynamics of job changes



Table 2: Estimation Results for AKM Model, Fit by Interval 

                  

Interval 1 Interval 2 Interval 3 Interval 4 

1985-1991 1990-1996 1996-2002 2002-2009 

    (1)   (2)   (3)   (4) 

Dimensions / Summary Stats: 

   Number person effects 16,295,106 17,223,290 16,384,815 15,834,602 

   Number establishment effects 1,221,098 1,357,824 1,476,705 1,504,095 

   Sample size (person-year obs)  84,185,730   88,662,398   83,699,582   90,615,841 

   Std. Dev. Log Wages 0.370 0.384 0.432 0.499 

Summary of Parameter Estimates: 

   Std. dev. of person effects 0.289 0.304 0.327 0.357 

   Std. dev. of establ. effects 0.159 0.172 0.194 0.230 

   Std. dev. of Xb 0.121 0.088 0.093 0.084 

   Correlation of person/establ. effects 0.034 0.097 0.169 0.249 

    (across person-year obs.) 

    RMSE of AKM residual 0.119 0.121 0.130 0.135 

     (degrees of freedom) 66,669,487 70,081,245 65,838,023 73,277,100 

    Adjusted R-squared 0.896 0.901 0.909 0.927 

Comparison Match Model 

    RMSE of Match model 0.103 0.105 0.108 0.112 

    Adjusted R-squared 0.922 0.925 0.937 0.949 

    Std. Dev. of Match Effect* 0.060 0.060 0.072 0.075 
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Growing firm component
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Diagnostics



High firm effect jobs last longer



Change in returns to education largely due to change in
estab effect!

Does this reflect changes in the sorting of workers to firms?
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Cross-Check:	Mundlak	(1978)	Decomposi2on	of	Return	to	Educa2on	

OLS	return	(leP	scale)	

Within-workplace	return	(leP	scale)	

Return	to	coworker	schooling	
(leP	scale)	

Educa2on	sor2ng	index	(right	scale)	

I Sorting index is coefficient from regression of mean schooling
at firm (S̄J(i ,t)) on individual schooling (Si )

I Mundlak comes from running wit = α + βSi + δS̄J(i ,t) + εit



I Contribution of “pure” person component to variance of
(unadjusted) industry wage differences ≈ 35-40%

I Rise in between-group inequality explained by mix of
dispersion in person and firm effects

I But biggest contributor is increased correlation (i.e., sorting)



Changes driven by breakdown in bargaining?

Note: newer firms more variable regardless of time period!



Low paying firms not covered by collective bargaining



Takeaway

AKM as a tool for studying changes in wage structure

I Decompose traditional wage gaps (education, industry,
occupation) into person and firm components

I Maybe endogenous mobility not so bad?

Result: big changes in German labor market

I Firms growing more important both directly (wage effects)
and indirectly (sorting)

I Timing lines up with institutional changes

I Major cohort effects in firm inequality



Card, Cardoso, and Kline (2016)

Gender wage gap: women paid less than men

I Traditional explanation: women less skilled

I Alternative hypothesis: nice girls don’t ask (Babcock and
Laschever, 2009)

Examine outside of the lab by looking at E-E wage data from
Portugal merged with firm Value Added measures from BvD

I Q1: do women get the same firm effs as men?

I Q2: do shocks to firm VA get shared equally with male and
female employees?



Portugal gender gap similar to US



But Portuguese women have more schooling than men!
Table	
  1:	
  Descriptive	
  Statistics	
  for	
  Samples	
  of	
  Employees	
  in	
  QP,	
  2002-­‐2009

Males Females

Full	
  sample
age	
  19-­‐65;	
  exp>1,	
  valid	
  

wages/hours/tenure	
  in	
  all	
  years

Workers	
  at	
  dual-­‐

Table	
  1:	
  Descriptive	
  Statistics	
  for	
  Samples	
  of	
  Employees	
  in	
  QP,	
  2002-­‐2009

Males Females Males Females

Full	
  sample

with	
  VA	
  data

Workers	
  at	
  dual-­‐

connected	
  firms

Education	
  (yrs) 8.0 8.8 8.6 9.1 8.1 8.9

Log	
  Real	
  Hrly	
  Wage 1.59 1.41
	
  	
  (standard	
  dev.) (0.55) (0.50)

Monthly	
  Hours 162.6 158.0
	
  	
  (standard	
  dev.) (24.7) (30.1)

1.71 1.48 1.57 1.38
(0.58) (0.53) (0.50) (0.45)

162.8 157.1 163.8 159.0
(24.0) (30.5) (24.5) (30.8)

Firm	
  Size	
  (#wkrs) 730 858

Fraction	
  Female	
  at	
  Firm 0.24 0.70

Log	
  VA/	
  Worker

Number	
  of	
  person-­‐year	
  obs. 9.07M 7.23M
Number	
  of	
  persons 2.12M 1.75M
Number	
  of	
  firms 350K 336K
Notes:	
  Overall	
  sample	
  in	
  columns	
  1-­‐2	
  includes	
  paid	
  workers	
  age	
  19-­‐65	
  with	
  potential	
  experience	
  ≥1.	
  	
  Sampe	
  excludes	
  individuals	
  with	
  inconsistent	
  employment	
  histories.	
  	
  
Wages	
  are	
  measured	
  in	
  real	
  (2009=100)	
  Euros	
  per	
  hour.	
  Value	
  added	
  is	
  measured	
  in	
  thousands	
  of	
  real	
  Euros	
  per	
  year.	
  	
  All	
  statistics	
  are	
  calculated	
  across	
  person-­‐year	
  
observations.	
  	
  See	
  text	
  for	
  definitions	
  of	
  connected	
  and	
  dual	
  connected	
  sets.

1,091 1,230 641 1,117

0.30 0.64 0.24 0.67

3.08 2.90

6.01M 5.01M 3.34M 2.45M
1.45M 1.25M 1.21M 0.92M
85K 85K 160K 148K

Notes:	
  Overall	
  sample	
  in	
  columns	
  1-­‐2	
  includes	
  paid	
  workers	
  age	
  19-­‐65	
  with	
  potential	
  experience	
  ≥1.	
  	
  Sampe	
  excludes	
  individuals	
  with	
  inconsistent	
  employment	
  histories.	
  	
  
Wages	
  are	
  measured	
  in	
  real	
  (2009=100)	
  Euros	
  per	
  hour.	
  Value	
  added	
  is	
  measured	
  in	
  thousands	
  of	
  real	
  Euros	
  per	
  year.	
  	
  All	
  statistics	
  are	
  calculated	
  across	
  person-­‐year	
  
observations.	
  	
  See	
  text	
  for	
  definitions	
  of	
  connected	
  and	
  dual	
  connected	
  sets.

Note also that women work at larger but less productive firms. Are
they trapped in bad jobs?



Women switch firms about as often as men



But women more likely to move between low wage firms



Figure�2a:�Mean�Wages�of�Male�Job�Changers�By�O/D�CoͲworker�Group
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A closer look

E
[
∆w |∆wcoworker

]
≈ 0.4∆wcoworker



Figure�2b:�Mean�Wages�of�Female�Job�Changers�by�O/D�Coworker�Group
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Women’s wages less sensitive to firm rank than men’s



Gender-specific AKMs

Table&3:&&Summary&of&Estimated&Models&for&Male&and&Female&Workers

Males Females German&Men
Summary'of'Parameter'Estimates:'AKM'Model
Std.&dev.&of&pers.&effects&(person@yr&obs.) 0.420 0.400 0.357
Std.&dev.&of&firm&effects&(person@yr&obs.) 0.247 0.213 0.230
Std.&dev.&of&Xb&(across&person@yr&obs.) 0.069 0.059 0.084
Correlation&of&person/firm&effects 0.167 0.152 0.249
Adjusted&R@squared 0.934 0.940 0.927
Correlation&male&/&female&firm&effects
Comparison'job;match'effects'model:

0.590

Adjusted&R@squared& 0.946 0.951 0.949

Std.&deviation&match&effect&in&AKM&model 0.062 0.054 0.075

Share'of'variance'of'log'wages'due'to:
&&&&&&&&&&&&person&effects 57.6 61.0 51.2
&&&&&&&&&&&&firm&effects 19.9 17.2 21.2
&&&&&&&&&&&&covariance&of&person/firm&effects 11.4 9.9 16.4
&&&&&&&&&&&&Xb&and&associated&covariances 6.2 7.5 5.2
&&&&&&&&&&&&residual 4.9 4.4 5.9



