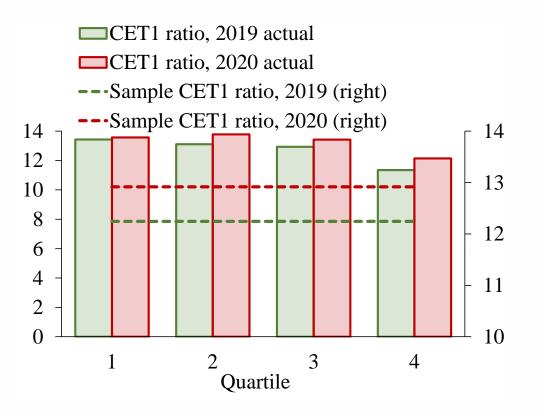
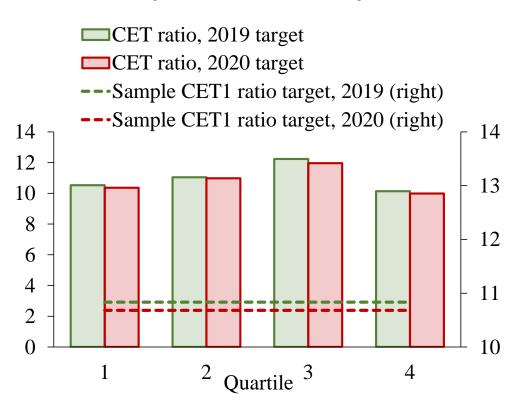


Usability of Bank Capital Buffers: The Role of Market Expectations

JANUARY 2023

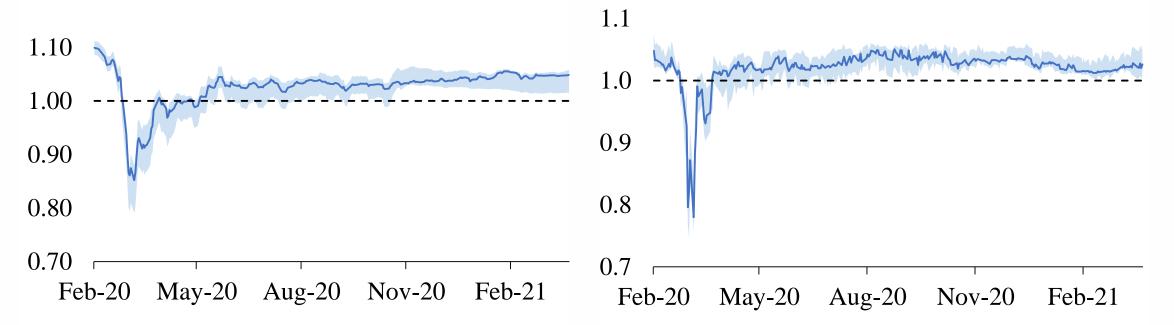

Jose Abad (Visiting Scholar) and Antonio Garcia Pascual

Capital buffers during the COVID shock


- 1) Capital buffers fulfill a **dual role** (BCBS, 2020):
 - Absorb credit losses at times of stress (forced loss recognition)
 - Support lending and the economic recovery (voluntary)
- 2) Using buffers: temporarily bringing CET1 ratios below the threshold defined by the MDA; a "looser" definition would imply temporarily bringing CET1 ratios below a bank's CET1 target without necessarily breaching the MDA threshold.
- 3) There is no evidence buffers were used during the COVID shock in any meaningful scale under any of these two definitions:
 - 1) Banks reported higher CET1 ratios in 2020 (vs 2019).
 - 2) Banks announced <u>stable CET1 targets</u> in 2020 (vs 2019).
 - 3) Values of hybrid instruments (AT1, LT2, preferred shares) recovered very quickly.
 - 4) Empirical evidence from the COVID shock suggests a positive impact on expected lending from a lower MDA but <u>limited MDA breaches</u>

1 Higher CET1 ratios, **2** stable targets

<u>Actual CET1 Ratios</u>, Market Capitalization Weighted Averages (Percent of RWA)


<u>CET1 Targets</u>, Market Capitalization Weighted Averages quartiles (Percent of RWA)

3 Quick recovery in bank hybrid instruments

Subordinated Debt Prices (as a ratio of notional value)

European Banks AT1 instruments: price as a ratio of notional values US Banks preferred shares: price as a ratio of notional value

Several reasons have been put forward ...

