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Abstract

The US Census Bureau will deliberately corrupt data sets derived from the 2020
US Census in an effort to maintain privacy, suggesting a painful trade-off between the
privacy of respondents and the precision of economic analysis. To investigate whether
this trade-off is inevitable, we formulate a semiparametric model of causal inference
with high dimensional corrupted data. We propose a procedure for data cleaning,
estimation, and inference with data cleaning-adjusted confidence intervals. We prove
consistency, Gaussian approximation, and semiparametric efficiency by finite sample
arguments, with a rate of n−1/2 for semiparametric estimands that degrades gracefully
for nonparametric estimands. Our key assumption is that the true covariates are
approximately low rank, which we interpret as approximate repeated measurements
and validate in the Census. In our analysis, we provide nonasymptotic theoretical
contributions to matrix completion, statistical learning, and semiparametric statistics.
Calibrated simulations verify the coverage of our data cleaning-adjusted confidence
intervals and demonstrate the relevance of our results for 2020 Census data.
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1 Introduction

1.1 Motivation and research question

The 2010 US Census inadvertently revealed too much information. In a simulated hack,

researchers at the Census Bureau were able to re-identify between 52 and 179 million

respondents from ostensibly anonymous summary tables (Hawes, 2021). To protect privacy,

the Bureau will inject synthetic noise into forthcoming summary tables of the 2020 Census

(Jarmin, 2019) and coarsen wage microdata in the Current Population Survey (CPS)

(Benedetto et al., 2022). Techniques like these, called privacy mechanisms in computer

science, guarantee a particular notion of privacy called differential privacy via deliberate

data corruption (Dwork et al., 2006). Differential privacy is widely implemented in the

technology sector, e.g. Apple iOS and Google Chrome data. Due to its recent adoption in

the government sector, researchers in economics and statistics have warned of a looming

trade-off: the privacy of respondents versus the precision of economic analysis (Duchi et al.,

2018; Abowd and Schmutte, 2019; Hotz et al., 2022).

We study differential privacy and discretization as modern challenges for causal inference.

Economic data continue to suffer from classical types of data corruption in the form of

missing values and measurement error (Griliches, 1986). Therefore we analyze a class of

data corruptions that encompasses both modern and classical issues simultaneously, while

remaining agnostic about their relative magnitudes. Our research question is not only how

to conduct causal inference, but if it is even possible, with high dimensional economic data

that suffer from measurement error, missing values, discretization, and differential privacy.

1.2 Contributions

We study a broad class of causal parameters, including semiparametric estimands such as

the average treatment effect, the local average treatment effect, and the average elasticity,

as well as nonparametric estimands such as heterogeneous treatment effects, in a nonlinear

and high dimensional setting. Our main contribution is a procedure for automatic data

cleaning, causal estimation, and finally inference with confidence intervals that account for

the bias and variance consequences of data cleaning. Our key assumption is that the true
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covariates are approximately low rank, which we validate for US Census data and interpret

from a causal perspective. In particular, we argue that covariates collected from the Census

include approximate repeated measurements—e.g. disability benefits, medical benefits,

and unemployment benefits—which implies that they are approximately low rank. This

phenomenon powers our entire analysis. There are three key aspects of our contribution.

First, our relatively simple procedure adapts to the type and level of data corruption.

The same code works in a variety of settings, allowing for classical corruptions such as

measurement error and missing values as well as modern corruptions such as discretization

and differential privacy. Crucially, the researcher does not need to know in advance the

corruption distribution, e.g. its parametric form or covariance structure, and in this way we

depart from the error-in-variable Lasso and Dantzig literatures (Loh and Wainwright, 2012;

Rosenbaum and Tsybakov, 2013; Datta and Zou, 2017). We depart from previous work on

principal component regression (Agarwal et al., 2021, 2020a) by proposing new variants for

causal inference. We propose an error-in-variable balancing weight that adapts to the causal

parameter of interest—a natural yet original solution. In particular, the error-in-variable

balancing weight appears to be the first of its kind. In the way our procedure handles

missing values, it shares principles with multiple imputation (Rubin, 1976). In the appendix,

we extend our method to handle outcome attrition (Heckman, 1979; Hausman and Wise,

1979; Das et al., 2003; Huber, 2014; Bia et al., 2020; Singh, 2021).

Second, our theoretical analysis allows the rate of data cleaning to be slower than the

rate of causal inference, so an analyst can use matrix completion (Candès and Recht, 2009;

Candès and Tao, 2010; Keshavan et al., 2009; Hastie et al., 2015; Chatterjee, 2015) for

automatic data cleaning of covariates. This key result extends the classic semiparametric

framework, where the goal is to obtain n−1/2 convergence for the causal parameter despite

a possibly slow rate of convergence for a nonparametric regression. Our goal is to obtain

n−1/2 convergence for the causal parameter despite a possibly slow rate of convergence for

high dimensional data cleaning. We build on both the classic semiparametric literature for

low dimensional domains (Hasminskii and Ibragimov, 1979; Klaassen, 1987; Robinson, 1988;

Bickel et al., 1993; Newey, 1994; Andrews, 1994; Robins et al., 1995; Robins and Rotnitzky,

1995; Ai and Chen, 2003; van der Laan and Rubin, 2006) and more recent developments for

high dimensional domains (Zheng and van der Laan, 2011; Chernozhukov et al., 2016, 2018a,
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2022a, 2021). En route, we extend semiparametric and nonparametric debiased machine

learning theory to i.n.i.d. corrupted data, with new results on nominal and conservative

variance estimation that are of independent interest. We also develop an original theory of

implicit data cleaning. Altogether, our framework translates slow, on-average data cleaning

guarantees into fast causal estimation and inference guarantees.

Third, our empirical results suggest that there exist scenarios in which the trade-off

between privacy and precision can be overcome, and others in which it cannot. We replicate

and extend Autor et al. (2013)’s seminal paper about the effect of import competition on

US labor markets. To begin, we demonstrate the plausibility of our key assumption: Census

data products contain many variables that are approximate repeated measurements. Next,

we deliberately corrupt the data, injecting synthetic noise calibrated to the privacy level

mandated for the 2020 US Census. We implement differential privacy and discretization

in a way that belongs to our class of data corruptions, which can therefore be cleaned

and adjusted for in the confidence interval. We find that the main results of Autor et al.

(2013) can be recovered without losing statistical precision. In this representative setting

for economic research, it appears to be possible to achieve both privacy at the individual

level and precision at the population level.

The structure of this paper is as follows. Section 2 situates our contributions within

the context of related work. Section 3 formalizes our class of data corruptions and our

key assumption. Section 4 proposes our procedure and demonstrates its performance in

simulations. Section 5 theoretically justifies our procedure, and verifies the key assumption

for nonlinear factor models. Section 6 presents the semi-synthetic exercise and discusses

limitations. Section 7 concludes. For readability, we reserve certain details for the appendix:

additional examples in Appendix A, further empirical results in Appendix B, and nonlinear

basis functions in Appendix C.

2 Related work

Semiparametric statistics. We use two insights from classic semiparametric theory.

First, a causal parameter typically has regression and balancing weight representations,

and both appear in the semiparametrically efficient asymptotic variance (Newey, 1994).
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We directly build on this insight: an error-in-variable regression and an error-in-variable

balancing weight appear in our data cleaning-adjusted confidence intervals. Both quantities

also appear in our doubly robust estimating equation (Robins et al., 1995; Robins and

Rotnitzky, 1995; van der Laan and Rubin, 2006; Chernozhukov et al., 2016, 2018a; Foster

and Syrgkanis, 2019; Chernozhukov et al., 2022a). Second, sample splitting (Klaassen, 1987)

eliminates the restrictive condition that function classes used in estimation must be simple

(Zheng and van der Laan, 2011; Chernozhukov et al., 2016, 2018a, 2021). We combine these

two classic ideas with implicit data cleaning, which appears to be a new idea.

Low rank models in econometrics. A vast literature studies the identification,

estimation, and inference of latent factors (λi, µj) in models of the form

Zi,· = Xi,· +Hi,·, Xij = λTi µj (1)

where Zi,· is observed, the ambient dimension dim(Xi,·) is high and growing, and the latent

dimension dim(λi) is low and fixed (Bai and Ng, 2002; Onatski, 2009; Bai and Ng, 2013;

Bai and Wang, 2014). Rather than imposing a fixed linear factor model, we require that the

approximate rank of Xi,· diverges much more slowly than dim(Xi,·). The nonlinear factor

model Xij = g(λi, µj), where dim(λj) may be diverging, is sufficient but unnecessary for our

analysis. Like the factor model literature, we allow for weak correlation and heteroscedastity

of measurement errors within units (Bai, 2003, 2009). We further allow for missingness and

do not need to identify the latent factors for downstream causal inference.

Whereas we study treatment effects, policy effects, and elasticities in cross sectional

data, a rich literature studies panel data settings where the analyst observes many units

over time. One strand of this literature considers inference on the latent factors themselves

in factor augmented regressions (Stock and Watson, 2002; Bai and Ng, 2006; Wang and

Fan, 2017). Another strand considers inference for average treatment on the treated via

synthetic control. In particular, works in this strand posit a low rank (Athey et al., 2021;

Chernozhukov et al., 2018b; Bai and Ng, 2019; Xiong and Pelger, 2019; Fernández-Val

et al., 2020; Agarwal et al., 2020b; Feng, 2020) or approximately low rank (Arkhangelsky

et al., 2019; Agarwal et al., 2021) factor model for potential outcomes over units and times.

Observed outcomes are interpreted as corrupted potential outcomes with idiosyncratic

noise. By contrast, we study general nonseparable causal models, and we interpret observed
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covariates as corrupted observations of true covariates that are approximately low rank.

The only previous work to consider both measurement error and missingness in cross

sectional treatment effects appears to be Kallus et al. (2018). The authors consider average

treatment effect and prove consistency, without inference, for a parametric linear model. In

Kallus et al. (2018), the true covariatesXi,· are low dimensional and Gaussian; each corrupted

covariate Zij is drawn independently from a known exponential family distribution; and each

missing value is drawn i.i.d. Consistency requires dim(Xi,·) ≪ n and correct specification of

the measurement error distribution. By contrast, we consider a broad class of semiparametric

and nonparametric causal parameters. Moreover, we prove Gaussian approximation and

semiparametric efficiency with data cleaning-adjusted confidence intervals. We do not

assume knowledge of the distributions of Xi,· and Zi,·; we allow Xi,· to be high dimensional;

and we allow for dependent and i.n.i.d. data corruption.

Error-in-variable regression. We provide a framework to repurpose error-in-variable

regression estimators for downstream causal inference. Error-in-variables regression has a

vast literature spanning econometrics, statistics, and computer science studying the model

Yi = γ0(Xi,·) + εi, Zi,· = Xi,· +Hi,· (2)

where (Xi,·, εi, Hi,·) are mutually independent and (εi, Hi,·) are mean zero (Schennach and

Hu, 2013). We consider a generalization of this setting with missingness, and we define our

causal parameter as a scalar summary of γ0.

Methods in econometrics typically assume auxiliary information: repeated measurements

(Li and Vuong, 1998; Li, 2002; Delaigle et al., 2008), instrumental variables (Newey, 2001;

Schennach, 2007; Hu and Schennach, 2008; Wang and Hsiao, 2011; Chen et al., 2011; Singh

et al., 2019), and negative controls (Miao et al., 2018; Miao and Tchetgen, 2018; Deaner,

2018; Tchetgen Tchetgen et al., 2020; Singh, 2020). We do not require explicit auxiliary

information, though there is a deep connection to the repeated measurement model, which

we describe in Section 3.

An important class of methods in statistics extends Lasso and the Dantzig selector (Loh

and Wainwright, 2012; Rosenbaum and Tsybakov, 2013; Datta and Zou, 2017). The model

is high dimensional, linear, and sparse:

Yi = Xi,·β + εi, Zi,· = (Xi,· +Hi,·)⊙ πi,· (3)
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where dim(Xi,·) may exceed n, β has s≪ n nonzero coefficients, and πi,· ∈ {NA, 1}dim(Xi,·)

encodes missingness. Analysis places three strong assumptions: exact sparsity of β, a

restricted eigenvalue bounded away from zero, and knowledge of the covariance of mea-

surement error Hi,·. By contrast, we assume Xi,· are approximately low rank and Hi,· are

subexponential; the analyst does not need to know the measurement error covariance.

We propose new variants of principal component regression (PCR) for the error-in-

variable regression and balancing weight. Previous work studies PCR for error-in-variable

regression only, considering models as in (3). Agarwal et al. (2021) perform data cleaning

on the training set and test set together, while Agarwal et al. (2020a) perform data cleaning

on the training set and test set separately. Explicit data cleaning on the test set induces

correlation across observations, and therefore poses a challenge for downstream statistical

inference. We use implicit data cleaning on the test set to preserve independence, and we

prove fast rates of generalization. Unlike previous work, we simultaneously allow Xi,· to be

approximately low rank, γ0 to be nonlinear, and (πij, πik) to be dependent.

Missing values. The literature on missing covariates considers a rich variety of

assumptions. We focus on the simple case that covariates are missing completely at random

(MCAR). We do, however, allow for dependent missingness within a unit. For the richer

setting where covariates are missing at random (MAR), popular methods involve multiple

imputation (Rubin, 1976), generalized propensity scores (Rosenbaum and Rubin, 1984;

D’Agostino Jr and Rubin, 2000), hot deck imputation (Abadie and Imbens, 2012), and

doubly robust extensions thereof (Mayer et al., 2020).

3 Model overview

We define the key aspects of the model: the causal parameter, class of data corruptions,

and key approximation assumption.
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3.1 Causal parameter

For readability, we focus on one causal parameter in the main text: the average treatment

effect with i.n.i.d. data, which we denote by

θ0 =
1

n

n∑
i=1

θi, θi = E[Y (1)
i − Y

(0)
i ],

where Y (d)
i is the potential outcome for unit i under intervention D = d. θ0 is a sample

average because different units may be drawn from different distributions. In Appendix A,

we consider a general class of semiparametric and nonparametric causal parameters including

the local average treatment effect, the average elasticity, and heterogeneous treatment effects.

We denote the actual outcome by Yi ∈ R, the assigned treatment by Di ∈ {0, 1}, and the

vector of covariates that determine treatment selection by Xi,· ∈ Rp. In order to express θ0

in terms of (Yi, Di, Xi,·), we impose some additional structure on the problem. Generalizing

a classic assumption in the literature on distribution shift, we assume that the conditional

distributions P(Yi|Di, Xi,·) and P(Di|Xi,·) are common across units; distribution shift is

only in the marginal distributions of covariates Pi(Xi,·).

Imposing these conditions as well as selection on Xi,·, we recover two classic formulations

of the treatment effect. The outcome formulation is in terms of the outcome mechanism γ0,

also called the regression, which is common across units:

θi = E[γ0(1, Xi,·)− γ0(0, Xi,·)], γ0(Di, Xi,·) = E[Yi|Di, Xi,·].

The treatment formulation is in terms of the treatment mechanism E[Di|Xi,·], which is also

common across units, and which appears in the denominator of the balancing weight α0:

θi = E[Yi · α0(Di, Xi,·)], α0(Di, Xi,·) =
Di

E[Di|Xi,·]
− 1−Di

1− E[Di|Xi,·]
.

Our estimation and analysis combine both classic formulations.

3.2 Data corruption

The crux of our problem is that, instead of observing (Y,Di, Xi,·), we observe (Yi, Di, Zi,·)

where

Yi = γ0(Di, Xi,·) + εi, Zi,· = (Xi,· +Hi,·)⊙ πi,·. (4)
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Though the outcome Yi is generated from treatment Di and true covariates Xi,·, we do not

observe the true covariates; instead, we observe the corrupted covariates Zi,·, which are

the true covariates Xi,· plus additive corruption Hi,·, multiplied by a masking vector πi,· ∈

{NA, 1}p. Our concise model (4) generalizes the models of previous work (1), (2), (3), and it

encompasses all four types of corruption.1 For example, to encode classical measurement

error (Schennach, 2016), one could let Zi,· equal Xi,· plus a vector of Gaussian noise. To

encode missing values, let Zi,· = Xi,· ⊙ πi,·.

Discretization is a process by which a continuous vector Xi,· is mapped to a discrete vector

Zi,·, and our class encodes several variants. For example, the covariate of interest may be a

vector of probabilities Xi,·, yet we observe actual occurrences Zi,· ∼ Bernoulli(Xi,·). Another

example is randomized rounding, where continuous values are randomly rounded to nearby

integers, e.g. Zi,· = sign(Xi,·)Poisson(|Xi,·|). While our class does not include rounding

in the familiar sense, it provides guidance on which types of rounding can be handled in

downstream causal inference. As such, it suggests alternative types of discretization for

wage data in the CPS which are more favorable for economic research.

Finally, to encode differential privacy, let Zi,· equal Xi,· plus a vector of Laplacian noise.

What is the connection between differential privacy and Laplacian noise? Differential privacy

is a concept from computer science which means plausible deniability that any individual

contributed their data to tabular summaries. The canonical mechanism that ensures

differential privacy is to add Laplacian noise, calibrating the variance of the Laplacian to

the variability of the true values and other properties of the tabular summary statistics

(Dwork et al., 2006). In the context of the Census, we consider adding Laplacian noise to

data on aggregate units, which we formalize in Section 6. Injecting synthetic noise in this

way helps to prevent the kind of attack simulated on the 2010 Census.

Across examples, Hi,· is sub-exponential, i.e. its tails are no worse than the tails of an

exponential distribution. So are compositions of various types of data corruption since the

class of sub-exponential distributions is closed under addition. Therefore our class of data

corruptions includes classical and modern issues simultaneously. In particular, it allows us to

address the trade-off between privacy and precision in the context of measurement error—a

major aspect of the problem that is often overlooked (Steed et al., 2022). In Appendix A,
1It may also be viewed as a concise nonlinear LISREL model (Jöreskog and Sörbom, 1996).
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we extend the model to accommodate attrition and privacy of the outcome.

3.3 Key assumption: Approximate repeated measurements

Our key assumption is that the true covariates Xi,· are approximately low rank: the rank of

the matrix X ∈ Rn×p is approximately r ≪ (n, p). Among the n units in the data set, there

are approximately only r latent types of unit, i.e., each unit can be approximated as a linear

combination of r latent types. Equivalently, among the p covariates in the data set, there

are approximately only r latent types of covariate. To interpret this assumption, we propose

the intuition of repeated measurements. In the classic repeated measurement model, we

have access to two noisy measurements (Zi1, Zi2) of one signal; in our model, we have access

to p noisy measurements (Zi1, ..., Zip) that are approximately repeated measurements of

only r signals, where both (r, p) grow with sample size n, yet r ≪ (n, p).

We place this assumption because it holds in Census data. Previewing our empirical

application, consider the commuting zone (CZ) level data set of Autor et al. (2013). The

mainland US consists of 722 CZs interpretable as local economies, each of which has a

vector of covariates Xi,· ∈ R13 used in the authors’ main specification. The variables include

percent employment in manufacturing, percent college educated, and percent employment

among women—variables that are not precisely repeated measurements but approximately

so. We compute the singular value decomposition of X then visualize its singular values,

also called its principal components, in Figure 1a. We see that only about five principal

components are significantly positive; r = 5. In Figure 1b, we confirm similar results

with an augmented specification Xi,· ∈ R30 using additional variables from Autor et al.

(2013)’s appendix such as average disability, unemployment, and medical benefits. Again,

these variables admit interpretation as approximate repeated measurements with r = 5. In

Appendix B, we verify our key assumption on a broad variety of economic data sets.

Our key assumption is more than statistically convenient; it is causally meaningful.

Consider the special case in which the true covariates are exactly low rank, i.e. r = rank(X).

The singular value decomposition is X = UΣV T where U ∈ Rn×r, Σ ∈ Rr×r, and V ∈ Rp×r.

V consists of r vectors in Rp, called the right singular vectors of X, which are also the

eigenvectors of the empirical covariance n−1XTX. The span of these vectors is an r
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(a) Original specification (b) Augmented specification

Figure 1: The key assumption holds in Census data

dimensional subspace of Rp, i.e. a low dimensional subset of a high dimensional ambient

space. In this scenario, we are assuming that treatment assignment is determined by the

subspace. Equivalently, the treatment assignment for unit i depends on the projection

of Xi,· onto this subspace. More generally, when covariates are approximately low rank,

X = X(lr) +E(lr), where X(lr) = UΣV T is a rank r approximation to X and E(lr) is

the approximation residual. We can either assume (i) selection is determined by X(lr) only,

i.e. the subspace spanned by V ; or (ii) selection is determined by both X(lr) and E(lr).

To handle the latter case, which is the most general, we keep track of ∆E = ∥E(lr)∥max in

our theoretical analysis. In this sense, we provide analysis that is robust to violations of the

exactly low rank assumption from both a statistical and causal perspective.

4 Data cleaning-adjusted confidence interval

We would like a procedure that estimates causal parameters as if data were uncorrupted,

yet adjusts for data cleaning in the confidence interval. Moreover, we would like a procedure

that does not require knowledge of the corruption covariance structure in advance, departing

from previous work. If such a procedure were to exist, it would in some sense preempt the

looming trade-off between privacy and precision.
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4.1 Why is inference hard?

We illustrate key concepts with an average treatment effect simulation. By construction, the

treatment effect is θ0 = 2.2. We consider a data generating process, detailed in Appendix I,

which satisfies our key assumption: one sample involves a matrix of covariates X ∈ R100×100

with rank r = 5. See Appendix B for similar results using alternative dimensions of X. To

make the problem interesting, we allow for nonlinear outcome and treatment mechanisms.

Figure 2 plots the principal components of true covariates X in red. As expected, five

principal components are nonzero and the rest are zero since rank(X) = 5.

Figure 2: The key assumption holds in simu-

lated data

As a first pass, we implement ordi-

nary least squares (OLS) with robust stan-

dard errors in Stata: regress Y D Z,

vce(robust). Running OLS on clean data

1000 times, the point estimates θ̂ (Figure 3a)

are centered around the true value of 2.2,

and appear Gaussian. To evaluate the qual-

ity of OLS standard errors, we visualize how

the studentized point estimates (θ̂ − θ0)/σ̂

compare the the standard normal density

(Figure 3b). OLS works well in the absence

of data corruption; there is nothing hidden

in the data generating process for clean data.

We repeat this exercise introducing measurement error with variance that is 20% of the

variance of the covariates. Inversion of the empirical covariance matrix n−1ZTZ becomes

numerically unstable, manifesting in point estimates that are erratic (Figure 4) and standard

errors that are typically NA’s. OLS is not well-suited to the combination of high dimensional

covariates, (approximate) low rank, and measurement error. We further investigate this

phenomenon is Appendix B.

Data corruption can derail causal inference, which motivates filling the NA’s, reigning in

the extremes, and otherwise de-noising the values in Z in hopes of recovering X. These

are precisely the goals of matrix completion applied to the matrix Z. In this work, we
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(a) Estimation (b) Inference

Figure 3: OLS succeeds on clean data

turn to the vast literature on matrix completion (Candès and Recht, 2009; Candès and

Tao, 2010; Keshavan et al., 2009; Hastie et al., 2015; Chatterjee, 2015) for automated data

cleaning. To select an appropriate matrix completion method, we return to Figure 2 to

visualize the principal components of the corrupted covariates Z = X + H for various

noise-to-signal ratios (defined as the noise variance divided by the signal variance). Figure 2

shows that the initial five principal components remain virtually unchanged, while the lower

principal components are amplified; signal remains spectrally concentrated while noise is

spectrally diffuse. Therefore a natural way to clean the covariates would be to discard the

lower principal components—in essence, to perform principal component analysis (PCA),

also called hard singular value thresholding.2

Figure 4: OLS fails on corrupted data

Why is inference hard after data clean-

ing? Several challenges arise. First, man-

ual and automated data cleaning may in-

duce strong dependence among observations;

which central limit theorem could we use to

prove Gaussian approximation? Our answer

is to introduce sample splitting, which is a

classic idea (Klaassen, 1987), and implicit

data cleaning, which is a new idea. Second,
2Alternative choices include canonical correlation analysis and partial least squares, which clean Z using

Y (Wold, 1982; Wold et al., 1984). We leave these directions to future research.
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if we turn to automated data cleaning, the best rates of convergence to the true matrix

X are slower than n−1/2; how will we possibly obtain a standard error of order σ̂n−1/2?

Our answer is to aim for double rate robustness by introducing a doubly robust estimating

equation (Chernozhukov et al., 2018a; van der Laan and Rose, 2018; Rotnitzky et al., 2021).

The third issue is a theoretical one to which we will return in Section 5: the best rates of

matrix completion are not for recovering specific matrix entries but rather averages across

matrix entries; how is this even related to downstream semiparametric inference? Our

answer is to develop an algorithmic and analytic framework that forges the connection.

4.2 Overview of the procedure

Split the observations (Yi, Di, Zi,·) into equally sized train and test sets, each with

m = n/2 observations. Our procedure consists of four steps, which we state at a high level

before filling in the details.

1. Data cleaning: X̂ using train.

2. Error-in-variable regression: γ̂ using train.

3. Error-in-variable balancing: α̂ using train.

4. Causal parameter: θ̂ ± 1.96σ̂n−1/2 using test.

We opt for simplicity at each step, essentially combining PCA and OLS (albeit in new ways).

We view these high level steps a template for more complex procedures in future work.

Step 1: Data cleaning. The automated data cleaning procedure is extremely simple:

fill in missing values as zeros, scale appropriately, then perform PCA. Importantly, we

import the scalings from train to test.

For any mathematical operations to be well defined, the NA’s must be filled in somehow.

To begin, we tally the likelihood of non-missingness for each covariate j ∈ [p] in train:

ρ̂j = max

{
1

m

∑
i∈train

1(Zij ̸= NA),
1

m

}
, ρ̂ = diag(ρ̂1, ..., ρ̂p) ∈ Rp×p.

Next, we fill in missing values with a fill operator defined such that

fill(Zij) =


Zij

ρ̂j
if Zij ̸= NA

0 if Zij = NA.
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The fill operator may act on either Ztrain or Ztest, but it always uses the likelihoods ρ̂

calculated from Ztrain. After filling train, we project it onto its own principal subspace

to calculate the cleaned training covariates X̂:

fill(Ztrain) = ÛΣ̂V̂ T , X̂ = Û kΣ̂kV̂
T
k .

Effectively, we are taking the SVD of fill(Ztrain) and truncating it to include only the top

k principal components, where k is a chosen by the analyst. Figure 2 suggests a choice of

k, though other popular options include cross-validation and theoretical rules (Chatterjee,

2015; Gavish and Donoho, 2014). Below, we empirically verify that our results are robust

to different choices of k. This implementation of PCA preserves the ambient dimension p.

Step 2: Error-in-variable regression. Our error-in-variables regression is also simple:

after cleaning train, perform ordinary least squares (OLS) on train, then use this OLS

coefficient on the filled test for prediction. We only fill, and do not clean, the test set.

Nonlinearity can be introduced into the regression to allow for treatment effect hetero-

geneity. See Appendix C for a characterization of what nonlinearity is allowed, and how

nonlinearity manifests in the theoretical guarantees. For the main text, we focus on the

interacted dictionary, which allows for heterogeneity and segments the OLS coefficient:

b(Di, X̂i,·) = (DiX̂i,·, (1−Di)X̂i,·), β̂ =

 β̂treat

β̂untreat

 .
Then the OLS coefficient is

β̂ = [{b(Dtrain, X̂)}T b(Dtrain, X̂)]†[{b(Dtrain, X̂)}TY train],

where † means pseudoinverse. The subtlety is in how predictions are constructed from β̂.

Out of sample prediction does not involve cleaning the test set: for i ∈ test,

γ̂(Di, Zi,·) = b{Di, fill(Zi,·)}β̂.

Step 3: Error-in-variable balancing. Our error-in-variable balancing weight general-

izes our error-in-variable regression. It avoids the estimation and inversion of propensity

scores, which may be numerically unstable in high dimensions. Pleasingly, it achieves exact

balance for any finite sample size, in a sense that we formalize below. Moreover, it adapts

to the causal parameter of interest, as we explain in Appendix F.
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The only difference from the error-in-variable regression is that we replace the sufficient

statistic [{b(Dtrain, X̂)}TY train] ∈ Rp′ with another sufficient statistic that we call the

counterfactual moment M̂ ∈ Rp′ . The counterfactual moment resembles the expression

θi = E[γ0(1, Xi,·)− γ0(0, Xi,·)], and it is the only aspect of the algorithm that changes for

different causal parameters. Formally,

η̂ = [{b(Dtrain, X̂)}T b(Dtrain, X̂)]†M̂, M̂ = [{b(1, X̂)}T − {b(0, X̂)}T ]1m

where 1m ∈ Rm is a vector of ones. As before we do not clean the test set: for i ∈ test,

α̂(Di, Zi,·) = b{Di, fill(Zi,·)}η̂.

Step 4: Causal estimation and inference. The final step uses the error-in-variable

regression γ̂ and error-in-variable balancing weight α̂ learned from train, and evaluates

them on test according to the doubly robust estimating equation: for i ∈ test,

ψ̂i = γ̂(1, Zi,·)− γ̂(1, Zi,·) + α̂(Di, Zi,·){Yi − γ̂(Di, Zi,·)}.

This process generates a vector ψ̂ ∈ Rm, with ψ̂i corresponding to the empirical influence

of observation i ∈ test. Reversing the roles of train and test, we generate another

such vector. Slightly abusing notation, we concatenate the two to obtain a vector ψ̂ ∈ Rn.

Our estimator of the causal parameter θ̂, its variance σ̂2, and its data cleaning-adjusted

confidence interval are

θ̂ = mean(ψ̂), σ̂2 = var(ψ̂), CI = θ̂ ± 1.96σ̂n−1/2.

4.3 Properties of the procedure

Step 1: Data cleaning. We fill missing values by zeroes, and then scale appropriately, for

two reasons: (i) the procedure is asymptotically unbiased, and (ii) the procedure avoids

unnecessary correlations. We compare our proposal to another that fills missing values with

means, which we call fill-as-means.

Proposition 4.1 (Filling with zeros is unbiased and simple). For our proposal,

E[fill(Ztest
ij )|Xtest

ij ,train] = Xtest
ij

ρj
ρ̂j
.
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The alternative procedure of filling missing values with means from train gives

E[fill-as-means(Ztest
ij )|Xtest

ij ,train] = Xtest
ij ρj + Z̄train

j (1− ρj).

fill-as-means gives a convex combination of the signal we wish to recover and the

noisy average from train. The noisy average introduces additional correlations that we

avoid with our simpler approach.3

After filling missing values, we clean the data by PCA with hyperparameter k. Below, we

verify the robustness of the procedure to different choices of k. In practice, we recommend

that an analyst should examine a plot of principal components, e.g. Figure 1, and select k

that is just after the “elbow” so that it is close to r.

Step 2: Error-in-variable regression. Rather than explicitly cleaning the test

covariates, we implicitly clean them, to avoid correlations among predictions. The following

result formalizes this implicit data cleaning and what it achieves.

Proposition 4.2 (Implicit data cleaning preserves independence). For i ∈ test

γ̂(Di, Zi,·) = b(Di, Zi,·)β̃, β̃ =

 ρ̂−1 β̂treat

ρ̂−1 β̂untreat


where we replace NA with 0 in Zi,·. Therefore for (i, j) ∈ test,

γ̂(Di, Zi,·) |= γ̂(Dj, Zj,·)|train.

Remarkably, post-multiplying b(Di, Zi,·) by β̃ handles the measurement error, missingness,

discretization, and differential privacy of Zi,· while also producing high quality predictions

of Yi. Moreover, since β̃ is learned exclusively from train, it is deterministic conditional

on train, so predictions for observations (i, j) ∈ test preserve their independence. This

property will be essential for our inferential theory.

Our new variant of PCR has broader use outside of causal inference. For example, in

online learning, a corrupted test observation Zi,· does not need to be explicitly cleaned

with respect to test or even train. Instead, it is sufficient to implicitly clean Zi,· by post

multiplying it with the coefficient β̃. For test observations, data cleaning and prediction

can be combined into one step.
3Yet another procedure is called hot-deck imputation, which introduces correlations with a martingale

structure (Abadie and Imbens, 2012). Our simple approach avoids these correlations as well.
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Step 3: Error-in-variable balancing. The error-in-variable balancing weight shares

the same implicit data cleaning and therefore preserves independence in the same way. In

addition, it provides a strong guarantee of finite sample balance between the treated and

untreated subpopulations.

Proposition 4.3 (The balancing weight exactly balances covariates). For any finite sample,

1

m

∑
i∈train

X̂i,· =
1

m

∑
i∈train

DiX̂i,· · ω̂train
i =

1

m

∑
i∈train

(1−Di)X̂i,· · ω̂untreat
i

where (ω̂treat
i , ω̂untreat

i ) ∈ R are balancing weights computed from η̂: for each i ∈ train,

ω̂treat
i = X̂i,·η̂

treat, ω̂untreat
i = −X̂i,·η̂

untreat.

Deterministically, the error-in-variable balancing weight exactly balances the full popu-

lation, the treated subpopulation, and the untreated subpopulation with respect to their

cleaned covariates. It is precisely the reweighting that would ensure comparability of treated

and untreated groups in a stratified sampling design. We articulate a more general balancing

property for generic causal parameters in Appendix F. We also clarify the sense in which

the error-in-variable regression and balancing weight coincide on train but not test.

