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Abstract

We study the equilibrium level of staking in a Proof-of-Stake blockchain when investors have
different trading horizons. We find that, contrary to conventional wisdom, staking levels do
not always increase in block rewards. Rather, block rewards serve as an inflationary transfer
from short-horizon cryptocurrency investors to long-horizon cryptocurrency investors. Thus,
increasing block rewards reduces short-horizon cryptocurrency investment which, under certain
conditions, reduces the overall transfer to long-horizon cryptocurrency investors and therefore
reduces long-horizon investment as well. When this is the case, increasing block rewards de-
creases total cryptocurrency investment which leads to a reduction in the equilibrium value of
staked cryptocurrency.
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1 Introduction

Achieving consensus in a Proof-of-Stake blockchain generally involves a process known as staking.

A cryptocurrency unit is said to be staked if its holder forfeits the right to trade it for a pre-specified

amount of time. Staking a cryptocurrency unit confers a monetary reward (in expectation) so

that investors weigh the aforementioned constraint of not trading against the monetary reward

to determine whether to stake their coins. In this paper, we provide an equilibrium analysis to

examine the staking level of a Proof-of-Stake (PoS) blockchain where the staking level is defined as

the market value of staked cryptocurrency units.

The PoS equilibrium staking level is of particular importance because it determines the security

of a PoS blockchain. In particular, John et al. (2021) demonstrate that whether a malicious agent

would find disrupting a PoS blockchain incentive compatible depends upon the PoS blockchain’s

staking level whereby the probability of disruption to transaction activity (e.g., denial of service

or 51% attack) decreases with the staking level. It is commonly believed that a high staking level

(and thus high security) is generated by high block rewards which are new cryptocurrency units

that are issued and paid to investors as an incentive to stake their cryptocurrency. Nonetheless,

this paper overturns that conventional wisdom, demonstrating that increasing block rewards does

not necessarily increase the equilibrium staking level.

To understand why the staking level is not necessarily increasing in block rewards, it is impor-

tant to recognize that block rewards represent inflationary transfers of welfare rather than increases

in aggregate welfare. Consequently, an increase in block rewards increases pay-offs for some cryp-

tocurrency investors but reduces pay-offs for other cryptocurrency investors. The increased pay-offs

for the former group induces additional investment and staking from the former group, whereas

the decreased pay-offs for the latter group induces reduced investment and staking from the latter

group. In turn, the overall effect of block rewards upon staking levels is ambiguous.

Our formal analysis considers a discrete time infinite horizon model. At the beginning of each

period, a unit measure of investors arrive, each with a unit endowment. Each investor may invest

in the cryptocurrency or in an alternative investment which is modeled as an outside option with

a pay-off drawn from an exogenous distribution. If an investor invests in the cryptocurrency, she

optimally maintains her holding until she receives a random liquidity shock that forces her to sell her
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position and exit the model. Staking the cryptocurrency yields an investor positive block rewards

in expectation so that staking is optimal provided that the investor does not need to trade. In

turn, each cryptocurrency investor optimally stakes her holdings in each period until she receives

a liquidity shock and exits the model.

A key aspect of our analysis is that we allow for heterogeneity among investors in terms of their

trading horizons. More precisely, while all investors face a liquidity shock with some probability at

the beginning of each period, investors vary in the probability that this liquidity shock realizes. In

particular, some investors are long-horizon investors with a low probability of facing a liquidity shock

and therefore longer expected trading horizons while other investors are short-horizon investors with

a high probability of facing a liquidity shock and therefore shorter expected trading horizons.

Our first result, Proposition 4.1, is that non-zero block rewards imply that long-horizon investors

receive pay-offs that exceed those from zero block rewards, whereas short-horizon investors receive

pay-offs below those from zero block rewards. This result highlights that block rewards transfer

welfare from short-horizon investors to long-horizon investors. Intuitively, this result arises because

short-horizon investors trade more frequently than long-horizon investors and thus stake less fre-

quently. In turn, long-horizon investors accrue a disproportionately large share of block rewards

and thus their losses from the inflation implied by block rewards are more than offset by the gains

from receiving most of those block rewards that generate the inflation. In contrast, short-horizon

investors accrue a disproportionately small share of block rewards and thus their losses from the

inflation implied by block rewards exceed the gains from the block rewards that they accrue.

Although block rewards benefit long-horizon investors relative to zero block rewards, the effect

of block rewards upon long-horizon investor pay-offs is not monotonic. In particular, Proposition

4.3 establishes that block rewards increase long-horizon investor pay-offs for low levels of block

rewards but decrease long-horizon investor pay-offs for high levels of block rewards. This result

arises because long-horizon investor pay-offs depend not only on the level of block rewards but

also on the share of cryptocurrency investment coming from short-horizon investors: when short-

horizon cryptocurrency investment falls, so too does the inflationary transfer received by long-

horizon investors. Further, increases in block rewards always decrease short-horizon investor pay-

offs and therefore their cryptocurrency investment. We demonstrate that the effect of increasing

block rewards upon short-horizon cryptocurrency investment is limited when block rewards are low,
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but this effect dominates when block rewards are sufficiently high. In turn, long-horizon investor

pay-offs increase in block rewards when block rewards are low but decrease in block rewards when

block rewards are high.

While the effect of block rewards upon long-horizon investor pay-offs is non-monotonic, increases

in block rewards always decrease short-horizon investor pay-offs and therefore short-horizon investor

cryptocurrency demand. This is due to the fact that increasing block rewards implies higher in-

flation, and, as discussed, short-horizon investors accrue a disproportionately small share of block

rewards and therefore do not fully recoup the losses from inflation. In turn, short-horizon investor

cryptocurrency demand decreases in block rewards because investors have access to alternative

investment opportunities so that the decreased pay-offs cause short-horizon investors to shift in-

vestment away from the cryptocurrency to those alternative investments. We formalize these results

via Proposition 4.5.

The aforementioned results lead to our main result, Proposition 4.6, which establishes that

block rewards have a non-monotonic effect on equilibrium staking levels. More formally, Propo-

sition 4.6 provides two main findings: Proposition 4.6.1 establishes that block rewards increase

equilibrium staking levels when block rewards are low, whereas Proposition 4.6.2 demonstrates

that block rewards decrease equilibrium staking levels when block rewards are high. In practical

terms, our findings establish that while block rewards can initially raise equilibrium staking lev-

els, they eventually become self-defeating in that they lower equilibrium staking levels when block

rewards become sufficiently high. Importantly, we demonstrate that this latter effect can be so

severe that for sufficiently high block rewards the equilibrium level of staking will be lower than

that implied by even zero block rewards (Corollary 4.9).

Our main result arises because, as we demonstrate, equilibrium staking levels depend upon

three endogenous quantities: short-horizon investor cryptocurrency demand, long-horizon investor

cryptocurrency demand, and the average trading horizon of investors holding the cryptocurrency.

The equilibrium staking level increases in all three of these quantities. With regard to the first

two quantities, an increase in cryptocurrency demand by short-horizon or long-horizon investors

implies an increase in the market value of the cryptocurrency and thus a higher equilibrium staking

value. With regard to the third quantity, a longer trading horizon for a cryptocurrency investor

implies an increase in demand for staking because a cryptocurrency investor optimally stakes her
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cryptocurrency holdings whenever she does not trade. Hence, less frequent trading implies more

frequent staking and therefore the equilibrium staking value increases in the average trading horizon.

In order to explain why staking levels are initially increasing in block rewards (Proposition

4.6.1), recall that when block rewards are low, an increase in block rewards decreases pay-offs for

short-horizon investors and increases pay-offs for long-horizon investors. When this is the case,

increasing block rewards causes short-horizon cryptocurrency investor demand to decrease and

long-horizon cryptocurrency investor demand to increase. We then show that when both sets of

investors have access to similar alternative investments and block rewards are sufficiently low, then

these two demand effects roughly offset each other. Yet, the reduction in short-horizon investor

cryptocurrency demand coupled with the increase in long-horizon investor cryptocurrency demand

implies an increase in the average trading horizon. Thus, when block rewards are low the dominant

effect of increasing block rewards is to increase the average trading horizon which leads to an

increase in equilibrium staking levels.

In contrast, staking levels decrease in block rewards when they are sufficiently high (Proposition

4.6.2) because increasing block rewards eventually undermines investor demand for the cryptocur-

rency. In particular, as per Proposition 4.4, the reduction in short-horizon investor cryptocurrency

demand eventually reduces long-horizon investor pay-offs — and therefore long-horizon cryptocur-

rency investor demand — when block rewards are increased beyond a certain threshold. Con-

sequently, cryptocurrency demand from both short-horizon and long-horizon investors decrease in

block rewards when they are sufficiently high, in which case we show that increases in block rewards

beyond this threshold must reduce equilibrium staking levels.