No evidence of compensating diff for hours



“Hockey stick” relationship of FEs with productivity
Firm Fixed Effects vs. Log Value Added/Worker

‐0.9

‐0.8

‐0.7

‐0.6

‐0.5

‐0.4

‐0.3

‐0.2

‐0.1

0.0

1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.80 4.00 4.20 4.40

Mean Log VA/L

M
al
e 
Fi
rm

 E
ffe

ct
s (
U
nn

or
m
al
ize

d)

‐0.6

‐0.5

‐0.4

‐0.3

‐0.2

‐0.1

0

0.1

0.2

Fe
m
al
e 
Fi
rm

 E
ffe

ct
s (
U
nn

or
m
al
ize

d)

Male firm effects
(fitted slope=0.156)
left scale

Female firm effects
(fitted slope = 0.137)
right scale

Best‐fitting normalization:
Rent sharing starts at Log(VA/L) > 2.45

I Normalize gender specific FEs=0 below kink to compare levels
(below kink is “competitive frontier”)

I Female FEs have lower VA elasticity. Ratio = 1.37/1.56≈ 0.9



Grouping estimate of relative rent sharing = 0.89

Estimated Firm Effects for Female and Male Workers: 
Firm Groups Based on Mean Log VA/L
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Note: 45 degree line shown
Estimated slope = 0.89

Note: implicitly using VA/L as instrument for male FEs here



Oaxaca review Oaxaca	(1973)	Review	

Or	Equivalently:	

E[ M
J(i,t)|G(i) = M ] � E[ F

J(i,t)|G(i) = F ] = E[ M
J(i,t) �  F

J(i,t)|G(i) = M ]
| {z }

Bargaining

+ E[ F
J(i,t)|G(i) = M ] � E[ F

J(i,t)|G(i) = F ]
| {z }

Sorting

E[ M
J(i,t)|G(i) = M ] � E[ F

J(i,t)|G(i) = F ] = E[ M
J(i,t) �  F

J(i,t)|G(i) = F ]
| {z }

Bargaining

+ E[ M
J(i,t)|G(i) = M ] � E[ M

J(i,t)|G(i) = F ]
| {z }

Sorting

Give	women	male	firm	effects	

Assign	men	to	same	firms	as	women	

Give	men	female	firm	effects	

Assign	women	to	same	firms	as	men	



Table 4a. Contribution of Firm‐based Wage Components to Male‐Female Wage Gap

Difference:

Males−Females

Males Females (percent of overall gap)
(1) (2) (3)

1.   Mean log wage of group 1.715 1.481 0.234

(100.0)

Means of Estimated Firm Effects:
2.  Firm Effect for Males  0.148 0.114 0.035

(14.9)

3.  Firm Effect for Females 0.145 0.099 0.047

(19.9)
4.  Within‐group Difference in Mean 
      Effects for Males and Females 0.003 0.015

      (percent of overall gap) (1.2) (6.3)

Total contribution of 
firm components to 
gender gap

5.  Mean Male Firm Effect for Men minus Mean Female Firm Effect  0.049

       for Women (Total contribution of Firm‐based Wage Components) (21.2)

6.  Sample sizes 6,012,521 5,012,736

Estimates of sorting 
effect (using male or 
female firm effects)

Gender Group:

Estimates of differential bargaining 
power effect (using male or female firm 
distributions)



Contribution of Firm‐Level Pay Components to Gender Wage Gap

Gender Using M Using F Using M Using F
Wage Gap Effects Effects Distribution Distribution

All  ‐0.234 0.049 0.035 0.047 0.003 0.015
(21.2) (14.9) (19.9) (1.2) (6.3)

By Age Group:
Up to age 30 ‐0.099 0.028 0.019 0.029 ‐0.001 0.009

(28.2) (18.9) (29.3) (‐1.2) (9.3)

Ages 31‐40 ‐0.228 0.045 0.029 0.040 0.004 0.016
(19.7) (12.6) (17.8) (1.9) (7.0)

Over Age 40 ‐0.336 0.069 0.050 0.064 0.005 0.019
(20.6) (15.0) (19.1) (1.5) (5.6)

By Education Group:
< High School ‐0.286 0.059 0.045 0.061 ‐0.002 0.015

(20.8) (15.6) (21.4) (‐0.6) (5.2)

High School ‐0.262 0.061 0.051 0.051 0.010 0.010
(23.3) (19.6) (19.5) (3.8) (3.7)

University ‐0.291 0.047 0.025 0.029 0.018 0.022
(16.1) (8.7) (9.9) (6.2) (7.4)

Notes: see text. Counterfactuals based on estimated two‐way fixed effects models described in Table 3.

Total 
Contribution of 

Firm 
Components

Decompositions
Sorting Bargaining



Sorting effect sets in gradually over 20s



Quick recap

I Male/Female firm effects highly correlated

I But women seem to only get 90% of the firm effect of men

I 5 log point gap in firm effs between genders

I Oaxaca decomp finds most of firm eff contribution occurs due
to women being at different firms than men

I But large unexplained component for higher skilled women

Next: validate with rent sharing estimates for job-stayers



Still get 0.9 ratio when looking at shocks to firm stayers!



Summary

Results consistent with women being less aggressive negotiators
(explains ≈ 20% of gender wage gap)

I Wage ladder is “taller” for men than women – women only
get 90% of male return to moving up a rung on the ladder

I And women seem to have more trouble climbing the ladder
than men – their moves aren’t as directed up the ladder

I Even among women who stay at the same firm – a shock
yields a larger effect on male than female wages.

Do other classic wage gaps (age, race) have firm component?

I IQ (Fredriksson, Hensvik, Skans, 2015)

I Elite education (Huneeus et al., 2015)

I Race (Gerard, Lagos, Severnini, and Card, 2018)



Outsourcing

Workers don’t like inequality

Solution: break certain occupations off into a new firm

Weil (2014): the “fissured” workplace

Wage discrimination is rarely seen in large firms despite
the benefits it could confer. As long as workers are under
one roof, the problems presented by horizontal and vertical
equity remain. But what if the large employer could wage
discriminate by changing the boundary of the firm?



Goldschmidt and Schmeider (2017)

Study “on site” outsourcing in Germany using administrative
records from IAB

Focus on Food Cleaning, Security, and Logistics (FCSL) as
occupations most likely to be outsourced

Identify outsourcing events as when a large group of workers leave
a “mother” establishment to start a new “daughter” establishment

I Flow of 10+ employees

I Daughter must be a FCSL firm offering business services



FCSL jobs gradually being outsourced



Temp agencies and FCSL firms on the rise



AKM FEs for FCSL and non-FCSL highly correlated



Being outsourced lowers wages



Wage losses on order of 10%



Wage losses entirely explained by drop in AKM FE



Big firms and high wage firms outsource



Outsourcing a mediating factor for firm cohort effects?



Outsourcing explains 7-9% of growth in log wage variance



Thoughts

Boundaries of the firm are changing

I Easier to pay workers less by segregating them in new
establishment

I Wage losses of “fissuring” largely explained by AKM FE

I Validation of causal interpretation

Related literature echoing Gibbons-Katz (1992) uses AKM FE to
explain wage effects of mass layoffs

I In Germany AKM FEs explain nearly all of wage loss
(Schmieder, Von Wachter, Heining, 2018)

I In Washington state, FEs explain ∼ 17% of wage loss
(Lachowska, Mas, Woodbury, 2020).

I Important differences in structure of job losses between
countries? (Bertheau et al, 2021)



Econometrics of AKM

Yit = αi + ψj(i,t) + X ′itξ + εit

where j (i , t) ∈ {1, ..., J} gives identity of current employer.

Matrix representation:

Y = Dα + Fψ + X ξ + ε

I Isomorphic to standard panel model but with J treatments.

I Treat Z = (D,F ,X ) as fixed (i.e. all expectations conditional on Z )

Identification:

I Exogeneity: E [ε] = 0 (plausible?)