Step 4: Causal estimation and inference. In our estimation procedure, we deal with

measurement error bias by cleaning the data. For some special cases, the measurement error

bias actually has a closed form solution, which depends on the regression, propensity score,

covariate density, and derivatives thereof (Battistin and Chesher, 2014). Our approach

avoids estimation of the propensity scores, covariate density, and derivatives, which would

be challenging in high dimensions. Instead, we simply combine PCA and OLS.

Multiple imputation (Rubin, 1976) is a popular procedure for handling missing values,

and it has important similarities and differences compared to our approach. Both share

the goal of estimating and quantifying uncertainty for a downstream scalar parameter. In

multiple imputation, the analyst makes, say, two copies of the original data set, then imputes

missing values (with some randomness so each imputation may be different). Estimates and

standard errors from each copy are then averaged. In our procedure, we split the sample

into two folds: train and test. We clean train and compute estimates and standard

errors with test, then reverse the roles and take the average. We opt for sample splitting,

rather than copying, and we additionally consider measurement error.

17



4.4 Adapting to the type and level of corruption

Next, we demonstrate that our four step procedure performs well in simulations with a

broad variety of data corruptions. We run the same code in every setting; the procedure

adapts to the type and level of data corruption, without prior knowledge of the corruption

covariance structure.

To begin, we consider measurement error Zi,· = Xi,· + Hi,·, where Hi,· is Gaussian

noise, in the average treatment effect simulation described above. Recall that θ0 = 2.2,

X ∈ R100×100, and r = 5. We implement our procedure on corrupted data 1000 times,

collecting 1000 point estimates θ̂ and 1000 standard errors σ̂. For a 20% noise-to-signal

ratio, we visualize the studentized point estimates (θ̂ − θ0)/σ̂ in Figure 5a. Qualitatively,

the histogram closely resembles the standard normal density.

(a) Inference
(b) Coverage

Figure 5: Our approach adapts to measurement error

We quantify performance in coverage tables. In Table 5b, different rows correspond

to different noise-to-signal ratios. Initially, we consider the oracle tuning of the PCA

hyperparameter k = r. For each noise-to-signal ratio, we record the average point estimates,

which are close to θ0 = 2.2. Next, we record the average standard errors, which adaptively

increase in length to higher noise levels. Impressively, a 100% noise-to-signal ratio setting

corresponds to a confidence interval that is only about 10% longer. These confidence

intervals are the correct length, since about 950 of them include the true value θ0 = 2.2.

Table 5b revisits the issue of tuning the hyperparameter k. This time, we fix the

noise-to-signal ratio to 20%. Different rows correspond to different tunings: k = r, k = r+2,
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(a) Inference
(b) Coverage

Figure 6: Our approach adapts to missing values

and k = r + 5. Point estimates remain close to the true value θ0 = 2.2. The standard errors

adaptively increase in length when k deviates from r, though the length only increases about

10%. The confidence intervals are again the correct length, attaining nominal coverage.

(a) Inference

(b) Coverage

Figure 7: Our approach adapts to discretization

We repeat this exercise with other types of data corruption: missing values (Figure 6),

discretization (Figure 7), and differential privacy (Figure 8). For missing values Zi,· =

Xi,· ⊙ πi,·, we consider non-response of 10%, 30%, and 50% of all covariate entries. Key

variables such as income in Census Bureau surveys are missing 40% of the time. Fortunately,

our procedure performs well even with this high level of missingness. For discretization,

we consider randomized rounding Zi,· = sign(Xi,·)Poisson(|Xi,·|), which corresponds to a

33% noise-to-signal ratio. Finally, for differential privacy Zi,· = Xi,· + Hi,·, where Hi,· is
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Laplacian noise, we obtain results that are nearly identical to measurement error. Across

settings, our results are robust to hyperparameter tuning.

(a) Inference
(b) Coverage

Figure 8: Our approach adapts to differential privacy

5 Finite sample analysis

In the previous section, we articulate three reasons why inference after data cleaning is

hard. First, data cleaning may induce a great deal of dependence. We introduce implicit

data cleaning as an algorithmic solution, yet we still need to provide a theory of implicit

data cleaning: why is it okay to not clean the test covariates? Second, the best rates of data

cleaning are slower than n−1/2. We incorporate the doubly robust estimating equation in

the hope of achieving double rate robustness, yet we still need to prove that it works: how

is causal inference still possible with standard errors of order σ̂n−1/2? Third, data cleaning

recovers averages across matrix entries. How can we translate guarantees about recovering

averages into guarantees about the coverage of data cleaning-adjusted confidence intervals?

In this section, we answer these three theoretical questions with finite sample analysis.

We prove four theorems, each corresponding to a step in the procedure.

1. Data cleaning: X̂ converges to Xtrain.

2. Error-in-variable regression: γ̂ converges to γ0.

3. Error-in-variable balancing weight: α̂ converges to α0.
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4. Causal parameter: P{θ0 ∈ (θ̂ ± 1.96σ̂n−1/2)} converges to 0.95.

We have already verified that our key assumption, that covariates are approximately low

rank, is reasonable in practice for US Census data. In a corollary, we verify that it is

reasonable in theory: it holds for a broad class of linear and nonlinear factor models.

5.1 Step 1: Data cleaning

For the data cleaning guarantee, we place four assumptions on the corrupted data. To

lighten notation, we suppress indexing by train.

Assumption 5.1 (Bounded signal). There exists an absolute constant Ā <∞ such that

for all i ∈ [m], j ∈ [p], |Xij| ≤ Ā.

Assumption 5.1 is a standard boundedness assumption imposed on true values in the

matrix completion literature.

Assumption 5.2 (Measurement error). Each row of measurement error Hi,· is mean zero

and subexponential, i.e. E[Hi,·|Xi,·] = 0 and there exists a ≥ 1 and Ka < ∞ such that

∥Hi,·|Xi,·∥ψa ≤ Ka. Hence there exists κ2 > 0 such that ∥E[HT
i,·Hi,·|Xi,·]∥op ≤ κ2. We assume

measurement error is independent across rows.

Measurement error is independent across rows, but it may be dependent within a given

row. If in a given row of Hi,· ∈ Rp each coordinate is independent, then Ka and κ2 are

constants (i.e. they do not scale with p) (Vershynin, 2018, Lemma 3.4.2). More generally,

(Ka, κ) quantify the level of dependence among the entries of Hi,· within a row. Our

model allows for a great deal of heteroscedasticity. In particular, the results to follow are

conditional on X so, for example, the shape of the distribution of Hij may depend on Xij

as long as it is mean zero and has tails no wider than those of an exponential distribution.

As such, it encompasses discretization and differential privacy.

Assumption 5.3 (Missing values). In each row of missingness πi,·, πij is 1 with probability

ρj and NA otherwise. Identifying NA with 0, we assume there exists K̄ < ∞ such that

∥πi,· − (ρ1, ..., ρp)|Xi,·∥ψ2 ≤ K̄. We assume missingness is independent across rows.
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Our missingness model generalizes the standard missingness model in the PCR error-

in-variables literature in two ways: (i) the missingness of one variable may depend on the

missingness of another, and (ii) different variables may be missing with different probabilities.

These differences are easily visualized by the contrast

E[πTi,·πi,·] =


ρ1 ρ12 ... ρ1p

ρ12 ρ2 ... ρ2p
...

... . . . ...

ρ1p ρ2p ... ρp

 versus E[πTi,·πi,·] =


ρ ρ2 ... ρ2

ρ2 ρ ... ρ2

...
... . . . ...

ρ2 ρ2 ... ρ


where ρjj′ = E[πijπij′ ] does not necessarily equal ρjρj′ = E[πij]E[πij′ ]. These additional

degrees of flexibility are crucial for Census data, where non-responses for different variables

are often correlated and where non-response rates of different variables can be vastly different.

As with measurement error, missingness is independent across rows, but it may be dependent

within a given row. If in a given row of πi,· ∈ Rp each coordinate is independent, then

ρjj′ = ρjρj′ and K̄ is constant. More generally, K̄ quantifies the level of dependence among

the entries of πi,· within a row. Our model allows for different probabilities of missingness

for different variables in a way that can depend on the signal. The results to follow are

conditional on X so, for example, the probability ρj may depend on X·,j . For our theoretical

results, we define the additional notation

ρmin := min
j∈[p]

ρj, ρ = diag(ρ1, ..., ρp) ∈ Rp×p.

Assumption 5.4 (Concentrated signal). Consider the approximation X(lr) to X, with

singular values s1, ..., sr. Assume that s1, ..., sr ≥ C
√

mp
r

, where C is an absolute constant.

Assumption 5.4 is analogous to incoherence-style conditions in econometrics (Bai and Ng,

2019; Agarwal et al., 2021, 2020a,b) and the notion of pervasiveness in matrix completion

(Fan et al., 2018). Similar to a strong factor assumption (Onatski, 2012; Anatolyev and

Mikusheva, 2021), it ensures that the explanatory power of X(lr) dominates the explanatory

power of various error terms. Specifically, it ensures that signal is spectrally concentrated.

A natural setting in which Assumption 5.4 holds is if X(lr)
ij = Θ(1) and s1, ...sr = Θ(τ), i.e.,

they are well-balanced. Then, for absolute constants C,C ′, C ′′ > 0,

C · r · τ 2 =
∑
k

s2k = ∥X(lr)∥2Fr = C ′ ·mp
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which implies τ = C ′′√mp
r

. We leave to future work the extension of our results to settings

with different spectral assumptions on X(lr).

Remark 5.1 (Approximately low rank signal). We parametrize our rates by the quality of

low rank approximation.

Without loss of generality, X = X(lr)+E(lr), where X(lr) is a low rank approximation

to X and E(lr) is the approximation residual. The two key quantities are r = rank{X(lr)}

and ∆E = ∥E(lr)∥max. It is with loss of generality that r and ∆E are simultaneously well

behaved. Intuitively, as r decreases ∆E increases (and vice-versa). Indeed, if X(lr) = X

then trivially r ≤ (m, p) and ∆E = 0; conversely, if X(lr) = 0, then r = 0 but ∆E = Ā. As

we show in the corollary, under a nonlinear factor model, both r and ∆E are well behaved:

r ≪ (m, p) and ∆E → 0. Until that corollary, our rates are parametrized by (r,∆E).

Theorem 5.1 (Finite sample data cleaning rate). Suppose Assumptions 5.1, 5.2, 5.3,

and 5.4 hold. Furthermore, suppose that k = r and ρmin >
23 log(mp)

m
. Then for an absolute

constant C > 0,

1

m
E∥X̂ −X∥22,∞ ≤ C1 ·

r ln5(mp)

ρ4min

(
1

m
+

1

p
+∆2

E

)
where C1 = C · Ā4(Ka + K̄)2(κ+Ka + K̄)2.

The norm of convergence is the so-called (2,∞) norm:

1

m
∥X̂ −X∥22,∞ = max

j∈[p]

1

m
∥X̂i,· −X·,j∥22 = max

j∈[p]

1

m

m∑
i=1

(X̂ij −Xij)
2

i.e. a maximum across columns and an average across rows. For any given variable j ∈ [p],

Theorem 5.1 guarantees that data cleaning performs well on average across observations

i ∈ [m]. Our rate requires both m and p to increase. Rather than a curse, there is blessing

of dimensionality: more repeated measurements improve the quality of data cleaning. For

the bound to be meaningful, (r,∆E) must be simultaneously well behaved, which is our key

assumption. Recall that (Ka, κ, K̄) quantify the level of corruption dependence within a

row. As long as the dependence is weak, e.g. (Ka, κ, K̄) scale as some power of ln(mp), this

dependence in negligible. Our downstream results for the error-in-variable regression and

balancing weight are predicated on this data cleaning guarantee. As such, the geometry

used in data cleaning is the crux of the entire framework: signal is spectrally concentrated,

while noise is spectrally diffuse, so we can concentrate out the noise.
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5.2 Step 2: Error-in-variable regression

We place three additional assumptions for the error-in-variable regression guarantee.

Assumption 5.5 (Response noise). The response noise satisfies E[εi] = 0 and V[εi] ≤ σ̄2.

It is independent across rows and independent of Zi,·.

This weak condition permits measurement error and differential privacy of the outcome

Yi. See Appendix A for outcome attrition. Next we assume train and test each contains

a sufficient variety of observations. For a matrix M ∈ Rm×p, we define its row space as

row(M) = span{Mi,·}.

Assumption 5.6 (Row space inclusion). Assume row[b{X(lr),train}] = row[b{X(lr),test}].

This property permits X(lr),train ̸= X(lr),test, and also permits the two matrices to have

different SVDs. In Appendix E, we verify that Assumption 5.6 holds with high probability

under weak auxiliary conditions. Finally, we place a weak technical condition.

Assumption 5.7 (Well conditioned estimators). Let ŝ′k′ be the smallest non-zero singular

value of b(Dtrain, X̂). Assume that ŝ′k′ ≳
ε̄

polynomial(m,p) where E[ε8i ] ≤ ε̄8.

For (β̂, η̂) to be well conditioned, the singular value ŝ′k′ should not be too small. In

particular, it must be bounded below by an arbitrary negative power of m and p. We

view the Assumption 5.7 as a diagnostic tool for empirical practice: choose the PCA

hyperparameter k such that the k′-th singular value ŝ′k′ is not too close to zero.

Before stating the result, we introduce a theoretical device β∗ as the coefficient of the

best low rank nonlinear approximation to γ0. In particular, we approximate

γ0(Di, Xi,·) = b(Di, X
(lr)
i,· )β∗ + ϕ

(lr)
i

where ϕ(lr)
i is the approximation error. It turns out to be convenient to keep track of

this approximation error by defining ϕi := γ0(Di, Xi,·) − b(Di, Xi,·)β
∗. There will be a

trade-off: a richer dictionary b leads to a smaller approximation error in terms of ∥ϕ∥22, but

more compounding of measurement error and missingness. The following result helps to

characterize how the compounded data corruption magnifies (ρ−1
min, r,∆E) but nothing else.
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Remark 5.2 (General dictionaries). In the main text, we state results that hold for a

broad class of dictionaries, with the dictionary specific constant C ′
b and the concise notation

(ρ′min, r
′,∆′

E) in Theorems 5.2 and 5.3. In Appendix C we prove that

C ′
b ≤ 2dmax · Ā2dmax

max · ∥X̂∥2dmax
max ·, 1

ρ′min

≤ dmaxĀ
dmax

ρmin

, r′ ≤ rdmax , ∆′
E ≤ CĀdmax · dmax∆E

where dmax is the degree of the polynomial dictionary. We articulate restrictions on the class

of dictionaries in Appendix C. For the interacted dictionary, dmax = 2.

Remark 5.3 (Bound on ∥X̂∥max). Under further incoherence style assumptions, we bound

∥X̂∥max ≤ C
√
r in Appendix D. Alternatively, one can bound

∥X̂∥max ≤ ∥X̂ −X∥max + ∥X∥max ≤ ∥X̂ −X∥22,∞ + Ā

then appeal to Theorem 5.1 with high probability. Doing so does not affect the powers of

(m, p) in the main results, but does increase the complexity of the pre-factors.

Theorem 5.2 (Finite sample error-in-variable regression rate). Suppose the conditions of

Theorem 5.1 hold, as well as Assumptions 5.5, 5.6, and 5.7.

If ρ′min ≫ C̃
√
r′ ln

3
2 (mp)

{
1
√
p
∨ 1√

m
∨∆E

}
, C̃ := CĀ

(
κ+ K̄ +Ka

)
then (5)

R(γ̂) ≤ C ′
bC1C2 · σ̄2 · (r

′)3 ln8(mp)

(ρ′min)
6

∥β∗∥21
(

1

m
+

p

m2
+

1

p
+
(
1 +

p

m

)
(∆′

E)
2 + p(∆′

E)
4

)
+ C2 ·

(r′)2 ln3(mp)

(ρ′min)
2

∆ϕ

(
1 + (∆′

E)
2
)

where ∆ϕ =
1
m
∥ϕtrain∥22 ∨ 1

m
∥ϕtest∥22 and

C1 = CĀ4(Ka + K̄)2(κ+ K̄ +Ka)
2, C2 = C · Ā4(κ+ K̄ +Ka)

2.

Corollary 5.1 (Simplified regression rate). Suppose the conditions of Theorem 5.2 hold.

Further suppose γ0 is exactly linear in signal, which is exactly low rank. Then

R(γ̂) ≤ C1C2 · σ̄2 · r
3 ln8(mp)

ρ6min

∥β∗∥21
(

1

m
+

p

m2
+

1

p

)
.

The norm of convergence is a generalized mean square error

R(γ̂) = E

[
1

m

∑
i∈test

{γ̂(Di, Zi,·)− γ0(Di, Xi,·)}2
]
,
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which is a relaxation of mean square error, where the expectation is over randomness in

train and test. Two aspects of our problem necessitate this norm: (i) given the (2,∞)

data cleaning guarantee in Theorem 5.1, this is the best we can do; and (ii) for i.n.i.d. data,

a population risk is otherwise not well defined.4 Since the estimator γ̂ does not involve

cleaning test, this result is our desired theory of implicit data cleaning. The bound requires

both m and p to increase, p≪ m2, and ρmin ≫ p−1/2 ∨m−1/2 ∨∆E. For the bound to be

meaningful, (r,∆E) must be simultaneously well behaved and the corruption dependence

must be weak. Finally, the bound includes the nonlinear approximation error ∆ϕ and the

size of the theoretical device ∥β∗∥1. ∥β∗∥1 is well behaved if β∗ is approximately sparse. In

summary, we keep track of the low rank approximation error ∆E and the nonlinear sparse

approximation error ∆ϕ. To deal with ∆E, we demonstrate that nonlinear factor models

admit low rank approximation below. Due to our doubly robust approach, inference for the

causal parameter θ0 is robust to non-vanishing ∆ϕ—a discussion we revisit later.

We make several innovations relative to previous work in the PCR error-in-variables

literature. First, we propose an error-in-variable regression estimator that does not clean

the test covariates, so we must develop a new theory of implicit data cleaning. Second, we

define and analyze a new norm of convergence which we will subsequently use in causal

inference. See Appendix E for a comparison of our norm with the norms in previous work.

Third, we allow for dependence of missingness across variables and for different probabilities

of missingness across variables. This flexibility is realistic for Census data. Fourth, we

consider a nonlinear regression function γ0 that is approximated by a nonlinear dictionary

of basis functions b. The dictionary of basis functions is important for causal inference,

since it allows for treatment effect heterogeneity, and it requires a novel characterization of

which nonlinearities do not compound data corruption too much.

5.3 Step 3: Error-in-variable balancing

We place one final assumptions for the error-in-variable balancing weight.

Assumption 5.8 (Row space inclusion). Assume M̂ ∈ row{b(Dtrain, X̂)}.

Whereas Assumption 5.6 is about the low rank approximation of the signal across train

4Interestingly, even with i.i.d. data, (i) necessitates this norm.
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and test, Assumption 5.8 is about the counterfactual moment in relation to train after

cleaning. With M̂ = [{b(Dtrain, X̂)}TY train], which reverts to error-in-variable regression,

Assumption 5.8 immediately holds. In other cases, it limits the counterfactual queries that

an analyst may ask. Because it is about empirical quantities, we view it as a diagnostic tool

that an analyst should use to determine whether the counterfactual can be extrapolated.

As before, we introduce a theoretical device η∗ as the coefficient of the best low rank

nonlinear approximation to α0. In particular, we approximate

α0(Di, Zi,·) = b(Di, X
(lr)
i,· )η∗ + ζ

(lr)
i

where ζ(lr)
i is the approximation error.5 As before, we study this approximation error by

defining ζi := α0(Di, Zi,·) − b(Di, Xi,·)η
∗. There will be a trade-off: a richer dictionary b

leads to a smaller approximation error in terms of ∥ζ∥22, but amplification of (ρ−1
min, r,∆E).

Remark 5.4 (General causal parameters). In the main text, we state results that hold for a

broad class of causal parameters, with parameter specific constants (C ′
m, C

′′
m) in Theorem 5.3.

In Appendix F, we characterize (C ′
m, C

′′
m) for several examples. For ATE with the interacted

dictionary, C ′
m = 1 and C ′′

m = Ā.

Theorem 5.3 (Finite sample error-in-variable balancing weight rate). Suppose the conditions

of Theorem 5.1 hold, as well as Assumptions 5.6, 5.7, and 5.8. If (5) holds and ∥α0∥∞ ≤ ᾱ,

R(α̂) ≤ C3 ·
(r′)5 ln13(mp)

(ρ′min)
10

∥η∗∥21

·
{

1

m
+

1

p
+

p

m2
+
m

p2
+

(
1 +

p

m
+
m

p

)
(∆′

E)
2 + (m+ p)(∆′

E)
4 +mp(∆′

E)
6

}
+ 2∆ζ

where ∆ζ =
1
m
∥ζtrain∥22 ∨ 1

m
∥ζtest∥22 and

C3 = CĀ14(C ′
b +
√
C ′
m + C ′′

m + ᾱ + Ā)2(Ka + K̄)4(κ+ K̄ +Ka)
6.

Corollary 5.2 (Simplified balancing weight rate). Suppose the conditions of Theorem 5.3

hold. Further suppose α0 is exactly linear in signal, which is exactly low rank. Then

R(α̂) ≤ C3 ·
r5 ln13(mp)

ρ10min

∥η∗∥21 ·
{

1

m
+

1

p
+

p

m2
+
m

p2

}
replacing C ′

b with 1 in the definition of C3.
5A further assumption that the treatment mechanism only depends on signal, i.e. E[Di|Xi,·, Hi,·, πi,·] =

E[Di|Xi,·], implies α0(Di, Zi,·) = α0(Di, Xi,·) = b(Di, X
(lr)
i,· )η∗ + ζ

(lr)
i .
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The norm of convergence is a generalized mean square error

R(α̂) = E

[
1

m

∑
i∈test

{α̂(Di, Zi,·)− α0(Di, Zi,·)}2
]
,

which is the same relaxation of mean square error as before. The bound requires both m

and p to increase, m1/2 ≪ p≪ m2, and ρmin ≫ p−1/2 ∨m−1/2 ∨∆E. For the bound to be

meaningful, (r,∆E) must be simultaneously well behaved and the corruption dependence

must be weak. Finally, the bound includes the nonlinear approximation error ∆ζ and the

size of theoretical device ∥η∗∥1. In summary, we keep track of the low rank approximation

error ∆E and the nonlinear sparse approximation error ∆ζ . Nonlinear factor models imply

bounds on ∆E. Due to our doubly robust approach, inference for the causal parameter θ0 is

robust to non-vanishing ∆ζ—a discussion we revisit below.

Theorem 5.3 innovates in all of the ways that Theorem 5.2 does and more. Most

importantly, it analyzes a new PCR estimator for a new estimand: the error-in-variable

balancing weight. A rich literature proposes balancing weight estimators for causal inference

with clean data, but to our knowledge, ours is the first error-in-variable balancing weight

estimator for causal inference with corrupted data. As developed in Appendix F, Theorem 5.3

actually holds for a broad class of counterfactual moments and therefore a broad class of

causal parameters. Moreover, the counterfactual moment M̂ = [{b(Dtrain, X̂)}TY train]

recovers error-in-variable regression. We choose not to simply subsume Theorem 5.2 by

Theorem 5.3 for two reasons. First, doing so would require that Yi and εi are bounded,

which rules out differential privacy for the outcome; see the Appendix A discussion. Second,

Theorem 5.2 has lower powers of (r, ρ−1
min) and avoids the term m

p2
so it is typically a tighter

bound.

5.4 Step 4: Causal estimation and inference

Before stating our results, we formalize the sense in which the corrupted data problem

is an extended semiparametric problem. Let Wi,· = (Di, Xi,·, Hi,·, πi,·) concatenate the

signal and the noise, so that L2(W) consists of square integrable functions of the form

γ : (Di, Xi,·, Hi,·, πi,·) → R. Both the true regression γ0(Di, Xi,·) and our error-in-variable

estimator γ̂(Di, Zi,·) belong to this space, which serves as our hypothesis space for semi-
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parametric analysis. With this theoretical background, we formalize our distribution shift

assumptions.

Assumption 5.9 (Marginal distribution shift). The extended outcome and treatment

mechanisms, E[Yi|Di, Xi,·, Hi,·, πi,·] and E[Di|Xi,·, Hi,·, πi,·], do not vary across observations.

Assumption 5.9 implies that γ0(Wi,·) and α0(Wi,·) do not vary across observations,

though the marginal distributions Pi(Wi) may vary. Our corruption model implies γ0(Wi,·) =

γ0(Di, Xi,·), and we are agnostic about whether α0(Wi,·) = α0(Di, Xi,·) for the extended

hypothesis space.6 We place one final assumption, mildly strengthening common support.

Assumption 5.10 (Bounded propensity). The extended propensity score is bounded away

from zero and one, i.e. 1− ϕ̄ ≤ E[Di|Xi,·, Hi,·, πi,·] ≤ ϕ̄.

We introduce some additional notation to state the finite sample Gaussian approximation.

Define the oracle influences ψi = ψ(Wi,·, θi, γ0, α0) where the influence function is

ψ(Wi,·, θ, γ, α) = γ(1, Xi,·, Hi,·, πi,·)− γ(0, Xi,·, Hi,·, πi,·) + α(Wi,·){Yi − γ(Wi,·)} − θ.

E[ψi] = 0 since E[γ0(1, Xi,·)− γ0(0, Xi,·)] = θi and E[α0(Wi,·){Yi − γ0(Wi,·)}] = 0 by law of

iterated expectations. We define the higher moments and average higher moments by

σ2
i = E[ψ2

i ], ξ3i = E[|ψi|3], χ4
i = E[ψ4

i ]; σ2 =
1

n

n∑
i=1

σ2
i , ξ3 =

1

n

n∑
i=1

ξ3i , χ4 =
1

n

n∑
i=1

χ4
i .

Remark 5.5 (General causal parameters). In the main text, we state results that hold for

a broad class of causal parameters, with parameter specific constants (Q̄, q̄) in Theorems 5.4

and 5.5. For ATE, Q̄ = 2
(

1
ϕ̄
+ 1

1−ϕ̄

)
and q̄ = 1 under Assumptions 5.9 and 5.10. In

Appendix G, we characterize (Q̄, q̄) for several other examples under generalizations of

Assumptions 5.9 and 5.10.

Theorem 5.4 (Finite sample Gaussian approximation). Suppose Assumptions 5.9 and 5.10

hold, E[ε2i | Wi,·] ≤ σ̄2, and ∥α0∥∞ ≤ ᾱ. Further suppose that for (i, j) ∈ test,

γ̂(Wi,·) |= γ̂(Wj,·)|train, α̂(Wi,·) |= α̂(Wj,·)|train.

6If E[Di|Xi,·, Hi,·, πi,·] = E[Di|Xi,·], then α0(Wi,·) = α0(Di, Xi,·).
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Then with probability 1− ϵ,

sup
z∈R

∣∣∣∣P{n1/2

σ
(θ̂ − θ0) ≤ z

}
− Φ(z)

∣∣∣∣ ≤ cBE
(
ξ

σ

)3

n− 1
2 +

∆

(2π)1/2
+ ϵ,

where Φ(z) is the standard Gaussian cumulative distribution function, cBE = 0.5600, and

∆ =
3L

ϵσ

[
(Q̄1/2 + ᾱ){R(γ̂)}q̄/2 + σ̄{R(α̂)}1/2 + {nR(γ̂)R(α̂)}1/2

]
.

Theorem 5.5 (Finite sample variance estimation). Suppose Assumptions 5.9 and 5.10 hold,

E[ε2i | Wi,·] ≤ σ̄2, and ∥α̂∥∞ ≤ ᾱ′. Then with probability 1− ϵ′,

|σ̂2−(σ2+bias)| ≤ ∆′+∆′′+3[(∆′)1/2{(∆′′)1/2+σ+∆1/2
out}+(∆′′)1/2{∆1/2

out+(∆′)1/4∆1/4
out}+(∆′)1/4∆1/4

outσ],

where bias = ∆out + 2∆
1/2
outσ, ∆out = 1

n

∑n
i=1[(θi − θ0)

2], and

∆′ = 4(θ̂ − θ0)
2 +

24L

ϵ′
[
{Q̄+ (ᾱ′)2}R(γ̂)q̄ + σ̄2R(α̂)

]
, ∆′′ =

(
2

ϵ′

)1/2

χ2n− 1
2 .

Corollary 5.3 (Confidence interval coverage). Suppose the conditions of Theorems 5.4

and 5.5 hold. Further assume

1. Moment regularity: {(ξ/σ)3 + χ2}n− 1
2 → 0;

2. Error-in-variable regression rate:
(
Q̄1/2 + ᾱ/σ + ᾱ′) {R(γ̂)}q̄/2 → 0;

3. Error-in-variable balancing weight rate: σ̄{R(α̂)}1/2 → 0;

4. Product of rates is fast: {nR(γ̂)R(α̂)}1/2/σ → 0.

Then θ̂
p→ θ0, σ̂2 p→ σ2 + bias, P{θ0 ∈ (θ̂ ± 1.96σ̂n−1/2)} → 0.95 + c, bias, c ≥ 0.

If in addition ∆out → 0, i.e. there are not too many outliers,

then θ̂
p→ θ0, σ̂2 p→ σ2, P{θ0 ∈ (θ̂ ± 1.96σ̂n−1/2)} → 0.95.

Remark 5.6 (General causal parameters and data cleaning). Corollary 5.3 holds, as

stated, for a broad class of semiparametric estimands such as the average elasticity and

nonparametric estimands such as heterogeneous treatment effects. Moreover, it holds for not

only the data cleaning and estimation procedure that we propose, but for any data cleaning

and estimation procedure satisfying its weak conditions.
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The individual rate conditions R(γ̂) → 0 and R(α̂) → 0 as well as the product rate

condition {nR(γ̂)R(α̂)}1/2 → 0 suffice for Gaussian approximation with standard deviation

σn−1/2, generalizing the main result in Chernozhukov et al. (2021) to the harder setting

with corrupted and i.n.i.d. data. These rate conditions are in terms of a more general norm

than previous work because of matrix completion in the data cleaning step. Nonetheless,

we recover a familiar product rate condition from semiparametric theory. The conditions

solve the two remaining theoretical challenges. First, they provide a framework to translate

an on-average data cleaning guarantee into a data cleaning-adjusted confidence interval for

the causal parameter, by using generalized norms. Second, they ensure that the standard

deviation is σn−1/2 as long as the product of error-in-variable rates (and hence the product

of data cleaning rates) is of order n−1/2. In summary, they allow for causal inference at rates

faster than matrix completion, which will be essential for the leading application, where we

desire precision for the population while maintaining privacy for individuals.

A major technical innovation is semiparametric variance estimation in the i.n.i.d. setting,

which is essential to the validity of confidence intervals. We define ∆out to quantify the

frequency of outliers. Since θi = E[γ0(1, Xi,·)− γ0(0, Xi,·)], ∆out quantifies the shift in the

marginal distributions of true covariates Pi(Xi,·). At best, ∆out = 0 in the i.i.d. case. At

worst, ∆out is a constant (when individual treatment effects are bounded). The condition

∆out → 0, i.e. relatively few outliers, suffices for consistent variance estimation and nominal

confidence intervals. When ∆out ̸→ 0, our variance estimator is asymptotically biased

upwards by bias = ∆out + 2∆
1/2
outσ, implying conservative confidence intervals. At worst,

our confidence intervals are valid but conservative by a theoretically quantifiable amount.

Our exact characterization of bias may have broader consequences for variance upper

bounds and design-based uncertainty, which we pose as a direction for future work.7

5.5 Key assumption holds for nonlinear factor models

Finally, we tie together our various results and revisit our key assumption that covariates

are approximately low rank. We show that nonlinear factor models (i) encode the intuition

of approximate repeated measurements; (ii) imply that covariates are approximately low
7We thank Isaiah Andrews for suggesting this connection.
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rank; and (iii) satisfy the rate conditions for causal inference. In a nonlinear factor model,

Xij = g(λi, µj) where (λi, µj) are latent factors corresponding to units and covariates,

respectively. We assume that the function g is smooth in its second argument, formalizing

the repeated measurement intuition.

Definition 5.1 (Hölder class). The Hölder class H(q, S, CH) on [0, 1)q is the set of functions

g : [0, 1)q → R whose partial derivatives satisfy∑
s:|s|=⌊S⌋

1

s!
|∇sg(µ)−∇sg(µ

′)| ≤ CH ∥µ− µ′∥S−⌊S⌋
max , ∀µ, µ′ ∈ [0, 1)q,

where ⌊S⌋ denotes the largest integer strictly smaller than S.

Assumption 5.11 (Generalized factor model). Assume X is generated as Xij = g(λi, µj),

where λi, µj ∈ [0, 1)q and g(λi, ·) ∈ H(q, S, CH).

A linear factor model is a special case of a generalized factor model where g(λi, µj) = λTi µj .

Such a model satisfies Definition 5.1 for all S ∈ N and CH = C, for some absolute positive

constant C <∞. Assumption 5.11 also allows for smooth nonlinear factor models, and it

implies joint control over (r,∆E) as desired. Intuitively, as latent dimension q increases, the

rank r increases. As smoothness S increases, the approximation error ∆E decreases. Our

final result demonstrates that, as long as the ratio q/S is small enough, the data cleaning

adjusted confidence intervals are valid.