- 1) Distribution restrictions (CET1 < MDA), higher conversion/dilution risk (AT1 trigger)
- 2) Uncertainty across four dimensions:
 - > Credit losses, particularly in case of provision-smoothing
 - > Reversal of temporary capital relief and other prudential measures
 - Expectation for higher capital requirements post COVID (e.g., Basel III)
 - Length of capital re-build horizon post buffer draw-down (conflicting supervisory messages, potential time inconsistency problem)
- 3) Other binding requirements (e.g., leverage ratio, MREL)
- 4) Potential market stigma in case individual CET1 ratio < sector average
- 5) There was no need to use them in the first place

... another important reason

A structurally low return profile would make the rebuilding timeline too long and/or any attempt to rebuild buffers inorganically too dilutive for shareholders.

In addition, if rebuilding capital buffers becomes a multi-year event, the impact from any distribution restrictions—for shareholders and bondholders—may end up being a multiple of the cost associated with a temporary ban on such restrictions.

Assessing the likelihood/ convenience of bank capital buffer usability: <u>A framework</u>

- 1) Capacity hurdle Are there any buffers to be used?
 - 1) Capacity to use buffers = CET1's distance to MDA > 0
 - 2) Banks reluctant to operate with CET1 < MDA (Berrospide et al, 2021)
- 2) Supervisory hurdle *Can I rebuild them within a reasonable horizon?*
 - 1) After using the buffers, supervisors expect banks to rebuild them
 - Capacity to rebuild buffers organically within a "reasonable" timeframe (not too short to be dilutive, not too long to be non-credible)
- 3) Management hurdle *Can I make a reasonable return on investment?*
 - 1) Expectation for a "reasonable" return on the investment made
 - 2) Bank management's fiduciary duty requires them to act in the best interest of both the corporation and its shareholders

Data and Sample

1) Data:

- Longest-dated available consensus expectations (FY3 = 2022) for key financials, from Bloomberg, as of Jan 2021.
- 2) CET1 requirements and medium-run targets from banks' financial statements, both pre- and post-COVID (end-2019 and end-2020).

2) Sample:

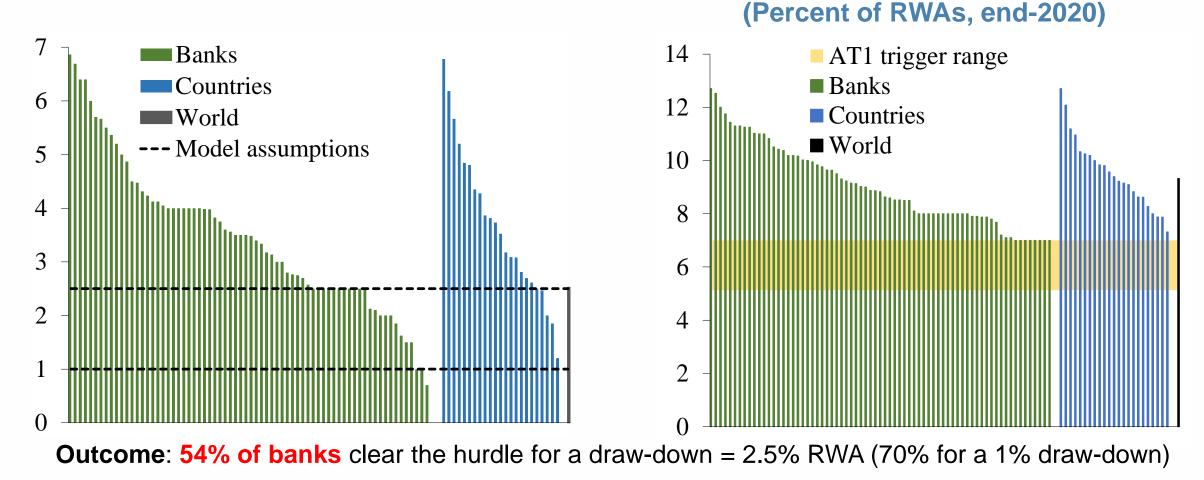
- 71 publicly-listed banks across 23 countries and 5 continents, with an overall market cap of \$2.8 trillion, c. 60% of the global banking system, as of Jan 2021.
- 2) Sample comprises all banks included in IMF's Global Stress Test with enough available data to calibrate our framework.