We conclude by providing a benchmark result, Proposition 4.10, which establishes that the

equilibrium staking level is entirely invariant to block rewards when all investors possess identical

expected trading horizons. Intuitively, when investors have the same trading horizons, they stake

for the same amount of time (in expectation) and therefore earn the same pay-offs. Moreover, since

block rewards represent inflationary transfers rather than aggregate productivity gains, overall

investor pay-offs neither increase nor decrease in block rewards so that individual investor pay-offs

also neither increase nor decrease in block rewards. Finally, since investor pay-offs are invariant to

block rewards, investor cryptocurrency demand and therefore the equilibrium staking level must

also be invariant to block rewards.
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Broadly speaking, our paper contributes to the literature on the economics of blockchain fun-

damentals. John et al. (2022) provide a survey of that literature. Prominent papers within that

literature include Biais et al. (2019), Easley et al. (2019), Basu et al. (2021), Cong et al. (2021a),

Hinzen et al. (2022), Huberman et al. (2021) and Pagnotta (2022). Our paper differs from the

referenced papers in that they examine Proof-of-Work (PoW), whereas we examine PoS.

More narrowly, our paper contributes to the literature on economics of PoS blockchain funda-

mentals. Prominent papers in that literature include Benhaim et al. (2021), Fanti et al. (2019),

John et al. (2021), Rosu and Saleh (2021) and Saleh (2021). Benhaim et al. (2021) provide a rigor-

ous study of committee-based PoS protocols. Fanti et al. (2019) put forth a valuation framework

for a PoS payment system. John et al. (2021) put forth an economic model of PoS that determines

adoption endogenously while incorporating blockchain security. Rosu and Saleh (2021) examine

wealth concentration for a PoS cryptocurrency. Saleh (2021) studies the Nothing-at-Stake problem

and the Double-Spending problem in the context of a PoS blockchain. Our paper differs from the

aforementioned papers in that we focus upon the effect of block rewards upon equilibrium staking

levels.

Our paper also relates to the literature on decentralized finance. In particular, blockchains that

allow for decentralized applications typically employ PoS (see Irresberger et al. 2021) because PoS

provides a scaling advantage over PoW (see John et al. 2021). Cong et al. (2021b), Cong et al.

(2022) and Mayer (2022) provide models of blockchain that allow for decentralized applications,

whereas Capponi and Jia (2021), Lehar and Parlour (2021) and Park (2021) study a prominent

type of decentralized finance application.

2 Model

We model an infinite horizon, discrete-time setting with periods called epochs as per a typical

PoS protocol. Each epoch consists of slots, and each slot corresponds to one block being added

to the blockchain. As is the case in standard PoS protocols, we assume that each slot is assigned

to a single investor on the basis of a lottery over staked cryptocurrency units. All slots within an

epoch are assigned at the beginning of an epoch and thus staking decisions must also be made at

the beginning of each epoch. For simplicity we assume that there is one slot per epoch.
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2.1 Investors

At the beginning of each epoch, a unit measure of investors arrive, each with a unit endowment.

We refer to each individual investor arriving in Epoch t as Investor pi, tq with i P r0, 1s denoting

the investor’s unique identifier among all investors arriving in the epoch. Each investor may invest

in the cryptocurrency or an alternative investment opportunity described below. If the investor

invests in the cryptocurrency, she may stake her cryptocurrency units in any future epoch so long

as she does not sell her holdings.

We assume that, after investing in the cryptocurrency, each investor eventually incurs a liquidity

shock and must liquidate her holdings. In particular, we assume that Investor pi, tq faces a liquidity

shock with probability θpi,tq P p0, 1q at the beginning of each Epoch s ą t. Conditional on receiving

a liquidity shock at the beginning of Epoch s, Investor pi, tq must liquidate her entire holdings, after

which she exits the model. At the beginning of each Epoch t, each Investor pi, tq learns the value of

θpi,tq P tθL, θSu with 0 ă θL ď θS ă 1 before deciding whether to invest in the cryptocurrency or not.

We refer to investors with θpi,tq “ θS as short-horizon investors and investors with θpi,tq “ θL as long-

horizon investors because the former have shorter expected trading horizons than the latter. We

assume that each investor has an ex-ante probability pS :“ Ppθpi,tq “ θSq of being a short-horizon

investor and complementary probability pL :“ Ppθpi,tq “ θLq “ 1 ´ pS of being a long-horizon

investor. Letting τS denote the expected trading horizon of the short-horizon investors and τL

the expected trading horizon of the long-horizon investors, we can see that the following condition

holds:

τS “
1

θS
ď

1

θL
“ τL (1)

We let τpi,tq „ Geompθpi,tqq denote the random trading horizon of Investor pi, tq (as opposed to

the expected trading horizon τL or τH) so that each investor pi, tq expects to hold the cryptocurrency

from time t to time t`τpi,tq. Then, the pay-off for Investor pi, tq from investing in the cryptocurrency

at the beginning of Epoch t, Πpi,tq, is given as follows:

Πpi,tq “ ErPt`τpi,tq ¨Qpi,tq,t`τpi,tqs (2)
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where Ps denotes the price of the cryptocurrency in Epoch s, and Qpi,tq,s denotes the cryptocurrency

holding of Investor pi, tq at the beginning of Epoch s.1 If Investor pi, tq invests in the cryptocurrency

at the beginning of Epoch t, then it is never optimal for her to sell her holdings until she receives

a liquidity shock (i.e., until Epoch t` τpi,tq).

Alternative Investments: We assume that Investor pi, tq has access to an alternative invest-

ment with gross return σpi,tq „ G where G P C8 is strictly increasing and supported on rσ, σs with

0 ă σ ă 1 ă σ ă 8. Consequently, Investor pi, tq invests in the cryptocurrency in Epoch t if and

only if her pay-off from that investment weakly exceeds the pay-off from her alternative investment

opportunity. More formally, letting At denote the set of investors who arrive in Epoch t and invest

in the cryptocurrency, then

pi, tq P At ðñ Πpi,tq ě σpi,tq (3)

2.2 Block Rewards

We normalize the level of the cryptocurrency supply at the beginning of Epoch zero to M0 “ 1.

We further allow for an arbitrary cryptocurrency growth rate, ρ ą 0. Then, letting Mt denote the

cryptocurrency supply at the beginning of Epoch t, the cryptocurrency supply is governed by the

equation:

Mt`1 “Mt ¨ e
ρ (4)

Consequently, the block reward over Epoch t, Bt, is given by:

Bt “Mt`1 ´Mt “Mt ¨ pe
ρ ´ 1q (5)

Block rewards are allocated to users chosen to update the next block in the blockchain. The

PoS protocol selects a staked cryptocurrency unit uniformly at random and allocates the right to

update the next block to the owner of that unit. Therefore, conditional on staking, the evolution

of cryptocurrency holdings for any Investor pi, tq who invests in the cryptocurrency is given as

follows:2

1All prices are denominated in the investor’s endowment good.
2For exposition, we consider a limiting case by which each epoch consists of infinitely many blocks. Moreover, we

assume that block rewards are evenly distributed across slots within an epoch.
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Qpi,tq,s`1 “ Qpi,tq,s ` γpi,tq,s ˆBt (6)

for all s such that t ă s ă t ` τpi,tq and where γpi,tq,s P r0, 1s denotes the probability that Investor

pi, tq is selected to add a block in any particular slot during Epoch t, and therefore earn the block

rewards Bt. In turn, γpi,tq,s is determined as follows:

γpi,tq,s “
Qpi,tq,s

Ss
(7)

where Ss denotes the overall number of staked cryptocurrency units at the beginning of Epoch s.

We discuss how Ss is determined in the following Section 2.3.

2.3 Equilibrium Staking Levels

Once an investor owns the cryptocurrency, staking until liquidation is a dominant strategy so that

all holders of the cryptocurrency who are not trading within an epoch stake their cryptocurrency.