Remark 5.7 (General dictionaries). In the main text, we state results that hold for a broad

class of dictionaries, with the concise notation q′ in Corollary 5.4. In Appendix H, we

prove that q′ ≤ dmaxq, where dmax is the degree of the polynomial dictionary. We articulate

restrictions on the class of dictionaries in Appendix C. For the interacted dictionary,

dmax = 2.

Corollary 5.4. Suppose the conditions of Theorems 5.2, 5.3, 5.4 and 5.5 hold, as well as

Assumption 5.11. For simplicity, consider the semiparametric case where σ, σ̄, ᾱ, ᾱ′, Q̄ are

bounded above and q̄ = 1. If in addition

1. Moment regularity: {(ξ/σ)3 + χ2}n− 1
2 → 0;

2. Weak dependence: (Ka, κ, K̄, ρ
−1
min) scale polynomially in ln(np);
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3. Nonlinear sparse approximation: m∆ϕ ≤ ∥β∗∥21, <∞; and m∆ζ ≤ ∥η∗∥21;

4. Enough repeated measurements: n
2
3 ≲ p ≲ n

3
2 , i.e. n = pυ or p = nυ for υ ∈ [1, 3

2
];

5. Small latent dimension to smoothness ratio: q′

S
< 3

4
− υ

2
.

Then the conclusions of Corollary 5.3 hold.

In summary, we allow either n > p or p > n as long as (n, p) increase at similar rates.

Given (n, p), the ratio of the latent dimension q over smoothness S in the generalized factor

model must be sufficiently low. For example, if n = p and q′ = q then we require q < S
4
:

the latent dimension must be less than a quarter of the smoothness. A sufficiently low
q
S

ratio ensures sufficiently fast learning rates R(γ̂) and R(α̂) for causal inference with

standard error σ̂n−1/2. For the special case of a linear factor model, the q
S

ratio constraint

becomes vacuous, and there is no restriction on the latent dimension q. The same is true

for a polynomial factor model where g(λi, µj) = polynomial(λi, µj). The doubly robust

framework allows us to slightly relax the conditions stated above and still obtain valid

inference. In particular, either ∆ϕ ̸→ 0 or ∆ζ ̸→ 0, i.e. γ0 or α0 may be incorrectly specified.

See Chernozhukov et al. (2022a, Section 2) for further discussion of mis-specification.

6 Case study: Effect of import competition using Census

Figure 9: Is correlation causation? Autor et al.

(2013, Figure 1)

Equipped with theoretical guarantees, we re-

turn to the motivating real world issue: mea-

surement error, missing values, discretiza-

tion, and differential privacy in the US Cen-

sus. We replicate a seminal paper in labor

economics that uses Census data, while in-

troducing different types and levels of syn-

thetic corruption. In particular, we imple-

ment differential privacy at the level man-

dated for the 2020 Census.
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6.1 Economic research question

We revisit the economic research question studied by Autor et al. (2013): what is the effect

of import competition on local labor markets in the US? Figure 9 illustrates how, between

the years 1987 and 2007, Chinese imports skyrocketed while US manufacturing employment

plummeted. Phrased another way, the research question is whether this correlation is causal.

We ask an additional question: can we recover the same effects after introducing various

types and levels of synthetic corruption?

Following the original study, we use Census data at the commuting zone (CZ) level. A

CZ is an aggregate unit interpretable as a local economy. 722 CZs make up the mainland US,

and CZ data are constructed from individual microdata published by the US government:

IPUMS, ACS, BEA, and SSA. The outcome Yi is percent change in US manufacturing

employment; the treatment Di is percent change in imports from China; the instrument Ui

is percent change in imports from China to other countries; and the covariates Xi are CZ

characteristics. In more detail, we use data from two periods: 1990-2000 and 2000-2007, for

a total of 1,444 observations. (Yi, Di, Ui) are changes within a period, e.g. the 2000 level

minus the 1990 level, while Xi,· are levels at the beginning of a period, e.g. the 1990 level.

The causal parameter is the partially linear instrumental variable regression parameter

described in Appendix A.

6.2 Can we recover the same effects with data corruption?

In Section 3, we have already verified that the covariates Xi,· are approximately low rank.

Both the original specification Xi,· ∈ R14 and the augmented specification Xi,· ∈ R30

include approximate repeated measurements, with variables such as percent employment

in manufacturing, percent college educated, and percent employment among women. In

particular, the approximate rank is five.

Figure 10 presents our first semi-synthetic exercises. For reference, we visualize in red

the 2SLS point estimate and confidence interval of Autor et al. (2013), using clean data.

Immediately next to Autor et al. (2013)’s results, we visualize our own point estimate and

confidence interval with clean data. We recover essentially the same point estimate and

a somewhat smaller confidence interval. The true covariates are approximately low rank,
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our procedure exploits this fact, and therefore it is is more efficient. Subsequently, we

implement our procedure with increasing levels of measurement error: 20%, 40%, 60%, 80%,

and 100% noise-to-signal ratio. Our point estimates remain stable, and the standard errors

subtly increase in length. We obtain similar results with missing values, discretization,

and differential privacy: point estimates remain stable and the standard errors adaptively

increase in length for higher noise-to-signal ratios.

(a) Measurement error (b) Missing values

(c) Discretization (d) Differential privacy

Figure 10: Synthetic corruption

6.3 Formalizing privacy

Next, we calibrate the semi-synthetic exercises to privacy levels mandated by the US Census

Bureau. To do so, we first clarify how our model of causal inference with corrupted data

accommodates various notions of differential privacy. With these formal results, we can then
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calibrate the variance of the Laplacian noise appropriately. In what follows, we focus on a

one-off data release (formally called the non-interactive setting). There are two relevant

privacy concepts: central differential privacy of summary tables such as the Census, and

per instance differential privacy of microdata such as the current population survey (CPS).

To begin, we define central differential privacy. To be concrete, we maintain the following

thought experiment: we are the Census Bureau, and our goal is to publish Autor et al.

(2013)’s CZ-level aggregated data set while protecting the privacy of individuals within

CZs. In particular, we have access to the individual-level microdata, which we will not

publicly share; we will only publish the CZ-level summaries for aggregate units. Consider

a particular commuting zone i ∈ [n] with Li individuals, and denote its individual-level

microdata by M (i) ∈ RLi×p. We wish to publish p summary statistics Xi,· for this CZ,

where Xij =
1
Li

∑Li

ℓ=1M
(i)
ℓj , however we wish to maintain plausible deniability that each

individual ℓ ∈ [Li] contributed their data. The simulated attack on the 2010 Census found

that Census blocks summary tables did not maintain this plausible deniability.

Definition 6.1 (Central differential privacy for summary tables). A randomized mechanism

M confers central differential privacy with privacy loss ϵ if and only if for any two possible

individual-level data sets M and M ′ differing in a single row, and for all events E in the

range of M,
P(M(M ) ∈ E)

P(M(M ′) ∈ E)
≤ eϵ

where the randomness is with respect to M.

The canonical mechanism that achieves central differential privacy is to publish M(M (i)) =

Xi,· + Hi,· instead of Xi,·, where Hi,· is Laplacian noise with an appropriately calibrated

variance.8 In addition to the Laplace mechanism (Dwork et al., 2006), the discrete (Duchi

et al., 2018) and piece-wise uniform (Wang et al., 2019) mechanisms induce measurement

error that is sub-exponential and mean zero, which fits within our framework. For simplicity,

we focus on the Laplace mechanism when relating privacy to our theoretical results.

Proposition 6.1 (Strong protections for aggregate data). Suppose

1. Each entry of microdata is bounded, i.e. |M (i)
ℓj | ≤ Āi;

8More precisely, Mi : RLi×p → Rp.
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2. No individual appears in two commuting zones.

Then the mechanism Zij = Xij + Hij where Hij
i.i.d.∼ Laplace

(
2Āi

ϵ
p
Li

)
confers ϵ central

differential privacy and the measurement error parameters satisfy Ka, κ ≤ maxi∈[n]
23/2Āi

ϵ
p
Li
.

In summary, the calibrated Laplacian variance depends on the privacy loss ϵ, the most

extreme true value Āi, the number of covariates p, and number of individuals Li per

aggregate unit. The condition maxi∈[n]
p
Li

≲ ln(np) implies that the measurement error

parameters (Ka, κ) diverge slowly with (n, p), so that our rates of data cleaning and error-in-

variable estimation translate into data cleaning adjusted confidence intervals. This auxiliary

condition is a practical diagnostic: roughly speaking, the number of published covariates

should not greatly exceed the number of individuals per aggregate unit.

Remark 6.1 (Limitations for aggregate data). The theoretical condition maxi∈[n]
p
Li

≲ ln(np)

sheds new light on limitations. It is perhaps plausible for commuting zones, but implausible

for Census blocks, which have fewer individuals per aggregate unit. Fortunately, much

empirical economic research studies commuting zones, which we study in our semi-synthetic

exercise. An important direction for future research is to empirically investigate, through

simulated attacks, how vulnerable various data releases may be for different p
Li

regimes.

In addition to tabular summaries, the Bureau publishes microdata, for which an alter-

native definition of privacy is necessary. We maintain the following thought experiment:

we are the Census Bureau, and our goal is to publish the microdata that is subsequently

aggregated by Autor et al. (2013) at the CZ level. Now, the index i ∈ [n] corresponds to

the i-th individual with covariates Xi,· ∈ Rp that we wish to publish while maintaining

plausible deniability that any given covariate profile is contained in the data release.

Definition 6.2 (Per instance differential privacy for microdata). A randomized mechanism

M confers per instance differential privacy with privacy loss ϵ if and only if for any two

possible individual-level vectors x and x′, and for all events E in the range of M,

P(M(x) ∈ E)

P(M(x′) ∈ E)
≤ eϵ

where the randomness is with respect to M.
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A mechanism that achieves per instance differential privacy is to publish M(Xi,·) =

Xi,· + Hi,· instead of Xi,·, where Hi,· is Laplacian noise with an appropriately calibrated

variance. We focus on the Laplace mechanism when relating privacy to our theoretical

results. In anticipation of a more qualified privacy guarantee, we consider adding noise to

only T out of the p covariates.

Proposition 6.2 (Weaker protections for microdata). Suppose Assumption 5.1 holds. The

mechanism Zij = Xij + Hij with j ∈ [T ], where Hij
i.i.d.∼ Laplace

(
2ĀT
ϵ

)
, confers ϵ per

instance differential privacy for the initial T covariates. Moreover, the measurement error

parameters satisfy Ka, κ ≤ 23/2ĀT
ϵ

.

In summary, the calibrated Laplacian variance depends on the privacy loss ϵ and the

subset size T . The condition T ≪ (n, p) implies that the measurement error parameters

(Ka, κ) diverge slowly with (n, p), so that our rates of data cleaning and error-in-variable

estimation translate into data cleaning adjusted confidence intervals. This qualification,

that only a subset of variables may be privatized, is an example of event level rather than

user level differential privacy: with microdata, only some aspects of an individual’s identity

are protected, while with summary tables all aspects are protected.

6.4 Privacy calibrated to 2020 US Census levels

Figure 11: Calibration

As our second semi-synthetic exercise, we

implement central differential privacy for Au-

tor et al. (2013)’s CZ-level aggregated data

set while protecting the privacy of individu-

als within CZs. We calibrate the Laplacian

variance according to Proposition 6.1, where

ϵ = 17.14 according to a Bureau memo,

p = 30 in the augmented specification, and

(Āi, Li) are calculated from the microdata

for each CZ. As before, we visualize in red

the point estimate and confidence interval of Autor et al. (2013) using clean data in

Figure 11. Next to that, we visualize the point estimate and confidence interval we pro-
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pose. To study the robustness of our results to the privacy loss parameter, we consider

(100ϵ, 10ϵ, ϵ, 0.1ϵ, 0.01ϵ), which corresponds to adding Laplacian noise both below and above

the mandated level. Across levels, our point estimates and confidence intervals remain

remarkable stable.

7 Conclusion

Recent developments in how the US Census Bureau will publish economic data motivate us

to study a class of corruptions that is rich enough to encompass classical types of corruption,

such as measurement error and missingness, as well as modern types, such as discretization

and differential privacy. Abstractly, our goal is to learn a causal parameter from corrupted

data; concretely, our goal is to characterize scenarios in which it is possible to achieve both

privacy and precision. To do so, we propose new data cleaning-adjusted confidence intervals

that are computationally simple, statistically rigorous, and empirically robust in settings

calibrated to empirical economic research. We build a framework to use matrix completion

as data cleaning for downstream causal inference, bridging two rich literatures. For future

research, we pose the question of how to extend our results to confounded noise and sample

selection bias. The modular structure of this paper provides a template to do so.
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A Additional examples

A.1 Semiparametric estimands

We consider the goal of estimation and inference of some causal parameter θ0 ∈ R which is

a scalar summary of the regression γ0, e.g. a treatment effect, policy effect, or elasticity.

We consider a class of causal parameters of the form

θ0 =
1

n

n∑
i=1

θi, θi = E[m(Wi,·, γ0)]

in an i.n.i.d. data generating process of the form

Yi = γ0(Di, Xi,·) + εi, Zi,· = (Xi,· +Hi,·)⊙ πi,·, Wi,· = (Di, Xi,·, Hi,·, πi,·).

This model is a restatement of (4). (Di, Xi,·) concatenate the various arguments of γ0, which

we hereby call regressors. Rather than observing Xi,·, we observe Zi,·. This model includes

the scenario in which some variables are corrupted and other are not. Which regressors

are corrupted or uncorrupted constrains the construction of technical regressors; see Ap-

pendix C. We concatentate signal and noise as Wi,· = (Di, Xi,·, Hi,·, πi,·). A generalization

of Assumption 5.9 imposes invariance of the regression γ0 and generalized balancing weight

α0 across observations, which we formalize in Appendix G.

Example A.1 (Average treatment effect). Let (Di, Xi,·) concatenate treatment Di ∈ {0, 1}

and covariates Xi,· ∈ Rp. Denote γ0(Di, Xi,·) := E[Yi|Di, Xi,·]. Under the assumption of

selection on observables, the average treatment effect is given by

θi = E[γ0(1, Xi,·)− γ0(0, Xi,·)].

With uncorrupted treatment and corrupted covariates, Wi,· = (Di, Xi,·, Hi,·, πi,·) where

(Hi,·, πi,·) are measurement error and missingness for the covariates.9

While the true regression γ0(Di, Xi,·) is only a function of signal (Di, Xi,·), our regression

estimator γ̂(Di, Zi,·) is a function of both signal and noiseWi,·. In other words, the hypothesis
9More generally, treatment observations may be corrupted as well. For readability, we exposit the simpler

and plausible case that treatment is uncorrupted.
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space for estimation is the extended space of functions L2(W), and we must define an

extended functional over L2(W). In Example A.1, the extended functional is

γ 7→ E[γ(1, Xi,·, Hi,·, πi,·)− γ(0, Xi,·, Hi,·, πi,·)].

Example A.2 (Local average treatment effect). Let (Ui, Xi,·) concatenate instrument

Ui ∈ {0, 1} and covariates Xi,· ∈ Rp. Denote γ0(Ui, Xi,·) := E[Yi|Ui, Xi,·] and δ0(Ui, Xi,·) :=

E[Di|Ui, Xi,·]. Under standard instrumental variable assumptions, the local average treatment

effect for the subpopulation of compliers is given by

β0 =
θ0
θ′0
, θi = E[γ0(1, Xi,·)− γ0(0, Xi,·)], θ′i = E[δ0(1, Xi,·)− δ0(0, Xi,·)].

With uncorrupted instrument and corrupted covariates, Wi,· = (Ui, Xi,·, Hi,·, πi,·) where

(Hi,·, πi,·) are measurement error and missingness for the covariates.

Example A.3 (Average policy effect). Let Xi,· ∈ Rp be the covariates. Consider the

counterfactual transportation of covariates xi,· 7→ t(xi,·). Denote γ0(Xi,·) := E[Yi|Xi,·]. The

average policy effect of transporting covariates is given by

θi = E[γ0{t(Xi,·)} − γ0(Xi,·)].

With corrupted covariates, Wi,· = (Xi,·, Hi,·, πi,·) where (Hi,·, πi,·) are measurement error and

missingness for the covariates.

Example A.4 (Price elasticity of demand). Let Yi be price of a particular good. Let

(Di, Xi,·) concatenate quantities sold of the particular good Di and other goods Xi,· ∈ Rp.

Denote γ0(Di, Xi,·) = E[Yi|Di, Xi,·]. The average price elasticity of demand is

θi = E [∇dγ0(Di, Xi,·)] .

With uncorrupted quantity for the particular good and corrupted quantities for the other

goods, Wi,· = (Di, Xi,·, Hi,·, πi,·) where (Hi,·, πi,·) are measurement error and missingness for

the other goods.

A.2 Weighted estimands

In empirical economic research with aggregate units, it is common to weight units by their

size. It is also common to consider partially linear models. For example, the estimand
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of Autor et al. (2013) may be viewed as a weighted partially linear instrumental variable

regression. To bridge theory with practice, we provide these examples next.

A weighted functional θ0 ∈ R is a scalar that takes the form

θ0 =
1

n

n∑
i=1

θi, θi = E[ℓim(Wi,·, γ0)]

where ℓi is the weight for aggregate unit i. For simplicity, we take the weights ℓi to be

known, but their uncertainty can be incorporated as well.

Example A.5 (Weighted partially linear regression). Let (Di, Xi) concatenate treatment

D ∈ R and covariates Xi,· ∈ Rp. Denote γ0(Di, Xi,·) = E[Yi|Di, Xi,·]. The weighted partially

regression coefficient is given by

θi = E [ℓi{γ0(d+ 1, Xi,·)− γ0(d,Xi,·)}] .

With uncorrupted treatment and corrupted covariates, Wi,· = (Di, Xi,·, Hi,·, πi,·) where

(Hi,·, πi,·) are measurement error and missingness for the covariates.

Example A.6 (Weighted partially linear instrumental variable regression). Let (Ui, Xi,·)

concatenate instrument Ui ∈ R and covariates Xi,· ∈ Rp. Denote γ0(Ui, Xi,·) := E[Yi|Ui, Xi,·]

and δ0(Ui, Xi,·) := E[Di|Ui, Xi,·]. Under standard instrumental variable assumptions, the

weighted partially linear instrumental variable regression coefficient is given by

β0 =
θ0
θ′0
, θi = E[ℓi{{γ0(u+1, Xi,·)−γ0(u,Xi,·)}], θ′i = E[ℓi{δ0(u+1, Xi,·)− δ0(u,Xi,·)}].

With uncorrupted instrument and corrupted covariates, Wi,· = (Ui, Xi,·, Hi,·, πi,·) where

(Hi,·, πi,·) are measurement error and missingness for the covariates.

A.3 Nonparametric estimands

A local functional θlim0 ∈ R is a scalar that takes the form

θlim0 = lim
h→0

θh0 , θh0 =
1

n

n∑
i=1

θhi , θhi = E[mh(Wi,·, γ0)] = E[ℓh(Wij)m(Wi,·, γ0)]

where ℓh is a Nadaraya Watson weighting with bandwidth h and Wij is a scalar component

of Wi,·. θlim0 is a nonparametric quantity. However, it can be approximated by the sequence

53



{θh0}. Each θh0 can be analyzed like a weighted functional as long as we keep track of how

certain quantities depend on h. By this logic, finite sample semiparametric theory for θh0
translates to finite sample nonparametric theory for θlim0 up to some approximation error.

In this sense, our analysis encompasses both semiparametric and nonparametric estimands.

As a leading example, we study heterogeneous treatment effects.

Example A.7 (Heterogeneous treatment effect). Let (Di, Vi, Xi,·) concatenate treatment

Di ∈ {0, 1}, covariate of interest Vi ∈ R, and other covariates Xi,· ∈ Rp. Denote

γ0(Di, Vi, Xi,·) := E[Yi|Di, Vi, Xi,·]. Under the assumption of selection on observables and

identicial distribution of Vi, the heterogeneous treatment effect for the subpopulation with

subcovariate value v is given by

θi = E[γ0(1, Vi, Xi,·)− γ0(0, Vi, Xi,·)|Vi = v] = lim
h→0

E[ℓh(Vi){γ0(1, Vi, Xi,·)− γ0(0, Vi, Xi,·)}]

where

ℓh(Vi) =
K {(Vi − v)/h}

ω
, ω = E[K {(Vi − v)/h}]

and K is the standard kernel function. With uncorrupted treatment, uncorrupted covariate

of interest, and corrupted other covariates, Wi,· = (Di, Vi, Xi,·, Hi,·, πi,·) where (Hi,·, πi,·) are

measurement error and missingness for the other covariates.

In Appendix G, we formalize our general class of semiparametric and nonparametric

estimands. We define the class abstractly and verify that each example belongs to the class

under generalizations of Assumption 5.10.

A.4 Missing outcomes

So far, we have discussed corruption of the regressors Xi,· and taken outcome Yi to be

uncorrupted. Measurement error and differential privacy of Yi is already captured by

response noise εi. An important additional issue in empirical research is outcome attrition:

for some observations, Yi is missing. Moreover, the outcome attrition mechanism may depend

on the true regressors. Our framework handles this case as well with light modification.

The enriched observation model is

Yi = γ0(Di, Xi,·, Si) + εi, Zi,· = [Xi,· +Hi,·]⊙ πi,·, Ỹi = Yi · Si
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where Si ∈ {1, NA} encodes attrition. Instead of observing (Yi, Di, Xi,·) or even (Yi, Di, Zi,·),

the analyst observes (Ỹi, Di, Zi,·). In the taxonomy of Rubin (1976), we allow outcome Yi

to be missing at random (MAR) conditional on true regressors (Di, Xi,·), of which Xi,· may

be missing completely at random (MCAR) or may have measurement error. The extended

semiparametric model is summarized by

E[Ỹi|Di, Xi,·, Hi,·, πi,·, Si = 1] = E[Yi|Di, Xi,·, Hi,·, πi,·, Si = 1]

= E[Yi|Di, Xi,·, Si = 1]

= γ0(Di, Xi,·, Si = 1).

Our framework handles this extension by replacing Yi with Ỹi and replacing (D,Xi,·) with

(Di, Xi,·, Si), similar to Singh (2021).

B Additional simulations and applications

In this appendix, we provide additional synthetic, semi-synthetic, and real results to argue

1. our procedure is robust to a broad variety of data shapes and sizes;

2. data corruption can flip the sign of OLS and TSLS some of the time;

3. our key assumption holds in popular Census data sets at different levels of granularity.

B.1 Robustness to data dimensions

In the main text, the each sample from the simulated data generating process produces a

matrix of covariates X ∈ R100×100 with rank r = 5. In practice, economic data sets come

in a variety of shapes and sizes. In this subsection, we ask: how robust is our end-to-end

procedure across realistic dimensions of economic data? We consider the following variations

of the simulated data generating process: X ∈ R50×200, R100×100, R200×50, R500×20, and

R1000×10. For each choice of sample size n and covariate dimension p, we set the rank to be

r = {min(n, p)}1/3. Across data dimensions, we introduce measurement error with the fixed

noise-to-signal ratio of 20%. We consider the oracle tuning of the PCA hyperparameter

k = r.
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Figure 12: Our approach adapts to data shape

Table 12 quantifies coverage performance.

Different rows correspond to different data

dimensions. As in the main text, we record

the average point estimates, which are close

to θ0 = 2.2. Next, we record the average

standard errors, which adaptively decrease

in length for larger sample sizes. These con-

fidence intervals are the correct length, since

coverage is close to the nominal level. In

anticipation of the empirical application, we

repeat this exercise for the simulated data generating process with X ∈ R722×30 and rank

r = 5. Table 12 confirms that our procedure attains coverage close to the nominal level.

B.2 Can data corruption flip signs?

In the main text, we show that for the simulated data generating process with X ∈ R100×100

and rank r = 5, OLS performs well with clean data and performs poorly with corrupted

data. In particular, measurement error with a 20% noise-to-signal ratio is enough to pose a

problem for OLS. We investigate two follow-up questions. First, can data corruption flip

the sign of OLS estimates, i.e. can it lead to negative point estimates when the average

treatment effect is θ0 = 2.2 > 0? Second, can can data corruption flip the sign of OLS and

2SLS estimates in scenarios more similar to our real world example?

As an answer to the first question, we find that data corruption can flip the sign of

OLS estimates some of the time. Figure 13a visualizes the histogram of 1000 OLS point

estimates from the data generating process with dimensions X ∈ R100×100, rank r = 5, and

20% measurement error. Roughly one quarter of the OLS estimates have flipped signs. As

Figure 13b shows, the histogram of 1000 point estimates using our procedure remain close

to θ0 = 2.2 with no flipped signs.

In order to answer the second question, we repeat this exercise for the simulated data

generating process with X ∈ R722×30 and rank r = 5. Flipping signs requires not only 20%

measurement error but also 10% missingness. Figure 14 visualizes the histograms of 1000
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(a) OLS (b) Our approach

Figure 13: Data corruption can flip signs: 100× 100

point estimates, using OLS versus our procedure. A similar fraction of OLS estimates have

flipped signs, while none of our estimates have flipped signs.

(a) OLS (b) Our approach

Figure 14: Data corruption can flip signs: 722× 30

Finally, we conduct a semi-synthetic sign flipping exercise. We consider the Census

covariates from Autor et al. (2013) at the commuting zone level. Rather than a synthetic

average treatment effect, the estimand is the actual effect of import competition on manufac-

turing employment in a partially linear instrumental variable model. Flipping signs requires

not only 20% measurement error but also 20% missingness. In this thought experiment,

we take the reported effect from Autor et al. (2013) as the ground truth, we take the data

set from Autor et al. (2013) as clean data, and we generate synthetic measurement error

and missingness. Figure 15 visualizes the histograms of 1000 point estimates across 1000
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draws of synthetic corruption, using 2SLS versus our procedure. A relatively small fraction

of 2SLS estimates have flipped signs, while none of our estimates have flipped signs.

(a) 2SLS (b) Our approach

Figure 15: Data corruption can flip signs: Census

Figure 16: Data corruption can flip signs

We summarize the results of these var-

ious sign flipping exercises in Table 16. The

three rows correspond to (i) synthetic data

with X ∈ R100×100; (ii) synthetic data with

X ∈ R722×30; and (iii) semi-synthetic data

from Autor et al. (2013). We interpret the

OLS and TSLS results as motivation for

data cleaning before data analysis. Our procedure may be viewed as an extension of OLS

and TSLS with a very simple type of data cleaning that we subsequently account for in

our data cleaning-adjusted confidence intervals. An exciting direction for future work is to

extend our results to richer types of data cleaning which more closely resemble empirical

practice.

B.3 The key assumption holds in many Census data sets

Our key assumption, which powers our entire analysis, is that the true covariates X are

approximately low rank. In the main text, we visually confirm that this assumption holds

in Census data by plotting the singular values of the covariates from Autor et al. (2013).

In this subsection, we argue that this key assumption holds in several Census data sets
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that are popular in economic research. We visualize the singular values of covariates from

LaLonde (1986); Poterba et al. (1996); Chetty and Hendren (2018a).

(a) NSW (b) PSID (c) CPS

Figure 17: National Supported Work demonstration

Figure 18: 401(k) participation

We begin with data sets at the individual

level. In LaLonde (1986), the author consid-

ers the problem of estimating the average

treatment effect of the National Supported

Work (NSW) demonstration, a randomized

job training program. There are three data

sets: one using actual NSW participants as

the treated and control group; another using

NSW participants as the treated group and

a PSID sample as the comparison group,

and yet another using NSW participants as

the treated group and a CPS sample as the

comparison group. In Figure 17, we visualize the singular values of covariates for these three

data sets. Across data sets, the rank is approximately r = 3 while the ambient dimension of

covariates is p = 10. In Poterba et al. (1996), the authors consider the problem of estimating

the (local) average treatment effect of 401(k) participation on savings. Figure 18 visualizes

the singular values of covariates, showing that the rank is approximately r = 2 while the

ambient dimension of covariates is p = 9.

Next, we turn to data sets of aggregate units. In Chetty and Hendren (2018a), the

authors consider commuting zones to be the aggregate units. In Chetty and Hendren

(2018b), a companion paper, the authors consider counties to be the aggregate units. These
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two data sets help to evaluate the robustness of the approximate low rank assumption across

different levels of geography. In Figure 19, we show that the approximate rank is r = 5

while the ambient dimension of covariates is p = 45. Since the data set has missing values,

we report the singular values using complete cases and using filled cases according to our

filling procedure from the main text.

(a) County (complete cases) (b) Commuting zone (complete cases)

(c) County (filled) (d) Commuting zone (filled)

Figure 19: Opportunity insights

C Nonlinearity

In this appendix, we characterize the class of nonlinear dictionaries b : Rp → Rp′ for which

our main results go through. We delay proofs until the last subsection of this appendix.

We discuss two classes of dictionaries.
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C.1 Polynomial dictionary

We refer to the following three simple properties as data cleaning continuity, since they

imply that the data cleaning results for original regressors imply similar data cleaning

results for technical regressors. We state the properties then verify them for the polynomial

dictionary of degree dmax.

Assumption C.1 (Dictionary continuity). The dictionary satisfies three conditions:

1. For any two matrices M (1),M (2) ∈ Rn×p, ∥b(M (1)) − b(M (2))∥22,∞ ≤ C ′
b∥M (1) −

M (2)∥22,∞;

2. For any M ∈ Rn×p, rank{b(M )} ≤ {rank(M )}C
′′
b ;

3. For any v ∈ Rp, ∥b(v)∥max ≤ (∥v∥max)
C′′′

b .

For much of our argument to go through, it suffices that the dictionary exhibits three

simple properties: clean original regressors should imply clean technical regressors; low

rank original regressors should imply low rank technical regressors; and a bound on the

maximum value of original regressors should imply a bound on the maximum value of

technical regressors.

Definition C.1 (Polynomial dictionary). Let v = (v1, v2, . . . , vp) ∈ Rp. Consider the

dictionary bpoly, where for k ∈ [p′], bpoly
k (v) =

∏d(k)
ℓ=1 vℓ with vℓ ∈ {v1, . . . , vp}.

That is, each basis function bpoly
k (v) in the dictionary is a polynomial of degree d(k) ≤

dmax constructed from coordinates of v, allowing for repeats. This class of dictionaries is

commonly used in empirical economic research. It nests as a special case the interacted

dictionary studied in the main text, which permits a rich model of heterogeneous treatment

effects. Pleasingly, for this class, the dictionary constants (C ′
b, C

′′
b , C

′′′
b ) have no dependence

on p′, the number of elements in the dictionary. Rather, (C ′
b, C

′′
b , C

′′′
b ) only depend on the

maximum degree dmax of the polynomial dictionary.

Proposition C.1 (Verifying Assumption C.1). The polynomial dictionary bpoly of degree

dmax satisfies Assumption C.1 with the following constants

1. C ′
b ≤ 2dmax · ∥M (1)∥2dmax

max · ∥M (2)∥2dmax
max ;
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2. C ′′
b ≤ dmax;

3. C ′′′
b ≤ dmax.

Remarkably, this class of dictionaries also preserves the low rank approximation in the

following sense.

Proposition C.2 (Low rank approximation is preserved). Suppose Assumption 5.1 holds

and the true covariates have the low rank approximation X = X(lr) + E(lr) where r =

rank{X(lr)} and ∆E = ∥E(lr)∥max. Consider the polynomial dictionary bpoly of degree dmax.

Then r′ := rank{b(X(lr))} ≤ rdmax and ∆′
E := ∥b(X)− b(X(lr))∥max ≤ CĀdmax · dmax∆E.

The same logic applies for dictionaries applied to (Di, Xi,·) rather than Xi,·.

C.2 Polynomial dictionary with uncorrupted nonlinearity

Assumption C.1 suffices to generalize our data cleaning results. For analysis of the error-

in-variables estimators, we impose a further assumption, which constrains which kinds of

terms can appear as technical regressors. Consider the polynomial dictionary of degree dmax,

where the only source of nonlinearity is powers and interactions with regressors known to

be uncorrupted.

Definition C.2 (Polynomial dictionary with uncorrupted nonlinearity). Suppose the ob-

served regressors consist of one uncorrupted regressor Di and several corrupted regressors

Xi,·. Consider a polynomial dictionary bpoly of degree dmax such that each basis function

bpoly
k is at most linear in the corrupted regressors. By definition, p′ ≤ C · dmaxp.

For example, in Example A.1 where Di is uncorrupted, the interacted dictionary b :

(Di, Xi,·) 7→ {DiXi,·, (1 − Di)Xi,·} satisfies this property. In Example A.4 where Di is

uncorrupted, the nonlinear dictionary b : (Di, Xi,·) 7→ (1, Di, Xi,·, DiXi,·, D
2
i ) satisfies this

property as well since it contains D2
i but does not contain X2

ij. Intuitively, this family of

dictionaries avoids compounding measurement error because the corrupted regressors are

not multiplied with each other. For readability, we focus on the case of one uncorrupted

regressor, which can be conceptualized as

b : (Di, Xi,·) 7→ (1, Di, ..., D
dmax
i , Xi,·, DiXi,·, ..., D

dmax−1
i Xi,·) (6)
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where Di is uncorrupted and Xi,· are uncorrupted. Definition C.2 naturally generalizes to

the case of multiple uncorrupted regressors. We require three properties to hold after the

dictionary is applied to the data.

Assumption C.2 (Dictionary is non-collapsing). The dictionary does not collapse in the

following sense.