I Rank condition: need at least one restriction on the {ψj}Jj=1 within
each “connected set” of firms



Variance decomposition

Target parameter: size weighted variance of firm effects

θψ =
J∑

j=1

sj
(
ψj − ψ̄

)2
,

where sj is firm j ’s employment share and ψ̄ =
∑J

j=1 sjψj .

Customary to use OLS estimates ψ̂ to compute “plug-in”
estimates of variance components, e.g.:

θ̂ψ =
J∑

j=1

sj

(
ψ̂j − ˆ̄ψ

)2

=
J∑

j=1

sj

(
ψ̂j

)2
−
(

ˆ̄ψ
)2



Bias in the square

OLS is unbiased
E
[
ψ̂j

]
= ψj

But the square of an unbiased estimator is upward biased

E
[(
ψ̂j

)2
]

= E
[(
ψ̂j − ψj + ψj

)2
]

= E
[(
ψ̂j − ψj

)2
]

+ 2E
[
ψ̂j − ψj

]
ψj + ψ2

j

= ψ2
j + V

[
ψ̂j

]

︸ ︷︷ ︸
bias



Bias of plugin

By same argument plug-in estimator is biased

E
[
θ̂ψ

]
=

J∑

j=1

sjE
[(
ψ̂j

)2
]
− E

[(
ˆ̄ψ
)2
]

=
J∑

j=1

sj

{
ψ2
j + V

[
ψ̂j

]}
−
(
ψ̄
)2 − V

[
ˆ̄ψ
]

= θψ +
J∑

j=1

sjV
[
ψ̂j

]
− V

[
ˆ̄ψ
]

︸ ︷︷ ︸
bias

V
[

ˆ̄ψ
]

term typically negligible when J is large..



Correcting the bias

Bias is weighted average of squared standard errors on firm effects:

E
[
θ̂ψ − θψ

]
≈

J∑

j=1

sjV
[
ψ̂j

]

Can’t we just do Krueger-Summers style correction based on

conventional het-consistent (“robust”) standard errors V̂HC

[
ψ̂j

]
?

I No, because HC standard errors break down (are inconsistent)
when # of regressors grow in proportion to sample size.

I Same problem for bootstrap (Bickel and Freedman, 1983)

I To handle high dimensionality: swap usual het-consistent

estimators V̂HC

[
ψ̂j

]
for het-unbiased estimators V̂HU

[
ψ̂j

]
.

Noise averages out across estimates.



Correcting the bias

Bias is weighted average of squared standard errors on firm effects:

E
[
θ̂ψ − θψ

]
≈

J∑

j=1

sjV
[
ψ̂j

]

Can’t we just do Krueger-Summers style correction based on

conventional het-consistent (“robust”) standard errors V̂HC

[
ψ̂j

]
?

I No, because HC standard errors break down (are inconsistent)
when # of regressors grow in proportion to sample size.

I Same problem for bootstrap (Bickel and Freedman, 1983)

I To handle high dimensionality: swap usual het-consistent

estimators V̂HC

[
ψ̂j

]
for het-unbiased estimators V̂HU

[
ψ̂j

]
.

Noise averages out across estimates.



Bias correction: homoscedastic case

Andrews et al (2008): bias correct assuming V [ε] = Iσ2

V
[
ψ̂
]

=
(
F̃ ′F̃

)−1
σ2

where F̃ is residualized version of F (against D and X ).

I Estimate V
[
ψ̂
]

using DoF adjusted regression MSE

σ̂2 =
SSR

n − dim(Z )

I But homoscedasticity is a strong assumption
I Can’t be correct if outcome is bounded
I And in the case of log wages there is ample evidence that error

variance differs by gender / experience (e.g., Lemieux, 2006)



Bias correction: heteroscedasticity

Index each person-year observation by ` = ` (i , t)

I Suppose errors {ε`} are mutually independent

I But potentially heteroscedastic with variances σ2
` = V [ε`]

Yields familiar “sandwich” variance expression (White, 1980)

V
[
ψ̂
]

=
(
F̃ ′F̃

)−1 (
F̃ ′ΩF̃

)(
F̃ ′F̃

)−1

where Ω = diag
(
σ2

1, ..., σ
2
n

)
.

Estimation challenge: How to get the error variances
{
σ2
`

}n
`=1

?



Kline, Saggio, and Sølvsten (2020)

Write AKM as high-dimensional regression:

Y` = Z ′`β + ε`, for ` = 1, ..., n.

I Let β̂−` denote the OLS estimator of β obtained after leaving
out obs `. (Requires leave-out connectedness)

I “Cross-fit” estimator of σ2
` is unbiased:

σ̂2
` = Y`

(
Y` − Z ′`β̂−`

)

︸ ︷︷ ︸
leave-out prediction error



Cross-fitting
“Cross-fit” estimator of σ2

` is unbiased:

σ̂2
` = Y`

(
Y` − Z ′`β̂−`

)

︸ ︷︷ ︸
leave-out prediction error

=
(
ε` + Z ′`β

) (
ε` + Z ′`

(
β − β̂−`

))

Intuition: leave-out breaks corr between β̂ and ε`

E
[
ε`

(
β − β̂−`

)]
= E


ε`


∑

l 6=`
ZlZ

′
l



−1
∑

l 6=`
Zlεl




=


∑

l 6=`
ZlZ

′
l



−1
∑

l 6=`
Zl E [ε`εl ]︸ ︷︷ ︸

=0



Bias correction

Proxy Ω with Ω̂ = diag
{
σ̂2
`

}n
`=1

to get unbiased variance
estimates

V̂HU

[
ψ̂
]

=
(
F̃ ′F̃

)−1 (
F̃ ′Ω̂F̃

)(
F̃ ′F̃

)−1

Bias corrected estimator of θψ is:

θ̂ψ,HU = θ̂ψ︸︷︷︸
plugin

−
J∑

j=1

sj V̂HU

[
ψ̂j

]

︸ ︷︷ ︸
average squared stderr

+ V̂HU

[
ˆ̄ψ
]

︸ ︷︷ ︸
stderr of mean



Generalization
What about other variances and covariances?

I KSS consider more general (co-)variance components

θ = β′Aβ

where A is user specified matrix.

I General bias correction formula:

θ̂HU = θ̂ −
n∑

`=1

B``σ̂
2
`

where B`` = Z ′` (
∑n

l=1 ZlZ
′
l )
−1 A (

∑n
l=1 ZlZ

′
l )
−1 Z` gives

influence of ε2
` on θ̂. Mathematical intuition:

θ̂ = θ +
n∑

`=1

B``ε
2
` + op (1) .



Computation

A useful trick:

σ̂2
` = Y`

(
Y` − Z ′`β̂−`

)

= Y`

(
Y` − Z ′`β̂

)

1− P``

where {P``} are the diagonal elements of P = Z (Z ′Z )−1 Z ′.

I Note: only need to compute β̂ once!

I In large problems can stochastically approximate {B``,P``}
(CHK size application in <1hr)

I Code / executables available at GitHub repository

https://github.com/rsaggio87/LeaveOutTwoWay


Application to Italian data

Administrative records from Italian province of Veneto

Compare plug-in (AKM), homoscedasticity-only (HO) estimator of
Andrews (2008), and KSS

Base sample: two wage observations per worker

I With a single wage change per worker we can ignore serial
correlation / clustering when computing firm effect variances

I Allows us to focus on importance of heteroscedasticity, but
throws away some of the data

I Analyzing 6 year panel via leave-worker-out yields similar
results

Split by age: older workers move less ⇒ more bias



Bias correction to variance of firm effs
Homoscedastic correction about half way between naive plug-in and KSS



Large bias in correlation coefficient
Flips sign in age-specific samples!



Small decrease in total explanatory power of model
Note: HO estimate is familiar “adjusted” R2, which seems to exhibit negligible bias.