Moreover, it is not optimal for an investor to sell her cryptocurrency holding prior to a forced

liquidation if it was optimal for her to invest in the cryptocurrency initially. As a consequence,

the equilibrium staking level at the beginning of Epoch t, St, is given by the aggregate holdings of

investors who previously purchased the cryptocurrency but have yet to liquidate. In particular,

St “
ÿ

z:zăt

ż

i:pi,zqPAz,t

Qpi,zq,t dµzpiq (8)

where µzpiq denotes the uniform measure over investors arriving in Epoch z, and Az,t Ď Az denotes

the investors arriving in Epoch z who invested in the cryptocurrency but have not been forced into

liquidation by time t. Explicitly, Az,t is defined as follows for z ă t:

Az,t :“ Az
č

tpi, zq : z ` τpi,zq ą tu (9)

In turn, the overall demand for the cryptocurrency at the beginning of Epoch t is the sum of

the total amount of staked cryptocurrency and the demand from investors arriving in Epoch t and

purchasing the cryptocurrency. Then, the market clearing condition for the cryptocurrency is given
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as follows:

Mt “ St `

ż

i:pi,tq:At,t

1

Pt
dµtpiq (10)

where the left-hand side pertains to the cryptocurrency supply and the right-hand side pertains to

cryptocurrency demand. Note that the demand for each investor arriving in Epoch t who invests

in the cryptocurrency is given by 1
Pt

because each investor possesses a unit endowment and partial

investment is not optimal.

Note that St and Mt are measured in cryptocurrency units rather than economic value. As

such, to ease our subsequent discussion, we define the market value analogs of each as follows:

St :“ Pt ¨ St, Mt :“ Pt ¨Mt (11)

3 Model Solution

We solve for an equilibrium characterized by a stationary equilibrium staking level, S, and a

stationary equilibrium cryptocurrency market value, M. More formally, we solve for an equilibrium

characterized by the following conditions:

St “ S for all t, Mt “M for all t (12)

Note that in any stationary equilibrium if Investor pi, tq with alternative investment opportunity

σpi,tq is indifferent between investing in the cryptocurrency and the alternative investment oppor-

tunity then any Investor pi1, t1q with θpi,tq “ θpi1,t1q would invest in the cryptocurrency if and only

if σpi1,t1q ď σpi,tq. As a consequence, our equilibrium is also characterized by stationary cut-offs σ‹S

and σ‹L such that Investor pi, tq of type θj invests in the cryptocurrency if and only if σpi,tq ď σ‹j

for each j P tS,Lu. Therefore, the set of investors that invest in the cryptocurrency in Epoch t is

given by

At “ tpi, tq : θpi,tq “ θS , σpi,tq ď σ‹Su
ď

tpi, tq : θpi,tq “ θL, σpi,tq ď σ‹Lu (13)
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Our next proposition provides the solution for the stationary equilibrium:

Proposition 3.1. Equilibrium Solution

Let τ denote the average trading horizon for investors purchasing the cryptocurrency given explicitly

as:

τ “ πS ¨ τS ` πL ¨ τL

where πS and πL denote the endogenous share of demand from short-horizon and long-horizon

investors respectively arriving in any epoch, and τS and τL denote the expected trading horizons

of each respective type θS and θL given explicitly in (1). Further, note that πS and πL are given

explicitly as follows:

πS “
pS ¨Gpσ

‹
Sq

pS ¨Gpσ‹Sq ` pL ¨Gpσ
‹
Lq
, πL “

pL ¨Gpσ
‹
Lq

pS ¨Gpσ‹Sq ` pL ¨Gpσ
‹
Lq

The steady state equilibrium is characterized as follows:

M “ τ ¨ ppS ¨Gpσ
‹
Sq ` pL ¨Gpσ

‹
Lqq

S “ pτ ´ 1q ¨ ppS ¨Gpσ
‹
Sq ` pL ¨Gpσ

‹
Lqq

Further, σ‹S and σ‹L are defined as the solutions to the following simultaneous equations:

ΠS “
pτ ´ 1q ¨ θS ¨ e

´ρ

p1´ θSq ¨ e´ρ ` pθS ¨ τ ´ 1q
“ σS , ΠL “

pτ ´ 1q ¨ θL ¨ e
´ρ

p1´ θLq ¨ e´ρ ` pθL ¨ τ ´ 1q
“ σL (14)

Proof. See Appendix Section A.1.

4 Results

Our primary focus is on understanding the relationship between block rewards and equilibrium

staking levels. To understand that relationship, we first provide some preliminary results in Sec-

tion 4.1. We then utilize our preliminary results to establish our main results in Section 4.2. Our

main finding, Proposition 4.6, is that equilibrium staking levels are non-monotonic in block re-

wards whereby staking levels increase in block rewards when block rewards are low but decrease
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in block rewards when block rewards are sufficiently high. In what follows, we will assume that

the cryptocurrency growth rate (which determines block rewards) satisfies ρ ă ρ whereby ρ is the

upper bound that ensures a positive level of equilibrium investment by both short horizon and long

horizon investors whenever ρ ă ρ.3

4.1 Preliminary Results

We begin by presenting a result which establishes that block rewards constitute a transfer of wealth

from short-horizon investors to long-horizon investors.

Proposition 4.1. Block Rewards Create Redistribution

Let Π‹Spρq and Π‹Lpρq denote the equilibrium pay-offs for short and long horizon investor’s respec-

tively as a function of the cryptocurrency growth rate, ρ. Then,

1. Without Block Rewards, All Investors Earn Identical Pay-Offs

Π‹Sp0q “ Π‹Lp0q

2. Block Rewards Reduce Short-Horizon Investor Pay-offs Relative to No Rewards

For any ρ ą 0 : Π‹Spρq ă Π‹Sp0q.

3. Block Rewards Increase Long-Horizon Investor Pay-offs Relative to No Rewards

For any ρ ą 0: Π‹Lpρq ą Π‹Lp0q

Proof. See Appendix Section A.2.

Proposition 4.1 establishes that all investors earn identical pay-offs in the absence of block

rewards (Proposition 4.1.1) but that pay-offs for short-horizon investors and long-horizon investors

diverge in the presence of block rewards. More explicitly, when block rewards are positive (i.e.,

ρ ą 0), short-horizon investor pay-offs decrease when compared to the case of zero block rewards

(Proposition 4.1.2), whereas long-horizon investor pay-offs increase (Proposition 4.1.3).

We interpret Proposition 4.1 as demonstrating that block rewards transfer welfare from short-

horizon investors to long-horizon investors because long-horizon investors accrue a disproportion-

ately large share of block rewards, and the value of block rewards arises from the inflationary

3The case in which only one set of investors invest in the cryptocurrency is subsumed by Proposition 4.11.
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losses they impose upon all cryptcurrency investors. More precisely, since block rewards are new

units of cryptcurrencies, their value arises from diluting the value of existing cryptocurrency hold-

ings, thereby imposing an inflationary loss on all cryptocurrency investors. Nonetheless, in a PoS

blockchain, block rewards are distributed back to cryptocurrency investors. Consequently, investors

who receive a disproportionately large share of block rewards gain from block rewards at the ex-

pense of investors who accrue a disproportionately small share of block rewards. Long-horizon

investors accrue a disproportionately large share of block rewards, whereas short-horizon investors

accrue a disproportionately small share of block rewards, hence our interpretation that block re-

wards serve as a transfer of welfare from short-horizon investors to long-horizon investors. We

clarify this last point regarding block rewards accruing disproportionately to long-horizon investors

with the following result:

Proposition 4.2. Block Rewards Accrue Disproportionately to Long-Horizon Investors

Let η‹
pi,tq,s denote the equilibirum share of cryptocurrency units held by Investor pi, tq at the beginning

of Epoch s ą t. More explicitly:

η‹pi,tq,s “
Q‹
pi,tq,s

M‹
s

Additionally, for any investor who invests in the cryptocurrency pi.e., pi, tq P Atq, we define ν‹
pi,tq

as the expected proportion by which her share increases from her purchase to her sale in the steady

state equilibrium:

ν‹pi,tq “
Erη‹

pi,tq,t`τpi,tq
s

η‹
pi,tq,t

The following results hold:

1. Short-Horizon Investor Shares Decrease

If ρ ą 0 and θpi,tq “ θS then ν‹
pi,tq ă 1.

2. Long-Horizon Investor Shares Increase

If ρ ą 0 and θpi,tq “ θL then ν‹
pi,tq ą 1.

Proof. See Appendix Section A.3.
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Proposition 4.2 demonstrates that the expected share of cryptocurrency units increases for

long-horizon investors but decreases for short-horizon investors. This result arises because short-

horizon investors trade more frequently than long-horizon investors and thus stake less frequently.