Sizing the buffer draw-down

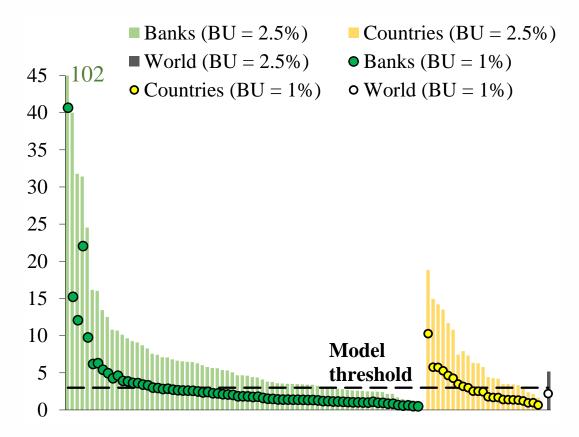
1) Baseline scenario: 2.5% RWA

- 1) On par with the CCyB's upper bound (0%-2.5% of RWA), half of the average CBR in our sample.
- 2) We judge this as meaningful (buffer usability needs to be meaningful in order to have visible economic effects) but without breaching the Basel Committee's "measured draw-down" guidance (BCBS, 2020).

2) Alternative scenario: 1% RWA


- 1) In line with analysts' expectations at the time supervisors released the CCyB and encouraged banks to use their remaining buffers.
- 2) In line with the only two banks in our sample that had provided explicit guidance about the usable portion of their CET1 stack.

Maximum Distributable Amount (MDA)


Threshold

Management Buffer [CET1 target – MDA] (Percent of RWAs, end-2020)

2 Supervisory hurdle

Estimated Years to Rebuild 2.5% and 1% Buffer Draw Down

- Organic capital generation model, where ▲CET1:
 - + Net earnings pre-usability
 - + Incremental earnings post-usability
 - Cash dividends
 - AT1 coupon payments
- Calibration: FY3 consensus expectations, CET1 requirements and targets, all as of Jan 2021

Some key assumptions:

- Static B/S (except for buffer draw-down)
- Static RWA density and ROA
- Outcome: 65% of banks in our sample can rebuild buffers in ≤3 years under a buffer draw-down = 2.5% RWA (95%, if draw-down = 1% RWA)

3 Management hurdle

Value Shortfall (Percent of RWA, as of Year 3)

	■ Banks : 2.5% BU	Countries: 2.5% BU
	■ World: 2.5% BU	• Banks : 1% BU
20	• Countries: 1% BU	• World: 1% BU
15		
10		
5		
0		
-5		

- Capital-adjusted residual income model (Massari et al, 2014; Damodaran, 2013):
 - The intrinsic value of a bank's equity is a function of its future excess returns, adjusted for its CET1 ratio relative to its target.
 - Valuation model feeds from the organic capital generation model (supervisory hurdle).