Estimates from 6 year panel nearly identical after
accounting for serial correlation

Leaving match out yields same answer as leaving whole worker out

⇒ sufficient to “cluster” std err estimates V̂HU

[
ψ̂j

]
by match



Projecting fixed effects onto observables

I Common to project fixed effect estimates ψ̂ onto covariates

I Problem: ψ̂ are correlated with one another

I Dependence hinges on design because

ψ̂ = ψ +
(
F̃ ′F̃

)−1
F̃ ′ε

︸ ︷︷ ︸
correlated noise

I Solution: use HU variance estimator

V̂HU

[
ψ̂
]

=
(
F̃ ′F̃

)−1 (
F̃ ′Ω̂F̃

)(
F̃ ′F̃

)−1

=
(
F̃ ′F̃

)−1
(

n∑

`=1

f̃`f̃
′
` σ̂

2
`

)(
F̃ ′F̃

)−1



Connection to HC2

HC2 estimator (Mackinnon and White, 1985) is:

V̂HC2

[
ψ̂
]

=
(
F̃ ′F̃

)−1




n∑

`=1

f̃`f̃
′
`

(
Y` − Z ′`β̂

)2

1− P``



(
F̃ ′F̃

)−1

I HC2 is unbiased under homo-scedasticity but otherwise

inconsistent when dim
(
F̃
)
∝ n.

HU estimator is:

V̂HU

[
ψ̂
]

=
(
F̃ ′F̃

)−1




n∑

`=1

f̃`f̃
′
`

Y`

(
Y` − Z ′`β̂

)

1− P``



(
F̃ ′F̃

)−1

I Unbiased under arbitrary heteroscedasticity.



Standard errors on projection

Projection of ψ onto W is linear combination:

(W ′W )
−1

W ′ψ = v ′ψ

I Estimator of variance of projection coefficients is

V̂HU

[
v ′ψ̂
]

= v ′
(
F̃ ′F̃

)−1 (
F̃ ′Ω̂F̃

)(
F̃ ′F̃

)−1

v

I Suppose v is J × 1 (i.e., single projection coefficient of interest)

I Provided v ′ doesn’t place “too much” weight on any particular
coefficient KSS show that:

v ′
(
ψ̂ − ψ

)

√
V̂HU

[
v ′ψ̂
] → N (0, 1)

lincom KSS: high-dim version of Stata “lincom” command

https://github.com/rsaggio87/LeaveOutTwoWay


Naive “robust” std err order of magnitude too small!

Naive std error on old dummy off by a factor of 24 in Col 2! Leave
out std error reveals that older workers no more likely to work at
high paying firms after adjusting for firm size.



Testing high dimensional hypotheses about fixed effects

Do the firm effects for younger workers equal those faced by older
workers?

H0 : ψO
j = ψY

j for j = 1, ..., J

I J = 8, 578 ⇒ cannot rely on standard χ2 (8578)
approximation to F-test

I Bootstrap also fails

KSS: test by estimating the variance component

θH0 =
1

8578

(
ψO − ψY

)′ (
F̃ ′F̃

)(
ψO − ψY

)

Intuition:

I If H0 is true, we must have θH0 = 0

I F̃ ′F̃ gives optimal (i.e. inverse variance) weighting of
differences ψ̂O − ψ̂Y under homoscedasticity



Testing high dimensional hypotheses about fixed effects

Do the firm effects for younger workers equal those faced by older
workers?

H0 : ψO
j = ψY

j for j = 1, ..., J

KSS: test by estimating the variance component

θH0 =
1

8578

(
ψO − ψY

)′ (
F̃ ′F̃

)(
ψO − ψY

)

Under H0: θ̂H0converges to N
(

0,V
[
θ̂H0

])
.

I Estimation of V
[
θ̂H0

]
explained in paper.

I Test statistic is simple t-stat θ̂H0/

√
V̂HU

[
θ̂H0

]



Firm effects highly correlated across age groups
But can decisively reject that they are exactly the same



Gerard, Lagos, Severnini, and Card (2018)

Do different racial groups share equally in firm effects?

Fit AKM model to Brazilian data 2002-2014

I Bias correct via KSS

I Apply high dimensional Oaxaca decomp ala CCK (2016)

I Usual sorting component additionally decomposed based upon
regional racial / education shares



Estab effs ∼14-16% of variance for each group

Bias corrections to variance shares small w/ 12 years of data
But correction to worker-estab correlation is substantial..



Race gap in estab effs most important for coll educated

Bars give gap between whites and non-whites. Percentages are
portion of overall gap attributable to firm components.



Lachowska, Mas, Saggio, Woodbury (2020)

How stable are firm effects?

Answer using admin data from Washington state (2002-2014)

I Administrative hours records allow computation of hourly
wage

I Secular increase in inequality + Great Recession make for an
interesting test environment

Fit AKM to rolling two year windows of administrative
(“TV-AKM”)

I Bias correct variance components ala KSS

I Compute autocorrelation of firm effects across windows



Secular increase in log wage variance



Mostly explained by increase in variance of person effects



Firm effects highly persistent (ρ ≈ .98)



Little bias from imposing constant effects



Constant effects also predict separations equally well



Summary

I Statistical firm wage effects temporally stable and correlate
strongly with worker retention and productivity

I But not all workers share equally in firm effects

I And “fissuring” the firm via outsourcing leads to wage losses
largely explained by firm effects

I Next lecture: What do firm effects tell us about how labor
markets actually function?
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Monopsony Overview

I Joan Robinson (1933) proposed theory of monopsony in The
Economics of Imperfect Competition

I Manning (2002) Monopsony in Motion argues monopsony
more widespread than commonly understood. Recent review
in Manning (2020).

I Card, Cardoso, Heining, Kline (2018) contrast perspective of
IO literature with that of labor literature:

Although economists seem to agree that part of the
variation in the prices of cars and breakfast cereal is due
to factors other than marginal cost, the notion that wages
differ substantially among equally skilled workers remains
highly controversial.



Card, Cardoso, Heining, Kline (2018)

Borrow from IO literature on differentiated product markets

I Basic idea: firms imperfect substitutes in eyes of workers

I Endows firm with power to set wages

Study conditions under which stable firm effects arise along with
their interpretation

Link to older empirical literature on rent sharing



Setup

I Two observable worker types S ∈ {L,H} w/ corresponding
market supplies (L,H)

I J firms, differentiated vertically by amenities aSj
I Worker-firm pairings yield match effects {εiSj} that are private

information to workers

Indirect utility of working at firm j for skill type S :

uiSj = βS ln (wSj − bS)︸ ︷︷ ︸
wages

+ aSj︸︷︷︸
amenities

+ εiSj︸︷︷︸
match

Here bS is a type-specific reservation wage / outside option

I Analogous to Stone-Geary min consumption level

I Will not work for less, no matter amenity level.



Labor supply to firm

Assuming εiSj ∼ EVI we have LS curves

ln Lj (wLj) = ln (LλL) + βL ln (wLj − bL) + aLj

lnHj (wHj) = ln (HλH) + βH ln (wHj − bH) + aHj

where λS ≡
∑J

k=1 exp (βS ln (wSk − bS) + aSk)

Supposing J is large can approximate λS as constant

Approximation yields variable LS elasticity:

eSj = βS ·
wSj

wSj − bS

I Decreasing in wSj (infinite at wSj = bS)

I Approach competitive model as βS →∞
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Firm’s problem

Firm j ’s output given by

Yj = Tj f (Lj ,Hj)

where Tj is TFPQ and f (., .) is CRTS fn

Choose wages to minimize costs subject to output ≥ Y

min
wLj ,wHj

wLjLj (wLj) + wHjHj (wHj)

s.t.Tj f (Lj (wLj) ,Hj (wHj)) ≥ Y

I Firm wage discriminates on S but not εiSj (2nd degree)

I Large market approximation: ignores effect of wage choice on
behavior of other firms
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Wage rule

FOC yields monopsony “markdown” rule (Robinson, 1933):

wSj =
eSj

1 + eSj︸ ︷︷ ︸
exploitation

Tj fSµj︸ ︷︷ ︸
MRPL

I µj is Lagrange multiplier on output constraint

I Firm will choose output to equate MC (µj) with MR

I Wage sets MFC
(

1+eSj
eSj

)
wSj equal to MRPL

Using eSj =
βSwSj

wSj−bS
we get

wSj =
1

1 + βS
bS +

βS
1 + βS

MRPLj

I Wage is a weighted average of outside option and MRPL

I βS

1+βS
analogous to Nash bargaining weight
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A Baseline Case

Linear production (efficiency units)