Therefore, given that more block rewards are accrued by investors that stake longer, long-horizon

investors acrue a disproportionately large share of block rewards relative to short-horizon investors.

In turn, the cryptocurrency share for short-horizon investors decreases, whereas the cryptocurrency

share for long-horizon investors increases.

While long-horizon investors earn higher pay-offs in the presence of block rewards as compared

to the absence of block rewards (Proposition 4.1.3), our next result formalizes that long-horizon

investors do not benefit monotonically from increases in block rewards.

Proposition 4.3. Non-Monotonic Block Reward Effect On Long-Horizon Investor Pay-Offs

Let Π‹Lpρq denote the equilibrium pay-offs for a long-horizon investor as a function of the cryptocur-

rency growth rate, ρ. Then, the following results hold:

1. Long-Horizon Investor Pay-Offs Increase For Low Block Reward Levels

There exists a ρ
L
ą 0 such that for all ρ P r0, ρ

L
s :

dΠ‹L
dρ ą 0.

2. Long-Horizon Investor Pay-Offs Decrease For High Block Reward Levels

There exists a ρL ą 0 such that for all ρ P rρL, ρq :
dΠ‹L
dρ ă 0.

Proof. See Appendix Section A.4.

Proposition 4.3 establishes that block rewards have a non-monotonic monotonic effect upon

long-horizon investor pay-offs. More explicitly, block rewards initially increase long-horizon investor

pay-offs (i.e.,
dΠ‹L
dρ ě 0 for low values of ρ) but eventually decrease long-horizon investor pay-offs

(i.e.,
dΠ‹L
dρ ď 0 for high values of ρ). To help illustrate the intuition for this result, we offer the

following supplementary proposition:

Proposition 4.4. Reformulating Long-Horizon Investor Pay-Offs

Let Π‹Lpρq denote the equilibrium pay-offs for a long-horizon investor as a function of the cryp-

tocurrency growth rate, ρ. Π‹Lpρq is given explicitly as follows:

Π‹Lpρq “ Π̃‹Lpρ, π
‹
Spρqq :“

pπ‹Spρq ¨ pτS ´ τLq ` τL ´ 1q ¨ θL ¨ e
´ρ

p1´ θLq ¨ e´ρ ` pθL ¨ π‹Spρq ¨ pτS ´ τLq ` θL ¨ τL ´ 1q
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where long-horizon investor pay-offs depend on block rewards not only directly but also through the

equilibrium share of short-horizon investors, π‹Spρq. In turn, we can decompose the direct effect of

block rewards upon long-horizon investor pay-offs pi.e.,
BΠ̃‹L
Bρ q from the indirect effect of block rewards

upon long-horizon investor pay-offs through the share of short-horizon investors pi.e.,
BΠ̃‹L
BπS

¨
dπ‹S
dρ q:

dΠ‹L
dρ

“
BΠ̃‹L
Bρ

`
BΠ̃‹L
BπS

¨
dπ‹S
dρ

The following results hold:

1. Holding Short-Horizon Share Constant, Long-Horizon Pay-Offs Increase with Block Rewards

For all ρ ă ρ :
BΠ̃‹L
Bρ ą 0.

2. Long-Horizon Pay-Offs Increase In the Share of Short-Horizon Investors

For all ρ ă ρ :
BΠ̃‹L
BπS

ą 0.

3. Share of Short-Horizon Investors Decrease in Block Rewards when they are Sufficiently High and Low.

There exists ρ
L

and ρL such that
dπ‹S
dρ ă 0 when ρ P r0, ρ

L
q
Ť

pρL, ρs.

These results clarify the ambiguity in the overall effect pi.e.,
dΠ‹L
dρ has an ambiguous signq as arising

because the direct effect is positive pi.e.,
BΠ̃‹L
Bρ ě 0q but the indirect effect is negative when ρ is

sufficiently high or low pi.e.,
BΠ̃‹L
BπS

¨
dπ‹S
dρ ď 0q.

Proof. See Appendix Section A.5

Proposition 4.4 demonstrates that block rewards have both a direct and indirect effect upon

long-horizon investor pay-offs and that these effects compete so that the overall effect of block

rewards upon long-horizon investor pay-offs depends upon which effect dominates. More explicitly,

long-horizon investor pay-offs, Π‹L, depend on block rewards, ρ, not only directly but also through

the endogenous share of cryptocurrency investors who have short-horizons, π‹Spρq. Proposition 4.4

establishes that the direct effect of block rewards upon long-horizon investor pay-offs is always

positive but that the indirect effect of block rewards upon long-horizon investor pay-offs, through

the share of short-horizon cryptocurrency investors, is negative when ρ is either sufficiently small or

sufficiently large. We then show that the direct effect dominates for low levels of block rewards so
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that long-horizon investor pay-offs increase in block rewards when block rewards are low (Propo-

sition 4.3.1). In contrast, the indirect effect dominates for high levels of block rewards so that

long-horizon investor pay-offs decrease in block rewards when block rewards are high (Proposition

4.3.2).

To understand the underlying channel for Proposition 4.4, recall that block rewards constitute a

transfer from short-horizon investors to long-horizon investors. Holding the share of short-horizon

cryptocurrency investors fixed, long-horizon investor pay-offs monotonically increase in block re-

wards (Proposition 4.4.1) because higher block rewards imply a larger transfer from each short-

horizon cryptocurrency investor. Nonetheless, the short-horizon cryptocurrency investor share is

not fixed; rather, short-horizon investors anticipate that larger block rewards imply a larger transfer

from themselves to long-horizon investors when they invest in cryptocurrencies. As a consequence,

short-horizon investors optimally respond to increases in block rewards by reallocating towards

their alternative investments. In turn, the share of short-horizon cryptocurrency investors declines

as block rewards increase (Proposition 4.4.3) and this reduced share of short-horizon cryptocur-

rency investors implies fewer short-horizon investors transferring wealth to long-horizon investors

(Proposition 4.4.2).

In contrast to long-horizon investor pay-offs, short-horizon investor pay-offs are monotonic in

block rewards. In particular, increases in block rewards always decrease short-horizon investor

pay-offs. Our next result formalizes that point:

Proposition 4.5. Short-Horizon Investor Pay-Offs

Let Π‹Spρq denote the equilibrium pay-offs for a short-horizon investor as a function of the cryp-

tocurrency growth rate, ρ. Then, the following result holds:

For all ρ ě 0 :
dΠ‹S
dρ

ă 0

Proof. See Appendix Section A.6.
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4.2 Main Results

Our main result demonstrates that increasing block rewards have a non-monotonic effect upon the

equilibrium staking level:

Proposition 4.6. Non-Monotonic Block Reward Effect on the Equilibrium Staking Level

The following results hold:

1. Staking Levels Are Increasing in Block Rewards When They Are Low

There exists a ρS ą 0 such that for all ρ P r0, ρSs : dSdρ ą 0.

2. Staking Levels Are Decreasing in Block Rewards When They Are High

There exists a ρS ă ρ such that for all ρ P pρS , ρs : dSdρ ă 0.

Proof. See Appendix Section A.7.

Crucially, while block rewards increase the staking level when block rewards are low (Proposition

4.6.1), this effect is not monotonic. Rather, for a sufficiently high level of block rewards, increases

in block rewards decrease the staking level (Proposition 4.6.2).

Proposition 4.6 arises because the equilibrium staking level depends upon three equilibrium

quantities: new short-horizon investor cryptocurrency demand, new long-horizon investor cryp-

tocurrency demand, and the average cryptocurrency investor trading horizon. Explicitly, via Propo-

sition 3.1, the equilibrium staking level can be decomposed as follows:

S “ Spτ ,DS ,DLq “ pτ ´ 1q ¨ pDS `DLq (15)

where τ denotes the average trading horizon of cryptocurrency investors while DS :“ pS ¨Gpσ
‹
Sq and

DL :“ pL ¨ Gpσ
‹
Lq denote the equilibrium cryptocurrency demand of newly arriving short-horizon

and newly arriving long-horizon investors respectively. Note that the equilibrium staking level, S,

increases in each of the three quantities (i.e., BS
Bτ ą 0, BS

BDS ą 0, BS
BDL ą 0).