1. Recall that we set k := rank(X̂) equal to r := rank{X(lr)}. We further assume

k′ := rank{b(D, X̂)} is equal to r′ := rank[b{D,X(lr)}].

2. Assumption 5.4 posits that the smallest singular value of X(lr) is sr ≥ C
√

np
r
. We

further posit that the smallest singular value of b{D,X(lr)} is s′r′ ≥ C
√

np
r′

.

3. Using the notation of (6), the technical regressors (1, Di, ...D
dmax
i ) are full rank.

The first property in Assumption C.2 ensures two matrices of equal rank get mapped to

two new matrices of equal rank. The second property imposes that singular values, after

dictionary mapping, remain well balanced. In particular, we allow for a weaker signal to

noise ratio for technical regressors since r′ ≥ r. We do not impose s′r′ ≥ C
√

np′

r′
, which

is a stronger and less plausible requirement since it implies that the signal to noise ratio

increases with the dictionary dimension p′. The third property is a technical assumption

which allows the theory of implicit data cleaning to generalize.

C.3 Proofs

We prove Proposition C.1 via the following sequence of lemmas.

Lemma C.1 (C ′
b). For bpoly, C ′

b ≤ 2dmax · ∥M (1)∥2dmax
max · ∥M (2)∥2dmax

max .

Proof. We introduce the notation [bpoly(M)]ik =
∏

{j(k)}Mij(k), where j(k) ∈ [p], Mij(k) ∈

{Mi1, . . . ,Mip}, and |{j(k)}| = d(k). We will simplify notation in the following way. Fix k.

Let Miℓ refer to the ℓ-th element of the product, where ℓ ∈ [d(k)]. Therefore

[bpoly(M)]ik =
∏

{j(k)}

Mij(k) =

d(k)∏
ℓ=1

Miℓ.
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Then for any column k ∈ [p′],

∥b(M (1))·,k − b(M (2))·,k∥22 =
n∑
i=1

d(k)∏
ℓ=1

M
(1)
iℓ −

d(k)∏
ℓ=1

M
(2)
iℓ

2

=
n∑
i=1

d(k)∏
ℓ=1

M
(1)
iℓ −

d(k)∏
ℓ=1

M
(2)
iℓ ±M

(2)
i1

d(k)∏
ℓ=2

M
(1)
iℓ

2

≤ 2
n∑
i=1

d(k)∏
ℓ=1

M
(1)
iℓ −M

(2)
i1

d(k)∏
ℓ=2

M
(1)
iℓ

2

+ 2
n∑
i=1

d(k)∏
ℓ=1

M
(2)
iℓ −M

(2)
i1

d(k)∏
ℓ=2

M
(1)
iℓ

2

.

Looking at the first term on the RHS above,

n∑
i=1

d(k)∏
ℓ=1

M
(1)
iℓ −M

(2)
i1

d(k)∏
ℓ=2

M
(1)
iℓ

2

=
n∑
i=1

(
M

(1)
i1 −M

(2)
i1

)2d(k)∏
ℓ=2

M
(1)
iℓ

2

≤ ∥M (1)∥2dmax
max

n∑
i=1

(
M

(1)
i1 −M

(2)
i1

)2
≤ ∥M (1)∥2dmax

max ∥M (1) −M (2)∥22,∞.

Now looking at the second term on the RHS,

n∑
i=1

d(k)∏
ℓ=1

M
(2)
iℓ −M

(2)
i1

d(k)∏
ℓ=2

M
(1)
iℓ

2

=
n∑
i=1

M (2)
i1

d(k)∏
ℓ=2

M
(2)
iℓ −

d(k)∏
ℓ=2

M
(1)
iℓ

2

≤ ∥M (2)∥2max

n∑
i=1

d(k)∏
ℓ=2

M
(2)
iℓ −

d(k)∏
ℓ=2

M
(1)
iℓ

2

.

Continuing forward with
∑n

i=1

(∏d(k)
ℓ=2 M

(2)
iℓ −

∏d(k)
ℓ=2 M

(1)
iℓ

)2
in a recursive manner leads

to the following bound for all k ∈ [p′]:

∥b(M (1))·,k − b(M (2))·,k∥22

≤ ∥M (1) −M (2)∥22,∞ ·
(
2dmax · ∥M (1)∥2dmax

max · ∥M (2)∥2dmax
max

)
.

We thus have the desired result.

Lemma C.2 (C ′′
b ). For bpoly, C ′′

b ≤ dmax.
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Proof. Fix M ∈ Rn×p with rank r. For notational simplicity, let Miℓ refer to the ℓ-th element

of the product in [bpoly(M)]ik. Observe that bpoly(M ) can be equivalently represented as

bpoly(M ) = B(1)⊙, ...,⊙B(dmax),

where ⊙ means Hadamard product, B(ℓ) ∈ Rn×p′ , and for ℓ ∈ [dmax], i ∈ [n], k ∈ [p′]

[B(ℓ)]ik =

Miℓ if ℓ ≤ d(k)

1 if ℓ > d(k)

.

Since each column of each B(ℓ) is either a column of M or a column of ones, it has rank at

most r. Finally recall that the rank of a Hadamard product is bounded by the product of

ranks and so

rank{bpoly(M )} ≤
dmax∏
ℓ=1

r = rdmax .

Lemma C.3 (C ′′′
b ). For bpoly, C ′′′

b ≤ dmax.

Proof. Denote v ∈ Rp with ∥v∥∞ ≤ Ā. Note that each basis function is of the form

bpoly
k (v) =

d(k)∏
ℓ=1

vℓ ≤
d(k)∏
ℓ=1

Ā = Ād(k) ≤ Ādmax .

Proof of Proposition C.1. Immediate from Lemmas C.1, C.2, and C.3.

To begin, we state an important observation about the signal approximation X(lr) that

will simplify our subsequent analysis.

Lemma C.4 (Bounded signal approximation). Suppose Assumption 5.1 holds. Without

loss of generality, ∥X(lr)∥max ≤ 3Ā.

Since ∥X∥max ≤ Ā and ∥X(lr)∥max ≤ 3Ā, the same constant CĀ handles both objects.

Proof of Lemma C.4. Suppose we have access to some X(lr) with rank r such that ∥X(lr)∥max >

3Ā. By reverse triangle inequality

∆E,X(lr) = ∥X(lr) −X∥max ≥ ∥X(lr)∥max − ∥X∥max > 2Ā.
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We construct a B(lr) with rank r such that ∥B(lr)∥max ≤ 3Ā and ∆E,B(lr) < ∆E,X(lr) . Set

B(lr) =
Ā

∥X(lr)∥max

·X(lr).

Since B(lr) simply scales X(lr) by a constant, it has the same rank. By construction

∥B(lr)∥max ≤ Ā. Finally

∆E,B(lr) = ∥B(lr) −X∥max ≤ ∥B(lr)∥max + ∥X∥max ≤ 2Ā.

Proof of Proposition C.2. By definition, r = rank{X(lr)}. The first result follows directly

from Proposition C.1. To see the second result, consider the case where dmax = 2. Then

any higher order entry of b(X)− b(X(lr)) is of the form

|XijXik −X
(lr)
ij X

(lr)
ik | ≤ |XijXik −X

(lr)
ij Xik|+ |X(lr)

ij Xik −X
(lr)
ij X

(lr)
ik |

≤ Ā∆E + 3Ā∆E

where the final inequality appeals to Lemma C.4. More generally, there are dmax such terms,

and the largest is of the form (3Ā)dmax∆E.

D Data cleaning

D.1 Notation and preliminaries

In this appendix, we replace the symbol Xi,· with the symbol Ai,·, so that

Zi,· = (Ai,· +Hi,·)⊙ πi,·.

We suppress indexing by the folds (train,test) to lighten notation. As in Assumption 5.3,

we identify NA with 0 in Z for the remainder of the appendix. We slightly abuse notation

by letting n be the number of observations in train, departing from the notation of the

main text. The entire section is conditional on A, which we omit to lighten notation. We

write ∥ · ∥ = ∥ · ∥op, and abbreviate law of iterated expectations (LIE). We denote by C an

absolute constant.
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Recall A = A(lr) +E(lr) and r = rank{A(lr)}. We denote the SVDs

A(lr) = UΣV T , Â = Û kΣ̂kV̂
T
k , Z ρ̂−1 = ÛΣ̂V̂ T .

The first k left singular vectors of A(lr) are U k. We denote sk = Σkk and ŝk = Σ̂kk. Recall

that δ = 1

1−
√

22 ln(np)
nρmin

.

Define the unit ball Bp and unit sphere Sp−1 by

Bp = {v ∈ Rp : ∥v∥2 ≤ 1}

Sp−1 = {v ∈ Rp : ∥v∥2 = 1}

Recall that Âtrain is constructed by taking train covariates then filling and cleaning

them using train alone. In addition to studying Âtrain, we introduce and study the object

Âtest, is constructed by taking test covariates, filling them using train, and cleaning

them using test. It turns out that the analysis does not depend on whether ρ̂train or ρ̂test

is used when filling in missing values. Rather than writing two nearly identical arguments,

we write out one unified argument with formal remarks.

Proof of Proposition 4.1. By LIE,

E[fill(Ztest
ij )|Atest

ij ,train]

= E[fill(Ztest
ij )|Atest

ij , πtest
ij = 1,train]P(πtest

ij = 1|Atest
ij ,train)

+ E[fill(Ztest
ij )|Atest

ij , πtest
ij = 0,train]P(πtest

ij = 0|Atest
ij ,train)

= E[Ztest
ij /ρ̂j|Atest

ij , πtest
ij = 1,train] · ρj + E[0|Atest

ij , πtest
ij = 1,train] · (1− ρj)

= Atest
ij

ρj
ρ̂j
.

Likewise

E[fill-as-means(Ztest
ij )|Atest

ij ,train]

= E[fill-as-means(Ztest
ij )|Atest

ij , πtest
ij = 1,train]P(πtest

ij = 1|Atest
ij ,train)

+ E[fill-as-means(Ztest
ij )|Atest

ij , πtest
ij = 0,train]P(πtest

ij = 0|Atest
ij ,train)

= E[Ztest
ij |Atest

ij , πtest
ij = 1,train] · ρj + E[Z̄train

j |Atest
ij , πtest

ij = 0,train] · (1− ρj)

= Atest
ij · ρj + Z̄train

j (1− ρj).
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Proposition D.1 (Bound on ∥Â∥max). Suppose k = r and the corrupted singular values

ŝ1, ..., ŝr ≤ C
√

np
r
. Assume the following incoherence conditions for the corrupted singular

vectors: ∥Û r∥max ≤ Cn−1/2 and ∥V̂ r∥max ≤ Cp−1/2. Then ∥Â∥max ≤ Cr1/2.

The condition ŝ1, ..., ŝr ≤ C
√

np
r

can be proven with high probability from the condition

s1, ..., sr ≤ C
√

np
r

using Weyl’s inequality using an argument similar to Lemma E.9. The

condition s1, ..., sr ≤ C
√

np
r

complements Assumption 5.4. The incoherence conditions can

be interpreted by recognizing that each left singular vector U·,j ∈ Rn and each right singular

vector V·,j ∈ Rp.

Proof. Write

Âij =
r∑
ℓ=1

ÛiℓŝℓV̂jℓ.

Hence

|Âij| ≤
r∑
ℓ=1

|Ûiℓ| · |ŝℓ| · |V̂jℓ| ≤ r · Cn−1/2 · C
√
np

r
· Cp−1/2 = Cr1/2.

D.2 High probability events

Define the following beneficial events. We will show each event holds with probability

1− 2
n10p10

.

E1 =
{
∥Z −Aρ∥ ≤ (

√
n+

√
p)∆H,op

}
, ∆H,op = CĀ(κ+Ka + K̄) ln

3
2 (np);

E2 =
{
max
j∈[p]

∥Z·,j − ρjA·,j∥22 ≤ n∆H

}
, ∆H = C(Ka + ĀK̄)2 ln2(np);

E3 =
{
max
j∈[p]

∥U kU
T
k (Z·,j − ρjA·,j)∥22 ≤ k∆H

}
;

E4 =

{
∀j ∈ [p],

1

δ
ρj ≤ ρ̂j ≤ δρj

}
, δ =

1

1−
√

22 ln(np)
nρmin

;

E5 =
{
max
j∈[p]

|ρ̂j − ρj| ≤ C

√
ln(np)

n

}
.

Analyzing E1
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Lemma D.1. Under Assumption 5.3,

∥E[(Z −Aρ)T (Z −Aρ)]∥ ≤ ρmax(1− ρmin)

(
max
j∈[p]

∥A·,j∥22 + ∥diag(E[HTH ])∥
)

+ ρmax∥E[HTH ]∥,

where ρmax := maxj∈[p] ρj ≤ 1.

Proof. To begin, observe that

E[(Z −Aρρρ)T (Z −Aρρρ)] =
n∑
ℓ=1

E[(Zℓ,· − Aℓ,·ρρρ)⊗ (Zℓ,· − Aℓ,·ρρρ)].

Let X = A+H . We highlight the following relations: for any (ℓ, j) ∈ [n]× [p],

E[Zℓj] = ρjAℓj

E[Z2
ℓj] = ρjE[X2

ℓj].

Now, let us fix a row ℓ ∈ [n] and denote

W (ℓ) = (Zℓ,· − Aℓ,·ρρρ)⊗ (Zℓ,· − Aℓ,·ρρρ).

Using the linearity of expectations, the expected value of the (i, j)-th entry of W (ℓ) can be

written as

E[W (ℓ)
ij ] = E[ZℓiZℓj]− ρjE[Zℓi]Aℓj − ρiE[Zℓj]Aℓi + ρiρjAℓiAℓj.

Suppose i = j, then

E[W (ℓ)
ii ] = ρiE[X2

ℓi]− ρ2iA
2
ℓi = ρi(1− ρi)E[X2

ℓi] + ρ2iE[(Xℓi − Aℓi)
2]. (7)

On the other hand, if i ̸= j,

E[W (ℓ)
ij ] ≤ √

ρiρjE[(Xℓi − Aℓi)(Xℓj − Aℓj)]. (8)

since

E[ZℓiZℓj] = E[πiℓπℓj]E[XℓiXℓj] ≤
√

E[π2
ℓi]
√
E[π2

ℓj]E[XℓiXℓj] =
√
ρiρjE[XℓiXℓj].
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Therefore, we can bound W (ℓ) as the sum of two matrices where the diagonal components

are generated from (7) and the off-diagonal components are generated from (8). That is,

E[W (ℓ)] ≤ E
(
ρmax(1− ρmin)diag(Xℓ,· ⊗Xℓ,·) + ρ2maxdiag(Hℓ,· ⊗Hℓ,·)

)
+ E

(
ρmax(Hℓ,· ⊗Hℓ,·)− ρmaxdiag(Hℓ,· ⊗Hℓ,·)

)
≤ ρmax(1− ρmin)E[diag(Xℓ,· ⊗Xℓ,·)] + ρmaxE[Hℓ,· ⊗Hℓ,·].

Taking the sum over all rows ℓ ∈ [n] yields

E[(Z −Aρρρ)T (Z −Aρρρ)] ≤ ρmax(1− ρmin)diag(E[XTX]) + ρmaxE[HTH ]. (9)

To complete the proof, we apply triangle inequality to (9) to obtain

∥∥E[(Z −Aρρρ)T (Z −Aρρρ)]
∥∥ ≤ ρmax(1− ρmin)

∥∥diag(E[XTX])
∥∥+ ρmax

∥∥E[HTH ]
∥∥ .

Since H is zero mean, we have

∥∥diag(E[XTX])
∥∥ =

∥∥diag(ATA) + diag(E[HTH ])
∥∥

≤
∥∥diag(ATA)

∥∥+ ∥∥diag(E[HTH ])
∥∥ .

Collecting terms completes the proof.

Lemma D.2 (Lemma H.2 of Agarwal et al. (2021)). Suppose that X ∈ Rn and P ∈ {0, 1}n

are random vectors. Then for any a ≥ 1,

∥X ⊙ P∥ψa
≤ ∥X∥ψa

.

Lemma D.3. Under Assumptions 5.1, 5.2, and 5.3

∥Zi,· − Ai,·ρ∥ψa ≤ Ka + ĀK̄.

Proof. To begin, write

∥Zi,· − Ai,·ρ∥ψa = ∥Xi,· ⊙ πi,· − Ai,·ρ∥ψa

= ∥Xi,· ⊙ πi,· − Ai,· ⊙ πi,· + Ai,· ⊙ πi,· − Ai,·ρ∥ψa

≤ ∥(Xi,· − Ai,·)⊙ πi,·∥ψa + ∥Ai,· ⊙ πi,· − Ai,·ρ∥ψa .
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Consider the first term. By Lemma D.2 and Assumption 5.2

∥(Xi,· − Ai,·)⊙ πi,·∥ψa ≤ ∥(Xi,· − Ai,·)∥ψa = ∥Hi,·∥ψa ≤ Ka.

Consider the second term. By the definition of ∥ · ∥ψa and Assumption 5.1

∥Ai,· ⊙ πi,· − Ai,·ρ∥ψa = sup
u∈Bp

∥∥∥∥∥
p∑
j=1

ujAij(πij − ρj)

∥∥∥∥∥
ψa

= Ā sup
u∈Bp

∥∥∥∥∥
p∑
j=1

uj
Aij
Ā

(πij − ρj)

∥∥∥∥∥
ψa

Define the vector with components vj = uj
Aij

Ā
. We prove v ∈ Bp:

∥v∥22 =
p∑
j=1

v2j =

p∑
j=1

u2j
A2
ij

Ā2
≤

p∑
j=1

u2j = ∥u∥22 ≤ 1.

Hence,

sup
u∈Bp

∥∥∥∥∥
p∑
j=1

uj
Aij
Ā

(πij − ρj)

∥∥∥∥∥
ψa

≤ sup
v∈Bp

∥∥∥∥∥
p∑
j=1

vj(πij − ρj)

∥∥∥∥∥
ψa

= ∥πi,· − (ρ1, ..., ρp)∥ψa

≤ K̄.

The last line holds by Assumption 5.3. In summary,

∥Ai,· ⊙ πi,· − Ai,·ρ∥ψa ≤ ĀK̄.

Lemma D.4 (Proposition H.1 of Agarwal et al. (2021)). Let W ∈ Rn×p be a random

matrix whose rows W i,· are independent ψa-random vectors for some a ≥ 1. Then for any

τ > 0,

∥W ∥ ≤
∥∥EW TW

∥∥1/2 +√(1 + τ)pmax
i∈[n]

∥W i,·∥ψa

{
1 +

(
2 + τ

)
ln(np)

} 1
a
√
ln(np)

with probability at least 1− 2
n1+τpτ

.

Lemma D.5. Suppose Assumptions 5.1, 5.2, and 5.3 hold. Then ∀τ > 0

∥Z −Aρ∥ ≤ C
√
n
(
Ā+ κ+Ka

)
+
√
1 + τ

√
p(Ka + ĀK̄) {1 + (2 + τ) ln(np)}

1
a

√
ln(np)

w.p. at least 1− 2
n1+τpτ

.
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Proof. Appealing to Lemma D.1

∥E[(Z −Aρ)T (Z −Aρ)]∥

≤ ρmax(1− ρmin)

(
max
j∈[p]

∥A·,j∥22 + ∥diag(E[HTH ])∥
)
+ ρmax∥E[HTH ]∥

≤ max
j∈[p]

∥A·,j∥22 + ∥diag(E[HTH ])∥+ ∥E[HTH ]∥.

Analyzing each term

max
j∈[p]

∥A·,j∥22 ≤ nĀ2;

∥diag(E[HTH ])∥ =

∥∥∥∥∥∥diag
∑
i∈[n]

E[HT
i,·Hi,·]

∥∥∥∥∥∥
≤ nmax

i∈[n]
∥diag(E[HT

i,·Hi,·])∥

= n max
i∈[n],j∈[p]

|E[H2
ij]|

≤ nCKa;

∥E[HTH ]∥ =

∥∥∥∥∥∥
∑
i∈[n]

E[HT
i,·Hi,·]

∥∥∥∥∥∥
≤ nmax

i∈[n]
∥E[HT

i,·Hi,·]∥

≤ nκ2.

The result follows by plugging in these results as well as Lemma D.3 into Lemma D.4.

Proposition D.2 (E1). Under Assumptions 5.1, 5.2, and 5.3

P(Ec1) ≤
2

n11p10
<

2

n10p10
.

Proof. Immediate by Lemma D.5, setting τ = 10 and simplifying the bound.

Analyzing E2 and E3

Lemma D.6 (Lemma H.4 of Agarwal et al. (2021)). Let X1, . . . , Xn be independent random

variables with mean zero. For a ≥ 1,∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
ψa

≤ C

(
n∑
i=1

∥Xi∥2ψa

)1/2

.
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Lemma D.7. Under Assumptions 5.1, 5.2, and 5.3

∥Z·,j − ρjA·,j∥ψa ≤ C(Ka + ĀK̄).

Proof. Observe that

∥Z·,j − ρjA·,j∥ψa
= sup

u∈Sn−1

∥∥uT (Z·,j − ρjA·,j
)∥∥

ψa

= sup
u∈Sn−1

∥∥uT (Z −Aρρρ
)
ej
∥∥
ψa

= sup
u∈Sn−1

∥∥∥∥∥
n∑
i=1

ui
(
Zi,· − Ai,·ρρρ

)
ej

∥∥∥∥∥
ψa

(a)

≤ C sup
u∈Sn−1

(
n∑
i=1

u2i
∥∥(Zi,· − Ai,·ρρρ

)
ej
∥∥2
ψa

)1/2

≤ Cmax
i∈[n]

∥(Zi,· − Ai,·ρρρ)ej∥ψa
,

where (a) follows from Lemma D.6. Then the conclusion follows from Lemmas D.2 and D.3.

Lemma D.8 (Lemma I.7 of Agarwal et al. (2021)). Let W1, . . . ,Wn be a sequence of

ψa-random variables for some a ≥ 1. For any t ≥ 0,

P

(
n∑
i=1

W 2
i > t

)
≤ 2

n∑
i=1

exp

−

(
t

n∥Wi∥2ψa

)a/2
 .

Proposition D.3 (E2). Under Assumptions 5.1, 5.2, and 5.3

P(Ec2) ≤
2

n10p10

Proof. Fix j. Write

∥Z·,j − ρjA·,j∥22 =
n∑
i=1

W 2
i , Wi = eTi (Z·,j − ρjA·,j).

By Lemmas D.2 and D.7,

∥Wi∥ψa ≤ ∥Z·,j − ρjA·,j∥ψa ≤ C(Ka + K̄Ā)
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By Lemma D.8, the union bound, and appropriate choice of constant C in the definition of

∆H , we have

P(Ec2) ≤
p∑
j=1

P
(∥∥∥Z·,j − ρjA·,j

∥∥∥2
2
> n∆H

)

≤ 2

p∑
j=1

n∑
i=1

exp (−11 ln(np))

=
2

n10p10
.

Proposition D.4 (E3). Under Assumptions 5.1, 5.2, and 5.3

P(Ec3) ≤
2

n10p10
.

Proof. The key equality is

∥U kU
T
k (Z·,j − ρjA·,j)∥22 =

k∑
i=1

W 2
i , Wi = uTi (Z·,j − ρjA·,j).

To see that it holds, set v = Z·,j − ρjA·,j. Then

∥U kU
T
k v∥22 = vTU kU

T
kU kU

T
k v = vTU kU

T
k v = W TW.

The rest of the argument is analogous to Proposition D.3.

Analyzing E4 and E5

Proposition D.5 (E4). Under Assumption 5.3,

P(Ec4) ≤
2

n10p10
.

Proof. Fix δ > 1. Define the event

E(j) =
{
1

δ
ρj ≤ ρ̂j ≤ δρj

}
.

By the Chernoff bound in for binary random variables (Agarwal et al., 2021, Lemma I.5)

P(Ec(j)) ≤ 2 exp

(
−(δ − 1)2

2δ2
nρj

)
≤ 2 exp

(
−(δ − 1)2

2δ2
nρmin

)
.
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Hence by De Morgan’s law and the union bound

P(Ec4) = P

⋂
j∈[p]

E(j)


c = P

⋃
j∈[p]

Ec(j)

 ≤ 2p exp

(
−(δ − 1)2

2δ2
nρmin

)
.

To arrive at the desired result, solve

2

n10p10
≥ 2

n11p10
= 2p exp

(
−(δ − 1)2

2δ2
nρmin

)
for δ.

Lemma D.9. ρmin >
23 ln(np)

n
implies δ ≤ C <∞.

Proof. By definition of δ.

Proposition D.6 (E5). Under Assumption 5.3,

P(Ec5) ≤
2

n10p10
.

Proof. Define the event

E(j) = {|ρ̂j − ρj| ≤ t}.

By Hoeffding’s inequality for bounded random variables

P(Ec(j)) ≤ 2 exp
(
−2nt2

)
.

Hence by De Morgan’s law and the union bound

P(Ec5) = P

⋂
j∈[p]

E(j)


c = P

⋃
j∈[p]

Ec(j)

 ≤ 2p exp
(
−2nt2

)
.

To arrive at the desired result, solve

2

n10p10
≥ 2

n11p10
= 2p exp

(
−2nt2

)
for t.

Summary

Define the beneficial event as E := ∩5
k=1Ek and the adverse event as Ec = ∪5

k=1Eck, where

E1 to E5 are defined above.
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Lemma D.10. Suppose Assumptions 5.1, 5.2, and 5.3 hold. Then,

P(Ec) ≤ 10

n10p10
.

Proof. By the union bound as well as Propositions D.2, D.3, D.4, D.5, and D.6 we have

P(Ec) ≤
5∑

k=1

P(Eck) ≤
10

n10p10
.

D.3 High probability bound

Recall A = A(lr) +E(lr) and r = rank{A(lr)}. We denote the SVDs

A(lr) = UΣV T , Â = Û kΣ̂kV̂
T
k , Z ρ̂−1 = ÛΣ̂V̂ T

identifying NA with 0 in Z. We denote sk = Σkk and ŝk = Σ̂kk. Recall that δ = 1

1−
√

22 ln(np)
nρmin

.

Definition D.1 (Thresholded projection operator). Consider a matrix B ∈ Rn×p with the

SVD B =
∑n∧p

i=1 σiuiv
T
i . With a specific choice of λ ≥ 0, we define a function φB

λ : Rn → Rn

as follows. For any vector w ∈ Rn,

φB
λ (w) =

n∧p∑
i=1

1(σi ≥ λ)uiu
T
i w.

φB
λ is a linear operator that depends on the singular values {σi} and the left singular vectors

{ui} of B, as well as the threshold λ. If λ = 0, then use the shorthand φB = φB
0 .

Lemma D.11 (Eq. 43 of Agarwal et al. (2021)). Take λ∗ = ŝk, where k is the PCA

hyper-parameter. Then

Â·,j =
1

ρ̂j
φZρ̂ρρ−1

λ∗ (Z·,j).

Lemma D.12. Suppose we pick the PCA hyper-parameter k = r. Then,

∥Zρ̂ρρ−1 −A(lr)∥
∣∣∣ {E1, E4, E5} ≤ C

δ

ρmin

(
(
√
n+

√
p)∆H,op + ∥E(lr)∥+

√
ln(np)

n
∥A(lr)∥

)
.
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Proof. To begin, write

∥Zρ̂ρρ−1 −A(lr)∥ = ∥Zρ̂ρρ−1 −A(lr)ρ̂ρρρ̂ρρ−1∥

≤ ∥ρ̂ρρ−1∥∥Z −A(lr)ρ̂ρρ∥

=
∥Z −A(lr)ρ̂ρρ∥

minj ρ̂j
.

By triangle inequality

∥Z −A(lr)ρ̂ρρ∥ ≤ ∥Z −A(lr)ρρρ∥+ ∥A(lr)∥∥ρρρ− ρ̂ρρ∥.

Focusing on the first term, under E1

∥Z −A(lr)ρρρ∥ ≤ ∥Z −Aρρρ∥+ ∥Aρρρ−A(lr)ρρρ∥ ≤ (
√
n+

√
p)∆H,op + ∥E(lr)∥.

Focusing on the second term, under E5,

∥ρρρ− ρ̂ρρ∥ ≤ C

√
ln(np)

n
.

Focusing on the denominator, under E4,

1

ρ̂j
≤ δ

ρj
≤ δ

ρmin

.

Remark D.1 (train and test). The proof technique does not depend on whether ρ̂train

or ρ̂test is used with Ztrain, since E4 and E5 hold for both empirical scalings.

Lemma D.13. Suppose the conditions of Lemma D.12 hold. Then,

∥UUT−Û rÛ
T
r ∥
∣∣∣ {E1, E4, E5} ≤ C

δ

ρminsr

(
(
√
n+

√
p)∆H,op + ∥E(lr)∥+

√
ln(np)

n
∥A(lr)∥

)
.

Proof. By Wedin’s sinΘ Theorem (Davis and Kahan, 1970; Wedin, 1972)

∥UUT − Û rÛ
T
r ∥ ≤ ∥Zρ̂ρρ−1 −A(lr)∥

sr
.

Finally appeal to Lemma D.12.
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Lemma D.14. Suppose k = r. Then for any j ∈ [p]∥∥∥Â·,j − A·,j

∥∥∥2
2

∣∣∣ E
≤ Cδ4

ρ4min

(
(n+ p)∆2

H,op +
∥∥∥E(lr)

∥∥∥2 + (ln(np)/n)∥A(lr)∥2

s2r

)(
n∆H +

∥∥∥A(lr)
·,j

∥∥∥2
2

)
+
Cδ2

ρ2min

r∆H + C
δ2

ρ2min

ln(np)

n
∥A·,j∥22 + C

∥∥∥E(lr)
·,j

∥∥∥2
2
.

Proof. We proceed in steps.

1. Decomposition

Fix a column index j ∈ [p]. Observe that

Â·,j − A·,j =
{
Â·,j − φZρ̂ρρ−1

λ∗

(
A·,j
)}

+
{
φZρ̂ρρ−1

λ∗

(
A·,j
)
− A·,j

}
.

By hypothesis, k = r. Recall that φZρ̂ρρ−1

λ∗ : Rn → Rn is the projection operator onto

the span of the top r left singular vectors {û1, ..., ûr} of Z ρ̂−1, which are are also the

top r left singular vectors of Z since ρ̂−1 is diagonal. Hence

φZρ̂ρρ−1

λ∗ (A·,j)− A·,j ∈ span{û1, . . . , ûr}⊥.

By Lemma D.11,

Â·,j − φZρ̂ρρ−1

λ∗ (A·,j) =
1

ρ̂j
φZρ̂ρρ−1

λ∗ (Z·,j)− φZρ̂ρρ−1

λ∗ (A·,j) ∈ span{û1, . . . , ûr}.

Therefore ⟨Â·,j − φZρ̂ρρ−1

λ∗ (A·,j), φ
Zρ̂ρρ−1

λ∗ (A·,j)− A·,j⟩ = 0 and∥∥∥Â·,j − A·,j

∥∥∥2
2
=
∥∥∥Â·,j − φZρ̂ρρ−1

λ∗

(
A·,j
)∥∥∥2

2
+
∥∥∥φZρ̂ρρ−1

λ∗

(
A·,j
)
− A·,j

∥∥∥2
2
.

2. First term

Again applying Lemma D.11, we can rewrite

Â·,j − φZρ̂ρρ−1

λ∗ (A·,j) =
1

ρ̂j
φZρ̂ρρ−1

λ∗ (Z·,j)− φZρ̂ρρ−1

λ∗ (A·,j)

= φZρ̂ρρ−1

λ∗

( 1

ρ̂j
Z·,j − A·,j

)
=

1

ρ̂j
φZρ̂ρρ−1

λ∗ (Z·,j − ρjA·,j) +
ρj − ρ̂j
ρ̂j

φZρ̂ρρ−1

λ∗ (A·,j).
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Using the parallelogram law (or, equivalently, combining Cauchy-Schwartz and AM-

GM inequalities), we obtain∥∥∥Â·,j − φZρ̂ρρ−1

λ∗ (A·,j)
∥∥∥2
2
=

∥∥∥∥ 1

ρ̂j
φZρ̂ρρ−1

λ∗ (Z·,j − ρjA·,j) +
ρj − ρ̂j
ρ̂j

φZρ̂ρρ−1

λ∗ (A·,j)

∥∥∥∥2
2

≤ 2

∥∥∥∥ 1

ρ̂j
φZρ̂ρρ−1

λ∗ (Z·,j − ρjA·,j)

∥∥∥∥2
2

+ 2

∥∥∥∥ρj − ρ̂j
ρ̂j

φZρ̂ρρ−1

λ∗ (A·,j)

∥∥∥∥2
2

≤ 2

ρ̂2j

∥∥∥φZρ̂ρρ−1

λ∗ (Z·,j − ρjA·,j)
∥∥∥2
2
+ 2
(ρj − ρ̂j

ρ̂j

)2
∥A·,j∥22

≤ 2δ2

ρ2j

∥∥∥φZρ̂ρρ−1

λ∗ (Z·,j − ρjA·,j)
∥∥∥2
2
+ C

δ2

ρ2j

ln(np)

n
∥A·,j∥22. (10)

Here, we have used the fact that E4 and E5 imply

1

ρ̂j
≤ δ

ρj
,

(
ρj − ρ̂j
ρ̂j

)2

≤ δ2

ρ2j
(ρ̂j − ρj)

2 ≤ C
δ2

ρ2j

ln(np)

n
.