Yj = Tj [(1− θ) Lj + θHj ] ≡ TjNj

With fixed product price P0
j , value added per eff unit of labor is:

vj ≡ P0
j Yj/Nj = P0

j Tj

Wages are linear in vj :

wLj =
1

1 + βL
bL +

βL
1 + βL

(1− θ) vj

wHj =
1

1 + βH
bH +

βH
1 + βH

θvj

Letting sH =
Hj

LJ+Hj
, empirical studies typically use

ṽj = P0
j Yj/ (Lj + Hj) = vj [(1− θ) + 2θsH ]
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Elasticities

Suppose reservation wages determined by pay in “competitive fringe”
sector that pays b per eff unit, so that

bL = (1− θ) b, bH = θb

Log wages become

lnwLj = ln
(1− θ) b

1 + βL
+ ln (1 + βLRj)

lnwHj = ln
θb

1 + βH
+ ln (1 + βHRj)

where Rj = vj/b gives ratio of j ’s labor prod relative to competitive fringe

Potentially type-specific “rent sharing” elasticity

ξj ≡
d lnwSj

d ln vj
=

βSRj

1 + βSRj
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Three generations of rent-sharing elasticities

Group 1: Industry-level profit measure
Christofides-Oswald (QJE 1992), Canadian manufacturing 0.140 (0.035)
Blanchflower-Oswald-Sanfey (QJE 1996), US manufacturing 0.060 (0.024)

Group 2: Firm-level profit measure, mean firm wage
Abowd-Lemieux (QJE 1993), Canadian manufacturing 0.220 (0.081)
Van Reenen (QJE 1996), UK manufacturing 0.290 (0.089)
Barth-Bryson-Davis-Freeman (JOLE 2016), US 0.160 (0.002)

Group 3: Firm-level profit measure, individual-specific wage
Guiso-Pistaferri-Schivardi (JPE 2005), Italy 0.069 (0.025)
Card-Devicienti-Maida (ReStud 2014), Italy 0.073 (0.031)
Card-Cardoso-Kline (QJE 2014), Portugal, between firm 0.156 (0.006)
Card-Cardoso-Kline (QJE 2014), Portugal, stayers 0.049 (0.007)
Bagger-Christensen-Mortensen (mimeo), Danish manufacturing 0.090 (0.020)



A calibration

ξj ≡
d lnwSj

d ln vj
=

βSRj

1 + βSRj

Modern estimates give ξj ≈ 0.1 ⇒ βSRj ≈ 0.1

Suppose eS ≈ 4 (20% markdown), then

I Rj ≈ 1.3 (30% more productive than competitive fringe)

I βS ≈ 0.08 (workers get 8 cents of every dollar of MRP)



A link to AKM

When βL = βH , we have the AKM representation

lnwLj = ln
(1− θ) b

1 + β︸ ︷︷ ︸
αL

+ ln (1 + βRj)︸ ︷︷ ︸
ψj

lnwHj = ln
θb

1 + β︸ ︷︷ ︸
αH

+ ln (1 + βRj)︸ ︷︷ ︸
ψj

For small βRj , firm effects nearly linear in productivity

ψj ≈ βRj

Limitations

I Firm profits derived entirely from labor market

I Amenities have no effect on ψj
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Downward sloping product demand

Suppose Pj = P0
j Y
−1/ε
j where ε > 1 gives elasticity of demand

I Now avg labor productivity is decreasing in scale

vj =
PjYj

Nj
= TjPj = TjP

0
j Y
−1/ε
j

I Monopoly rents: mark Pj up over µj by a factor ε
ε−1

Setting µj =
(
1− 1

ε

)
Pj we get

wLj =
b (1− θ)

1 + βL

[
1 + βL

(
ε− 1

ε

)
vj/b

]
wHj =

bθ

1 + βH

[
1 + βH

(
ε− 1

ε

)
vj/b

]
I
(
ε−1
ε

)
converts avg to marginal labor productivity

I Amenities affect wages indirectly through vj
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Link to AKM

Suppose βH = βL = β and take logs to get

lnwLj = ln
b (1− θ)

1 + β︸ ︷︷ ︸
αL

+ ln
[
1 + βR ′j

]︸ ︷︷ ︸
ψj

lnwHj = ln
bθ

1 + β︸ ︷︷ ︸
αH

+ ln
[
1 + βR ′j

]︸ ︷︷ ︸
ψj

I R ′j ≡
(
ε−1
ε

)
vj/b is ratio of marginal labor productivity to

productivity in competitive fringe

I Firm effects explainable by labor productivity b/c amenities
only shift intercept (rather than slope) of LS curve



Rent sharing

Wage elasticity wrt value added is:

ξSj =
d lnwSj

d ln vj
=

βSR
′
j

1 + βSR
′
j

Letting mj ≡
d lnNj

d ln vj
, we expect somewhat smaller wage responses

to TFPQ shocks than to TFPR

d lnwSj

d lnP0
j

=
ε

ε+ mj
ξSj

d lnwSj

d lnTj
=

ε− 1

ε+ mj
ξSj
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A simplified example

I Suppose a single labor type L of measure 1

I Set b = 0 so that LS exhibits constant elasticity β

I Production is Yj = TjLj = Tj exp (β lnwj + aj)

Corresponding wage rule is:

wj =
β

1 + β
MRP =

β

1 + β

ε− 1

ε
TjP

0
j Y

−1/ε
j

Solve out for reduced form

lnwj = ln

[
β

1 + β

ε− 1

ε

]
+ lnP0

j Tj −
1

ε
lnYj

= ln

[
β

1 + β

ε− 1

ε

]
+ lnP0

j Tj −
1

ε
[lnTj + β lnwj + aj ]

= constant +
ε

ε+ β
lnP0

j︸ ︷︷ ︸
prod demand

+
ε− 1

ε+ β
lnTj︸ ︷︷ ︸

TFPQ

− 1

ε+ β
aj︸ ︷︷ ︸

amenities
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Interpretation: supply and demand at the firm level

Note: S refers to L on previous slide



Summary

Simple “differentiated workplaces” foundation for monopsony
easily adapted to many empirical settings

I Forges a link between AKM effects and pass through of
productivity shocks to wages

I Microfoundation for firm level supply - demand analysis /
study of rents

Extensions

I Imperfect substitution / task assignment at firm level
(Haanwinckel, 2018; Lindner et al, 2019)

I Interactions with min wage / other institutions (Haanwinckel,
2018; Berger, Herkenhoff, Mongey, 2019)
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Azar, Berry, Marinescu (2019)

Fit differentiated workplace model of LS to online job postings
from CareerBuilder.com

I Follow closely standard approaches in empirical IO (e.g.,
Berry, 1994, BLP, 1996)

Advantages of studying CB

I Posted wages

I Observed application behavior (instead of just realized
matches)

I Low search costs on platform

Challenges:

I How to convert application elasticities to LS elasticities?

I Finding exogeneous variation in wages



Nested logit model

Break job vacancies into markets m defined by occupation by
geography cells (SOC-6 × CZ)

Indirect utility of worker i applying to job vacancy j ∈ Jmt in
market m in week t is:

uijmt = δj + γmzijm + θmz̃im + νimt (λm) + λmεijmt

I δj - “mean utility” of job j (treat as fixed effect)

I zijm - log distance of i to job j

I z̃im - indicator for i in same CZ as j

I νimt (λm) - market random effect with scale parameter λm
I εijmt - idiosyncratic match ∼EV1

I Outside option: don’t apply (j = 0)



Mean utility

Mean utilities obey:

δj = βxj − α lnwj + ξj

I xj - job characteristics

I wj - posted wage

I ξj - unobserved job “quality”

Cov (lnwj , ξj) > 0 ⇒ omitted variable bias

Ideal instruments for lnwj :

I productivity shock

I change in market structure (e.g., merger / outsourcing event)



Nested logit estimation via two-step

Bottom level: choosing jobs within a market

Probability of applying to job j conditional on choosing at least 1
job in market m

sijmt =
exp [(δj + γmzijm) /λm]∑

k∈Jmt
exp [(δk + γmzikm) /λm]

= exp [(δj + γmzijm) /λm] / Iimt︸︷︷︸
inclusive value

Can be estimated via conventional alternative specific logit using
within market data

Yields scaled mean utilities δj/λm



Recovering the scale parameter

Top level: which (if any) market to enter

Probability of applying to market m is

simt =
exp (θmz̃im + λmIimt)

1 + exp (θmz̃im + λmIimt)
.