In order to understand Proposition 4.6.1, which establishes that the staking level increases for

low levels of block rewards, recall that increasing block rewards increases long-horizon investor

pay-offs when block rewards are low (Proposition 4.3) and always decreases short-horizon investor

pay-offs (Proposition 4.5). Thus, when block rewards are low, increasing block rewards increases
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long-horizon investor cryptocurrency demand (i.e., dDL
dρ ą 0 for low ρ) but decreases short-horizon

cryptocurrency investor demand (i.e., dDS
dρ ă 0 for low ρ). We show how these two demand effects

roughly offset each other in terms of overall demand (i.e., |drDL`Dssdρ | is small for low ρ) but also lead

to an increase in the average trading horizon (i.e., dτ
dρ ą 0 for low ρ) since long-horizon investors

effectively replace short-horizon investors. Then, since an increase in the average trading horizon

increases the staking level (i.e., BS
Bτ ą 0), and the demand effects roughly offset each other when ρ is

low, an increase in block rewards consequently increases the equilibrium staking level when block

rewards are low as per Proposition 4.6.1. We formalize the referenced intuition with the following

supplementary result:

Proposition 4.7. The Staking Level Increases In Rewards When Rewards Are Low

Let τpρq denote the equilibrium average trading horizon for cryptocurrency investors as a function

of the cryptocurrency growth rate, ρ. Further, let DSpρq and DLpρq denote the equilibrium cryp-

tocurrency demand coming from new short-horizon and long-horizon investors respectively. Finally,

let Spτ ,DS ,DLq denote the equilibrium staking level as a function of the equilibrium average trading

horizon and new cryptocurrency demand from short-horizon and long-horizon investors as given by

(15). Then, the following results hold:

1. Block Rewards Have a Negligible Effect on Demand When They Are Low

For all ε ą 0 there exists ρ
ε
ą 0 such that d

dρ rDS `DLs ă ε for all ρ ď ρ
ε
.

2. Block Rewards Increase the Average Trading Horizon

There exists ρ
τ
ą 0 such that for all ρ ă ρ

τ
: dτdρ ą 0.

Proof. See Appendix Section A.8.

While the effect of increasing block rewards upon overall cryptocurrency demand is small for

low levels of block rewards (Proposition 4.7.1), this is not true for higher levels of block rewards.

Crucially, Proposition 4.6.2, which establishes that increasing block rewards decreases the staking

level when block rewards are high (i.e., dSdρ ă 0 for ρ ě ρS), arises precisely because increasing block

rewards decreases overall cryptocurrency investor demand when block rewards are high. Recall

that increasing block rewards decreases long-horizon investor pay-offs when block rewards are high

(Proposition 4.3), whereas increasing block rewards decreases short-horizon investor pay-offs at
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all levels of block rewards (Proposition 4.5). In turn, when block rewards are high, increasing

block rewards unambiguously decreases investor demand (i.e., drDS`DLs
dρ ă 0 for large ρ), and

this effect dominates any effect through the average trading horizon. Then, since the equilibrium

staking value increases in cryptocurrency investor demand (i.e., BS
BDS ą 0 and BS

BDL ą 0), the overall

effect of increasing block rewards is that equilibrium staking value decreases when block rewards

are sufficiently high as per Proposition 4.6.2. The following supplementary result formalizes the

referenced intuition:

Proposition 4.8. The Staking Level Decreases In Rewards When Rewards Are High

Let τpρq denote the equilibrium average trading horizon for cryptocurrency investors as a function

of the cryptocurrency growth rate, ρ. Further, let DSpρq and DLpρq denote the equilibrium cryp-

tocurrency demand coming from new short-horizon and long-horizon investors respectively. Finally,

let Spτ ,DS ,DLq denote the equilibrium staking level as a function of the equilibrium average trading

horizon and new cryptocurrency demand from short-horizon and long-horizon investors as given by

(15). Then, the following results hold:

1. Rewards Reduce Cryptocurrency Demand When Rewards Are High

There exists a ρD ă ρ such that d
dρ rDS `DLs ď 0 for all ρ P rρD, ρs.

2. The Demand Effect Dominates The Trading Horizon Effect When Rewards Are High

There exists a ρS ă ρ such that BS
BDS ¨

dDS
dρ `

BS
BDL ¨

dDL
dρ ď BS

Bτ ¨
dτ
dρ for all ρ P rρS , ρs.

Proof. See Appendix Section A.9.

Figure 1 demonstrates our main findings by plotting the equilibrium staking level Spρq as a

function of ρ when the return from the alternative investment σpi,tq is uniformly distributed over

r.9, 1.9s. As can be seen, the equilibrium payoff and therefore equilibrium cut-off of the short-

horizon investor is strictly decreasing in block rewards (ρ). Further, the equilibrium payoff of the

long-horizon investor is first increasing in block rewards and then eventually decreasing in block

rewards. This means that the equilibrium staking level is increasing in block rewards when they

are small so that the effect of the increased time horizon dτ̄
dρ outweighs the demand effect drDL`DSs

dρ .

Then, as the level of block rewards passes a threshold, the demand effect overtakes the time horizon

effect in which case staking levels start decreasing in block rewards.
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ρ

σ “

Π‹Lpρq

Π‹Spρq

Spρq

Figure 1: Plot of equilibrium staking level Spρq (scaled by 1
7) and equilibrium payoffs Π‹Spρq, and

Π‹Lpρq when G “ Uniformr.9, 1.9s, θH “ .9, θL “ .1, and pS “ pL “
1
2 .

Of particular note, at ρ “ ρ, the equilibrium staking level is strictly less than the staking levels

with zero block rewards (i.e. ρ “ 0) so that a strictly positive block reward level can generate a

lower equilibrium staking level than no block rewards. We generalize this point with the following

result:

Corollary 4.9. There exists a threshold ρ̄0 ă ρ̄ such that the equilibrium staking level with block re-

wards ρ is less than the equilibrium staking level with zero block rewards whenever ρ ą ρ̄0. Formally:

Spρq ă Sp0q for all ρ ą ρ̄0.

Proof. See Appendix Section A.10.

We conclude by examining a benchmark setting in which all investors possess identical expected

trading horizons (i.e., θL “ θS). In this setting, we establish the generic failure of the conventional

wisdom that block rewards increase equilibrium staking levels by showing that the equilibrium

staking level is entirely invariant to the level of block rewards:

Proposition 4.10. Staking Level Is Invariant to Rewards With Ex-Ante Identical Investors

Assume that θL “ θS so that all investors possess identical expected trading horizons. Then, the

following result holds:

dS
dρ
“ 0
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In particular, the equilibrium staking level is entirely invariant to the level of block rewards.

Proof. See Appendix Section A.11.

Proposition 4.10 arises because, as discussed, block rewards constitute a transfer from short-

horizon investors to long-horizon investors; in turn, when all investors have identical expected

trading horizons, then there are no net transfers (in expectation). To clarify this point, we offer

the following supplementary result:

Proposition 4.11. Investor Pay-Offs With Ex-Ante Identical Investors

Assume that θL “ θS so that all investors possess identical expected trading horizons. Then, for all

ρ ě 0 and any Investor pi, tq, the following result holds:

Π‹pi,tq “ 1

Hence, all investor pay-offs are identically one and therefore all investor pay-offs are invariant to

the level of block rewards pi.e.,
dΠ‹
pi,tq

dρ “ 0q.

Proof. See Appendix Section A.11.

Proposition 4.11 formalizes our assertion that there are no expected transfers of wealth when

all investors possess identical expected trading horizons. This is done by establishing that when

investors have identical expected trading horizons then all investors receive pay-offs equivalent to

their initial endowments which we normalized to unity: each investor stakes the cryptocurrency

just long enough (in expectation) to recoup the same amount of block rewards that they pay in

inflation. Note that this result of no net transfers applies for any level of block rewards so that

investor pay-offs are invariant to block rewards as a corollary (i.e.,
dΠpi,tq
dρ “ 0). Then, since investor

pay-offs are invariant to block rewards, so too is investor cryptocurrency demand. In turn, per

(15), the equilibrium staking level is also invariant to block rewards which yields us the result of

Proposition 4.10.
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5 Conclusion

This paper examines the effect of block rewards upon equilibrium staking levels. Contrary to

conventional wisdom, we find that block rewards do not increase equilibrium staking levels in

general. Our results have important implications for PoS blockchain security.
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Appendices

A Proofs

A.1 Proof of Proposition 3.1

Proof. First, denote by MS and ML the steady state market values of short and long horizon

holdings, respectively. Then, given that MS and ML are time independent in the steady state,

this implies that

Mj “ p1´ θjq ¨Mj ` pj ¨Gpσ
‹
j q

23



for each j P tS,Lu or equivalently

Mj “
pj ¨Gpσ

‹
j q

θj
“ τ j ¨ pj ¨Gpσ

‹
j q

for each j P tS,Lu. Next, noting that MS `ML “M, we rearrange to obtain

M “ p
τS ¨ pS ¨Gpσ

‹
Sq

pS ¨Gpσ‹Sq ` pL ¨Gpσ
‹
Lq
`

τL ¨ pL ¨Gpσ
‹
Lq

pS ¨Gpσ‹Sq ` pL ¨Gpσ
‹
Lq
q ¨ ppS ¨Gpσ

‹
Sq ` pL ¨Gpσ

‹
Lqq

and therefore after substituting for πS , πL, and finally τ we obtain M “ τ ¨ppS ¨Gpσ
‹
Sq`pL ¨Gpσ

‹
Lqq.