The first term of (10) can further be decomposed.∥∥∥φZρ̂ρρ−1

λ∗ (Z·,j − ρjA·,j)
∥∥∥2
2

≤ 2
∥∥∥φZρ̂ρρ−1

λ∗ (Z·,j − ρjA·,j)− φA(lr)
(Z·,j − ρjA·,j)

∥∥∥2
2

(11)

+ 2
∥∥∥φA(lr)

(Z·,j − ρjA·,j)
∥∥∥2
2
.

Finally, we bound (11). Given k = r, where k is the PCA hyperparameter, we can

represent φZρ̂ρρ−1

λ∗ (w) = Û rÛ
T
r w and φA(lr)

(w) = UUTw for w ∈ Rn. By Lemma D.13∥∥∥φZρ̂ρρ−1

λ∗ (Z·,j − ρjA·,j)− φA(lr)
(Z·,j − ρjA·,j)

∥∥∥
2

≤ ∥UUT − Û rÛ
T
r ∥
∥∥Z·,j − ρjA·,j

∥∥
2

≤ C
δ

ρminsr

(
(
√
n+

√
p)∆H,op + ∥E(lr)∥+

√
ln(np)

n
∥A(lr)∥

)∥∥Z·,j − ρjA·,j
∥∥
2
.

Combining the inequalities together, we have∥∥∥Â·,j − φZρ̂ρρ−1

λ∗

(
A·,j
)∥∥∥2

2

≤ Cδ4

ρ2min

(
(
√
n+

√
p)∆H,op

ρminsr
+

∥E(lr)∥
ρminsr

+

√
ln(np)/n∥A(lr)∥

ρminsr

)2 ∥∥Z·,j − ρjA·,j
∥∥2
2

+
4δ2

ρ2min

∥∥∥φA(lr)
(Z·,j − ρjA·,j)

∥∥∥2
2
+ C

δ2

ρ2min

ln(np)

n
∥A·,j∥22. (12)
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3. Second term

We now bound the second term. Recalling A = A(lr) +E(lr)

∥∥∥φZρ̂ρρ−1

λ∗

(
A·,j
)
− A·,j

∥∥∥2
2

=
∥∥∥φZρ̂ρρ−1

λ∗

(
A

(lr)
·,j + E

(lr)
·,j
)
− A

(lr)
·,j − E

(lr)
·,j

∥∥∥2
2

≤ 2
∥∥∥φZρ̂ρρ−1

λ∗

(
A

(lr)
·,j
)
− A

(lr)
·,j

∥∥∥2
2
+ 2

∥∥∥φZρ̂ρρ−1

λ∗

(
E

(lr)
·,j
)
− E

(lr)
·,j

∥∥∥2
2

= 2
∥∥∥φZρ̂ρρ−1

λ∗

(
A

(lr)
·,j
)
− φA(lr)(

A
(lr)
·,j
)∥∥∥2

2
+ 2

∥∥∥φZρ̂ρρ−1

λ∗

(
E

(lr)
·,j
)
− E

(lr)
·,j

∥∥∥2
2

≤ 2 ∥UUT − Û rÛ
T
r ∥2

∥∥∥A(lr)
·,j

∥∥∥2
2
+ 2

∥∥∥E(lr)
·,j

∥∥∥2
2

≤ Cδ2

(
(
√
n+

√
p)∆H,op

ρminsr
+

∥E(lr)∥
ρminsr

+

√
ln(np)/n∥A(lr)∥

ρminsr

)2 ∥∥∥A(lr)
·,j

∥∥∥2
2
+ 2

∥∥∥E(lr)
·,j

∥∥∥2
2
.

(13)

where the final inequality appeals to Lemma D.13.

Inserting (12) and (13) back into the decomposition, plugging the bounds in events

E2, E3, and combining terms completes the proof.

Remark D.2 (train and test). Since {û1, ..., ûr} are the left singular vectors of Ztrain,

Ztrain ρ̂train, and Ztrain ρ̂test, the argument holds for both cases of interest.

Lemma D.15. Suppose k = r. Let Assumptions 5.1 and 5.4 hold. If ρmin >
23 ln(np)

n
then∥∥∥Â−A

∥∥∥2
2,∞

∣∣∣ E
≤ C(Ka + K̄Ā)2

ρ4min

(
r +

n(n+ p)∆2
H,op + n

∥∥∥E(lr)
∥∥∥2 + ln(np)npĀ2

s2r

)
ln2(np) + C

∥∥∥E(lr)
∥∥∥2
2,∞

.

Proof. By Lemma D.14,

∥Â−A∥22,∞
∣∣∣ E

≤ Cδ4

ρ4min

(
(n+ p)∆2

H,op +
∥∥∥E(lr)

∥∥∥2 + (ln(np)/n)∥A(lr)∥2

s2r

)(
n∆H +

∥∥∥A(lr)
·,j

∥∥∥2
2

)
+
Cδ2

ρ2min

r∆H + C(δ − 1)2 ∥A·,j∥22 + C
∥∥∥E(lr)

·,j

∥∥∥2
2
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By Lemma D.9

∆H = C(Ka + K̄Ā)2 ln2(np), δ =
1

1−
√

22 ln(np)
nρmin

≤ C.

By Assumption 5.1 and Lemma C.4,

∥A(lr)∥22,∞ ≤ CnĀ2, ∥A(lr)∥2 ≤ CnpĀ2.

The definition of δ implies

C
δ2

ρ2min

ln(np)

n
∥A·,j∥22 ≤ C

ln(np)

nρ2min

∥A·,j∥22 ≤ CĀ2 ln(np)

ρ2min

.

The second term dominates the third. Within the first term, n∆H dominates
∥∥∥A(lr)

·,j

∥∥∥2
2
.

Distribute the n, then factor out ∆H

ρ4min
to combine the first term with the second.

Lemma D.16. Let the conditions of Lemma D.15 hold. Then∥∥∥Â−A
∥∥∥2
2,∞

∣∣∣ E
≤ CĀ4(Ka + K̄)2(κ+ K̄ +Ka)

2 · r ln
5(np)

ρ4min

(
1 +

n

p
+ n∆2

E

)
.

Proof. We simplify Lemma D.15 appealing to Assumption 5.4. Recall∥∥∥Â−A
∥∥∥2
2,∞

∣∣∣ E
≤ CĀ2(Ka + K̄)2

ρ4min

(
r +

n(n+ p)∆2
H,op + n

∥∥∥E(lr)
∥∥∥2 + ln(np)npĀ2

s2r

)
ln2(np)

+ C
∥∥∥E(lr)

∥∥∥2
2,∞

.

Note that

s2r ≥ C
np

r
,
∥∥∥E(lr)

∥∥∥2 ≤ np∆2
E,

∥∥∥E(lr)
∥∥∥2
2,∞

≤ n∆2
E, ∆2

H,op ≤ C · Ā2(κ+ K̄ +Ka)
2 ln3(np).

Then∥∥∥Â−A
∥∥∥2
2,∞

∣∣∣ E
≤ CĀ2(Ka + K̄)2

ρ4min

(
r +

n(n+ p) · Ā2(κ+ K̄ +Ka)
2 ln3(np) + n · np∆2

E
np
r

)
ln2(np)

+ Cn∆2
E

≤ C(Ka + K̄)2Ā4(κ+ K̄ +Ka)
2 · r ln

5(np)

ρ4min

(
1 +

n

p
+ n∆2

E

)
.
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D.4 Main result

Lemma D.17. Suppose Assumptions 5.1, 5.2, and 5.3 hold. Then

E
[
∥Â−A∥22,∞ 1{Ec}

]
≤ ∆adv

1

n2p5
, ∆adv := C

{
Ā2 +K2

a ln
2(np)

}
.

Proof. By Cauchy-Schwarz

E
[
∥Â−A∥22,∞ 1{Ec}

]
≤
√
E
[
∥Â−A∥42,∞

]√
E
[
1
2{Ec}

]
.

Consider the first factor. Note that

max
j∈[p]

∥Â·,j − A·,j∥2 ≤ max
j∈[p]

∥Â·,j∥2 +max
j∈[p]

∥A·,j∥2.

In the first term,

max
j∈[p]

∥Â·,j∥2 ≤ max
j∈[p]

1

ρ̂j
∥Z·,j∥2

≤ n max
j∈[p]

∥Z·,j∥2

≤ n ·
√
n max
i∈[n],j∈[p]

|Zij|

≤ n ·
√
n(Ā+max

i,j
|Hij|).

In the second term

max
j∈[p]

∥A·,j∥2 ≤
√
nĀ.

Collecting results

E
[
∥Â−A∥42,∞

]
≤ E[{n

3
2 (Ā+max

i,j
|Hij|) +

√
nĀ}4]

≤ E[{n
3
2 (2Ā+max

i,j
|Hij|)}4]

≤ Cn6(Ā4 + E[max
i,j

|Hij|4])

≤ Cn6{Ā4 +K4
a ln

4(np)}.

The final inequality holds because for any a > 0 and θ ≥ 1, if Hij is a ψa-random variable

then
∣∣Hij

∣∣θ is a ψa/θ-random variable. With the choice of θ = 4, we have that

E[max
i,j

|Hij|4] ≤ CK4
a ln

4
a (np).
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By Lemma D.10,

E
[
1
2{Ec}

]
= E [1{Ec}] = P(Ec) ≤ C

n10p10
.

Collecting results, we find that

E
[
∥Â−A∥22,∞ 1{Ec}

]
≤ C

√
n6(Ā4 +K4

a ln
4(np))

√
1

n10p10

= C

√
Ā4 +K4

a ln
4(np)

√
1

n4p10

≤ C
(
Ā2 +K2

a ln
2(np)

) 1

n2p5
.

Remark D.3 (train and test). The result holds for both Âtrain and Âtest because

ρ̂train
j , ρ̂test

j ≥ 1
n
.

Proof of Theorem 5.1. Define E := ∩5
k=1Ek where E1 to E5 are given above.

E
[ ∥∥∥Â−A

∥∥∥2
2,∞

]
= E

[ ∥∥∥Â−A
∥∥∥2
2,∞

· 1{E}
]
+ E

[∥∥∥Â−A
∥∥∥2
2,∞

· 1{Ec}
]
.

Focusing on the former term, by Lemma D.16

E
[
∥Â−A∥22,∞ 1{E}

]
≤ CĀ4(Ka + K̄)2(κ+ K̄ +Ka)

2 · r ln
5(np)

ρ4min

(
1 +

n

p
+ n∆2

E

)
.

Focusing on the latter term

E
[
∥Â−A∥22,∞ 1{Ec}

]
≤ ∆adv

1

n2p5
, ∆adv = C

(
Ā2 +K2

a ln
2(np)

)
.

which is dominated by the former term.

Throughout this section, the arguments given are conditional on A. They imply the

same rate unconditional on A by the law of iterated expectations.

Corollary D.1 (Finite sample data cleaning rate). Suppose the conditions of Theorem 5.1

hold, as well as Assumption C.1. Then

1

m
E∥b(D, Â)− b(D,A)∥22,∞ ≤ C ′

bC1 ·
r ln5(mp)

ρ4min

(
1

m
+

1

p
+∆2

E

)
where C1 = C · Ā4(Ka + K̄)2(κ+Ka + K̄)2.

Proof of Corollary D.1. Immediate from Theorem 5.1 and the definition of C ′
b in Assump-

tion C.1.
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E Error-in-variable regression

The outline of the argument is as follows

1. define train, test, and general error

2. establish orthogonality properties

3. analyze train error (more precisely, ∥β̂ − β∗∥2)

4. analyze test error (more precisely, ∥Âtestβ̂ −Atestβ∗∥22)

5. analyze general error (more precisely, ∥Ztest ρ̂−1 β̂ − γ0(A
test)∥22)

E.1 Notation and preliminaries

As in Appendix D, we identify NA with 0 in Z for the remainder of the appendix. We

also use the notation A rather than X. Recall that (ρ̂, β̂) are calculated from train. We

slightly abuse notation by letting n be the number of observations in train (and also

test), departing from the notation of the main text. We write ∥ · ∥ = ∥ · ∥op. We write

the proofs without nonlinear dictionaries for clarity. Then we extend our results to allow

for nonlinear dictionaries in subsequent remarks. We also let Ā′ = Ādmax and ρ′min = ρmin

dmaxĀ′ .

Finally, to lighten notation, we abbreviate b(Di, Ai,·) as b(Ai,·) when it is contextually clear.

E.1.1 Errors

Consider the following quantities:

˜train error =
1

n
E

[ ∑
i∈train

{Âi,·β̂ − γ0(Ai,·)}2
]

˜test error =
1

n
E

[ ∑
i∈test

{Âi,·β̂ − γ0(Ai,·)}2
]

general error =
1

n
E

[ ∑
i∈test

{γ̂i − γ0(Ai,·)}2
]
, γ̂i = Zi,· ρ̂

−1 β̂ = Zi,·β̃.

The ˜train error is standard for PCR. The ˜test error is similar to Agarwal et al.

(2020a). The general error is a new quantity introduced in this paper, specific to our
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variant of PCR that does not involve cleaning test. As we will see, post multiplying by β̃

performs a kind of implicit cleaning. By avoiding explicit cleaning, we preserve independence

across rows in test, which is critical for our inference argument. Therefore the key result

is about general error. En route, we will analyze quantities we refer to as train

error and test error, which are closely related to ˜train error and ˜test error.

When using a dictionary, the updated estimator is γ̂i = b(Di, Zi,· ρ̂
−1)β̂ = b(Di, Zi,·)β̃ for

an updated definition of β̃.

Proof of Proposition 4.2. For i ∈ test

γ̂(Di, Zi,·) = b(Di, Zi,· ρ̂
−1)β̂

=
[
DiZi,· ρ̂

−1 (1−Di)Zi,· ρ̂
−1
] β̂treat

β̂untreat


=
[
DiZi,· (1−Di)Zi,·

] ρ̂−1 β̂treat

ρ̂−1 β̂untreat

 .
Finally, independence holds conditional on train since (ρ̂, β̂) are calculated from train,

so the only randomness that remains is in (Di, Zi,·) and (Dj, Zj,·) which are i.n.i.d.

E.1.2 SVDs

Recall that the fill operator rescales using ρ̂ calculated from train. Denote the SVDs

A(lr),train = UΣV T , fill(Ztrain) = Ztrain ρ̂−1 = ÛΣ̂V̂ T , Âtrain = Û kΣ̂kV̂
T
k .

In this notation, V is an orthonormal basis for row{A(lr),train}. Let V ⊥ be an orthonormal

basis for the orthogonal complement to row{A(lr),train}. In other words, for any element

v ∈ row(V T ), V T
⊥v = 0. Likewise we define V̂ k,⊥. Define sk and ŝk as the k-th singular

values of A(lr),train and Âtrain, respectively.

Next, denote the SVDs

A(lr),test = U ′Σ′(V ′)T , fill(Ztest) = Ztest ρ̂−1 = Û ′Σ̂′(V̂ ′)T , Âtest = Û ′
kΣ̂

′
k(V̂

′
k)
T .

We define V ′
⊥ and V̂ ′

⊥ analogously to V ⊥. Define s′k and ŝ′k as the k-th singular values of

A(lr),test and Âtest, respectively.
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Finally, denote the SVD of the row-wise concatenation of A(lr),train and A(lr),test asA(lr),train

A(lr),test

 = ŨΣ̃Ṽ T .

We define Ṽ ⊥ analogously to V ⊥ but with respect to the row-wise concatenation of

A(lr),train and A(lr),test.

Remark E.1 (Dictionary). As discussed in Assumption C.2, to simplify our dictionary

discussion, we impose that r′ = k′. Given the alternative definitions of (β∗, β̂), our analysis

requires that we consider the alternative SVDs

b{A(lr),train} = UΣV T , b(Âtrain) = Û r′Σ̂r′V̂
T
r′

and

b{A(lr),test} = U ′Σ′(V ′)T , b(Âtest) = Û ′
r′Σ̂

′
r′(V̂

′
r′)

T .

We slightly abuse notation and depart from the main text by re-using the SVD symbols. In

particular, we denote the r′-th singular value of Σ̂r′ by ŝr′.

E.2 Orthogonality

The goal of this section is to establish orthogonality properties for the analysis to follow.

We begin by verifying that Assumption 5.6 holds with high probability under auxiliary

assumptions. In particular, Proposition E.1 provides intuition for how Assumption 5.6

can hold even with i.n.i.d. data. The auxiliary conditions of Proposition E.1 impose more

structure than we need for the main argument.

Lemma E.1 (Two sided bound on sub-Gaussian matrices; Theorem 4.6.1 of Vershynin

(2018)). Let U ∈ Rm×r whose rows Ui,· ∈ Rr are independent, mean zero, sub-Gaussian,

and isotropic with ∥Ui,·∥ψ2 ≤ Ku. Then for any t ≥ 0, w.p. 1− 2e−t
2

√
m− CK2

u(
√
r + t) ≤ sr(U) ≤ s1(U) ≤

√
m+ CK2

u(
√
r + t).

Proposition E.1 (Verifying row space inclusion). By hypothesis, rank{A(lr)} = r, so it

admits a representation A
(lr)
ij = ⟨ui, vj, ⟩ where ui, vj ∈ Rr. Suppose {ui} are independent,

mean zero, sub-Gaussian, and isotropic (i.e. V(ui) = Ir) with ∥ui∥ψ2 ≤ Ku. Suppose m≫

K4
u · r ln(mp). Then with probability 1−O{(mp)−10}, row{A(lr),train} = row{A(lr),test}.
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Proof. Consider A(lr),train. Let U have rows {Ui,·}. By Lemma E.1 with t = ln
1
2 (mp),

sr(U) ≥
√
m− CK2

u{
√
r + ln

1
2 (mp)} ≫ 0.

With high probability, sr(U ) ≫ 0, implying that {Ui,·} are full rank so that row(U ) = Rr.

Now consider A(lr),test. Let U ′ have rows {U ′
i,·}. Fix i ∈ test. Since U ′

i,· ∈ Rr =

row(U), there exists some λ ∈ Rr such that U ′
i,· =

∑r
k=1 λkUk,·. Therefore

A
(lr),test
ij = ⟨U ′

i,·, V·,j⟩ =

〈
r∑

k=1

λkUk,·, V·,j

〉
=

r∑
k=1

λk⟨Uk,·, V·,j⟩ =
r∑

k=1

λkA
(lr),train
kj .

In summary, for any i ∈ test, A(lr),test
i,· ∈ row{A(lr),train}. Therefore row{A(lr),test} ⊂

row{A(lr),train}. Likewise for the other direction.

Next, we turn to the orthogonality properties of interest. In order to formalize these

orthogonality properties, we formally define β∗. To begin, consider the case without a

dictionary. We define β∗ ∈ Rp as the unique solution to the following optimization problem

across train and test:

min
β∈Rp

∥β∥2 s.t. β ∈ argmin

∥∥∥∥∥∥
γ0(Atrain)

γ0(A
test)

−

A(lr),train

A(lr),test

 β
∥∥∥∥∥∥
2

2

.

β∗ is not the quantity of interest, but rather a theoretical device. It defines the unique,

minimal-norm, low-rank, linear approximation to the regression γ0. The theoretical device

β∗ generalizes the target quantity of Agarwal et al. (2020a), who study error-in-variables

regression in the exactly linear, exactly low rank, no dictionary special case (i.e. ϕ(lr)
i = 0).

Our ultimate goal is to define and analyze an estimator close to γ0(Ai,·) in generalized mean

square error while adhering to the conditional independence criterion of Proposition 4.2.

Remark E.2 (Dictionary). When using a dictionary, we update our definition of β∗ ∈ Rp′

as the unique solution to the following optimization problem across train and test:

min
β∈Rp′

∥β∥2 s.t. β ∈ argmin

∥∥∥∥∥∥
γ0(Atrain)

γ0(A
test)

−

b{A(lr),train}

b{A(lr),test}

 β
∥∥∥∥∥∥
2

2

.

Lemma E.2 (Orthogonality). Suppose Assumption 5.6 holds. Then,

V̂ T
k,⊥β̂ = 0, V T

⊥β
∗ = (V ′

⊥)
Tβ∗ = 0.
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Proof. We show each result

1. V̂ T
k,⊥β̂ = 0. By Agarwal et al. (2020a, Property 4.1), β̂ ∈ row(Âtrain) = row(V̂ T

k ) =

col(V̂ k). Recall that V̂ k,⊥ is the basis of null(V̂ k). Therefore by orthogonality of

col(V̂ k) and null(V̂ k), the result holds.

2. V T
⊥β

∗ = (V ′
⊥)

Tβ∗ = 0.

Using the definition of β∗ as the minimal ℓ2-norm solution, and an identical argument

to the one above, we have β∗ ∈ col(Ṽ ).

Moreover by Assumption 5.6,

row{A(lr),train} = row{A(lr),test} = row


A(lr),train

A(lr),test

 .

Therefore row(V T ) = row{(V ′)T} = row(Ṽ T ) i.e. col(V ) = col(V ′) = col(Ṽ ).

In summary, β∗ ∈ col(V ) = col(V ′).

Recall that V ⊥ is the basis of null(V ) and likewise V ′
⊥ is the basis of null(V ′).

Therefore by orthogonality of col(V ) and null(V ) as well as orthogonality of

col(V ′) and null(V ′), the result holds.

Remark E.3 (Dictionary). Lemma E.2 continues to hold with the updated definitions of

the SVDs in Remark E.1.

E.3 Training error

Recall Yi = A
(lr)
i,· β∗ + ϕ

(lr)
i + εi. Denote by Y train ∈ Rn the concatenation of (Yi)i∈train.

Likewise for εtrain and ϕ(lr),train. In the argument for train error, all objects correspond

to train. For this reason, we suppress superscipt train.

E.3.1 Decomposition

Lemma E.3. Deterministically,

∥Âβ̂ −A(lr)β∗∥22 ≤ C
{
∥Â−A(lr)∥22,∞∥β∗∥21 ∨ ∥ϕ(lr)∥22 ∨ ⟨Â(β̂ − β∗), ε⟩

}
.
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Proof. Write

∥Âβ̂ − Y ∥22 = ∥Âβ̂ −A(lr)β∗ − ϕ(lr) − ε∥22

= ∥Âβ̂ −A(lr)β∗ − ϕ(lr)∥22 + ∥ε∥22 − 2⟨Âβ̂ −A(lr)β∗, ε⟩+ 2⟨ϕ(lr), ε⟩. (14)

By optimality of β̂, we have

∥Âβ̂ − Y ∥22 ≤ ∥Âβ∗ − Y ∥22

= ∥(Â−A(lr))β∗ − ϕ(lr) − ε∥22

= ∥(Â−A(lr))β∗ − ϕ(lr)∥22 + ∥ε∥22 − 2⟨(Â−A(lr))β∗, ε⟩+ 2⟨ϕ(lr), ε⟩. (15)

From (14) and (15), we have

∥Âβ̂ −A(lr)β∗ − ϕ(lr)∥22 ≤ ∥(Â−A(lr))β∗ − ϕ(lr)∥22 + 2⟨Â(β̂ − β∗), ε⟩. (16)

Now consider

∥Âβ̂ −A(lr)β∗ − ϕ(lr)∥22 = ∥Âβ̂ −A(lr)β∗∥22 + ∥ϕ(lr)∥22 − 2⟨Âβ̂ −A(lr)β∗, ϕ(lr)⟩; (17)

∥(Â−A(lr))β∗ − ϕ(lr)∥22 = ∥(Â−A(lr))β∗∥22 + ∥ϕ(lr)∥22 − 2⟨(Â−A(lr))β∗, ϕ(lr)⟩. (18)

Combining (16), (17), and (18)

∥Âβ̂ −A(lr)β∗∥22 ≤ ∥(Â−A(lr))β∗∥22 + 2⟨Â(β̂ − β∗), ϕ(lr)⟩+ 2⟨Â(β̂ − β∗), ε⟩. (19)

By Cauchy-Schwarz

⟨Â(β̂ − β∗), ϕ(lr)⟩ ≤ ∥Â(β̂ − β∗)∥2 · ∥ϕ(lr)∥2. (20)

Focusing on the former factor

∥Â(β̂ − β∗)∥2 ≤ ∥Âβ̂ −A(lr)β∗∥2 + ∥Âβ∗ −A(lr)β∗∥2. (21)

Let a = ∥Âβ̂ −A(lr)β∗∥22 and b = ∥Âβ∗ −A(lr)β∗∥22. Then (19), (20), and (21) imply

a ≤ b+ 2(
√
a+

√
b)∥ϕ(lr)∥2 + 2⟨Â(β̂ − β∗), ε⟩ = 2

√
a∥ϕ(lr)∥2 + c (22)

where c = b + 2
√
b∥ϕ(lr)∥2 + 2⟨Â(β̂ − β∗), ε⟩. We now analyze the expression a ≤

2
√
a∥ϕ(lr)∥2 + c. Note a ≥ 0. There are three possible cases.
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1. a ≥ 0, c ≥ 0, 2
√
a∥ϕ(lr)∥2 ≥ c:

a ≤ 4
√
a∥ϕ(lr)∥2 =⇒ a ≤ 16∥ϕ(lr)∥22.

2. a ≥ 0, c ≥ 0, 2
√
a∥ϕ(lr)∥2 < c:

a ≤ 2c.

3. a ≥ 0, c < 0:

a < 2
√
a∥ϕ(lr)∥2 =⇒ a < 4∥ϕ(lr)∥22.

(22) and the three cases above imply

a ≤ 2c ∨ 16∥ϕ(lr)∥22. (23)

Let d := 2b+ 4
√
b∥ϕ(lr)∥2 + 2∥ϕ(lr)∥22. Then

d = 2b+ 4
√
b∥ϕ(lr)∥2 + 2∥ϕ(lr)∥22 = 2{

√
b+ ∥ϕ(lr)∥2}2 ≤ 4{b+ ∥ϕ(lr)∥22}. (24)

Note 2c ≤ d+ 4⟨Â(β̂ − β∗), ε⟩. This together with (23) and (24) together implies

a ≤ C
{
b ∨ ∥ϕ(lr)∥22 ∨ ⟨Â(β̂ − β∗), ε⟩

}
.

Finally note b ≤ ∥Â−A(lr)∥22,∞∥β∗∥21.

Remark E.4 (Dictionary). The generalization of Lemma E.3 is

∥b(Â)β̂−b{A(lr)}β∗∥22 ≤ C
{
∥b(Â)− b{A(lr)}∥22,∞∥β∗∥21 ∨ ∥ϕ(lr)∥22 ∨ ⟨b(Â)(β̂ − β∗), ε⟩

}
.

E.3.2 Parameter

Lemma E.4. Let the conditions of Lemma E.2 hold. Then

∥V̂ kV̂
T
k (β̂ − β∗)∥22 ≤

C

ŝ2k

{
∥Â−A(lr)∥22,∞∥β∗∥21 ∨ ∥ϕ(lr)∥22 ∨ ⟨Â(β̂ − β∗), ε⟩

}
Proof. To begin, note that

∥V̂ kV̂
T
k (β̂ − β∗)∥22 = ∥V̂ T

k (β̂ − β∗)∥22, (25)
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since V̂ k is an isometry. Recall that Â = Û kΣ̂kV̂
T
k . Therefore,

∥Â(β̂ − β∗)∥22 = (β̂ − β∗)T V̂ kΣ̂
2
kV̂

T
k (β̂ − β∗)

≥ ŝ2k∥V̂ T
k (β̂ − β∗)∥22. (26)

Next, consider

∥Â(β̂ − β∗)∥22 ≤ 2∥Âβ̂ −A(lr)β∗∥22 + 2∥A(lr)β∗ − Âβ∗∥22

≤ 2∥Âβ̂ −A(lr)β∗∥22 + 2∥A(lr) − Â∥22,∞∥β∗∥21. (27)

Using (25), (26), and (27), we have

∥V̂ kV̂
T
k (β̂ − β∗)∥22 ≤

2

ŝ2k

{
∥Âβ̂ −A(lr)β∗∥22 + ∥A(lr) − Â∥22,∞∥β∗∥21

}
.

Finally using Lemma E.3, we conclude that

∥V̂ kV̂
T
k (β̂ − β∗)∥22 ≤

C

ŝ2k

{
∥Â−A(lr)∥22,∞∥β∗∥21 ∨ ∥ϕ(lr)∥22 ∨ ⟨Â(β̂ − β∗), ε⟩

}
. (28)

Remark E.5 (Dictionary). The generalization of Lemma E.4 is

∥V̂ r′V̂
T
r′(β̂ − β∗)∥22 ≤

C

ŝ2r′

{
∥b(Â)− b{A(lr)}∥22,∞∥β∗∥21 ∨ ∥ϕ(lr)∥22 ∨ ⟨b(Â)(β̂ − β∗), ε⟩

}
where the SVDs are as in Remark E.1 and ŝr′ is defined accordingly.

Lemma E.5. Let the conditions of Lemma E.2 hold. Then,

∥β̂ − β∗∥22

≤ C

[
∥V V T − V̂ kV̂

T
k ∥2∥β∗∥22 +

1

ŝ2k

{
∥Â−A(lr)∥22,∞∥β∗∥21 ∨ ∥ϕ(lr)∥22 ∨ ⟨Â(β̂ − β∗), ε⟩

}]
.

Proof. Write

∥β̂ − β∗∥22 = ∥V̂ kV̂
T
k (β̂ − β∗) + V̂ k,⊥V̂

T
k,⊥(β̂ − β∗)∥22

= ∥V̂ kV̂
T
k (β̂ − β∗)∥22 + ∥V̂ k,⊥V̂

T
k,⊥(β̂ − β∗)∥22

= ∥V̂ kV̂
T
k (β̂ − β∗)∥22 + ∥V̂ k,⊥V̂

T
k,⊥β

∗∥22. (29)

In the last equality we have used Lemma E.2. Next, we bound the two terms in (29).
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1. Bounding ∥V̂ kV̂
T
k (β̂ − β∗)∥22.

The bound follows from Lemma E.4.

2. Bounding ∥V̂ k,⊥V̂
T
k,⊥β

∗∥22.

Write

∥V̂ k,⊥V̂
T
k,⊥β

∗∥22 = ∥(V̂ k,⊥V̂
T
k,⊥β

∗ − V ⊥V
T
⊥)β

∗∥22

≤ ∥V̂ k,⊥V̂
T
k,⊥ − V ⊥V

T
⊥∥2∥β∗∥22

= ∥(I − V ⊥V
T
⊥)− (I − V̂ k,⊥V̂

T
k,⊥)∥2∥β∗∥22

= ∥V V T − V̂ kV̂
T
k ∥2∥β∗∥22.

Here we have used (V ⊥V
T
⊥)β

∗ = 0 by Lemma E.2.

Remark E.6 (Dictionary). The generalization of Lemma E.5 is

∥β̂ − β∗∥22

≤ C

[
∥V V T − V̂ r′V̂

T
r′∥2∥β∗∥22 +

1

ŝ2r′

{
∥b(Â)− b{A(lr)}∥22,∞∥β∗∥21 ∨ ∥ϕ(lr)∥22 ∨ ⟨b(Â)(β̂ − β∗), ε⟩

}]
where the SVDs are as in Remark E.1 and ŝr′ is defined accordingly.

E.3.3 High probability events

Lemma E.6 (Weyl’s Inequality). Assume A,B ∈ Rn×p. Let sk and ŝk be the k-th singular

values of A and B, respectively, in decreasing order and repeated by multiplicities. Then

for all k ∈ [n ∧ p],

|sk − ŝk| ≤ ∥A−B∥.

Lemma E.7. Suppose the conditions of Lemma D.12 hold. Then,

|sr − ŝr|
∣∣∣ {E1, E4, E5} ≤ C

δ

ρmin

{
(
√
n+

√
p)∆H,op + ∥E(lr)∥+

√
ln(np)

n
∥A(lr)∥

}
.

Proof. By Weyl’s inequality as in Lemma E.6, we obtain

|sr − ŝr| ≤ ∥Z ρ̂−1−A(lr)∥.

Apply Lemma D.12 to complete the proof.

92



Remark E.7 (Dictionary). The generalization of Lemma E.7 is

|sr′ − ŝr′|
∣∣∣ {E1, E4, E5} ≤ C

δ

ρ′min

(
(
√
n+

√
p)∆H,op + ∥E(lr)∥+

√
ln(np)

n
∥A(lr)∥

)
.

where ρ′min = ρmin

Ādmaxdmax
.

Proof. We proceed in steps.

1. Decomposition

With updated SVDs as in Remark E.1, Weyl’s inequality implies

|sr′ − ŝr′| ≤ ∥b(Â)− b{A(lr)}∥ ≤ ∥b(Â)− b(Z ρ̂−1)∥+ ∥b(Z ρ̂−1)− b{A(lr)}∥.

2. Former term

For a polynomial dictionary with uncorrupted nonlinearity (Definition C.2), the former

term simplifies as

∥b(Â)− b(Z ρ̂−1)∥

= ∥{0, 0, ..., 0, (Z ρ̂−1−Â), diag(D)(Z ρ̂−1−Â), ..., diag(D)dmax−1(Z ρ̂−1−Â)}∥

≤ ∥Z ρ̂−1−Â∥+ Ā∥Z ρ̂−1−Â∥+ ...+ Ādmax−1∥Z ρ̂−1−Â∥

≤ Ādmaxdmax∥Z ρ̂−1−Â∥.