Estimate via another logit. Recover scale parameters λm. Use to
form estimates δ̂j of δj .



Final step: IV

Explore two sets of instruments for lnwj in final equation

δ̂j = βxj − α lnwj + ξj + noise

“BLP instruments”: # of vacancies in market / size of other firms
in market

“Hausman instruments”: wages paid by same firm in other
markets

I Problem: what if firm wage in other markets reflects
unobserved amenities?

I Solution: use predicted wage in other markets (based on
CZ-SOC fixed effects + job title fixed effects)

I Intuition: firms that face stiffer competition in other markets
it also pays higher wages in this market



Instrumenting flips the sign of wage

But parameter estimates somewhat sensitive to instrument set

Note: Vacancy level elasticity > firm level > market level



Hausman instrument somewhat yield lower elasticities



Lots of heterogeneity across occupations

Nurses and truckers are occs that have long been suspected of
being monopsonistic (Rose, 1987; Staiger, Spetz, Phibbs, 2010)



Application elasticities to LS elasticities

Definitions:

I R (w) is the flow of new recruits as a function of wage

I s (w) is the separation rate

Steady state: s (w)N (w) = R (w)⇒ N (w) = R (w) /s (w)

SS elasticity of LS: ε = d lnN
d lnw = εR − εs .

Two (strong) assumptions:

1. app elasticity ≈ εR

2. εR ≈ εs

(1) + (2) ⇒ ε ≈ 2×app elasticity
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Summary

Standard IO tools can be applied to study labor market
competition

I Results somewhat sensitive to instrument set

I Doubling the app elasticity is a crude way to assess the full LS
elasticity

Extensions:

I How best to define labor markets? (Manning and Petrongolo
2017; Nimczik, 2017; Caldwell and Daniele, 2018)

I Direct evidence (e.g., mergers / firm entry) on effects of
changes in market structure (Arnold, 2019; Manelici and
Vasquez, 2019)



Dube, Jacobs, Naidu, Suri (2020)

How much market power do employers have on online labor
markets?

Study relationship between reward and availability for Mturk tasks
to estimate labor supply curve

I use double machine learning (DML) procedure of
Chernozhukov et al (2018) to infer causality

I validate with experiments

Main result: labor supply elasticity to “requester” is very low



A toy model

Requester posts batch of N jobs with private value p that need to
be completed in time interval [0,T ].

I A fraction λ of users see the request

I Distribution of reservation wages is F (w)

Requester chooses a wage to maximize

Π (w) =

∫ T

0
e−rtN (w , t) (p − w)F (w)λdt

where N (w , t) is the stock of unfilled jobs, which evolves
according to

Ṅ (w , t) = −λF (w)N (w , t) .



Duration elasticity

Ṅ (w , t) = −λF (w)N (w , t) .

With constant fill rate λF (w), expected duration to fill N jobs
(ignoring censoring at T ) is

d̄ =
N

λF (w)

Imposing F (w) ∝ wη, we have

ln d̄ = lnN − lnλF (w)

∝ lnN − lnλ− η lnw



Quasi-static interpretation

For short T , effective LS curve L (w) is

L (w) ∝ F (w)

Elasticity of labor supply equals duration elasticity

d ln L

d lnw
=

d lnF

d lnw
=

d ln d̄

d lnw
= η.



Econometric framework

MTurk data consist of a series of scraped human input task
batches (HITs). Relationship of interest is:

ln (durationh) = −η ln (rewardh) + νh + εh

I durationh is the time it took for the HIT to disappear from
Mturk

I rewardh is the payment for completing the HIT

I νh confounders

η is duration elasticity

I Frictionless competitive model η =∞
I Is this a reasonable benchmark?



Panel data estimator

ln (durationh) = −η ln (rewardh) + νh + εh

Fixed effects for confounders

νh = ρr(h)︸︷︷︸
employer

+ τt(h)︸︷︷︸
day

+ δd(h)︸︷︷︸
minutes allotted

+ δN(h)︸ ︷︷ ︸
batch size

Estimate η by OLS



DML estimator

Partially linear model:

ln (durationh) = −η ln (rewardh) + g0 (Zh) + εh

ln (rewardh) = m0 (Zh) + µh

where Zh is high dimensional vector of HIT features.

1. Estimate first stage function m0 (Zh) and reduced form

l0 (Zh) = E [ln (durationh) |Zh] = g0 (Zh) + m0 (Zh)

via random forest procedure utilizing classification trees
(Breiman, 2001).

2. Form resids:
ξ̂h = ln (durationh)− l̂0 (Zh)

µ̂h = ln (rewardh)− m̂0 (Zh)



DML estimator

Frisch-Waugh style estimator of η based on residuals:

η̂ =

(∑
h

µ̂2
h

)−1∑
h

ξ̂hµ̂h

I Problem: model selection errors in ξ̂h and µ̂h could be
correlated, amplifying regularization bias

I Solution: split sample to obtain independent ξ̂
(1)
h and µ̂

(2)
h

Chernozhukov et al (2018): high-level conditions under which

sample splitting ensures η̂
p→ η

I Tricky to verify these conditions

I Depends on (unknown) “sparsity” of DGP



Duration elasticities < 0.2



Experiments

Retention experiments

I Hire workers for a translation tasks at a common wage

I Then ask if they want to do the task again at an
experimentally manipulated wage

I Get retention probability elasticity

Recruitment experiments

I Offer to hire workers to perform a new task at manipulated
wage

I Get recruitment probability elasticity



Retention elasticities centered around 0.1



Recruitment elasticities <0.1



Summary

Even in a thick labor market, various measures of labor supply to
the firm appear inelastic in the short run

Requesters that are in a hurry should (and probably do) pay higher
wages that are still below their private valuations

How different would the reward distribution be if requesters were
required to be price takers?

I Would a minimum wage reduce efficiency here?

I What if there were a separate minimum wage for “urgent”
projects?

I How would the rewards distribution change if employers bid
on workers?



Staiger, Spetz, Phibbs (2010)

Employment prospects of nurses closely tied to local hospitals

Are RN wages suppressed below MPL?

Test for strategic dependence in wage setting (oligopsony)

I Nurse Pay Act of 1990: VA hospitals switch from national
wage scale to matching local competitors

I Initial degree of under / over- payment provides an IV for VA
wage

I See if non-VA hospitals respond or are price takers



VAs that underpaid experience large boost



VA wage gap strongly predicts non-VA wage growth



Implied LS to non-VA hospitals very low



Summary

Strong evidence of strategic dependence in wage setting

Implied LS elasticity to hospitals ∼ 0.1

I But are wages really set according to exploitation index?

I How to distinguish from “collusion”?

Ongoing work

I Spillovers from company-specific min wages (Derenoncourt,
Noelke, Weil, 2020)

I Spillovers from actual min wage (Haanwinckel, 2018)

I Links between concentration and wage setting (Berger,
Herkenhoff, Mongey, 2019; Arnold, 2019)



Kline, Petkova, Williams, Zidar (2019)

Study effect of winning a patent on firm productivity and wages using
treasury tax files

Patents are designed to provide firms w/ temporary monopoly rights: are

monopoly rents shared w/ workers?