In order to derive S, we multiply (10) by Pt to obtain

M “ S ` pS ¨Gpσ‹Sq ` pL ¨Gpσ‹Lq

and therefore after rearranging we obtain S “ pτ ´ 1q ¨ ppS ¨Gpσ
‹
Sq ` pL ¨Gpσ

‹
Lqq.

The equilibrium levels σ‹S and σ‹L are determined by the simultaneous equations ΠS “ σS and

ΠL “ σL. Thus, to prove the final result of this proposition we must derive ΠS and ΠL. In order

to do so, denote by ψpi,tq,s the log-return from Investor pi, tq for staking in period s ą t so that

ψpi,tq,s “ logp
Ps`1Qpi,tq,s`1

PsQpi,tq,s
q

Furthermore, using Equation (6) to substitute for Qpi,tq,s`1 we can see that

ψpi,tq,s “ logp
Ps`1Qpi,tq,s`1

PsQpi,tq,s
q “ logp

Ps`1

PsQpi,tq,s
rQpi,tq,s `

Qpi,tq,s

Ss
Bssq “ logp

Ps`1

Ps
r1`

Bs
Ss
sq

Further, using the fact that Bs “Ms`1 ´Ms “Mspe
ρ ´ 1q then

ψpi,tq,s “ logp
Ps`1

Ps
`
Ps`1

Ps

Ms

Ss
peρ ´ 1qq

Finally, by our definition of stationary equilibrium we know that PsMs “M for all s and therefore

Ps`1

Ps
“
Ps`1Ms`1

PsMs
¨
Ms

Ms`1
“

M
M
¨
Ms

Ms`1
“ e´ρ
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while

Ms

Ss
“
PsMs

PsSs
“

M
S
“

τ ¨ ppS ¨Gpσ
‹
Sq ` pL ¨Gpσ

‹
Lqq

pτ ´ 1q ¨ ppS ¨Gpσ‹Sq ` pL ¨Gpσ
‹
Lqq

“
τ

τ ´ 1

Hence,

ψpi,tq,s “ logpe´ρ ` e´ρ
τ̄

τ̄ ´ 1
peρ ´ 1qq “ logpe´ρ ` p1´ e´ρq ¨

τ̄

τ̄ ´ 1
q

Therefore, we have shown that the steady state log-return from staking in period s ą t for investor

pi, tq is constant and equal to ψ “ logpe´ρ ` p1 ´ e´ρq ¨ τ̄
τ̄´1q. Hence, the return from staking in

period s ą t for Investor pi, tq is

eψ “ e´ρ ` p1´ e´ρq ¨
τ̄

τ̄ ´ 1

Now, to derive the profits ΠS and ΠL respectively, we first note that given Investor pi, tq

cannot stake in their first period of holding then Qpi,tq,t`1 “ Qpi,tq,t. Therefore, using the fact

that PtQpi,tq,t “ 1 then

Pt`1Qpi,tq,t`1 “
Pt`1

Pt
PtQpi,tq,t`1 “

Pt`1

Pt
PtQpi,tq,t “

Pt`1

Pt

Hence,

Πj “ ErPt`1Qpi,tq,t`1 ¨ e
ψpτi,t´1qs “ Er

Pt`1

Pt
¨ eψpτi,t´1qs “ e´ρ

`8
ÿ

z“0

eψ¨zp1´ θjq
zθj

Note that this sum is finite whenever p1 ´ θjqe
ψ ă 1. Whenever this condition holds, then

Πj “
θje

´ρ

1´p1´θjqeψ
which after substituting for eψ and rearranging yields the expressions for ΠS and

ΠL.

A.2 Proof of Proposition 4.1

Proof. First, note that using the expressions for ΠSpρq and ΠLpρq from Proposition 3.1, it can be

seen by inspection that ΠSp0q “ ΠLp0q “ 1 for all levels of σS and σL. Therefore, in equilibrium

Π‹Sp0q “ 1 “ Π‹Lp0q.
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Next note that, ΠLpρq ą ΠLp0q “ 1 if and only if (after rearranging)

pτ ¨ θL ´ 1q ¨ e´ρ ą pτ ¨ θL ´ 1q

and therefore whenever there is a positive mass of short horizon users that invest (σ‹S ą σ), which

we assume when imposing ρ ă ρ̄, then the average expected trading horizon of investors τ ă 1
θL

and

therefore τ ¨ θL ´ 1 ă 0 so that this inequality always holds. Therefore, ΠLpρq ą ΠLp0q for all σL

and all σS ą σ and hence in any equilibrium with positive adoption by both types Π‹Lpρq ą Π‹Lp0q

Similarly, note that ΠSpρq ă ΠSp0q “ 1 if and only if

pτ ´ 1q ¨ θS ¨ e
´ρ ă p1´ θSq ¨ e

´ρ ` θS ¨ τ ´ 1

which after rearranging implies

pτ ¨ θS ´ 1q ¨ e´ρ ă pτ ¨ θS ´ 1q

which holds when τ ¨ θS ą 1. Finally, we note that τ ą 1
θS

whenever there is a positive level of

adoption for the L-types (i.e. σ‹L ą σ) as in that case there is a positive measure of L-type users so

the average expected trading horizon of investors that invest in the cryptocurrency must be larger

than the shortest expected trading horizon 1
θS

. Hence, given that we have shown that Π‹Lpρq ą 1

when there is a positive level of adoption for both types, then this must imply that σ‹L ą 1 ą σ.

Therefore, it must be the case that ΠSpρq ă ΠSp0q for all thresholds σS and σL when ρ ă ρ̄ and

therefore Π‹Spρq ă Π‹Sp0q.

A.3 Proof of Proposition 4.2

Proof. Note that in the steady state

νpi,tq “
Erηpi,tq,t`τpi,tqs

ηpi,tq,t
“ Er

Qpi,tq,t`τpi,tq
Qpi,tq,t

¨
Mt

Mt`τpi,tq

s “ Er
Qpi,tq,t`τpi,tq
Qpi,tq,t

¨
Pt`τpi,tq
Pt

s “ ErQpi,tq,t`τpi,tq ¨Pt`τpi,tqs

This last term is equal to ΠS if θpi,tq “ θS and ΠL if θpi,tq “ θL. Finally, note that we have shown

in the proof of Proposition 4.1 that ΠSpρq ă ΠSp0q “ 1 “ ΠLp0q ă ΠLpρq for all ρ P p0, ρq.

26



A.4 Proof of Proposition 4.3

Proof. In order to prove this result we will focus on the change to adoption cutoffs σ‹S and σ‹L as

a function of ρ which in any equilibrium satisfying (14) display the identical behavior as ΠS and

ΠL. We will invoke the implicit function theorem in order to derive closed form expressions for

Bσ‹S
Bρ pσ0, ρ0q and

Bσ‹L
Bρ pσ0, ρ0q around the solution σ0 “ pσS , σLq to (14) when ρ “ ρ0. In particular,

consider the function f : R3 Ñ R2

fpσ, ρq :“

»

—

–

f1pσ, ρq

f2pσ, ρq

fi

ffi

fl

:“

»

—

–

ΠSpσ, ρq ´ σS

ΠLpσ, ρq ´ σL

fi

ffi

fl

Then, for any ρ we are considering solutions σ to (14) of the form fpσ, ρq “ 0. Now, let Jf,σpσ0, ρ0q

denote the Jacobian matrix of f with respect to σ defined as

Jf,σpσ0, ρ0q :“

»

—

–

Bf1

BσS

Bf1

BσL

Bf2

BσS

Bf2

BσL

fi

ffi

fl

If Jf,σpσ0, ρ0q is invertible, then by the implicit function theorem we know that

Bσ

Bρ
pρq “ ´rJf,σpσpρq, ρqs

´1r
Bf

Bρ
pσpρq, ρqs

for all ρ in some open interval containing ρ0. Further, Jf,σpσ0, ρ0q is invertible whenever detpJf,σpσ0, ρ0qq ‰