Next observe that by Lemma E.7, under the beneficial events,

∥Z ρ̂−1−Â∥ = ŝr+1 = ŝr+1−sr+1 ≤ C
δ

ρmin

{
(
√
n+

√
p)∆H,op + ∥E(lr)∥+

√
ln(np)

n
∥A(lr)∥

}
.

3. Latter term

By a similar argument,

∥b(Z ρ̂−1)− b{A(lr)}∥ ≤ Ādmaxdmax∥Z ρ̂−1−A(lr)∥.

By Lemma D.12, under the beneficial events,

∥Zρ̂ρρ−1 −A(lr)∥ ≤ C
δ

ρmin

(
(
√
n+

√
p)∆H,op + ∥E(lr)∥+

√
ln(np)

n
∥A(lr)∥

)
.
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Lemma E.8. Suppose k = r. Then

∥V V T−V̂ rV̂
T
r ∥
∣∣∣ {E1, E4, E5} ≤ C

δ

ρminsr

{
(
√
n+

√
p)∆H,op + ∥E(lr)∥+

√
ln(np)

n
∥A(lr)∥

}
.

Proof. Similar to Lemma D.13, we apply Wedin’s sinΘ Theorem (Davis and Kahan, 1970;

Wedin, 1972)) to arrive at the following inequality:

∥V V T − V̂ rV̂
T
r ∥ ≤ ∥Z ρ̂−1−A(lr)∥

sr
.

Apply Lemma D.12 to complete the proof.

Remark E.8 (Dictionary). The generalization is

∥V V T − V̂ r′V̂
T
r′∥
∣∣∣ {E1, E4, E5}

C
δ

ρ′minsr′

(
(
√
n+

√
p)∆H,op + ∥E(lr)∥+

√
ln(np)

n
∥A(lr)∥

)
.

Proof. Wedin’s sinΘ Theorem gives

∥V V T − V̂ r′V̂
T
r′∥ ≤ ∥b(Â)− b{A(lr)}∥

sr′
.

The numerator is handled in the proof of Remark E.7.

Lemma E.9. Suppose Assumptions 5.1, 5.2, 5.3, and 5.4 hold, and k = r. If

ρmin ≫ C̃
√
r ln

3
2 (np)

(
1
√
p
∨ 1√

n
∨∆E

)
, C̃ := CĀ

(
κ+ K̄ +Ka

)
,

then with probability at least 1−O{1/(np)10}, ŝr ≳ sr.

Proof. The argument is as follows.

1. By Lemma E.7, |ŝr − sr| ≤ ∆, hence ŝr ≥ sr −∆, where ∆ is defined below.

2. We want to show ∆ = o(sr), i.e. ∆ ≤ cnsr where cn → 0; it is sufficient to show
∆
sr

→ 0.

3. In such case, ŝr ≥ sr −∆ ≥ sr − cnsr = (1− cn)sr, i.e. ŝr ≳ sr.
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By Lemma D.10 and Lemma E.7, with probability at least 1−O{1/(np)10}

∆ := C
δ

ρmin

{
(
√
n+

√
p)∆H,op + ∥E(lr)∥+

√
ln(np)

n
∥A(lr)∥

}

≤ C
1

ρmin

{
Ā
(
κ+ K̄ +Ka

)(√
n+

√
p
)
ln

3
2 (np) +

√
np∆E +

√
ln(np)

n

√
npĀ

}

≤ C
Ā
(
κ+ K̄ +Ka

)
ρmin

ln
3
2 (np)

(√
n+

√
p+

√
np∆E

)
.

Moreover by Assumption 5.4

sr ≥ C

√
np

r
.

Therefore a sufficient condition for the lemma statement to hold is

∆

sr
≤ C

Ā
(
κ+ K̄ +Ka

)
ρmin

·
√
r ln

3
2 (np) ·

(
1
√
p
+

1√
n
+∆E

)
→ 0

i.e.

ρmin ≫ C̃
√
r ln

3
2 (np)

(
1
√
p
∨ 1√

n
∨∆E

)
, C̃ := CĀ

(
κ+ K̄ +Ka

)
.

Remark E.9 (Dictionary). The generalization of Lemma E.9 is

ρ′min :=
ρmin

Ādmaxdmax

≫ C̃
√
r′ ln

3
2 (np)

(
1
√
p
∨ 1√

n
∨∆E

)
.

Proof. By Remark E.7,

∆ := C
δ

ρ′min

(
(
√
n+

√
p)∆H,op + ∥E(lr)∥+

√
ln(np)

n
∥A(lr)∥

)
.

Moreover by the generalized Assumption 5.4

sr′ ≥ C

√
np

r′
.

Lemma E.10. Suppose Assumption 5.5 holds. Recall k is the PCA hyperparameter. Then

E⟨Â(β̂ − β∗), ε⟩ ≤ σ̄2k.

95



Proof. Note that

β̂ = Â†Y = Â†{A(lr)β∗ + ε+ ϕ(lr)}.

Since ε is independent of Â, A(lr), β∗, and ϕ(lr) we have

E⟨Â(β̂ − β∗), ε⟩ = E
〈
Â
[
Â†{A(lr)β∗ + ε+ ϕ(lr)} − β∗

]
, ε
〉

= E⟨ÂÂ†A(lr)β∗, ε⟩+ E⟨ÂÂ†ε, ε⟩+ E⟨ÂÂ†ϕ(lr), ε⟩ − E⟨Âβ∗, ε⟩

= E⟨ÂÂ†ε, ε⟩.

Observe that E⟨ÂÂ†ε, ε⟩ is a scalar. By properties of trace algebra, independence of ε from

Â, Assumption 5.5, and the fact that Â is rank k we obtain

E⟨ÂÂ†ε, ε⟩ = E
[
trace

(
εT ÂÂ†ε

)]
= E

[
trace

(
ÂÂ†εεT

)]
= trace

(
E
[
ÂÂ†

]
E
[
εεT
])

≤ σ̄2trace
(
E
[
ÂÂ†

])
= σ̄2k.

Remark E.10 (Dictionary). The generalization of Lemma E.10 is

E⟨b(Â)(β̂ − β∗), ε⟩ ≤ σ̄2r′.

Lemma E.11 (Modified Hoeffding Inequality; Lemma A.3 of Agarwal et al. (2020a)). Let

X ∈ Rn be random vector with independent mean-zero sub-Gaussian random coordinates

with ∥Xi∥ψ2
≤ K. Let a ∈ Rn be another random vector that satisfies ∥a∥2 ≤ b almost

surely for some constant b ≥ 0. Then for all t ≥ 0,

P
(∣∣∣ n∑

i=1

aiXi

∣∣∣ ≥ t
)
≤ 2 exp

(
− ct2

K2b2

)
,

where c > 0 is a universal constant.

Lemma E.12 (Modified Hanson-Wright Inequality; Lemma A.4 of Agarwal et al. (2020a)).

Let X ∈ Rn be a random vector with independent mean-zero sub-Gaussian coordinates with
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∥Xi∥ψ2
≤ K. Let B ∈ Rn×n be a random matrix satisfying ∥B∥ ≤ a and ∥B∥2Fr ≤ b almost

surely for some a, b ≥ 0. Then for any t ≥ 0,

P
(
|XTBX − E[XTBX]| ≥ t

)
≤ 2 · exp

{
− cmin

( t2

K4b
,
t

K2a

)}
.

Lemma E.13. Suppose Assumptions 5.1 and 5.5 hold, and that k = r. Given Â, the

following holds with probability at least 1−O{1/(np)10} with respect to randomness in ε:

⟨Â(β̂ − β∗), ε⟩

≤ Cσ̄2 ln(np)
{
r + ∥ϕ(lr)∥2 + ∥β∗∥1(

√
nĀ+ ∥Â−A∥2,∞)

}
.

Proof. We proceed in steps.

1. Decomposition

We need to bound ⟨Â(β̂ − β∗), ε⟩. To that end, we recall that β̂ = V̂ kΣ̂
−1
k ÛT

k Y ,

Â = Û kΣ̂kV̂
T
k , and Y = A(lr)β∗ + ϕ(lr) + ε. Thus,

Âβ̂ = Û kΣ̂kV̂
T
k V̂ kΣ̂

−1
k ÛT

k Y = Û kÛ
T
kA

(lr)β∗ + Û kÛ
T
k ϕ

(lr) + Û kÛ
T
k ε.

Therefore,

⟨Â(β̂ − β∗), ε⟩

= ⟨Û kÛ
T
kA

(lr)β∗, ε⟩+ ⟨Û kÛ
T
k ϕ

(lr), ε⟩+ ⟨Û kÛ
T
k ε, ε⟩ − ⟨Âβ∗, ε⟩. (30)

2. First Hoeffding

To obtain a high probability bound of the first term, we use Lemma E.11. Note that

∥Û kÛ
T
kA

(lr)β∗∥2 ≤ ∥A(lr)β∗∥2 ≤ ∥A(lr)∥2,∞∥β∗∥1 ≤ 3
√
nĀ∥β∗∥1

since Û kÛ
T
k is a projection matrix and ∥A(lr)∥2,∞ ≤ 3

√
nĀ due to Lemma C.4.

It follows that for any t > 0

P
(
⟨Û kÛ

T
kA

(lr)β∗, ε⟩ ≥ t
)
≤ exp

(
− ct2

nĀ2∥β∗∥21σ̄2

)
. (31)

3. Second Hoeffding
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To obtain a high probability bound of the second term, we use Lemma E.11. Note

that

∥Û kÛ
T
k ϕ

(lr)∥2 ≤ ∥ϕ(lr)∥2

since Û kÛ
T
k is a projection matrix.

It follows that for any t > 0

P
(
⟨Û kÛ

T
k ϕ

(lr), ε⟩ ≥ t
)
≤ exp

(
− ct2

∥ϕ(lr)∥22σ̄2

)
. (32)

4. Third Hoeffding

To obtain a high probability bound of the fourth term, we use Lemma E.11. Note that

∥Âβ∗∥2 ≤ ∥(Â−A)β∗∥2 + ∥Aβ∗∥2

≤
(
∥Â−A∥2,∞ + ∥A∥2,∞

)
∥β∗∥1

≤
(
∥Â−A∥2,∞ +

√
nĀ
)
∥β∗∥1

since ∥A∥2,∞ ≤
√
nĀ due to Assumption 5.1.

Therefore, for any t > 0

P
(
⟨Âβ∗, ε⟩ ≥ t

)
≤ exp

(
− ct2

σ̄2(nĀ2 + ∥Â−A∥22,∞)∥β∗∥21

)
. (33)

5. Hanson-Wright

To obtain a high probability bound of the third term, we use Lemma E.12. ε is

independent of Û k, Σ̂k, V̂ k since Â is determined by Z, which is independent of ε.

As a result,

E
[
⟨Û kÛ

T
k ε, ε⟩

]
= E

[
εT Û kÛ

T
k ε
]

= E
[
trace(εT Û kÛ

T
k ε)
]

= E
[
trace(εεT Û kÛ

T
k )
]

= trace(E
[
εεT
]
Û kÛ

T
k )

≤ trace(σ̄2Û kÛ
T
k )

= σ̄2trace(ÛT
k Û k)

= σ̄2k. (34)
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Since Û kÛ
T
k is a projection matrix,

∥Û kÛ
T
k ∥ ≤ 1, ∥Û kÛ

T
k ∥2Fr = trace(Û kÛ

T
k Û kÛ

T
k ) = trace(ÛT

k Û k) = k.

Finally, using Lemma E.12 and (34), it follows that for any t > 0

P
(
⟨Û kÛ

T
k ε, ε⟩ ≥ σ̄2k + t

)
≤ exp

{
− cmin

( t2

kσ̄4
,
t

σ̄2

)}
. (35)

6. Simplification.

Set the RHSs of (31), (32), (33), and (35) equal to 1/(np)10 and solve for t. Combining

these results with (30),

⟨Â(β̂ − β∗), ε⟩

≤ σ̄2r + Cσ̄
√

ln(np)
{
σ̄
√
r + σ̄

√
ln(np) + ∥ϕ(lr)∥2 + ∥β∗∥1(

√
nĀ+ ∥Â−A∥2,∞)

}
≤ Cσ̄2 ln(np)

{
r + ∥ϕ(lr)∥2 + ∥β∗∥1(

√
nĀ+ ∥Â−A∥2,∞)

}
.

Remark E.11 (Dictionary). The generalization of Lemma E.13 is

⟨b(Â)(β̂ − β∗), ε⟩

≤ Cσ̄2 ln(np)
{
r′ + ∥ϕ(lr)∥2 + ∥β∗∥1(

√
nĀ′ + ∥b(Â)− b(A)∥2,∞)

}
.

E.3.4 Collecting results

Lemma E.14. Suppose the conditions of Theorem 5.1 hold. Further suppose Assump-

tions 5.5 and 5.6 hold. With probability at least 1−O{(np)−10}, ∥V̂ rV̂
T
r (β̂ − β∗)∥22 ≤ (2)

where

(2) =
C(Ka + K̄Ā)2

ρ4min

σ̄2 ln3(np)

ŝ2r

·

 ∥ϕ(lr)∥22 + ∥β∗∥21


√
n

∥β∗∥1
+ r +

n(n+ p)∆2
H,op + n

∥∥∥E(lr)
∥∥∥2 + ln(np)npĀ2

s2r
+ ∥E(lr)∥22,∞


 .

Proof. By Lemma E.4

∥V̂ kV̂
T
k (β̂ − β∗)∥22 ≤

C

ŝ2k

{
∥Â−A(lr)∥22,∞∥β∗∥21 ∨ ∥ϕ(lr)∥22 ∨ ⟨Â(β̂ − β∗), ε⟩

}
.
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Note that

∥Â−A(lr)∥22,∞ ≤ C
{
∥Â−A∥22,∞ + ∥E(lr)∥22,∞

}
.

By Lemma E.13, with probability at least 1−O{(np)−10}

⟨Â(β̂ − β∗), ε⟩ ≤ Cσ̄2 ln(np)
{
r + ∥ϕ(lr)∥2 + ∥β∗∥1(

√
nĀ+ ∥Â−A∥2,∞)

}
.

Simplifying, with probability at least 1−O{(np)−10}

∥V̂ rV̂
T
r (β̂ − β∗)∥22

≤ C
σ̄2 ln(np)

ŝ2r

[
r + ∥ϕ(lr)∥22 + ∥β∗∥21

{√
nĀ

1

∥β∗∥1
+ ∥Â−A∥22,∞ + ∥E(lr)∥22,∞

}]
.

Note that we have taken x ∨ x2 ≤ x2 for x ∈ {∥ϕ(lr)∥2, ∥Â−A∥2,∞∥β∗∥1}. To justify this

simplification, one may consider redefining x̃ = x ∨ 1, since the objects taken as x are

diverging.

By Lemma D.10 and Lemma D.15, with probability at least 1−O{(np)−10}∥∥∥Â−A
∥∥∥2
2,∞

≤ C(Ka + K̄Ā)2

ρ4min

(
r +

n(n+ p)∆2
H,op + n

∥∥∥E(lr)
∥∥∥2 + ln(np)npĀ2

s2r

)
ln2(np) + C

∥∥∥E(lr)
∥∥∥2
2,∞

.

In summary, with probability at least 1−O{(np)−10}

∥V̂ rV̂
T
r (β̂ − β∗)∥22

≤ C(Ka + K̄Ā)2

ρ4min

σ̄2 ln3(np)

ŝ2r

·

 ∥ϕ(lr)∥22 + ∥β∗∥21


√
n

∥β∗∥1
+ r +

n(n+ p)∆2
H,op + n

∥∥∥E(lr)
∥∥∥2 + ln(np)npĀ2

s2r
+ ∥E(lr)∥22,∞


 .

Lemma E.15. Suppose the conditions of Lemma E.14 hold. With probability at least

1−O{(np)−10}, ∥β̂ − β∗∥22 ≤ (1) + (2) where

(1) = C
∥β∗∥22
ρ2mins

2
r

{
(n+ p)∆2

H,op + ∥E(lr)∥2 + Ā2 ln(np)p
}

and (2) is defined above.
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Proof. By Lemma E.5

∥β̂ − β∗∥22

≤ C

[
∥V V T − V̂ kV̂

T
k ∥2∥β∗∥22 +

1

ŝ2k

{
∥Â−A(lr)∥22,∞∥β∗∥21 ∨ ∥ϕ(lr)∥22 ∨ ⟨Â(β̂ − β∗), ε⟩

}]
.

By Lemma E.14, it suffices to focus on the first term, since the latter is bounded by (2). By

Proposition D.10, Lemma E.8, and since δ ≤ C and ∥A(lr)∥ ≤ Ā
√
np, with probability at

least 1−O{(np)−10}

∥V V T − V̂ rV̂
T
r ∥ ≤ C

δ

ρminsr

{
(
√
n+

√
p)∆H,op + ∥E(lr)∥+

√
ln(np)

n
∥A(lr)∥

}
≤ C

ρminsr

{
(
√
n+

√
p)∆H,op + ∥E(lr)∥+ Ā

√
ln(np)

√
p
}
.

Simplifying, with probability at least 1−O{(np)−10}

∥β̂ − β∗∥22 ≤ C
∥β∗∥22
ρ2mins

2
r

{
(n+ p)∆2

H,op + ∥E(lr)∥2 + Ā2 ln(np)p
}
+ (2)

Remark E.12 (Dictionary). In the generalization of Lemmas E.14 and E.15, note the new

appearance of C ′
b in (2):

(1) = C
∥β∗∥22

(ρ′min)
2s2r′

[
(n+ p)∆2

H,op + ∥E(lr)∥2 + Ā2 ln(np) · p
]

(2) =
CC ′

b(Ka + K̄Ā)2

(ρ′min)
4

σ̄2 ln3(np)

ŝ2r′

·
[
∥ϕ(lr)∥22 + ∥β∗∥21

{ √
n

∥β∗∥1
+ r′ +

n(n+ p)∆2
H,op + n

∥∥∥E(lr)
∥∥∥2 + ln(np)npĀ2

s2r

+ ∥E(lr)∥22,∞ + ∥b(A)− b{A(lr)}∥22,∞
}]

.

Proof. For simplicity, we prove the result by focusing on ∥β̂ − β∗∥22. By Lemma E.6

∥β̂ − β∗∥22

≤ C

[
∥V V T − V̂ r′V̂

T
r′∥2∥β∗∥22 +

1

ŝ2r′

{
∥b(Â)− b{A(lr)}∥22,∞∥β∗∥21 ∨ ∥ϕ(lr)∥22 ∨ ⟨b(Â)(β̂ − β∗), ε⟩

}]
.

By Remark E.8 and analogous algebra,

∥V V T − V̂ rV̂
T
r ∥ ≤ C

ρ′minsr′

{
(
√
n+

√
p)∆H,op + ∥E(lr)∥+ Ā

√
ln(np)

√
p
}
.
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Note that

∥b(Â)− b{A(lr)}∥22,∞ ≤ C
{
∥b(Â)− b(A)∥22,∞ + ∥b(A)− b{A(lr)}∥22,∞

}
.

By Remark E.11, with probability at least 1−O{(np)−10}

⟨b(Â)(β̂ − β∗), ε⟩

≤ Cσ̄2 ln(np)
{
r′ + ∥ϕ(lr)∥2 + ∥β∗∥1(

√
nĀ′ + ∥b(Â)− b(A)∥2,∞)

}
.

Simplifying, with probability at least 1−O{(np)−10}

∥β̂ − β∗∥22

≤ C
∥β∗∥22

(ρ′min)
2s2r′

{
(n+ p)∆2

H,op + ∥E(lr)∥2 + Ā2 ln(np)p
}

+ C
σ̄2 ln(np)

ŝ2r′

[
r′ + ∥ϕ(lr)∥22 + ∥β∗∥21

{√
nĀ′ 1

∥β∗∥1
+ ∥b(Â)− b(A)∥22,∞ + ∥b(A)− b{A(lr)}∥22,∞

}]
.

By Lemma D.10 and Lemma D.15, with probability at least 1−O{(np)−10}∥∥∥b(Â)− b(A)
∥∥∥2
2,∞

≤ CC ′
b(Ka + K̄Ā)2

ρ4min

(
r +

n(n+ p)∆2
H,op + n

∥∥∥E(lr)
∥∥∥2 + ln(np)npĀ2

s2r

)
ln2(np) + C

∥∥∥E(lr)
∥∥∥2
2,∞

.

In summary, with probability at least 1−O{(np)−10}

∥β̂ − β∗∥22

≤ C
∥β∗∥22

(ρ′min)
2s2r′

{
(n+ p)∆2

H,op + ∥E(lr)∥2 + Ā2 ln(np)p
}

+
CC ′

b(Ka + K̄Ā)2

(ρ′min)
4

σ̄2 ln3(np)

ŝ2r′

·
[
∥ϕ(lr)∥22 + ∥β∗∥21

{ √
n

∥β∗∥1
+ r′ +

n(n+ p)∆2
H,op + n

∥∥∥E(lr)
∥∥∥2 + ln(np)npĀ2

s2r

+ ∥E(lr)∥22,∞ + ∥b(A)− b{A(lr)}∥22,∞
}]

.

Proposition E.2 (Projected train error). Suppose conditions of Theorem 5.1 hold.

Further suppose Assumptions 5.5 and 5.6 hold. Let k = r and

ρmin ≫ C̃
√
r ln

3
2 (np)

(
1
√
p
∨ 1√

n
∨∆E

)
, C̃ := CĀ

(
κ+ K̄ +Ka

)
.

102



Then with probability at least 1−O{(np)−10}

∥V̂ rV̂
T
r (β̂ − β∗)∥22

≤ CĀ4(Ka + K̄)2(κ+ K̄ +Ka)
2 σ̄

2

ρ4min

· r ln6(np)

·
{

1

np
∥ϕ(lr)∥22 + ∥β∗∥21

( √
n

∥β∗∥1np
+

r

np
+

r

p2
+
r

p
∆2
E

)}
.

Proof. We proceed in steps.

1. Recall the inequalities

s2r ≥ C
np

r
,
∥∥∥E(lr)

∥∥∥2 ≤ np∆2
E,

∥∥∥E(lr)
∥∥∥2
2,∞

≤ n∆2
E.

Further,

∆2
H,op ≤ C · Ā2(κ+ K̄ +Ka)

2 ln3(np).

Moreover, (n+ p)∆2
H,op dominates ln(np)pĀ2.

2. Simplifying the RHS of the bound in Lemma E.14

(2) :=
C(Ka + K̄Ā)2

ρ4min

σ̄2 ln3(np)

ŝ2r

·

 ∥ϕ(lr)∥22 + ∥β∗∥21


√
n

∥β∗∥1
+ r +

n(n+ p)∆2
H,op + n

∥∥∥E(lr)
∥∥∥2 + ln(np)npĀ2

s2r
+ ∥E(lr)∥22,∞


 .

Bounding its latter factor

∥ϕ(lr)∥22 + ∥β∗∥21


√
n

∥β∗∥1
+ r +

n(n+ p)∆2
H,op + n

∥∥∥E(lr)
∥∥∥2 + ln(np)npĀ2

s2r
+ ∥E(lr)∥22,∞


≤ ∥ϕ(lr)∥22 + ∥β∗∥21

{ √
n

∥β∗∥1
+ r +

n(n+ p)∆2
H,op + n2p∆2

E

s2r
+ n∆2

E

}
≤ ∥ϕ(lr)∥22 + ∥β∗∥21

{ √
n

∥β∗∥1
+ r +

r

p
(n+ p)∆2

H,op + rn∆2
E

}
.

Hence

(2) ≤ CĀ4(Ka + K̄)2(κ+ K̄ +Ka)
2 ln6(np)

σ̄2

ρ4minŝ
2
r

·
{

∥ϕ(lr)∥22 + ∥β∗∥21
( √

n

∥β∗∥1
+ r +

rn

p
+ rn∆2

E

)}
.
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3. By Lemma E.9,

ŝ2r ≳ s2r ≥ C
np

r

so as long as the regularity condition holds, we can further bound

1

ŝ2r

{
∥ϕ(lr)∥22 + ∥β∗∥21

( √
n

∥β∗∥1
+ r +

rn

p
+ rn∆2

E

)}
≤ r

{
1

np
∥ϕ(lr)∥22 +

1

np
∥β∗∥21

( √
n

∥β∗∥1
+ r +

rn

p
+ rn∆2

E

)}
= r

{
1

np
∥ϕ(lr)∥22 + ∥β∗∥21

( √
n

∥β∗∥1np
+

r

np
+

r

p2
+
r

p
∆2
E

)}
.

In summary

(2) ≤ CĀ4(Ka + K̄)2(κ+ K̄ +Ka)
2σ̄2 r ln

6(np)

ρ4min{
1

np
∥ϕ(lr)∥22 + ∥β∗∥21

( √
n

∥β∗∥1np
+

r

np
+

r

p2
+
r

p
∆2
E

)}
.

Remark E.13 (Dictionary). The generalization of Proposition E.2 is as follows. Suppose

ρ′min ≫ C̃
√
r′ ln

3
2 (np)

(
1
√
p
∨ 1√

n
∨∆E

)
.

Then with probability at least 1−O{(np)−10}

∥V̂ r′V̂
T
r′(β̂ − β∗)∥22

≤ CC ′
bĀ

4(Ka + K̄)2(κ+ K̄ +Ka)
2 σ̄2

(ρ′min)
4
· r′ ln6(np)

·
[ 1

np
∥ϕ(lr)∥22 + ∥β∗∥21

{ √
n

∥β∗∥1np
+
r′

np
+
r′

p2
+
r′

p
(∆′

E)
2

}]
.

Proof. The only updates are to (ρ−1
min, r,∆E).

Proposition E.3 (train error). Suppose conditions of Proposition E.2 hold. Then with

probability at least 1−O{(np)−10}

∥β̂ − β∗∥22

≤ CĀ4(Ka + K̄)2(κ+ K̄ +Ka)
2 σ̄

2

ρ4min

· r ln6(np) ·
{ 1

np
∥ϕ(lr)∥22 + ∥β∗∥22

(
r

n
+
r

p
+ r∆2

E

)}
.

Proof. We proceed in steps.
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1. Recall the inequalities

s2r ≥ C
np

r
,
∥∥∥E(lr)

∥∥∥2 ≤ np∆2
E,

∥∥∥E(lr)
∥∥∥2
2,∞

≤ n∆2
E.

Further,

∆2
H,op ≤ C · Ā2(κ+ K̄ +Ka)

2 ln3(np).

Moreover, (n+ p)∆2
H,op dominates ln(np)pĀ2.

2. Simplifying the first term on the RHS of the bound in Lemma E.15

(1) := C
∥β∗∥22
ρ2mins

2
r

{
(n+ p)∆2

H,op + ∥E(lr)∥2 + Ā2 ln(np)p
}

≤ C · Ā2(κ+ K̄ +Ka)
2 ln3(np)

∥β∗∥22
ρ2mins

2
r

(
n+ p+ np∆2

E

)
≤ C · Ā2(κ+ K̄ +Ka)

2∥β∗∥22
ρ2min

· r ln3(np) ·
(
1

p
+

1

n
+∆2

E

)
.

3. We have shown, by the arguments above and in the proof of Proposition E.2

(1) ≤ C · Ā2(κ+ K̄ +Ka)
2∥β∗∥22
ρ2min

· r ln3(np) ·
(
1

p
+

1

n
+∆2

E

)
(2) ≤ CĀ4(Ka + K̄)2(κ+ K̄ +Ka)

2σ̄2 r ln
6(np)

ρ4min{
1

np
∥ϕ(lr)∥22 + ∥β∗∥21

( √
n

∥β∗∥1np
+

r

np
+

r

p2
+
r

p
∆2
E

)}
.

We further bound (2), and argue that this further bound dominates (1). Consider the

factor

∥β∗∥21
( √

n

∥β∗∥1np
+

r

np
+

r

p2
+
r

p
∆2
E

)
= ∥β∗∥1

1√
np

+ ∥β∗∥21
(
r

np
+

r

p2
+
r

p
∆2
E

)
≤ ∥β∗∥2

1
√
np

+ ∥β∗∥22
(
r

n
+
r

p
+ r∆2

E

)
≤ ∥β∗∥22

(
r

n
+
r

p
+ r∆2

E

)
where the last line uses ∥β∗∥2 ≤ ∥β∗∥22 and 1√

np
≤ 1

min(n,p)
≤ r

min(n,p)
= r

n
∨ r

p
. In

summary, the further bound is

(2) ≤ CĀ4(Ka + K̄)2(κ+ K̄ +Ka)
2σ̄2 r ln

6(np)

ρ4min

{
1

np
∥ϕ(lr)∥22 + ∥β∗∥22

(
r

n
+
r

p
+ r∆2

E

)}
.

Clearly this further bound on (2) dominates (1).
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Remark E.14 (Dictionary). In the generalization of Proposition E.3,

ρ′min ≫ C̃
√
r′ ln

3
2 (np)

(
1
√
p
∨ 1√

n
∨∆E

)
and

∥β̂ − β∗∥22

≤ CC ′
bĀ

4(Ka + K̄)2(κ+ K̄ +Ka)
2 σ̄2

(ρ′min)
4
· r′ ln6(np) ·

[ 1

np
∥ϕ(lr)∥22 + ∥β∗∥22

{
r′

n
+
r′

p
+ r′(∆′

E)
2

}]
.

Proof. The only updates are to (ρ−1
min, r,∆E).

For completeness, we state a corollary of Propositions E.2 and E.3 above.

Corollary E.1 (Population projected train error). Suppose conditions of Proposition

E.2 hold. Then with probability at least 1−O{(np)−10}

∥V rV
T
r (β̂ − β∗)∥22

≤ CĀ6(Ka + K̄)2(κ+ K̄ +Ka)
4 σ̄

2

ρ6min

· r ln9(np){(i) + (ii) + (iii)}

where

(i) =
1

n
∥ϕ(lr)∥22

(
1

p
+

r

p2
+

r

np
+
r

p
∆2
E

)
(ii) = ∥β∗∥21

( √
n

∥β∗∥1np
+

r

np
+

r

p2
+
r

p
∆2
E

)
(iii) = ∥β∗∥22 · r2

{
1

n2
+

1

p2
+

1

np
+

(
1

n
+

1

p

)
∆2
E +∆4

E

}
.

Proof. We proceed in steps.

1. Decomposition

To begin, write

∥V rV
T
r (β̂ − β∗)∥22 ≤ 2∥V̂ rV̂

T
r (β̂ − β∗)∥22 + 2∥(V rV

T
r − V̂ rV̂

T
r )(β̂ − β∗)∥22

≤ 2∥V̂ rV̂
T
r (β̂ − β∗)∥22 + 2∥V̂ rV̂

T
r − V rV

T
r ∥2 · ∥β̂ − β∗∥22.
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2. First term

By Proposition E.2

∥V̂ rV̂
T
r (β̂ − β∗)∥22

≤ CĀ4(Ka + K̄)2(κ+ K̄ +Ka)
2 σ̄

2

ρ4min

· r ln6(np)

·
{

1

np
∥ϕ(lr)∥22 + ∥β∗∥21

( √
n

∥β∗∥1np
+

r

np
+

r

p2
+
r

p
∆2
E

)}
.

3. Second term

By Proposition E.3

∥β̂ − β∗∥22

≤ CĀ4(Ka + K̄)2(κ+ K̄ +Ka)
2 σ̄

2

ρ4min

· r ln6(np) ·
{ 1

np
∥ϕ(lr)∥22 + ∥β∗∥22

(
r

n
+
r

p
+ r∆2

E

)}
.

Moreover, by arguments in the proofs of Lemma E.15 and Proposition E.3,

∥V̂ rV̂
T
r − V rV

T
r ∥2 ≤

(1)

∥β∗∥22

≤ C · Ā2(κ+ K̄ +Ka)
2 1

ρ2min

· r ln3(np) ·
(
1

p
+

1

n
+∆2

E

)
= C · Ā2(κ+ K̄ +Ka)

2 1

ρ2min

· ln3(np) ·
(
r

p
+
r

n
+∆2

E

)
.

Therefore the coefficient of the product is

C∗ = CĀ6(Ka + K̄)2(κ+ K̄ +Ka)
4 σ̄

2

ρ6min

· r ln9(np)

which dominates the coefficient of the first term. The substantive factor in the product

is {
1

np
∥ϕ(lr)∥22 + ∥β∗∥22

(
r

n
+
r

p
+ r∆2

E

)}
·
(
r

p
+
r

n
+ r∆2

E

)
=

1

np
∥ϕ(lr)∥22

(
r

p
+
r

n
+ r∆2

E

)
+ ∥β∗∥22

(
r

n
+
r

p
+ r∆2

E

)2

.

4. Collecting results

We have established that the coefficient will be C∗. What remains is to determine the

dominating terms of

1

np
∥ϕ(lr)∥22 + ∥β∗∥21

( √
n

∥β∗∥1np
+

r

np
+

r

p2
+
r

p
∆2
E

)
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and
1

np
∥ϕ(lr)∥22

(
r

p
+
r

n
+ r∆2

E

)
+ ∥β∗∥22

(
r

n
+
r

p
+ r∆2

E

)2

.

Within the final term,(
r

n
+
r

p
+ r∆2

E

)2

= r2
(
1

n
+

1

p
+∆2

E

)2

.

≤ Cr2
{

1

n2
+

1

p2
+

1

np
+

(
1

n
+

1

p

)
∆2
E +∆4

E

}
.