Fair value (FV) paths:

- Expected FV if buffers are NOT used (a)
- Expected FV if buffers are used (b)
- ► Required FV if buffers are used (c), where c = a + ▲ FV (ROE ≥ 2xCoE)
- Value shortfall (VS) = b c
- Outcome: Only 20% of banks in our sample manage to create value (VS >0) in ≤3 years, regardless of magnitude of buffer draw-down

Results for a buffer shock @ 2.5% of RWA

	Capacity Hurdle	Superviso	ory Hurdle	Management Hurdle	Capital Buffer Usability	
Banks Ranked by Price-to-Book Ratio	Capital Buffer Availability ¹	Years to Rebuild Buffers ²	Asset Quality ³	Bank's Expected Equity FV ⁴	Success Rate ⁵	
1st Quartile [Bottom]	1.5x	16.2	×	×	0.0	
2nd Quartile	1.2x	7.5	v	×	0.0	
3rd Quartile	1.3x	5.1	v	×	0.0	
4th Quartile [Top]	0.7x	2.9	v	v	6.8	
World	1.0x	5.2		×	3.3	
Success rate ⁵	53.6	64.6	99.6	20.7	3.3	

¹ Hurdle cleared at 1 times of buffer drawn

² Hurdle cleared at less than or equal to 5 years.

³ Hurdle cleared at 3 times the regions pre-COVID 19 NPL ratio.

⁴ Hurdle cleared if expected bank equity FV is greater than required equity value in year 3

⁵ Percent of banks, by market capitalization, clearing the hurdles

Main takeaways

- 1) Provided the market expects a bank to rebuild its buffers, any buffer draw-down will open up a capital shortfall that will weigh on its share price. Therefore, a bank will only decide to use its buffers if the value creation from a larger loan book offsets the costs associated with a "capital shortfall".
- 2) **Results**: cases in which the use of buffers make economic sense are rare in practice.
 - Only a handful of banks (<4%) in our sample would have been willing to use their buffers for a draw-down of 2.5% of RWAs, clearing all 3 hurdles (capacity, supervisory and management).
 - > The **management hurdle** seems to be the most binding one.
- 3) There is **no silver bullet** that can guarantee the voluntary usability of capital buffers, but policy makers may be able to increase the likelihood of usage ...

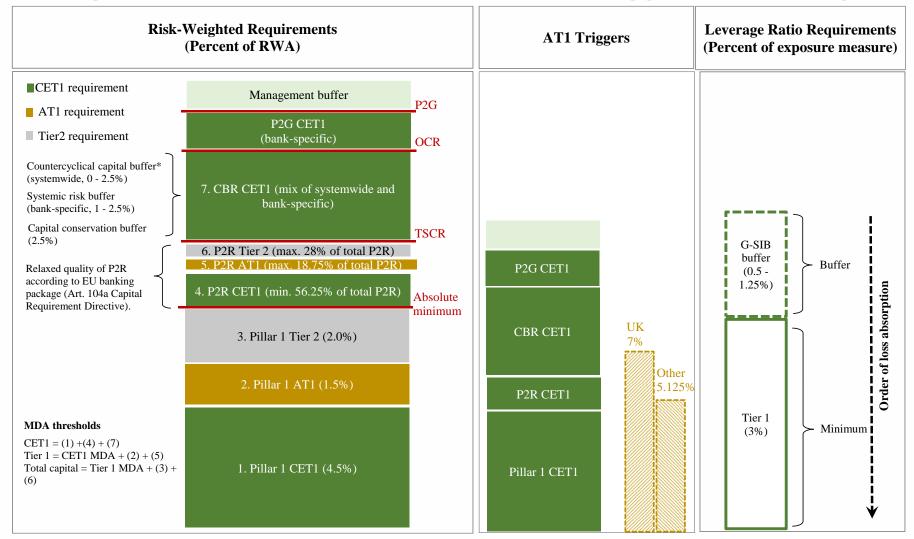
To enhance buffer usability

- An Enhanced Countercyclical Buffer (ECCyB) by re-defining the CCyB across three dimensions:
 - Incorporate market expectations explicitly (via the "value shortfall" concept) into the CCyB's calibration, making it bank specific
 - >Increase the weight of the CCyB in the CBR.
 - ➤Use forward guidance in order to steer market expectations towards both the proportion of buffers used to be rebuilt (e.g., 50%) and the associated timeline for this to materialize (e.g., ≥3 years).
- 2) A public guarantee scheme, with bank-specific guarantees calibrated according to each bank's estimated "value shortfall"

Capital buffers...