0. We proceed by assuming that detpJf,σpσ0, ρ0qq ‰ 0 noting that by the continuity of our profit

functions, detpJf,σpσ0, ρ0qq “ 0 will only hold for some non-generic set of knife edge cases (i.e.

a measure zero set of parameters). Further, we proceed by assuming that detpJf,σpσ0, ρ0qq ą 0

which we will confirm must be the case in any equilibrium at the end of the proof. In particular,

we assume

detpJf,σpσ0, ρ0qq “ p
BΠS

BσS
´ 1q ¨ p

BΠL

BσL
´ 1q ´

BΠS

BσL
¨
BΠL

BσS
ą 0 (1)

Now, note that

BΠj

Bσk
“

Bτ
Bσk

¨ θj ¨ e
´ρ ¨ ηj ´

Bτ
Bσk

¨ pτ ´ 1q ¨ θ2
j ¨ e

´ρ

η2
j

“
´ Bτ
Bσk

¨ θj ¨ p1´ θjq ¨ e
´ρ ¨ p1´ e´ρq

η2
j
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for each j, k P tS,Lu where ηj “ p1´ θjq ¨ e
´ρ ` pθj ¨ τ ´ 1q. Further,

Bτ

BσL
“

G1pσLq ¨GpσSq ¨ pL ¨ pS
ppS ¨GpσSq ` pL ¨GpσLqq2

¨pτL´τSq ą 0
Bτ

BσS
“

G1pσSq ¨GpσLq ¨ pL ¨ pS
ppS ¨GpσSq ` pL ¨GpσLqq2

¨pτS´τLq ă 0

(2)

implies that BΠS
BσS

ą 0, BΠL
BσL

ă 0, BΠS
BσL

ă 0, and BΠL
BσS

ą 0. Therefore, whenever BΠS
BσS

ă 1, then

detpJf,σpσ0, ρ0qq ą 0 for all values of pσ0, ρ0q and therefore Jf,σpσ0, ρ0q is invertible.4

Next, note that (1) can be expressed as

Bσ

Bρ
pρq “

»

—

–

Bσ‹S
Bρ pρq

Bσ‹L
Bρ pρq

fi

ffi

fl

“
´1

detpJf,σpσpρq, ρqq
¨

»

—

–

p
BΠL
BσL
pσpρq, ρq ´ 1q ¨ BΠS

Bρ pσpρq, ρq ´
BΠS
BσL
pσpρq, ρq ¨ BΠL

Bρ pσpρq, ρq

´
BΠL
BσS
pσpρq, ρq ¨ BΠS

Bρ pσpρq, ρq ` p
BΠS
BσS
pσpρq, ρq ´ 1q ¨ BΠL

Bρ pσpρq, ρq

fi

ffi

fl

(3)

where

BΠj

Bρ
pρq “

pτ ´ 1q ¨ θje
´ρ

η2
j

¨ p1´ θj ¨ τq

for each j P tS,Lu. Now, using the fact that θS ¨ τ ą 1 and θL ¨ τ ă 1 implies BΠL
Bρ ą 0 and

BΠS
Bρ ă 0. Further, we have assumed that detpJf,σpσ0, ρ0qq ą 0 and therefore, using the above

proven properties regarding the partial derivatives we can see that
Bσ‹S
Bρ pρq ă 0 for all ρ.

Now, in order to prove Result 1, note that as ρ Ñ 0 then
BΠj
Bσk

Ñ 0 for all j, k P tS,Lu. This

implies that detpJf,σpσ0, ρ0qq Ñ 1 as ρ Ñ 0. Further, using the expression for
Bσ‹L
Bρ from (3) this

implies that
Bσ‹L
Bρ Ñ

BΠL
Bρ ą 0 as ρ Ñ 0. Therefore, by continuity and the fact that in equilibrium

Bσ‹L
Bρ “

dΠ‹L
dρ , then there must exist a threshold ρ

L
such that

dΠ‹L
dρ ą 0 for all ρ P r0, ρ

L
s.

In order to prove Result 2, we use the fact stated above that
Bσ‹S
Bρ pρq ă 0 combined with the fact

that limρÑ`8ΠSpρq “ 0, for all thresholds pσS , σLq. Therefore, there must exist ρ such that σ‹S “ σ

whenever ρ ě ρ and σ‹S Ñ σ as ρ Ñ ρ. Next, we use the fact that as ρ Ñ ρ then σ‹S Ñ σ implies

that τ Ñ τL. Therefore, this implies that BΠL
Bρ Ñ 0 as ρ Ñ ρ. Finally, we note that BΠL

BσS
Ñ C ą 0

and BΠS
Bρ Ñ C 1 ă 0 as ρ Ñ ρ for some constants C ą 0 and C 1 ă 0. Therefore BσL

Bρ Ñ C2 ă 0 as

ρÑ ρ and thus by continuity there must exist ρL ă ρ such that
dΠ‹L
dρ ă 0 for all ρ P rρL, ρs.

Finally, note that if it were the case that detpJf,σpσ0, ρ0qq ă 0, then we would obtain the

opposite results. This would imply that σ‹S is strictly increasing in ρ and σ‹L is strictly decreasing

4Note that limθSÑ1
BΠS
BσS

“ 0 then implies that there exists θS such that θS ą θS ensures that Jf,σpσ0, ρ0q is
invertible.
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in ρ for ρ P r0, ρ
L
q. Yet, we know that ΠLpρq ě 1 and ΠLp0q “ 1, independent of the thresholds σS

and σL. Therefore, it can only be the case that σ‹Lpρq “ 1 for all ρ P r0, ρ
L
q contradicting the fact

that σ‹L is strictly decreasing for ρ P r0, ρ
L
q. Similarly, if both σ‹L and σ‹S were strictly increasing

for ρ P rρL, ρs then it would imply that ρ “ `8 as ρ is defined as the largest possible growth rate

that supports adoption by both types. Yet, we know that ΠSpρq Ñ 0 as ρÑ `8 for any levels of

σS and σL which presents another contradiction as we assume σ ą 0. Therefore, it is without loss

to assume that in equilibrium detpJf,σpσ0, ρ0qq ą 0.

A.5 Proof of Proposition 4.4

Proof. First, note that we derive the expression for Π̃L by using the fact that πLpρq “ 1 ´ πSpρq

and therefore τ “ πSpρq ¨ pτS ´ τLq ` τL.

1.) In the proof of Proposition 4.3 we have shown that

BΠ̃L

Bρ
“
pτ ´ 1q ¨ θLe

´ρ

η2
L

¨ p1´ θL ¨ τq

where ηL “ p1´ θjq ¨ e
´ρ` pθj ¨ τ ´ 1q. Thus, using the fact that θL ¨ τ ă 1, whenever ρ ă ρ we can

see that BΠ̃L
Bρ ą 0.

2.) We directly differentiate Π̃L to obtain

BΠ̃L

BπS
“
θL ¨ p1´ θLq ¨ e

ρ ¨ p1´ e´ρq

η2
L

¨ pτL ´ τSq

which using the fact that pτL ´ τSq ą 0 implies BΠ̃L
BπS

ą 0.

3.) Directly differentiating πSpρq and rearranging we obtain

dπSpρq

dρ
“ psG

1pσ‹Sq
Bσ‹S
Bρ

¨ πLpρq ´ pLG
1pσ‹Lq

Bσ‹L
Bρ

¨ πSpρq

We know that
Bσ‹S
Bρ ă 0 for all ρ. Therefore, whenever

Bσ‹L
Bρ ą 0, then this result holds. We have

shown in the proof of Proposition 4.3 that there exists ρ
L

such that
Bσ‹L
Bρ ą 0 whenever ρ ă ρ

L

which establishes the first result.

To show that dπS
dρ pρq ă 0 for sufficiently high ρ, we note we have shown in the proof of Propo-

29



sition 4.3 that
Bσ‹S
Bρ pρq ă 0 for all ρ. Further, noting that

Bσ‹S
Bρ
pρq “

1

1´ BΠS
BσS
pρq

¨
pτL ´ 1q ¨ θS ¨ e

´ρ

η2
S

¨ p1´
θS
θL
q ă 0

then using the fact that ρ ă 8, BΠS
BσS
pρq ă 1, and θS

θL
ą 1 implies that

Bσ‹Spρq
Bρ pρq ă C ă 0 for some

constant C ă 0. Finally, note that as ρÑ ρ then πSpρq Ñ 0 due to the fact that σ‹S Ñ σ as ρÑ ρ.