In summary, the bound is

∥V rV
T
r (β̂ − β∗)∥22 ≤ C∗{(i) + (ii) + (iii)}

where

(i) =
1

n
∥ϕ(lr)∥22

(
1

p
+

r

p2
+

r

np
+
r

p
∆2
E

)
(ii) = ∥β∗∥21

( √
n

∥β∗∥1np
+

r

np
+

r

p2
+
r

p
∆2
E

)
(iii) = ∥β∗∥22 · r2

{
1

n2
+

1

p2
+

1

np
+

(
1

n
+

1

p

)
∆2
E +∆4

E

}
.

E.4 Test error

E.4.1 Decomposition

Lemma E.16. Let Assumption 5.6 hold. Let k, the PCA hyperparameter, equal r =

rank(A(lr),train) = rank(A(lr),test). Then,

∥Âtestβ̂ −Atestβ∗∥22 ≤ C
3∑

m=1

∆m

where

∆1 :=
{
∥Ztest ρ̂−1−A(lr),test∥2 + ∥A(lr),test∥2∥V V T − V̂ rV̂

T
r ∥2
}
∥β̂ − β∗∥22

∆2 :=
∥A(lr),test∥2

ŝ2r

{
∥Âtrain −A(lr),train∥22,∞∥β∗∥21 ∨ ∥ϕ(lr),train∥22 ∨ ⟨Âtrain(β̂ − β∗), ε⟩

}
∆3 := ∥Âtest −Atest∥22,∞∥β∗∥21.
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Proof. Consider

∥Âtestβ̂ −Atestβ∗∥22 = ∥Âtestβ̂ − Âtestβ∗ + Âtestβ∗ −Atestβ∗∥22

≤ 2∥Âtest(β̂ − β∗)∥22 + 2∥(Âtest −Atest)β∗∥22. (36)

We shall bound the two terms on the right hand side of (36) next. To analyze ∥Âtest(β̂ −

β∗)∥22, we proceed in steps

1. Decomposition

Write

∥Âtest(β̂ − β∗)∥22 = ∥
{
Âtest −A(lr),test +A(lr),test}(β̂ − β∗)∥22

≤ 2∥
{
Âtest −A(lr),test}

(
β̂ − β∗)∥22 + 2∥A(lr),test(β̂ − β∗)∥22.

We analyze the former and latter term separately.

2. Former term

Note that ∥Âtest − Ztest ρ̂−1 ∥ is the (r + 1)-st largest singular value of Ztest ρ̂−1.

Therefore, by Weyl’s inequality (Lemma E.6), we have

∥Âtest −Ztest ρ̂−1 ∥ = ŝ′r+1 = ŝ′r+1 − s′r+1 ≤ ∥Ztest ρ̂−1−A(lr),test∥.

In turn, this gives

∥Âtest −A(lr),test∥ ≤ ∥Âtest −Ztest ρ̂−1 ∥+ ∥Ztest ρ̂−1−A(lr),test∥

≤ 2∥Ztest ρ̂−1−A(lr),test∥.

Thus, we have

∥
{
Âtest −A(lr),test}

(
β̂ − β∗)∥22 ≤ ∥A(lr),test − Âtest∥2 · ∥β̂ − β∗∥22

≤ 2∥Ztest ρ̂−1−A(lr),test∥2 · ∥β̂ − β∗∥22.

3. Latter term

Recall that V and V ⊥ span the rowspace and nullspace of A(lr),train, respectively.

By Assumption 5.6, it follows that (V ′)TV ⊥ = 0 and hence A(lr),testV ⊥V
T
⊥ = 0. As
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a result,

∥A(lr),test(β̂ − β∗)∥22 = ∥A(lr),test(V V T + V ⊥V
T
⊥)
(
β̂ − β∗)∥22

= ∥A(lr),testV V T
(
β̂ − β∗)∥22

≤ ∥A(lr),test∥2 ∥V V T
(
β̂ − β∗)∥22.

Recalling that V̂ r denotes the top r right singular vectors of Ztrain ρ̂−1, consider

∥V V T
(
β̂ − β∗)∥22 = ∥

(
V V T − V̂ rV̂

T
r + V̂ rV̂

T
r

)(
β̂ − β∗)∥22

≤ 2∥V V T − V̂ rV̂
T
r ∥2 ∥β̂ − β∗∥22 + 2∥V̂ rV̂

T
r

(
β̂ − β∗)∥22.

Recall from (28) that

∥V̂ rV̂
T
r (β̂−β∗)∥22 ≤

C

ŝ2r

{
∥Âtrain−A(lr),train∥22,∞∥β∗∥21 ∨ ∥ϕ(lr),train∥22 ∨ ⟨Âtrain(β̂−β∗), ε⟩

}
.

Therefore

∥A(lr),test(β̂ − β∗)∥22
≤ C∥A(lr),test∥2∥V V T − V̂ rV̂

T
r ∥2 ∥β̂ − β∗∥22

+
C∥A(lr),test∥2

ŝ2r

{
∥Âtrain −A(lr),train∥22,∞∥β∗∥21 ∨ ∥ϕ(lr),train∥22 ∨ ⟨Âtrain(β̂ − β∗), ε⟩

}
.

Finally, to analyze ∥(Âtest −Atest)β∗∥22, we appeal to matrix Holder:

∥(Âtest −Atest)β∗∥22 ≤ ∥Âtest −Atest∥22,∞∥β∗∥21.

Remark E.15 (Dictionary). Let Assumption 5.6 hold.Let r′ = rank[b{A(lr),train}] =

rank[b{A(lr),test}]. Then,

∥b(Âtest)β̂ − b(Atest)β∗∥22 ≤ C
3∑

m=1

∆m

where

∆1 :=
[
{Ādmaxdmax∥Ztest ρ̂−1−A(lr),test∥}2 + ∥b{A(lr),test}∥2∥V V T − V̂ r′V̂

T
r′∥2
]
∥β̂ − β∗∥22

∆2 :=
∥b{A(lr),test}∥2

ŝ2r′

[
∥b(Âtrain)− b{A(lr),train}∥22,∞∥β∗∥21 ∨ ∥ϕ(lr),train∥22 ∨ ⟨b(Âtrain)(β̂ − β∗), ε⟩

]
∆3 := ∥b(Âtest)− b(Atest)∥22,∞∥β∗∥21.

Proof. The generalized analysis of the former term in ∆1 is similar to the proof of Remark E.7.
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E.4.2 High probability events

Define the following events

Ẽ1 :=
{
∥Âtest −Atest∥22,∞, ∥Âtrain −A(lr),train∥22,∞,≤ ∆̃1

}
, ∆̃1 := C1 ·

r ln5(np)

ρ4min

(
1 +

n

p
+ n∆2

E

)
;

Ẽ2 :=
{
∥Ztest ρ̂−1−A(lr),test∥2 ≤ ∆̃2

}
, ∆̃2 := CĀ2(κ+ K̄ +Ka)

2 ln
3(np)

ρ2min

(
n+ p+ np∆2

E

)
;

Ẽ3 :=
{
∥V V T − V̂ rV̂

T
r ∥2, ∥V ′(V ′)T − V̂ ′

r(V̂
′
r)
T∥2 ≤ ∆̃3

}
, ∆̃3 :=

r

np
∆̃2;

Ẽ4 := {ŝr ≳ sr} ;

Ẽ := ∩4
i=1Ẽi;

where

C1 = CĀ4(Ka + K̄)2(κ+ K̄ +Ka)
2.

Lemma E.17. Let the conditions of Theorem 5.1 hold. Then Ẽ1 occurs with probability at

least O{1− 1/(np)10}.

Proof. By triangle inequality

∥Âtrain −A(lr),train∥22,∞ ≤ 2∥Âtrain −Atrain∥22,∞ + 2n∥E(lr),train∥2max. (37)

By Lemma D.10 and Lemma D.16 we have the desired result. Note that ∥Âtest−Atest∥22,∞
behaves like the first term. As remarked earlier, the results in Appendix D are invariant to

ρ̂train or ρ̂test so they hold for both Âtrain and Âtest despite asymmetric definitions.

Remark E.16 (Dictionary). A generalization Lemma E.17 sufficient for our subsequent

analysis is for

Ẽ ′
1 :=

[
∥b(Âtest)− b(Atest)∥22,∞, ∥b(Âtrain)− b{A(lr),train}∥22,∞,≤ ∆̃′

1

]
where

∆̃′
1 := C ′

bC1 ·
r ln5(np)

ρ4min

{
1 +

n

p
+ n(∆′

E)
2

}
.

Proof. Immediate from Assumption C.1.

Lemma E.18. Let the conditions of Theorem 5.1 hold. Then Ẽ2 occurs with probability at

least O{1− 1/(np)10}.
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Proof. From Lemma D.10 and Lemma D.12 with probability at least O{1− 1/(np)10}

∥Ztest ρ̂−1−A(lr),test∥2 ≤ C
δ2

ρ2min

{
(n+ p)∆2

H,op + ∥E(lr),test∥2 + ln(np)

n
∥A(lr),test∥2

}
≤ C

1

ρ2min

{
Ā2(κ+ K̄ +Ka)

2(n+ p) ln3(np) + np∆2
E +

ln(np)

n
npĀ2

}
≤ CĀ2(κ+ K̄ +Ka)

2 ln
3(np)

ρ2min

(
n+ p+ np∆2

E

)
.

As remarked above, Lemma D.12 is invariant to ρ̂train or ρ̂test.

Remark E.17 (Dictionary). The generalization of Lemma E.18 is for

Ẽ2 :=
[
{Ādmaxdmax∥Ztest ρ̂−1−A(lr),test∥}2 ≤ ∆̃′

2

]
where

∆̃′
2 := CĀ2(κ+ K̄ +Ka)

2 ln
3(np)

(ρ′min)
2

(
n+ p+ np∆2

E

)
.

Proof. See the proof of Remark E.7.

Lemma E.19. Let the conditions of Theorem 5.1 hold. Then Ẽ3 occurs with probability at

least O{1− 1/(np)10}.

Proof. By Lemma D.10 and Wedin’s sinΘ Theorem (Davis and Kahan, 1970; Wedin, 1972),

∥V V T − V̂ rV̂
T
r ∥ ≤ ∥Ztrain ρ̂−1−A(lr),train∥

sr
,

∥V ′(V ′)T − V̂ ′
r(V̂

′
r)
T∥ ≤ ∥Ztest ρ̂−1−A(lr),test∥

s′r
.

Recall that the argument in Lemma D.12 is invariant to ρ̂train or ρ̂test. Simplifying as in

Lemma E.18, we have the desired result.

Remark E.18 (Dictionary). The generalization of Lemma E.19 is about the SVDs in

Remark E.1 and ∆̃′
3 =

r′

np
∆̃′

2.

Proof. Immediate from Remark E.8 and the extended version of Assumption 5.4.

Lemma E.20. Let the conditions of Lemma E.9 hold. Then Ẽ4 occurs with probability at

least O{1− 1/(np)10}.

Proof. Immediate from Lemma E.9.
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Remark E.19 (Dictionary). The generalization of Lemma E.20 concerns the SVDs in

Remark E.1

Proof. Immediate from Remark E.9.

Lemma E.21. Suppose the conditions of Theorem 5.1 hold and

ρmin ≫ C̃
√
r ln

3
2 (np)

(
1
√
p
∨ 1√

n
∨∆E

)
, C̃ := CĀ

(
κ+ K̄ +Ka

)
.

Then P(Ẽc) ≤ C
n10p10

Proof. Immediate from Lemmas E.17, E.18, E.19, and E.20 and the union bound.

Remark E.20 (Dictionary). The generalization of Lemma E.21 instead uses the condition

ρ′min ≫ C̃
√
r′ ln

3
2 (np)

(
1
√
p
∨ 1√

n
∨∆E

)
.

E.4.3 Simplification

Remark E.21 (Dictionary). The following lemmas are algebraic and generalize in the

obvious way: replace (ρmin, r,∆E) with (ρ′min, r
′,∆′

E). We therefore skip the remarks until

Proposition E.4. The only subtleties are the presence of C ′
b as a multiplier of C1 and factors

of Ā′ replacing some factors of Ā.

Lemma E.22. Let the conditions of Proposition E.3 hold. Then,

E[∆1 | Ẽ ]

≤ C1C2 · σ̄2 · r
2 ln8(np)

ρ6min

(
1

n
+

1

p
+∆2

E

)
·
{(

n+ p+ np∆2
E

)
∥β∗∥22 +

(
r +

rn

p
+ rn∆2

E

)
∥β∗∥21

}
+ C2 ·

r2 ln3(np)

ρ2min

(
1

n
+

1

p
+∆2

E

)
∥ϕ(lr),train∥22

where

C2 := CĀ4(κ+ K̄ +Ka)
2.

Proof. We proceed in steps. The following arguments are all conditional on Ẽ . Recall

∆1 =
{
∥Ztest ρ̂−1−A(lr),test∥2 + ∥A(lr),test∥2∥V V T − V̂ rV̂

T
r ∥2
}
∥β̂ − β∗∥22.
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1. Former factor

By the definitions of ∆̃2, ∆̃3,

∆̃2 + npĀ2∆̃3 ≤ rĀ2∆̃2

≤ CĀ4(κ+ K̄ +Ka)
2 · r ln

3(np)

ρ2min

(
p+ n+ np∆2

E

)
= C2 ·

r ln3(np)

ρ2min

(
p+ n+ np∆2

E

)
.

2. Latter factor

By Lemma E.5,

∥β̂ − β∗∥22 ≤ C∥V V T − V̂ rV̂
T
r ∥2∥β∗∥22

+
C

ŝ2r

{
∥Âtrain −A(lr),train∥22,∞∥β∗∥21 ∨ ∥ϕ(lr),train∥22 ∨ ⟨Âtrain(β̂ − β∗), ε⟩

}
.

Observe that ε is independent of the event Ẽ . Hence, by Lemma E.10

E[⟨Âtrain(β̂ − β∗), ε⟩ | Ẽ ] ≤ σ̄2r.

In summary

E[∥β̂ − β∗∥22 | Ẽ ] ≤ ∆̃3∥β∗∥22 +
∆̃1∥β∗∥21 + ∥ϕ(lr),train∥22 + σ̄2r

np/r
.

Focusing on the former term

∆̃3∥β∗∥22 =
r

np
∆̃2∥β∗∥22.

Hence

E[∥β̂ − β∗∥22 | Ẽ ]

≤ r

np

(
∆̃2∥β∗∥22 + ∆̃1∥β∗∥21 + ∥ϕ(lr),train∥22 + σ̄2r

)
≤ C1 · σ̄2 · ln

5(np)

ρ4min

r

np

{(
n+ p+ np∆2

E

)
∥β∗∥22 +

(
r +

rn

p
+ rn∆2

E

)
∥β∗∥21

}
+

r

np
∥ϕ(lr),train∥22.

3. Collecting results
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E[∆1 | Ẽ ] ≤ C1C2 · σ̄2 · r
2 ln8(np)

ρ6min

(
1

n
+

1

p
+∆2

E

)
·
{(

n+ p+ np∆2
E

)
∥β∗∥22 +

(
r +

rn

p
+ rn∆2

E

)
∥β∗∥21

}
+ C2 ·

r2 ln3(np)

ρ2min

(
1

n
+

1

p
+∆2

E

)
∥ϕ(lr),train∥22.

Lemma E.23. Let the conditions of Proposition E.3 hold. Then,

E[∆2 | Ẽ ] ≤ C1 · σ̄2 · Ā2 · r
2 ln5(np)

ρ4min

∥β∗∥21 ·
(
1 +

n

p
+ n∆2

E

)
+ CĀ2 · r∥ϕ(lr),train∥22.

Proof. We proceed in steps. The following arguments are all conditional on Ẽ . Recall

∆2 :=
∥A(lr),test∥2

ŝ2r

{
∥Âtrain −A(lr),train∥22,∞∥β∗∥21 ∨ ∥ϕ(lr),train∥22 ∨ ⟨Âtrain(β̂ − β∗), ε⟩

}
.

1. Former factor

Note that conditioned on Ẽ and Assumption 5.4,

∥A(lr),test∥2

ŝ2r
≤ C

r

np
npĀ2 = CrĀ2.

2. Latter factor

Observing that ε is independent of Ẽ . By Lemma E.10

∆̃1∥β∗∥21 + ∥ϕ(lr),train∥22 + σ̄2r ≤ C1 · σ̄2 · r ln
5(np)

ρ4min

∥β∗∥21
(
1 +

n

p
+ n∆2

E

)
+ ∥ϕ(lr),train∥22.

3. Combining results

E[∆2 | Ẽ ] ≤ C1 · σ̄2 · Ā2 · r
2 ln5(np)

ρ4min

∥β∗∥21 ·
(
1 +

n

p
+ n∆2

E

)
+ CĀ2 · r∥ϕ(lr),train∥22.

Lemma E.24.

E
[
∆3

∣∣∣ Ẽ] ≤ C1 ·
r ln5(np)

ρ4min

∥β∗∥21
(
1 +

n

p
+ n∆2

E

)
.
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Proof. Recall

∆3 := ∥Âtest −Atest∥22,∞∥β∗∥21.

Using the definition of Ẽ , we have

E[∆3 | Ẽ ] ≤ ∆̃1∥β∗∥21 ≤ C1 ·
r ln5(np)

ρ4min

∥β∗∥21
(
1 +

n

p
+ n∆2

E

)
.

Lemma E.25. Let the conditions of Theorem 5.2 hold. Then

3∑
m=1

E[∆m|Ẽ ] ≤ C1C2 · σ̄2 · r
3 ln8(np)

ρ6min

∥β∗∥21
{
1 +

p

n
+
n

p
+ (n+ p)∆2

E + np∆4
E

}
+ C2 ·

r2 ln3(np)

ρ2min

(
1 + ∆2

E

)
∥ϕ(lr),train∥22.

Proof. Recall Lemmas E.22, E.23, and E.24:

E[∆1 | Ẽ ]

≤ C1C2 · σ̄2 · r
2 ln8(np)

ρ6min

(
1

n
+

1

p
+∆2

E

)
·
{(

n+ p+ np∆2
E

)
∥β∗∥22 +

(
r +

rn

p
+ rn∆2

E

)
∥β∗∥21

}
+ C2 ·

r2 ln3(np)

ρ2min

(
1

n
+

1

p
+∆2

E

)
∥ϕ(lr),train∥22

E[∆2 | Ẽ ] ≤ C1 · σ̄2 · Ā2 · r
2 ln5(np)

ρ4min

∥β∗∥21 ·
(
1 +

n

p
+ n∆2

E

)
+ CĀ2 · r∥ϕ(lr),train∥22

E
[
∆3

∣∣∣ Ẽ] ≤ C1 ·
r ln5(np)

ρ4min

∥β∗∥21
(
1 +

n

p
+ n∆2

E

)
.

∆2 dominates ∆3. Focusing on the first term of ∆1,

(1) ≤ C1C2 · σ̄2 · r
3 ln8(np)

ρ6min

(
1

n
+

1

p
+∆2

E

)
·
{(

n+ p+ np∆2
E

)
∥β∗∥22 +

(
1 +

n

p
+ n∆2

E

)
∥β∗∥21

}
= C1C2 · σ̄2 · r

3 ln8(np)

ρ6min

(
1

n
+

1

p
+∆2

E

)
·
{(

n+ p+ np∆2
E

)(
∥β∗∥22 +

∥β∗∥21
p

)}
≤ C1C2 · σ̄2 · r

3 ln8(np)

ρ6min

∥β∗∥22
{
1 +

p

n
+
n

p
+ (n+ p)∆2

E + np∆4
E

}
.

Comparing to the first term of ∆2, it is sufficient to bound ∥β∗∥2 ≤ ∥β∗∥1. Focusing on the

second term of ∆1,

(2) = C2 ·
r2 ln3(np)

ρ2min

(
1

n
+

1

p
+∆2

E

)
∥ϕ(lr),train∥22.
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Comparing to the second term of ∆2, it is sufficient to bound 1
n
+ 1

p
≤ 2. In summary, the

bound is
3∑

m=1

E[∆m|Ẽ ] ≤ C1C2 · σ̄2 · r
3 ln8(np)

ρ6min

∥β∗∥21
{
1 +

p

n
+
n

p
+ (n+ p)∆2

E + np∆4
E

}
+ C2 ·

r2 ln3(np)

ρ2min

(
1 + ∆2

E

)
∥ϕ(lr),train∥22.

E.4.4 Collecting results

Lemma E.26. Deterministically, for train and test

∥ϕ(lr)∥22 ≤ 2∥ϕ∥22 + 2n∆2
E∥β∗∥21.

Proof. Write

∥ϕ(lr)∥22 = ∥ϕ+E(lr)β∗∥22 ≤ 2∥ϕ∥22 + 2∥E(lr)β∗∥22.

Focusing on the latter term

∥E(lr)β∗∥22 ≤ ∥E(lr)∥22,∞∥β∗∥21 ≤ n∆2
E∥β∗∥21.

Lemma E.27. Let the conditions of Theorem 5.2 hold. Then
3∑

m=1

E[∆m|Ẽ ] ≤ C1C2 · σ̄2 · r
3 ln8(np)

ρ6min

∥β∗∥21
{
1 +

p

n
+
n

p
+ (n+ p)∆2

E + np∆4
E

}
+ C2 ·

r2 ln3(np)

ρ2min

(
1 + ∆2

E

)
∥ϕtrain∥22.

Proof. By Lemmas E.25 and E.26
3∑

m=1

E[∆m|Ẽ ]

≤ C1C2 · σ̄2 · r
3 ln8(np)

ρ6min

∥β∗∥21
{
1 +

p

n
+
n

p
+ (n+ p)∆2

E + np∆4
E

}
+ C2 ·

r2 ln3(np)

ρ2min

(
1 + ∆2

E

) (
∥ϕtrain∥22 + n∆2

E∥β∗∥21
)
.

Opening up the product in the latter term(
1 + ∆2

E

) (
∥ϕtrain∥22 + n∆2

E∥β∗∥21
)
= ∥ϕtrain∥22 + n∆2

E∥β∗∥21 + ∥ϕtrain∥22∆2
E + n∆4

E∥β∗∥21.
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Both n∆2
E∥β∗∥21 and n∆4

E∥β∗∥21 are dominated by the first term. Hence
3∑

m=1

E[∆m|Ẽ ]

≤ C1C2 · σ̄2 · r
3 ln8(np)

ρ6min

∥β∗∥21
{
1 +

p

n
+
n

p
+ (n+ p)∆2

E + np∆4
E

}
+ C2 ·

r2 ln3(np)

ρ2min

(
1 + ∆2

E

)
∥ϕtrain∥22.

Proposition E.4 (test error). Let the conditions of Theorem 5.2 hold. Then

E[∥Âtestβ̂ −Atestβ∗∥22 1{Ẽ}] ≤ C1C2 · σ̄2 · r
3 ln8(np)

ρ6min

∥β∗∥21
{
1 +

p

n
+
n

p
+ (n+ p)∆2

E + np∆4
E

}
+ C2 ·

r2 ln3(np)

ρ2min

(
1 + ∆2

E

)
∥ϕtrain∥22.

Proof. By Lemma E.16,

E
[
∥Âtestβ̂ −Atestβ∗∥22 1{Ẽ}

]
= E

[
∥Âtestβ̂ −Atestβ∗∥22|Ẽ

]
P(Ẽ)

≤ E
[
∥Âtestβ̂ −Atestβ∗∥22|Ẽ

]
≤ C

3∑
m=1

E[∆m|Ẽ ].

Finally appeal to Lemma E.27.

Remark E.22 (Dictionary). The generalization of Proposition E.4 is

E[∥b(Âtest)β̂ − b(Atest)β∗∥22 1{Ẽ}]

≤ C ′
bC1C2 · σ̄2 · (r

′)3 ln8(np)

(ρ′min)
6

∥β∗∥21
{
1 +

p

n
+
n

p
+ (n+ p)(∆′

E)
2 + np(∆′

E)
4

}
+ C2 ·

(r′)2 ln3(np)

(ρ′min)
2

{
1 + (∆′

E)
2
}
∥ϕtrain∥22.

E.5 Generalization error

E.5.1 Decomposition

To lighten notation, we define, for i ∈ test

γ̂i = Zi,· ρ̂
−1 β̂, γi = γ0(Ai,·)

which form the vectors γ̂,γ0 ∈ Rn.
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Lemma E.28. Deterministically,

∥γ̂ − γ0∥22 ≤ 2∥Ztest ρ̂−1 β̂ −Atestβ∗∥22 + 2∥Atestβ∗ − γ0(A
test)∥22.

Moreover

∥Ztest ρ̂−1 β̂ −Atestβ∗∥22 ≤ 2∥Ztest ρ̂−1 β̂ − Âtestβ̂∥22 + 2∥Âtestβ̂ −Atestβ∗∥22.

Proof. Write

γ̂ − γ0

= Ztest ρ̂−1 β̂ − γ0(A
test)

= Ztest ρ̂−1 β̂ ± Âtestβ̂ ±Atestβ∗ − γ0(A
test).

We analyze each term separately.

1. Approximation error ∥Atestβ∗ − γ0(A
test)∥22 = ∥ϕtest∥22.

2. Test error ∥Âtestβ̂ −Atestβ∗∥22.

3. Implicit cleaning error ∥Ztest ρ̂−1 β̂ − Âtestβ̂∥22.

Approximation error requires no further analysis. Proposition E.4 analyzes test error.

What remains is an analysis of the final term via projection geometry.

Remark E.23 (Dictionary). The generalization with a dictionary considers

1. Approximation error ∥b(Atest)β∗ − γ0(A
test)∥22 = ∥ϕtest∥22.

2. Test error ∥b(Âtest)β̂ − b(Atest)β∗∥22.

3. Implicit cleaning error ∥b(Ztest ρ̂−1)β̂ − b(Âtest)β̂∥22.
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E.5.2 Implicit cleaning

Lemma E.29. Suppose Assumption 5.6 holds and let k = r. Then

∥Ztest ρ̂−1 β̂ − Âtestβ̂∥22

≤ C∥Ztest ρ̂−1−A(lr),test∥2 ·
{
∥β̂ − β∗∥22 + ∥V̂ ′

r(V̂
′
r)
T − V ′(V ′)T∥2∥β∗∥22

}
.

Proof. We proceed in steps.

1. Decomposition

Recall the definitions

Ztest ρ̂−1 = Û ′Σ̂′(V̂ ′)T , Âtest = Û ′
rΣ̂

′
r(V̂

′
r)
T , Âtest

⊥ = Û ′
r,⊥Σ̂

′
r,⊥(V̂

′
r,⊥)

T

so that

Ztest ρ̂−1 = Âtest + Âtest
⊥ .

Hence

Ztest ρ̂−1 β̂ − Âtestβ̂ = Âtest
⊥ β̂ = Û ′

r,⊥Σ̂
′
r,⊥(V̂

′
r,⊥)

T β̂

and

∥Ztest ρ̂−1 β̂ − Âtestβ̂∥2 ≤ ∥Û ′
r,⊥∥ · ∥Σ̂′

r,⊥∥ · ∥(V̂ ′
r,⊥)

T β̂∥2 = ∥Σ̂′
r,⊥∥ · ∥(V̂ ′

r,⊥)
T β̂∥2.

2. ∥Σ̂′
r,⊥∥

As in the proof of Lemma E.16, we appeal to Weyl’s inequality (Lemma E.6):

∥Σ̂′
r,⊥∥ = ŝ′r+1 = ŝ′r+1 − s′r+1 ≤ ∥Ztest ρ̂−1−A(lr),test∥.

3. ∥(V̂ ′
r,⊥)

T β̂∥2

Write

∥(V̂ ′
r,⊥)

T β̂∥2 = ∥V̂ ′
r,⊥(V̂

′
r,⊥)

T β̂∥2 ≤ ∥V̂ ′
r,⊥(V̂

′
r,⊥)

T (β̂ − β∗)∥2 + ∥V̂ ′
r,⊥(V̂

′
r,⊥)

Tβ∗∥2.

Focusing on the former term

∥V̂ ′
r,⊥(V̂

′
r,⊥)

T (β̂ − β∗)∥2 ≤ ∥β̂ − β∗∥2.
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Focusing on the latter term, we appeal to Lemma E.2:

∥V̂ ′
r,⊥(V̂

′
r,⊥)

Tβ∗∥2 = ∥V̂ ′
r,⊥(V̂

′
r,⊥)

TV ′(V ′)Tβ∗∥2

≤ ∥{V̂ ′
r,⊥(V̂

′
r,⊥)

T − V ′
⊥(V

′
⊥)

T}V ′(V ′)Tβ∗∥2 + ∥V ′
⊥(V

′
⊥)

TV ′(V ′)Tβ∗∥2

= ∥{V̂ ′
r,⊥(V̂

′
r,⊥)

T − V ′
⊥(V

′
⊥)

T}V ′(V ′)Tβ∗∥2

= ∥{V̂ ′
r,⊥(V̂

′
r,⊥)

T − V ′
⊥(V

′
⊥)

T}β∗∥2

= ∥{V̂ ′
r(V̂

′
r)
T − V ′(V ′)T}β∗∥2

≤ ∥V̂ ′
r(V̂

′
r)
T − V ′(V ′)T∥∥β∗∥2.

Remark E.24 (Dictionary). The generalization of Lemma E.29 is

∥b(Ztest ρ̂−1)β̂ − b(Âtest)β̂∥22

≤ C∥b(Ztest ρ̂−1)− b{A(lr),test}∥2 ·
{
∥β̂ − β∗∥22 + ∥V̂ ′

r′(V̂
′
r′)

T − V ′(V ′)T∥2∥β∗∥22
}

using the SVDs in Remark E.1.

Proof. We proceed in steps

1. Decomposition

For the polynomial dictionary with uncorrupted nonlinearity, denote

M := b(Ztest ρ̂−1)− b(Âtest)

= {0, 0, ..., 0, (Ztest ρ̂−1−Âtest), diag(D)(Ztest ρ̂−1−Âtest),

..., diag(D)dmax−1(Ztest ρ̂−1−Âtest)}.

Consider the SVD

M = UMΣMV T
M .

Hence

M β̂ = UMΣMV T
M β̂

and

∥M β̂∥2 ≤ ∥UM∥ · ∥ΣM∥ · ∥V T
M β̂∥2 = ∥ΣM∥ · ∥V T

M β̂∥2.
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2. ∥ΣM∥

As argued in Remark E.7, using the decomposition of M ,

∥ΣM∥ = ∥M∥

≤ ∥Ztest ρ̂−1−Âtest∥+ Ā∥Ztest ρ̂−1−Âtest∥+ ...+ Ādmax−1∥Ztest ρ̂−1−Âtest∥

≤ Ādmaxdmax∥Ztest ρ̂−1−Âtest∥.

Next observe that Lemma E.7

∥Ztest ρ̂−1−Âtest∥ = ŝ′r+1 = ŝ′r+1 − s′r+1 ≤ ∥Ztest ρ̂−1−A(lr),test∥

In summary

∥ΣM∥ ≤ Ādmaxdmax∥Ztest ρ̂−1−A(lr),test∥

which is dominated by the bound on ∥b(Ztest ρ̂−1)− b{A(lr),test}∥.

3. ∥V T
M β̂∥2

Write

∥V T
M β̂∥2 = ∥V MV T

M β̂∥2 ≤ ∥V MV T
M(β̂ − β∗)∥2 + ∥V MV T

Mβ
∗∥2.

Focusing on the former term

∥V MV T
M(β̂ − β∗)∥2 ≤ ∥β̂ − β∗∥2.

Focusing on the latter term, we appeal to Lemma E.2:

∥V MV T
Mβ

∗∥2 = ∥V MV T
MV ′(V ′)Tβ∗∥2

≤ ∥{V MV T
M − V ′

⊥(V
′
⊥)

T}V ′(V ′)Tβ∗∥2 + ∥V ′
⊥(V

′
⊥)

TV ′(V ′)Tβ∗∥2

= ∥{V MV T
M − V ′

⊥(V
′
⊥)

T}V ′(V ′)Tβ∗∥2

= ∥{V MV T
M − V ′

⊥(V
′
⊥)

T}β∗∥2

≤ ∥V MV T
M − V ′

⊥(V
′
⊥)

T∥∥β∗∥2

where V ′ is from the SVD of b{A(lr),test} and V M is from the SVD of M =

b(Ztest ρ̂−1)− b(Âtest).
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4. Dictionary geometry

To complete the argument, it is sufficient to argue that V MV T
M = V̂ ′

r′,⊥(V̂
′
r′,⊥)

T ,

where V̂ ′
r′ is from SVD of b(Âtest). In other words, we wish to show

null{b(Âtest)} = row{b(Ztest ρ̂−1)− b(Âtest)}.

We can verify this property for the polynomial dictionary with uncorrupted nonlinearity

appealing to Assumption C.2. Suppressing superscripts,

b(Â) = {1, D, ..., Ddmax , Â, diag(D)Â, ..., diag(D)dmax−1Â}

with j-th row

(1, Dj, ..., D
dmax
j , Âj,·, DjÂj,·, ..., D

dmax−1
j Âj,·)

and

b(Z ρ̂−1)− b(Â)

= {0, 0, ..., 0, (Z ρ̂−1−Â), diag(D)(Z ρ̂−1−Â), ..., diag(D)dmax−1(Z ρ̂−1−Â)}

= {0, 0, ..., 0, Â⊥, diag(D)Â⊥, ..., diag(D)dmax−1Â⊥}

with i-th row

(0, 0, ..., 0, Â⊥i,·, DiÂ⊥i,·, ..., D
dmax−1
i Â⊥i,·).