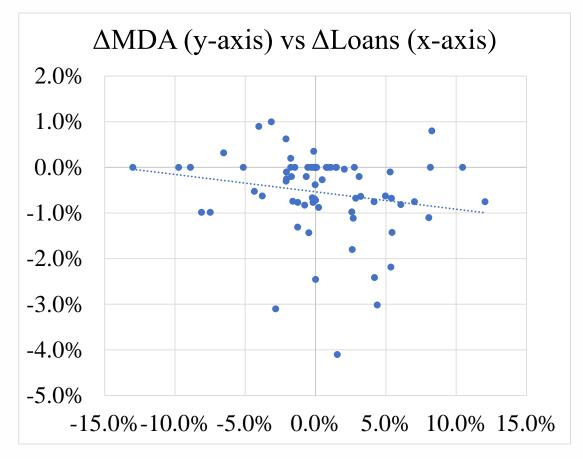
- 1) A key component of <u>Basel III</u> in the aftermath of the GFC.
- 2) They sit above Pillar 1 and 2 requirements, have to be met with CET1.
- 3) Cyclical (CCyB) and structural (CCB, SRB).
- 4) The aggregation of all buffers is known as the <u>combined buffer</u> <u>requirement (CBR)</u> and its upper bound coincides with the <u>minimum</u> <u>distributable amount (MDA) threshold</u>. MDA breaches (CET1 < MDA) trigger automatic distribution restrictions (dividends, AT1 coupons, bonuses).
- 5) Buffers fulfill a dual role (BCBS, 2020):
 - 1) <u>Absorb credit losses</u> at times of stress (forced loss recognition)
 - 2) <u>Support lending</u> and the economic recovery (voluntary, subsidiary)

Capital buffers...


6) Prudential authorities can <u>reduce the CBR</u> in two ways:

- a) De-activating the CCyB (0%-2.5% RWA)
- b) Allowing banks to temporarily operate with a CET1 ratio <MDA
- 7) In <u>March 2020</u>, and in the context of a much broader policy package, bank supervisors around the world alongside the Basel Committee on Banking Supervision (BCBS, 2020):
 - ✓ released the CCyB
 - reduced the SRB in some countries
- Lower MDA level
- SSM allowed banks to meet part of their P2R with non-CET1 (AT1 and LT2)

MDA breach encouraged banks to voluntarily use their remaining buffers


Capital buffers...

Basel III regulations on bank capital requirements, triggers and leverage ratios

4 No evidence of MDA breaches

Changes in CET1 capital requirements and expected loan growth

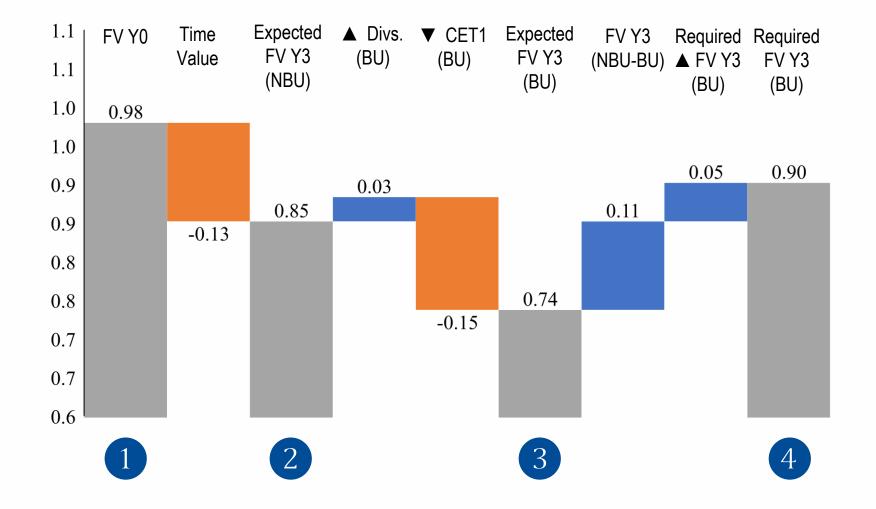
- Lower CET1 requirements (lower MDA):
 - Evidence from the COVID shock suggests a positive impact on lending from a lower CCyB (BCBS, 2021) and P2R (ECB, 2021).
- However, limited MDA breaches observed:
 - Evidence following the COVID shock suggests banks reluctant to lend when CET1 ratio close to MDA (Berrospide et al, 2021).
 - ▶ No MDA breaches in our sample.