I Patent grants a truly firm-specific shock

I Competitive benchmark: wages shouldn’t adjust

1st time patenting firms are small (median firm size = 17)

I Unlikely to have much market power over new hires

I But potentially have power over incumbents

Main findings:

I Patents raise productivity

I And wages of incumbent workers

I But not entry wages



Obtaining a US patent (crash course)

Discover a novel, non-obvious, useful idea

Submit application to USPTO central office (“filing date”)

I Central office routes application to the supervisory patent
examiner (SPE) of the appropriate art unit

I SPE assigns application to a patent examiner

Examiner issues an initial decision (“initial decision date”)

I Allowance (roughly 10% of initial decisions) or “rejection”

I “Rejection” is a revise & resubmit

I Applicant and examiner may engage in many rounds of
revision



Research design

Two valuable patent applications submitted by two separate firms
to the USPTO in the same year

They are routed to the same art unit

One is initially allowed and the other is not

Assume parallel trends for initially allowed/rejected patents (DiD)

I Validate w/ event studies + balance tests + low-value patents
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Problem: Many patents worthless

Solution: predict ex-ante value using app characteristics

Kogan, Papanikolaou, Seru, and Stoffman (2017; KPSS)

I Estimate excess stock return responses to patent grant
announcements

I Empirical bayes posterior valuations ξj for each patent j

Use ξj to identify valuable patents in a broader sample

I Fit RE Poisson QML explaining ξj in terms of firm and
application characteristics that are fixed at the time of
application

I Extrapolate to non-public firms and to rejected applications

I Very strong explanatory power (R2 = .69)
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Poisson model
KPSS value (ξ)

1(patent family size = 1) 0.28 (0.06)

log(patent family size) 0.23 (0.04)

1(number of claims = 1) 0.68 (0.19)

log(number of claims) 0.30 (0.03)

1(revenue = 0) 1.42 (0.14)

log(revenue) 0.14 (0.02)

1(employees = 0) 0.45 (0.07)

log(employees) -0.01 (0.02)

application year -0.03 (0.05)

(application year)2 -0.01 (0.01)

decision year 0.30 (0.06)

(decision year)2 -0.03 (0.01)

constant -1.40 (0.21)

log(σ) 0.24 (0.05)

N 596 # groups 260

Notes: Random effects are by art unit. Standard errors are in parentheses.



Predicted vs. actual patent value

β: 1.03
se: .12
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Notes: The fitted ξ values on the x-axis are obtained from a Poisson model of ξ on the DWPI count of unique
countries where the application was filed, the number of claims in the application, the application year, the initial
decision year, the revenue of the firm in the year of application, the number of employees in the application year,
and art unit random effects.



Event study: Surplus (EBITD + W2) per worker
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tax, and depreciation) + W2 wage bill. Q5 is quintile 5 of predicted patent value. < Q5 are the remaining four
quintiles. 95% confidence intervals shown. Dotted red line is pooled DID impact for a top quintile patent
application receiving an initial allowance post-decision.



Event study: Wage bill per worker
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Within firm inequality
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No impact on earnings of new hires..

Impacts concentrated among firm stayers



Within-firm heterogeneity: Firm Stayers
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Instrumenting raises pass through estimates



Retention response concentrated among “top half”
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Separation-wage elasticity of ∼ 1.5



Rent sharing redux

Firm shocks matter for worker wages, even when firms are small

But pass through is unequal across groups

I Men get more than women

I Incumbents more than new hires

I Inventors more than non-inventors

No one model to rule them all

I CCHK model would be misleading here – wage responses not
proportional to hiring responses

I Important to separate retention and recruitment margins,
especially when training / hiring costs substantial

I Pay for performance?

Comparable to economy-wide studies? (e.g., Garin and Silverio,
2017; Lamadon, Mogstad, Seltzer, 2019)



Jäger, Schoefer, Young, Zweimüller (2020)

Vanilla DMP model says wages (w) set via Nash bargaining to
divide match surplus:

W + J︸ ︷︷ ︸
value of match

− (U + V )︸ ︷︷ ︸
outside options

I Implies wages sensitive to value of unemployment U

I Under continuous renegotiation should apply to both
incumbent workers and new hires

Test if wages sensitive to increase in UI generosity

I Diff-in-diff using Austrian reforms to UI benefit

I Key finding: no effect on incumbent wage growth



Little effect on wage growth of incumbents



Mixed evidence on wage response of new hires

I Wrong signed effect on stayers and EUE movers

I But can’t rule out positive effects on recalled workers / all job
movers..



Di Addario, Kline, Saggio, Sølvsten (2020)

Large class of “sequential auction” models predict wages depend
not just on current but also prior firm (Postel-Vinay and Robin,
2002; Bagger, Lentz, Postel-Vinay, Robin, 2016)

More general principle: outside options at the time of hire should
affect the wage

Do firms price discriminate based on where the workers are hired
from?

Examine using Italian wage records

I Records include the reason for each job separation (e.g., fired,
laid off, resignation)

I Measure hiring wage as average earnings in 1st year on the job



Preliminaries: coding job transitions

Job histories of workers i ∈ {1, ..., n} across job matches
m ∈ {1, ...,Mi}.

I Qim = 1 iff worker i quits match m (“EE transition”)

I Destination firm is j (i ,m) ∈ {1, ..., J}
Origin firm/state is

h (i ,m) =


j (i ,m − 1) , if Qi ,m−1 = 1 and m > 1,

U, if Qi ,m−1 = 0 and m > 1,

N, if m = 1,

I U is “hired from non-employment”

I N is “new labor force entrant.”



Dual Wage Ladder (DWL) specification

The log hiring wage for worker i in match m is:

yim = αi︸︷︷︸
worker effect

+ ψj(i ,m)︸ ︷︷ ︸
destination effect

+ λh(i ,m)︸ ︷︷ ︸
origin effect

+X ′imδ + εim.

I Similar to AKM model for mean wage in a match + “origin
effect” for firm/state from which worker was hired

I O/D effs capture “where you’re from” vs “where you’re at”

Treat {αi}Ni=1 , {ψj , λj}Jj=1 as unrestricted fixed effects

I Note: each firm is a separate 2D type!

I SA models traditionally restrict ψj = ψ (pj), λj = λ (pj) [PVR,

2002a,b; Cahuc et al, 2006; Bagger et al, 2016; Bagger and Lentz, 2019]
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Exogenous mobility

Let εi = (εi1, ..., εiMi
)′ and Wi = {j (i ,m) , h (i ,m) ,Xim, αi}Mi

m=1

We assume
E [εi |Wi ] = 0.

I Rules out selection on time-varying component present at
time of hiring.

I Does not prohibit selection on (ψ, λ)

I Implied by standard SA models, which typically assume
efficient mobility along stable job-ladder in p



Dynamics: three examples

Career Path #1: two EUE transitions (Qi1 = 0,Qi2 = 0)

E[yi3 − yi2 | Wi ] = ψj(i ,3) − ψj(i ,2)

Career path #2: two EE transitions (Qi1 = 1,Qi2 = 1)

E[yi3 − yi2 | Wi ] = ψj(i ,3) − ψj(i ,2) + λj(i ,2) − λj(i ,1)

Career path #3: EUE followed by EE (Qi1 = 0,Qi2 = 1)

E[yi3 − yi2 | Wi ] = ψj(i ,3) − ψj(i ,2) + λj(i ,2) − λU

Observations:

I Path #1 yields destination based wage growth ala AKM

I Path #2 vs #3: wage penalty of λj(i ,1) − λU for displacement
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The PVR model

PVR show that the poaching wage φ must satisfy:

U (φ (ε, p, q)) = U (εq)− κ
∫ p

q
F̄ (x)U ′ (εx) dx

where F̄ (x) = 1− F (x) and κ = λ1
ρ+δ+µ is fn of offer arrival,

discount rate, etc.

If U (x) = ln x then poaching wage can be written:

lnφ (ε, p, q) = ln ε︸︷︷︸
worker type

+ ln q︸︷︷︸
poached firm type

− κ

∫ p

q

F̄ (x)

x
dx︸ ︷︷ ︸

option val of type upgrade

I Poaching wage is decreasing in the productivity gap between
poaching and poached firms (compensating diff)
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DWL representation

By Fund Thm of Calculus, option value can be written

κ

∫ p

q

F̄ (x)

x
dx = I (q)− I (p), where

I (z) ≡ κ
∫ ∞
z

F̄ (x)

x
dx is upgrade from z to pmax

Implies poaching wages obey log-linear reduced form:

lnφ (ε, p, q) = ln ε︸︷︷︸
=α(ε)

+ I (p)︸︷︷︸
=ψ(p)

+ ln q − I (q)︸ ︷︷ ︸
=λ(q)

I ψ′ (p) < 0 (comp diff for expected wage growth)

I λ′ (q) > 0 (tougher to poach from more productive firm)

I Exogenous mobility: worker goes to more productive firm
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Properties of O/D effs

lnφ (ε, p, q) = ln ε︸︷︷︸
=α(ε)

+ I (p)︸︷︷︸
=ψ(p)

+ ln q − I (q)︸ ︷︷ ︸
=λ(q)

1. Productivity identified from sum of firm’s O+D effs:

ψ (p) + λ (p) = ln p

2. O/D effs are negatively correlated across firms:

C (ψ (p) , λ (p)) < 0

3. Excess variance of O vs D effs:

V [λ (p)] > V [ψ (p)]



Bagger et al (2014) extension

BF-PVR allow workers to extract a share β ∈ [0, 1] of rent.