Hence, as ρÑ ρ it must be the case that

dπS
dρ

Ñ psG
1pσ‹Sq

Bσ‹S
Bρ

¨ πLpρq ă 0

and therefore by continuity there must exist ρL ă ρ such that ρ P pρL, ρs implies dπS
dρ pρq ă 0.

A.6 Proof of Proposition 4.5

Proof. This result was directly proven in the proof of Proposition 4.3.

A.7 Proof of Proposition 4.6

Proof. In order to prove this result we will directly differentiate S with respect to ρ to obtain

dS
dρ
“ pτ´1q ¨ ppS ¨G

1pσSq
BσS
Bρ

`pL ¨G
1pσLq

BσL
Bρ
q`ppS ¨GpσSq`pL ¨GpσLqq ¨ p

Bτ

BσS
¨
BσS
Bρ

`
Bτ

BσL
¨
BσL
Bρ
q

In order to prove 1.) we will first show that

pS ¨G
1pσ‹Sq

Bσ‹S
Bρ

` pL ¨G
1pσ‹Lq

Bσ‹L
Bρ

Ñ 0

as ρ Ñ 0. In order to show this, recall that it was shown in the proof of Proposition 4.3 that

Bσ‹L
Bρ Ñ

BΠL
Bρ as ρÑ 0. We can show in an identical fashion that

Bσ‹S
Bρ Ñ

BΠS
Bρ as ρÑ 0. Further,

BΠS

Bρ
p0q “

p1´ θS ¨ τq

θSpτ ´ 1q
and

BΠL

Bρ
p0q “

p1´ θL ¨ τq

θLpτ ´ 1q

Next, note that inspection of (14) implies that ΠSp0q “ 1 “ ΠLp0q and therefore σ‹Lp0q “

σ‹Hp0q “ 1.
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Therefore,

ppS ¨G
1pσ‹Sq

Bσ‹S
Bρ

` pL ¨G
1pσ‹Lq

Bσ‹L
Bρ
q

ˇ

ˇ

ˇ

ˇ

ρ“0

“
G1p1q

τp0q ´ 1
¨ p
pS
θS
p1´ θS ¨ τp0qq `

pL
θL
p1´ θL ¨ τp0qqq

Finally, substituting for τp0q “ pS
θS
`

pL
θL

we can see that

ppS ¨G
1pσ‹Sq

Bσ‹S
Bρ

` pL ¨G
1pσ‹Lq

Bσ‹L
Bρ
q

ˇ

ˇ

ˇ

ˇ

ρ“0

“ 0

Now, in order to prove the main claim, we note that it was proven in Proposition 4.3 that Bτ
BσL

ą 0

(provided that σL ą σ), Bτ
BσS

ă 0,
Bσ‹S
Bρ ă 0 for all ρ, and

Bσ‹L
Bρ ą 0 for ρ ă ρ

L
. Therefore, whenever

ρ ă ρ
L

it must be the case that

p
Bτ

BσS
¨
Bσ‹S
Bρ

`
Bτ

BσL
¨
Bσ‹L
Bρ
q

ˇ

ˇ

ˇ

ˇ

ρ“0

ą 0

and therefore, given that the first term of dS
dρ goes to zero as ρÑ 0 implies that there exists ρS ą 0

such that ρ ă ρS implies dS
dρ ą 0.

We prove the second claim in a similar fashion. Namely, we note that whenever ρ P rρL, ρs,

then
Bσ‹L
Bρ ă 0. Therefore, whenever ρ ą ρL the only positive term in dS

dρ is

ppS ¨GpσSq ` pL ¨GpσLqq ¨ p
Bτ

BσS
¨
BσS
Bρ
q

we will conclude the proof by showing that

rpτ ´ 1q ¨ ppS ¨G
1pσ‹Sq

Bσ‹S
Bρ
q ` ppS ¨Gpσ

‹
Sq ` pL ¨Gpσ

‹
Lqq ¨ p

Bτ

BσS
¨
Bσ‹S
Bρ
qs

ˇ

ˇ

ˇ

ˇ

ρ“ρ

ă 0 (4)

Then, given that the remaining terms in dS
dρ are negative implies, by continuity, that there exists a

threshold ρS ă ρ such that dS
dρ ă 0 whenever ρ ą ρS .

In order to prove that (4) holds, we note that σ‹Spρq “ σ and therefore GpσSpρqq “ 0. Thus,

after substituting for Bτ
BσS

from (2) and rearranging, the left hand side of (4) is equal to

Bσ‹S
Bρ

¨ pS ¨G
1pσq ¨ pτpρq ´ 1` τS ´ τLq
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Hence, given that
Bσ‹S
Bρ ă 0 for all ρ, then (4) holds so long as τpρq´ 1` τS ´ τL ą 0. Yet, we know

that τpρq “ τL and therefore rτpρq ´ 1 ` τS ´ τLs
ˇ

ˇ

ρ“ρ
“ τS ´ 1 ą 0. Thus, we have proven that

dS
dρ |ρ“ρ ă 0 and therefore by continuity there must exist a threshold ρS ă ρ such that dS

dρ ă 0 for

all ρ P pρS , ρs.

A.8 Proof of Proposition 4.7

Proof. In order to prove the first result, note that

d

dρ
rDS `DLs “ pS ¨G

1pσ‹Sq
Bσ‹S
Bρ

` pL ¨G
1pσ‹Lq

Bσ‹L
Bρ

Further, we have shown in the proof of Proposition 4.6 that this term goes to zero as ρ Ñ 0 and

therefore our stated result must be true by continuity.

To prove the second result, note that

dτ

dρ
“
Bτ

BσS
¨
Bσ‹S
Bρ

`
Bτ

BσL
¨
Bσ‹L
Bρ

Further, we have shown in the proof of Proposition 4.3 that BσS
Bρ ă 0 for all ρ P r0, ρs and BσL

Bρ ą 0

whenever ρ ă ρ
L

. Finally, (2) tell us that Bτ
BσS

ă 0 and Bτ
BσL

ą 0 and therefore whenever ρ ă ρ
L

it

must be the case that dτ
dρ ą 0.

A.9 Proof of Proposition 4.8

Proof. In order to prove the first result, we note that

d

dρ
rDS `DLs “ pS ¨G

1pσ‹Sq
Bσ‹S
Bρ

` pL ¨G
1pσ‹Lq

Bσ‹L
Bρ

Therefore, as was shown in the proof of Proposition 4.3 we know that there exists ρL ă ρ such that

ρ ą ρL implies
Bσ‹L
Bρ ă 0 while it is always the case that

Bσ‹S
Bρ ă 0. Hence, whenever ρ ą ρL it must

be the case that d
dρ rDS `DLs ă 0.

The second result is a direct corollary of Proposition 4.6 as this is precisely the condition

required for dS
dρ ă 0.
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A.10 Proof of Proposition 4.9

Proof. We will prove this by showing that Spρq ă Sp0q. Therefore, given that Spρq is decreasing

for all ρ P rρS , ρs and fixed when ρ ą ρ it must imply by continuity that there exists ρ0 ă ρ such

that Spρq ă Sp0q for all ρ ą ρ0.

In order to show that Spρq ă Sp0q we note that σ‹Sp0q “ σ‹Lp0q “ 1 while σ‹Spρq “ σ. Therefore

Spρq ă Sp0q if and only if

pτpρq ´ 1q ¨ pL ¨Gp1q ă pτp0q ´ 1q ¨Gp1q

Therefore, noting that

τp0q “
pS
θS
`
pL
θL

and τpρq “
1

θL

then after plugging in and rearranging, we can see that Spρq ă Sp0q if and only if

pL
θL
´ pL ă

pS
θS
`
pL
θL
´ 1

which after substituting pL “ 1´ pS we can see holds whenever pS
θS
ą pS which is always the case

given that θS P p0, 1q.

A.11 Proof of Proposition 4.10 and Proposition 4.11

Proposition 4.11 can be shown to hold by direct inspection of the payoff functions in (14). In

particular, when θS “ θL “ θ then we know that τ “ 1
θ therefore

ΠS “ ΠL “
pτ ´ 1qθ ¨ e´ρ

p1´ θqe´ρ ` θ ¨ τ ´ 1
“ 1

Further, given that Proposition 4.11 holds for all adoption thresholds σS and σL we know that

this must imply that block rewards have no effect on the equilibrium cut-offs σ‹S “ σ‹L “ 1.
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