SSM (2021) reported nine banks with CET1 < [MDA + P2G] in early 2021, vs six a year earlier (out of 112 and 109 Eurozone banks, respectively).

Results for a buffer shock @ 1.0% of RWA

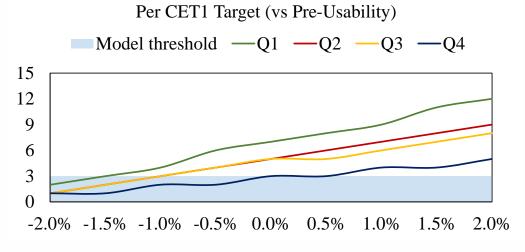
	Capacity Hurdle	Supervisory Hurdle		Management Hurdle	Capital Buffer Usability	Pro-forma Impacts in t = 0			= 0
Banks Ranked by Price-to-Book Ratio	Capital Buffer Availability ¹	Years to Rebuild Buffers ²	Asset Quality ³	Bank's Expected Equity FV ⁴	Success Rate ⁵	Δ Loans (%)	Δ RoCET1 (pp.)	Δ CET1 Leverage Ratio (pp.)	Δ CET1 Ratio (pp.)
1st Quartile [Bottom]	3.7x	6.4	×	×	0.0	0.0%	0.0%	0.0%	0.0%
2nd Quartile	3.0x	3.4	\checkmark	*	4.4	0.4%	0.1%	0.0%	0.0%
3rd Quartile	3.3x	2.0	\checkmark	*	0.0	0.0%	0.0%	0.0%	0.0%
4th Quartile [Top]	1.9x	1.2	\checkmark	✓	9.7	0.8%	0.2%	-0.1%	-0.1%
World	2.5x	2.2		×	5.9	0.5%	0.1%	0.0%	-0.1%
Success rate ⁵	70.0	95.4	99.6	20.7	5.9				

¹ Hurdle cleared at 1 times of buffer drawn


² Hurdle cleared at less than or equal to 5 years.

³ Hurdle cleared at 3 times the regions pre-COVID 19 NPL ratio.

⁴ Hurdle cleared if expected bank equity FV is greater than required equity value in year 3


⁵ Percent of banks, by market capitalization, clearing the hurdles

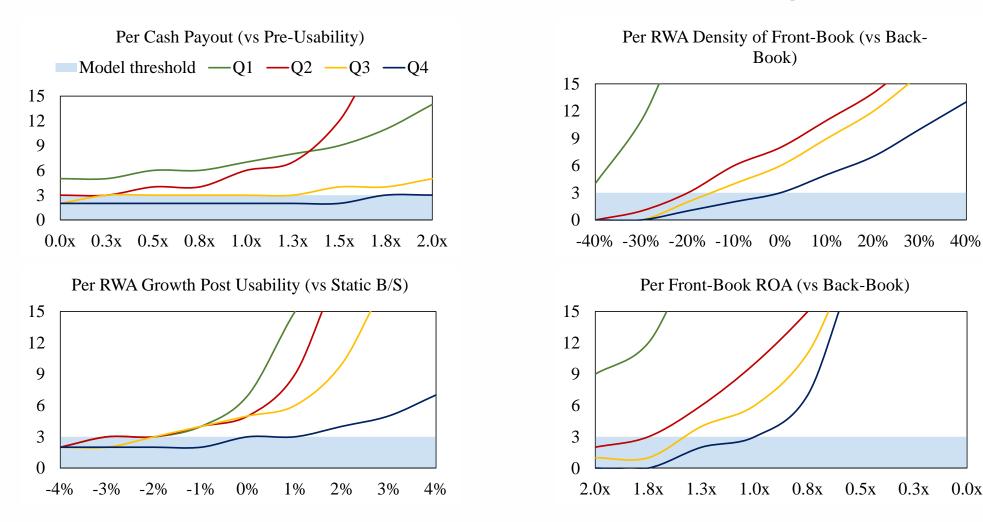
Fair value path post draw-down (vs counterfactual)