Optimal poaching wage becomes:

lnφ (ε, p, q,X , E | β) = α(ε) + g(X ) + E
+ β ln p + I (p | β)︸ ︷︷ ︸

=ψ(p)

+ (1− β) ln q − I (q | β)︸ ︷︷ ︸
=λ(q)

,

where X is labor market experience, E is a transitory shock to

worker productivity, and I (z | β) =(1− β)2κ
∫∞
z

F̄ (x)/x

1+κβF̄ (x)
dx is

decreasing in z and β.

Observe that:

I As β → 0, BF-PVR→PVR

I As β → 1, BF-PVR→AKM! (no origin effs)
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O/D effs in BF-PVR

lnφ (ε, p, q,X , E | β) = α(ε) + g(X ) + E
+ β ln p + I (p | β)︸ ︷︷ ︸

=ψ(p)

+ (1− β) ln q − I (q | β)︸ ︷︷ ︸
=λ(q)

I Productivity identified by ψ (p) + λ (p) = ln p

I But large β can overcome comp. diff:

β > 1/2⇒ ψ′(p) > 0⇒ C (ψ (p) , λ (p)) > 0

I Shape restrictions

1. Origin effs concave in ln p: d2

d(ln p)2λ (p) < 0

2. Dest effs convex in ln p: d2

d(ln p)2ψ (p) > 0



Bounds on worker bargaining power
Consider firm-level variance components (firm-size weighted):

VJ [ψ], VJ [λ], CJ [ψ, λ],

I Excess variance of destination effects places lower bound on
bargaining strength:

β ≥ 1

2
+

VJ [ψ]− VJ [λ]

2VJ [ψ + λ]
.

Intuition: as β grows, we approach AKM specification

I β > 1/2⇒inequality restriction on O/D eff correlation:

ρJ(ψ, λ) ≥

√
VJ [ψ]

VJ [ψ + λ]

(
1− 3

10

√
VJ [λ]

VJ [ψ + λ]

)

Intuition: β > 1/2⇒ O/D effs both increasing in p
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Median resignation yields job next month
Median time between jobs for other separations 5 months



Diagnostic #1: Is there a wage penalty for displacement?

Two workers i and ` transition between the same firms j and k

I Worker i has EE (“voluntary”) transition

E[yi2 − yi1 | Wi ] = ψk − ψj + λj − λN

I Worker ` has EUE (“involuntary”) transition

E[y`2 − y`1 | W`] = ψk − ψj + λU − λN

Penalty for involuntary separation is

λj − λU = E[yi2 − yi1 | Wi ]

− E[y`2 − y`1 | W`]

Rather than exact match on first two employers, group workers by
coworker wage quartile at jobs #1 & #2 (16 groups)



Roughly constant penalty



Diagnostic #2: Does it matter who lays you off?

Recall that DWL model predicts making 2 involuntary transitions
(Qi1 = 0,Qi2 = 0) yields AKM style model of wage changes:

E[yi3 − yi2 | Wi ] = ψj(i ,3) − ψj(i ,2)

I Identity j (i , 1) of first employer is excludable!

I Test by comparing workers whose first employer was in top /
bottom tercile of coworker wages



1st job irrelevant for workers displaced twice

 Constant: -.007; Slope: .999
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Roughly 4% penalty for hiring from non-employment
(Note: we have normalized λN = 0)



It ain’t where you’re from..



Dest effs ≈ 14× as variable as orig effs across firms



Implied std dev of log productivity=.28
Compare to std log VA/L≈0.8



Need β > .88 to explain excess orig eff var
Which would require O/D corr > .84, but empirical corr is only .25..



Heterogeneity: law firms have important origin effs



But even among law firms O/D correlation too low



O/D effs both increasing in VA



But violate shape restrictions
Also: BF-PVR requires β > maxp′ dψ (p′) /d ln p ≈ 0.92!

Note: each dot is mean within a VA bin (same as previous fig)



Female dest effs less sensitive to VA

Same slope as found in Portugal [Card, Cardoso, Kline, 2015]



Same for orig effs but female suffer greater penalty for EUE



Where you’re from irrelevant for gender gap
Initially explained by where you’re at. Evolution due to other factors.



Summary

Where you’re hired from doesn’t seem to matter quantitatively for
most workers

Two notable exceptions:

I There is an important penalty for being hired from
non-employment

I Highly skilled hierarchical professions (e.g. law) seem to
exhibit origin effects



Why aren’t hiring origins more important?

They likely are important for elite workers (NBA players, C-suite
executives, star lawyers) who are expected to negotiate and
typically have objective performance metrics that can be used to
justify their pay

But most jobs commit to posted wages, likely for a mix of
information and horizontal equity reasons

I Hall and Krueger (2012): bargaining only common among
high skilled jobs in US

I Caldwell & Harmon (2019): in Denmark only 31% of manual
and 51% of professional jobs engage in negotiation

I Postel-Vinay and Robin (2004): less productive firms commit
not to match to avoid costly moral hazard ⇒ dual labor
markets

I Card, Moretti, Mas, and Saez (2012): horizontal inequity in
pay generates potentially costly morale problems
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20. Jäger, S., Schoefer, B., Young, S., and Zweimüller, J. (2020). “Wages
and the value of nonemployment.” Quarterly Journal of Economics 135
(4).

21. Kogan, L., Papanikolaou, D., Seru, A., & Stoffman, N. (2017).
Technological innovation, resource allocation, and growth. The Quarterly
Journal of Economics, 132(2), 665-712.

22. Kline, P., Petkova, N., Williams, H., & Zidar, O. (2019). Who profits
from patents? rent-sharing at innovative firms. The Quarterly Journal of
Economics, 134(3), 1343-1404.

23. Lamadon, T., Mogstad, M., & Setzler, B. (2019). Imperfect
Competition, Compensating Differentials and Rent Sharing in the US
Labor Market (No. w25954). National Bureau of Economic Research.

24. Lindner, A., Muraközy, B., Reizer, B., & Schreiner, R. (2019).
Technological Change and Skill Demand in Non-Competitive Labor
Markets. working paper.



25. Manning, A., & Petrongolo, B. (2017). How local are labor markets?
Evidence from a spatial job search model. American Economic Review,
107(10), 2877-2907.

26. Manning, A. (2020). Monopsony in labor markets: a review.
International Labour Review.

27. Nimczik, J. S. (2017). Job mobility networks and endogenous labor
markets.

28. Postel–Vinay, F., & Robin, J. M. (2002). Equilibrium wage dispersion
with worker and employer heterogeneity. Econometrica, 70(6), 2295-2350.

29. Postel-Vinay, F., & Robin, J. M. (2004). To match or not to match?:
Optimal wage policy with endogenous worker search intensity. Review of
Economic Dynamics, 7(2), 297-330.

30. Rose, N. L. (1987). Labor rent sharing and regulation: Evidence from the
trucking industry. Journal of Political Economy, 95(6), 1146-1178.

31. Staiger, D. O., Spetz, J., & Phibbs, C. S. (2010). Is there monopsony in
the labor market? Evidence from a natural experiment. Journal of Labor
Economics, 28(2), 211-236.


	Labor Economics and Applied Econometrics Course Outline
	1. Education (Walters)
	Introduction
	Potential Outcomes
	Returns to Schooling
	Signaling
	College Selectivity
	References

	2. Self_selection (Walters)
	Introduction
	Selection Model Econometrics
	Equivalence Results
	Extrapolation
	Applications
	References

	3. Discrimination (Walters)
	Introduction
	Decompositions
	Experimental Approaches
	Algorithmic Bias
	References

	1. Min_Wage (Kline)
	Introduction
	Meta-analysis
	Card-Krueger
	Return of the Gap
	Exploiting the full distribution
	References

	2. Firm_Wage_Premia (Kline)
	Industry wage premia
	From industries to firms
	Outsourcing
	KSS
	Putting KSS to work
	References

	3. Monopsony (Kline)
	Modern monopsony
	Monopsony
	Rent sharing
	Outside options
	References