Sensitivity analysis (draw-down = 2.5% RWA)

#Years to rebuild buffers

#Years to reach required fair value

 $\begin{array}{c}
15\\12\\9\\6\\3\\0\\-2.0\% \\ -1.5\% \\ -1.0\% \\ -0.5\% \\ 0.0\% \\ 0.5\% \\ 1.0\% \\ 1.5\% \\ 2.0\%
\end{array}$


Per CET1 Target (vs Pre-Usability)

- For our analysis, we assume:
 - The CET1 ratio of all banks in the sample to be at their medium-run target levels.
 - The bank has to fully rebuild an amount of CET1 equal to the buffer draw-down (% RWA).
- By doing this, we are implicitly assuming that capital buffers are all structural (i.e., CCoB-like, with a 100% rebuild probability).
- However, the *ex-ante* rebuild probability of cyclical buffers (i.e., CCyB) will generally be <100% as these are state-contingent, and the future states that may justify different buffer levels are unknown *ex-ante*.
- Therefore, a higher proportion of cyclical buffers within a bank's CBR will generally translate into a reduction in the amount of CET1 to be rebuilt, making buffer usability less punitive.

Sensitivity analysis (draw-down = 2.5% RWA)

#Years to rebuild buffers

#Years to <u>reach required fair value</u>

Enhancing buffer usability

Capital Buffer Usability: Success Rates, Overall and Per Hurdle, Across Different Scenarios and Policy Options

Capital Buffer Usability Rate(s) and Select Policy	Capacity Hurdle	Supervisory Hurdle	Management Hurdle	Capital Buffer Usability	Pro-forma Impacts (System-wide) in t = 0			
Impacts, Overall and Per Hurdle	Capital Buffer Availability ¹	Years to Rebuild Buffers ²	Bank's Expected Equity FV ⁴	Success Rate ⁵	Δ Loans (%)	Δ RoCET1 (pp.)	Δ CET1 Leverage Ratio (pp.)	Δ CET1 Ratio (pp.)
Baseline under medium buffer use (2.5% RWAs) ⁶	53.6	64.6	20.7	3.3	0.6%	0.2%	0.0%	-0.1%
With a higher (2x) CET1 leverage ratio requirement	53.6	61.5	4.4	1.8	0.3%	0.1%	0.0%	0.0%
Baseline @ $CCyB = buffer use^7$	100.0	64.6	20.7	19.3	4.0%	1.2%	-0.2%	-0.5%
With policy (ECCyB) ⁸	100.0	64.6	46.0	36.8	8.3%	2.2%	-0.5%	-0.9%
With policy (Govt. Guarantees) ⁹	71.2	98.7	68.8	58.6	12.1%	1.8%	-0.2%	-0.4%
With policy (ECCyB + Govt. Guarantees)	100.0	98.7	79.3	73.3	16.0%	2.7%	-0.4%	-0.7%
Baseline under low buffer use (1% RWAs) ⁶	70.0	95.4	20.7	5.9	0.5%	0.1%	0.0%	-0.1%
With a higher (2x) CET1 leverage ratio requirement	70.0	80.2	20.1	5.4	0.4%	0.1%	0.0%	-0.1%
Baseline @ CCyB = buffer use ⁷	100.0	95.4	20.7	20.7	1.7%	0.5%	-0.1%	-0.2%
With policy (ECCyB) ⁸	100.0	95.4	46.0	46.0	4.2%	0.9%	-0.3%	-0.5%
With policy (Govt. Guarantees) ⁹	75.3	98.7	100.0	73.6	6.2%	0.9%	-0.2%	-0.3%
With policy (ECCyB + Govt. Guarantees)	100.0	98.7	100.0	98.3	8.5%	1.4%	-0.5%	-1.0%