The spaces induced by the rows are clearly orthogonal, so

row{b(Ztest ρ̂−1)− b(Âtest)} ⊂ null{b(Âtest)}.

Assumption C.2.3 further implies

null{b(Âtest)} ⊂ row{b(Ztest ρ̂−1)− b(Âtest)}.

Proposition E.5 (Implicit cleaning). Let the conditions of Theorem 5.2 hold. Then

E[∥Ztest ρ̂−1 β̂ − Âtestβ̂∥22 1{Ẽ}]

≤ C1C2 · σ̄2 · r
3 ln8(np)

ρ6min

∥β∗∥21
{
1 +

p

n
+
n

p
+ (n+ p)∆2

E + np∆4
E

}
+ C2 ·

r2 ln3(np)

ρ2min

(
1 + ∆2

E

)
∥ϕtrain∥22.
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Proof. To begin, write

E[∥Ztest ρ̂−1 β̂ − Âtestβ̂∥22 1{Ẽ}] = E
[
∥Ztest ρ̂−1 β̂ − Âtestβ̂∥22|Ẽ

]
P(Ẽ)

≤ E
[
∥Ztest ρ̂−1 β̂ − Âtestβ̂∥22|Ẽ

]
.

By Lemma E.29, it is sufficient to analyze

∥Ztest ρ̂−1−A(lr),test∥2 ·
{
∥β̂ − β∗∥22 + ∥V̂ ′

r(V̂
′
r)
T − V ′(V ′)T∥2∥β∗∥22

}
under the beneficial event Ẽ . By Lemma E.5, the bound on the former term dominates the

bound on the latter term. Therefore we analyze

∥Ztest ρ̂−1−A(lr),test∥2 · ∥β̂ − β∗∥22.

By Lemma E.16

∥Ztest ρ̂−1−A(lr),test∥2 · ∥β̂ − β∗∥22 ≤ ∆1 ≤ C
3∑

m=1

∆m

so we can use the bound previously used for analyzing test error ∥Âtestβ̂ −Atestβ∗∥22.

This loose bound is sufficient for our purposes, since the test error term will ultimately

give this rate. In summary

E
[
∥Ztest ρ̂−1 β̂ − Âtestβ̂∥22|Ẽ

]
≤ C

3∑
m=1

E[∆m|Ẽ ].

Finally, we appeal to Lemma E.27.

Remark E.25 (Dictionary). The generalization of Proposition E.5 is

E[∥b(Ztest ρ̂−1)β̂ − b(Âtest)β̂∥22 1{Ẽ}]

≤ C ′
bC1C2 · σ̄2 · (r

′)3 ln8(np)

(ρ′min)
6

∥β∗∥21
{
1 +

p

n
+
n

p
+ (n+ p)(∆′

E)
2 + np(∆′

E)
4

}
+ C2 ·

(r′)2 ln3(np)

(ρ′min)
2

{
1 + (∆′

E)
2
}
∥ϕtrain∥22.

E.5.3 Bounded estimator moments

For the adverse case, we place a weak technical condition on how the estimator moments scale.

We state the technical condition then demonstrate that it is implied by the interpretable

condition given in the main text.
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Assumption E.1 (Bounded estimator moment).√√√√√E

{ 1

n

∑
i∈test

γ̂(Wi,·)2

}2
 ≤ polynomial(n, p) · C2 ·

r2 ln3(np)

ρ2min

(
∥β∗∥21 + ∥ϕtrain∥22

)
.

where C2 = C · Ā4(κ+ K̄ +Ka)
2.

Recall from Appendix D that the powers of (n, p) are arbitrary in the probability of the

adverse event; P(Ẽc) ≤ C
polynomial(n,p) for any polynomial of (n, p). Therefore the moments

of our estimator γ̂(Wi,·) can scale as any arbitrary polynomial of n and p, denoted by

polynomial(n, p). We are simply ruling out some extremely adversarial cases. Assump-

tion E.1 is essentially requiring that β̂ is well conditioned. Indeed, we are able to satisfy

the assumption under a simple condition on the smallest singular value used in PCR.

Proposition E.6 (Verifying bounded estimator moment). Suppose the Assumptions 5.1

and 5.2 hold. Further suppose ŝk ≳ ε̄
polynomial(n,p) where E[ε8i ] ≤ ε̄8. Then Assumption E.1

holds.

Remark E.26 (Dictionary). If Assumption C.2 holds then Assumption E.1 becomes√√√√√E

{ 1

n

∑
i∈test

γ̂(Wi,·)2

}2
 ≤ polynomial(n, p) · C2 ·

(r′)2 ln3(np)

(ρ′min)
2

(
∥β∗∥21 + ∥ϕtrain∥22

)
.

Proposition E.6 generalizes accordingly: if Assumption 5.7 holds then the generalization of

Assumption E.1 holds.

We prove Proposition E.6 via a sequence of lemmas.

Lemma E.30. Suppose Assumptions 5.1 and 5.2 hold. Then

E
[
∥Ztest ρ̂−1 ∥82,∞

]
≤ C · Ā8K8

a · ln8(np)n12.
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Proof. We suppress the superscript to lighten notation. The argument echoes Lemma D.17.

∥Z ρ̂−1 ∥2,∞ = max
j∈[p]

∥Ẑ·,j ρ̂
−1
j ∥2

= max
j∈[p]

1

ρ̂j
∥Z·,j∥2

≤ n max
j∈[p]

∥Z·,j∥2

≤ n
3
2 max
i∈[n],j∈[p]

|Zij|

≤ n
3
2 (Ā+max

i,j
|Hij|).

Therefore

E
[
∥Z ρ̂−1 ∥82,∞

]
≤ E[{n

3
2 (Ā+max

i,j
|Hij|)}8]

≤ Cn12(Ā8 + E[max
i,j

|Hij|8])

≤ Cn12{Ā8 +K8
a ln

8(np)}.

The final inequality holds because for any a > 0 and θ ≥ 1, if Hij is a ψa-random variable

then
∣∣Hij

∣∣θ is a ψa/θ-random variable. With the choice of θ = 8, we have that

E[max
i,j

|Hij|8] ≤ CK8
a ln

8
a (np).

Lemma E.31. Suppose Assumption 5.1 holds, ŝk ≥ s, and E[ε8i ] ≤ ε̄8. Then

E
[
∥β̂∥81

]
≤ C · Ā8ε̄8s−8 · p4(n4∥β∗∥81 + ∥ϕtrain∥82).

Proof. We suppress the superscript to lighten notation. Recall that β̂ = V̂ kΣ̂
−1
k ÛT

k Y , hence

∥β̂∥1 ≤
√
p∥β̂∥2

≤ √
p∥V̂ k∥ · ∥Σ̂−1

k ∥ · ∥ÛT
k ∥ · ∥Y ∥2

=
√
pŝ−1

k ∥Y ∥2.

Moreover Y = Aβ∗ + ϕ+ ε hence

∥Y ∥2 ≤ ∥A∥2,∞∥β∗∥1 + ∥ϕ∥2 + ∥ε∥2

≤
√
nĀ∥β∗∥1 + ∥ϕ∥2 + ∥ε∥2.
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Therefore

∥β̂∥81 ≤ Cp4s−8(n4Ā8∥β∗∥81 + ∥ϕ∥82 + ∥ε∥82).

and hence

E
[
∥β̂∥81

]
≤ Cp4s−8(n4Ā8∥β∗∥81 + ∥ϕ∥82 + E∥ε∥82).

Finally note that

E∥ε∥82 = E

∑
i∈[n]

ε2i

4 = n4E

 1

n

∑
i∈[n]

ε2i

4 ≤ n4E

 1
n

∑
i∈[n]

ε8i

 . ≤ n4ε̄8.

The first inequality holds since {En[A]}4 ≤ En[A4], taking Ai = ε2i .

Lemma E.32. Suppose the conditions of Lemmas E.30 and E.31 hold. Then√
E
[
∥Ztest ρ̂−1 β̂∥42

]
≤ C · Ā4K2

a · ln2(np)

(
∥β∗∥21 +

1

n
∥ϕtrain∥22

)
n4p

ε̄2

s2
.

Proof. By Cauchy-Schwarz, write√
E
[
∥Ztest ρ̂−1 β̂∥42

]
≤
√

E
[
∥Ztest ρ̂−1 ∥42,∞∥β̂∥41

]
≤

√√
E
[
∥Ztest ρ̂−1 ∥82,∞

]√
E
[
∥β̂∥81

]
≤ C · Ā2K2

a · ln2(np)n3 · Ā2ε̄2s−2 · p(n∥β∗∥21 + ∥ϕtrain∥22)

= C · Ā4K2
a · ln2(np)

(
∥β∗∥21 +

1

n
∥ϕtrain∥22

)
n4p

ε̄2

s2
.

Proof of Proposition E.6. To begin, observe that√√√√√E

{ 1

n

∑
i∈test

γ̂(Wi,·)2

}2
 =

√√√√√E

 1

n2

{ ∑
i∈test

γ̂(Wi,·)2

}2
 =

1

n

√
E
[
∥Ztest ρ̂−1 β̂∥42

]
.

By Lemma E.32

n−1

√
E
[
∥Ztest ρ̂−1 β̂∥42

]
n4p5

≤ C · Ā4K2
a · ln2(np)

(
∥β∗∥21 +

1

n
∥ϕtrain∥22

)
ε̄2

s2np4

≤ C · Ā4K2
a · ln2(np)

(
∥β∗∥21 +

1

n
∥ϕtrain∥22

)
≤ C2 ·

r2 ln3(np)

ρ2min

(
∥β∗∥21 + ∥ϕtrain∥22

)
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where the penultimate inequality holds since s ≥ ε̄√
np2

implies s2np4 ≥ ε̄2 and the ultimate

inequality confirms Assumption E.1. More generally,√
E
[
∥Ztest ρ̂−1 β̂∥42

]
polynomial(n, p)

≤ C · Ā4K2
a · ln2(np)

(
∥β∗∥21 +

1

n
∥ϕtrain∥22

)
ε̄2

s2 · polynomial(n, p)

≤ C · Ā4K2
a · ln2(np)

(
∥β∗∥21 +

1

n
∥ϕtrain∥22

)
≤ C2 ·

r2 ln3(np)

ρ2min

(
∥β∗∥21 + ∥ϕtrain∥22

)
as long as s ≥ ε̄

polynomial(n,p) .

E.5.4 Main result

Proof of Theorem 5.2. We proceed in steps.

1. Decomposition

By Lemma E.28

∥γ̂ − γ0∥22 ≤ 2∥Ztest ρ̂−1 β̂ −Atestβ∗∥22 + 2∥ϕtest∥22.

Hence

E∥γ̂ − γ0∥22 ≤ 2E
[
∥Ztest ρ̂−1 β̂ −Atestβ∗∥22 1{Ẽ}

]
+ 2E

[
∥Ztest ρ̂−1 β̂ −Atestβ∗∥22 1{Ẽc}

]
+ 2∥ϕtest∥22.

2. Beneficial case

By Propositions E.4 and E.5,

E
[
∥Ztest ρ̂−1 β̂ −Atestβ∗∥22 1{Ẽ}

]
≤ 2E

[
∥Ztest ρ̂−1 β̂ − Âtestβ̂∥22 1{Ẽ}

]
+ 2E

[
∥Âtestβ̂ −Atestβ∗∥22 1{Ẽ}

]
≤ C1C2 · σ̄2 · r

3 ln8(np)

ρ6min

∥β∗∥21
{
1 +

p

n
+
n

p
+ (n+ p)∆2

E + np∆4
E

}
+ C2 ·

r2 ln3(np)

ρ2min

(
1 + ∆2

E

)
∥ϕtrain∥22.
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3. Adverse case

Write

E
[
∥Ztest ρ̂−1 β̂ −Atestβ∗∥22 1{Ẽc}

]
≤ 2E

[
∥Ztest ρ̂−1 β̂∥22 1{Ẽc}

]
+ 2E

[
∥Atestβ∗∥22 1{Ẽc}

]
.

Focusing on the latter term,

∥Atestβ∗∥22 ≤ ∥Atest∥22,∞∥β∗∥21 ≤ nĀ2∥β∗∥21

hence by Lemma E.21

E
[
∥Atestβ∗∥22 1{Ẽc}

]
≤ nĀ2∥β∗∥21P(Ẽc) ≤ C

Ā2∥β∗∥21
n9p10

which is clearly dominated by the bound on the beneficial case.

Focusing on the former term, Cauchy-Schwarz inequality and Lemma E.21 give

E
[
∥Ztest ρ̂−1 β̂∥22 1{Ẽc}

]
≤
√

E
[
∥Ztest ρ̂−1 β̂∥42

]√
E
[
1{Ẽc}

]
≤ C

n5p5

√
E
[
∥Ztest ρ̂−1 β̂∥42

]
which is dominated by the bound on the beneficial case if

1

n5p5

√
E
[
∥Ztest ρ̂−1 β̂∥42

]
≤ C1C2 · σ̄2 · r

3 ln8(np)

ρ6min

∥β∗∥21
{
1 +

p

n
+
n

p
+ (n+ p)∆2

E + np∆4
E

}
+ C2 ·

r2 ln3(np)

ρ2min

(
1 + ∆2

E

)
∥ϕtrain∥22.

In the proof of Proposition E.6, we have precisely shown

n−1

√
E
[
∥Ztest ρ̂−1 β̂∥42

]
n4p5

≤ C2 ·
r2 ln3(np)

ρ2min

(
∥β∗∥21 + ∥ϕtrain∥22

)
.

Proof of Corollary 5.1. Identical to the proof of Theorem 5.2, appealing to the previous

remarks for the appropriate generalizations (ρ′min, r
′,∆′

E).
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F Error-in-variable balancing weight

The outline of the argument is as follows

1. define train, test, and general error

2. exposit the general algorithm

3. establish orthogonality, balance, and equivalence properties

4. analyze train error(more precisely, ∥η̂ − η∗∥2)

5. analyze test error(more precisely, ∥Âtestη̂ −Atestη∗∥22)

6. analyze general error(more precisely, ∥Ztest ρ̂−1 η̂ − α0(W
test)∥22)

F.1 Notation and preliminaries

As in Appendix D, we identify NA with 0 in Z for the remainder of the appendix. We

also use the notation A rather than X. Recall that (ρ̂, β̂) are calculated from train. We

slightly abuse notation by letting n be the number of observations in train (and also

test), departing from the notation of the main text. We write ∥ · ∥ = ∥ · ∥op. We write

the proofs without nonlinear dictionaries for clarity. Then we extend our results to allow

for nonlinear dictionaries in subsequent remarks. In doing so, we denote the identity map

b : Rp → Rp with components bj : R → R. We also let Ā′ = Ādmax , ρ′min = ρmin

dmaxĀ′ , and

p′ = C · dmaxp. Finally, to lighten notation, we abbreviate b(Di, Ai,·) as b(Ai,·) when it is

contextually clear.

F.1.1 Errors and SVDs

Consider the following quantities

˜train error =
1

n
E

[ ∑
i∈train

{Âi,·η̂ − α0(Wi,·)}2
]

˜test error =
1

n
E

[ ∑
i∈test

{Âi,·η̂ − α0(Wi,·)}2
]

general error =
1

n
E

[ ∑
i∈test

{α̂i − α0(Wi,·)}2
]
, α̂i = Zi,· ρ̂

−1 η̂ = Zi,·η̃.
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Each error is new because it corresponds to our new error-in-variable balancing weight.

The key result is about general error, in which we analyze a new variant of PCR that

does not involve cleaning test. As we will see, post multiplying by η̃ performs a kind

of implicit cleaning. By avoiding explicit cleaning, we preserve independence across rows

in test, which is critical for our inference argument. En route, we will analyze train

error and test error, which are closely related to ˜train error and ˜test error.

When using a dictionary, the updated estimator is α̂i = b(Di, Zi,· ρ̂
−1)η̂ = b(Di, Zi,·)η̃ for an

updated definition of η̃. The SVDs are as in Appendix E.

F.1.2 Counterfactual moments

In this exposition, we consider the case with technical regressors; take b to be the identity

to return to the case of original regressors. In the main text, we provide the counterfactual

moment for Example A.1 with the interacted dictionary. We now introduce a more

general notation to describe the counterfactual moments for general parameters and general

dictionaries. Recall from Appendix A that we consider causal parameters of the form

θ0 =
1

2n

∑
i∈train,test

θi, θi = E[m(Wi,·, γ0)], Wi,· = (Ai,·, Hi,·, πi,·).

Given a dictionary b : Rp → Rp′ , define

bsignal(Wi,·) = b(Ai,·), bnoise(Wi,·) = b(Zi,·).

The general counterfactual moment is calculated as follows.

Algorithm F.1 (Counterfactual moment with data cleaning). Given corrupted training

covariates Ztrain ∈ Rn×p, the dictionary b : Rp → Rp′, and the formula m : W × L2 → R

1. Perform data cleaning on Ztrain to obtain Âtrain ∈ Rn×p

2. For i ∈ train calculate mi,· = m(Wi,·, b
noise) ∈ Rp′

3. For i ∈ train, calculate m̂i,· from mi,· by overwriting Zi,· with Âi,·

4. Calculate M̂ = 1
n

∑
i∈train m̂i,·
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To specialize this abstract procedure to a specific setting, it is sufficient to describe

m̂i. We provide the explicit expressions for m̂i in each leading example in the proof of

Proposition F.1 below.

As theoretical devices, we introduce several related objects. First, we define the counter-

factual vectors m̃i,·, m̂i,· ∈ Rp′ for observation i. The former vector uses clean data, while

the latter uses cleaned data. In particular,

m̃i,· = m(Wi,·, b
signal), m̂i,· = m(Wi,·, b

noise) overwriting Zi,· with Âi,·.

We concatenate the vectors m̃i,· as rows in the matrix M̃ . We concatenate the vectors m̂i,·

as rows in the matrix M̂ . We refer to these objects as the counterfactual matrices. We also

use the counterfactual vectors to define the counterfactual moments M∗, M̂ ∈ Rp′ :

M∗ =
1

2n

∑
i∈train,test

α0(Wi,·)b{A(lr)
i,· }, M̂ =

1

n

∑
i∈train

m̂i,·.

Finally, we introduce notation for the covariance matrices G∗, Ĝ ∈ Rp′×p′ :

G∗ =
1

2n

∑
i∈train,test

b{A(lr)
i,· }T b{A(lr)

i,· }, Ĝ =
1

n
b(Âtrain)T b(Âtrain).

With this additional notation, we write the generalized coefficient as

η̂ = Ĝ†M̂T .

F.2 Data cleaning continuity

A desirable property is that data cleaning guarantees for the corrupted regressors imply

data cleaning guarantees of the counterfactual moments. We refer to this property as

data cleaning continuity. We define the property, then verify that it holds for the leading

examples.

Assumption F.1 (Data cleaning continuity). There exist C ′
m, C

′′
m <∞ such that

1. ∥M̂ − M̃∥22,∞ ≤ C ′
m∥Â−A∥22,∞;

2. maxj∈[p′] |m̃ij| ≤ C ′′
m.

In particular, we explicitly characterize (C ′
m, C

′′
m) for many important causal and struc-

tural parameters of interest. Recall the variable definitions in Appendix A.
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Proposition F.1 (Verifying data cleaning continuity). The following conditions verify

Assumption F.1 for the leading examples. Suppose Assumption 5.1 holds.

1. In Example A.1 with the interacted dictionary, m̂i,· = (Âi,·,−Âi,·), C ′
m = 1, and

C ′′
m = Ā.

2. In Example A.2 with the interacted dictionary, m̂i,· = (Âi,·,−Âi,·), C ′
m = 1, and

C ′′
m = Ā for the functionals in the numerator and denominator.

3. In Example A.3 with the identity dictionary, suppose the counterfactual policy is of

the form t : Ai,· 7→ t1 ⊙ Ai,· + t2 where t1, t2 ∈ Rp. m̂i,· = [(t1 − 1
T ) ⊙ Âi,·] + t2,

C ′
m = (∥t1∥max + 1)2, and C ′′

m = (∥t1∥max + 1)Ā+ ∥t2∥max.

4. In Example A.4 with the interacted quadratic dictionary, m̂i,· = (0, 1, 2Di, 0, Âi,·, 2DiÂi,·),

C ′
m = 4Ā2, and C ′′

m = 2Ā2.10

5. In Example A.5 with the partially linear dictionary, m̂i,· = (1, 0, ..., 0), C ′
m = 0, and

C ′′
m = 1 11

6. In Example A.6 with the partially linear dictionary, m̂i,· = (1, 0, ..., 0), C ′
m = 0, and

C ′′
m = 1 for the functionals in the numerator and denominator.

7. In Example A.7 with the interacted dictionary, m̂i,· = (Vi, Âi,·,−Vi,−Âi,·), C ′
m = 1,

and C ′′
m = Ā.12

Proof. We verify the result for each example.

1. Example A.1. Recall b(Di, Zi,·) = {DiZi,·, (1−Di)Zi,·}. Write

mi,· = b(1, Zi,·)− b(0, Zi,·) = {Zi,·, 0} − {0, Zi,·} = (Zi,·,−Zi,·).

Hence

m̂i,· = (Âi,·,−Âi,·), m̃i,· = (Ai,·,−Ai,·).
10Likewise for any polynomial of Di interacted with Zi,·.
11Recall that, to estimate a weighted balancing weight, we propose estimating an unweighted balancing

weight then applying the weighting. The verification here is for the unweighted balancing weight that will

be weighted.
12Recall that, to estimate a local balancing weight, we propose estimating a global balancing weight then

applying the localization. The verification here is for the global balancing weight that will be localized.
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2. Example A.2 is analogous to Example A.1.

3. Example A.3. Recall b(Zi,·) = Zi,·. Write

mi,· = b{t(Zi,·)} − b(Zi,·) = t(Zi,·)−Zi,· = t1 ⊙Zi,· + t2 −Zi,· = [(t1 − 1
T )⊙Zi,·] + t2.

Hence

m̂i,· = [(t1 − 1
T )⊙ Âi,·] + t2, m̃i,· = [(t1 − 1

T )⊙ Ai,·] + t2

4. Example A.4. Recall b(Di, Zi,·) = (1, Di, D
2
i , Zi,·, DiZi,·, D

2
iZi,·). Write

mi,· = ∇db(Di, Zi,·) = ∇d(1, Di, D
2
i , Zi,·, DiZi,·, D

2
iZi,·) = (0, 1, 2Di, 0, Zi,·, 2DiZi,·).

Hence

m̂i,· = (0, 1, 2Di, 0, Âi,·, 2DiÂi,·), m̃i,· = (0, 1, 2Di, 0, Ai,·, 2DiAi,·).

5. Example A.5. Let b(Di, Zi,·) = {Di, b̃(Zi,·)}. Write

mi,· = b(1, Zi,·)− b(0, Zi,·) = {1, b̃(Zi,·)} − {0, b̃(Zi,·)} = (1, 0, ..., 0).

Hence

m̂i,· = (1, 0, ..., 0), m̃i,· = (1, 0, ..., 0).

6. Example A.6 is analogous to Example A.5.

7. Example A.7 is analogous to Example A.1.

F.3 Estimator properties

F.3.1 Orthogonality

The goal of this section is to establish orthogonality properties for the analysis to follow. In

order to formalize these orthogonality properties, we formally define η∗. To begin, consider

the case without a dictionary. We define η∗ ∈ Rp as the unique solution to the following

optimization problem across train and test:

min
η∈Rp

∥η∥2 s.t. η ∈ argmin

∥∥∥∥∥∥
α0(W

train)

α0(W
test)

−

A(lr),train

A(lr),test

 η
∥∥∥∥∥∥
2

2

.
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η∗ is not the quantity of interest, but rather a theoretical device. It defines the unique,

minimal-norm, low-rank, linear approximation to the balancing weight α0. The theoretical

device η∗ is new to the literature since the balancing weight is new to the literature. Our

ultimate goal is to define and analyze an estimator close to α0(Wi,·) in generalized mean

square error while adhering to the conditional independence criterion of Proposition 4.2.

Remark F.1 (Dictionary). When using a dictionary, we update our definition of η∗ ∈ Rp′

as the unique solution to the following optimization problem across train and test:

min
η∈Rp′

∥η∥2 s.t. η ∈ argmin

∥∥∥∥∥∥
α0(W

train)

α0(W
test)

−

b{A(lr),train}

b{A(lr),test}

 η
∥∥∥∥∥∥
2

2

.

Lemma F.1. Suppose Assumptions 5.6 and 5.8 hold. Then,

V̂ T
k,⊥η̂ = 0, V T

⊥η
∗ = (V ′

⊥)
Tη∗ = 0

Proof. We show each result

1. V̂ T
k,⊥η̂ = 0

It suffices to show η̂ ∈ row(Âtrain) then appeal to the same reasoning as Lemma E.2.

This result follows from a generalization of Agarwal et al. (2020a, Property 4.1): η̂ is

the unique solution to the program

min
η∈Rp

∥η∥2 s.t. η ∈ argmin−2M̂η + ηT Ĝη

where M̂ ∈ row(Âtrain) by Assumption 5.8 and row(Ĝ) = row{(Âtrain)T Âtrain} =

row(Âtrain). Therefore η̂ ∈ row(Âtrain).

2. V T
⊥η

∗ = (V ′
⊥)

Tη∗ = 0. See Lemma E.2

Remark F.2 (Dictionary). Lemma E.2 continues to hold with the updated definitions of

the SVDs in Remark E.1.

Lemma F.2. Deterministically, Ĝη̂ = M̂T and G∗η∗ = (M∗)T .

Proof. Immediate from the FOC in the definitions of (η̂, η∗).
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F.3.2 Balance

Without any further assumptions, we demonstrate that the error-in-variables balancing

weight confers a finite sample balancing property. We articulate the balancing property in

terms of the coefficient η̂.

Proposition F.2 (Finite sample balance). For any finite training sample size n, and any

dictionary of basis functions b, the coefficient η̂ balances the cleaned actual regressors with

the corresponding cleaned counterfactuals in the sense that

1

n

∑
i∈train

b(Âi,·) · ω̂i =
1

n

∑
i∈train

m̂i,·.

where ω̂i ∈ R are balancing weights computed from η̂: for each i ∈ train,

ω̂i = b(Âi,·)η̂.

Proof. By Lemma F.2,

1

n

∑
i∈train

b(Âi,·)
T b(Âi,·)η̂ = Ĝη̂ = M̂T =

1

n

∑
i∈train

(m̂i,·)
T .

In words, η̂ serves to balance actual observations with counterfactual queries. This result

is somewhat abstract, so we instantiate it for a leading case. Specifically, Proposition 4.3

considers ATE (Example A.1) with the interacted dictionary.

Proof of Proposition 4.3. By Proposition F.2,

1

n

∑
i∈train

b(Di, Âi,·) · ω̂i =
1

n

∑
i∈train

m̂i,·.

Focusing on the RHS, by Proposition F.1

m̂i,· = (Âi,·,−Âi,·).

Next, turning to the LHS,

b(Di, Âi,·) = {DiÂi,·, (1−Di)Âi,·}
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and

ω̂i = b(Di, Âi,·)η̂ = DiÂi,·η̂
treat + (1−Di)Âi,·η̂

untreat = Di · ω̂treat
i − (1−Di)ω̂

untreat
i .

Therefore

b(Di, Âi,·) · ω̂i = {DiÂi,·, (1−Di)Âi,·} · {Di · ω̂treat
i − (1−Di)ω̂

untreat
i }

= {DiÂi,· · ω̂treat
i , (1−Di)Âi,· · (−ω̂untreat

i )}.

In summary, matching components of the LHS and RHS,

1

n

∑
i∈train

DiÂi,· · ω̂treat
i =

1

n

∑
i∈train

Âi,·;

1

n

∑
i∈train

(1−Di)Âi,· · (−ω̂untreat
i ) =

1

n

∑
i∈train

(−Âi,·).

F.3.3 Equivalence

Finally, we relate the properties of our estimators to an equivalence property that is well

documented in the causal inference literature; see e.g. Ben-Michael et al. (2021); Bruns-

Smith and Feller (2022) for recent summaries.13 We demonstrate that a version of the

equivalence property holds on train , in a stronger sense than previously known, but it

does not hold on test.

Previous work (Robins et al., 2007; Chattopadhyay and Zubizarreta, 2021) shows that a

certain equivalence holds for treatment effects when using OLS with the interacted dictionary

(without data cleaning). We begin by generalizing this equivalence in three ways: (i) for our

entire class of semiparametric and nonparametric estimands, (ii) for any square integrable

dictionary, (iii) for estimation with or without data cleaning. In order to document the

equivalence, we define, for i ∈ train,

γ̃(Di, Zi,·) = b(D, X̂i,·)β̂, α̃(Di, Zi,·) = b(D, X̂i,·)η̂.

To lighten notation we also define the operator Etrain[·] = 1
m

∑
i∈train[·].

13We thank Avi Feller and David Bruns-Smith for suggesting this connection.
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Proposition F.3 (Equivalence in train). For any linear functional within the class defined

by Assumption G.1 and for any square integrable dictionary b, the outcome, balancing weight,

and doubly robust estimators coincide on the training set:

Etrain[m(Wi,·, γ̃)] = Etrain[Yiα̃(Di, Zi,·)] = Etrain[m(Wi,·, γ̃) + α̃(Di, Zi,·){Yi − γ̃(Di, Zi,·)}].

We state the result with data cleaning, but it also holds without data cleaning.

Proof. We proceed in steps.

1. To prove the second equality, we appeal to the FOC for η̂ summarized by Lemma F.2:

η̂T Ĝ = M̂ . Multiplying the LHS by β̂,

η̂T Ĝβ̂ = η̂TEtrain[b(D, X̂i,·)
T b(D, X̂i,·)]β̂ = Etrain[α̃(Di, Zi,·)γ̃(Di, Zi,·)].

Multiplying the RHS by β̂,

M̂β̂ = Etrain[m̂i,·]β̂ = Etrain[m(Wi,·, γ̃)].

In summary

Etrain[α̃(Di, Zi,·)γ̃(Di, Zi,·)] = Etrain[m(Wi,·, γ̃)]

which implies the result.

2. To prove the first equality, we appeal to the FOC for β̂: β̂T Ĝ = Etrain[Yib(Di, X̂i,·)].

Multiplying the RHS by η̂,

Etrain[Yib(Di, X̂i,·)]η̂ = Etrain[Yiα̃(Di, Zi,·)].

Multiplying the LHS by η̂ and appealing to the previous result

β̂T Ĝη̂ = η̂T Ĝβ̂ = Etrain[α̃(Di, Zi,·)γ̃(Di, Zi,·)] = Etrain[m(Wi,·, γ̃)].

However, our estimator involves sample splitting and implicit data cleaning to break

dependence, motivated by our goal of inference after data cleaning. In our estimator of the

causal parameter, we use, for i ∈ test,

γ̂(Di, Zi,·) = b(D,Zi,·)β̂, α̂(Di, Zi,·) = b(D,Zi,·)η̂.
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Proposition F.4 (Non-equivalence in test). For any linear functional within the class

defined by Assumption G.1 and for any square integrable dictionary b, the outcome, balancing

weight, and doubly robust estimators generically do not coincide on the test set:

Etest[m(Zi,·, γ̂)] ̸= Etest[Yiα̂(Di, Zi,·)] ̸= Etest[m(Zi,·, γ̂) + α̂(Di, Zi,·){Yi − γ̂(Di, Zi,·)}].

Proof. The FOCs for (β̂, η̂) hold for train after data cleaning, which is how (β̂, η̂) are

estimated. They do not hold for test, especially since we do not clean the test covariates.

As such, the equivalence property is relevant for gaining intuition into the relationship

between (β̂, η̂). However, the equivalence does not hold for our final estimator of the causal

parameter because of sample splitting and implicit data cleaning.

F.4 Training error

In this argument, all objects indexed by a sample split correspond to train. For this reason,

we suppress superscipt train. Note that (M∗,G∗, η∗) are constructed from (train,test)

while (M̂, Ĝ, η̂, Â,A(lr)) are constructed from train.

F.4.1 Decomposition

Lemma F.3. Deterministically,

∥Âη̂ −A(lr)η∗∥22 ≤ C
{
∥V̂ kV̂

T
k (η̂ − η∗)∥1 ·∆RR ∨ ∥Â−A(lr)∥22,∞∥η∗∥21

}
where

∆RR := n ·
{
∥M̂T − (M∗)T∥max + ∥G∗ − Ĝ∥max∥η∗∥1

}
.

Proof. We proceed in steps.

1. Rewrite ∥Âη̂ −A(lr)η∗∥22

Write

∥Âη̂ −A(lr)η∗∥22 = ∥Âη̂ ± Âη∗ −A(lr)η∗∥22 ≤ 2∥Â(η̂ − η∗)∥22 + 2∥(Â−A(lr))η∗∥22.

2. First term
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Next, write

1

n
∥Â(η̂ − η∗)∥22 =

1

n
(η̂ − η∗)T ÂT Â(η̂ − η∗)

=
1

n
(η̂ − η∗)T V̂ kV̂

T
k Â

T Â(η̂ − η∗)

= (η̂ − η∗)T V̂ kV̂
T
k Ĝ(η̂ − η∗)

≤ ∥V̂ kV̂
T
k (η̂ − η∗)∥1 · ∥Ĝ(η̂ − η∗)∥max.

The latter factor is bounded as

∥Ĝ(η̂ − η∗)∥max

= ∥Ĝη̂ ± M̂T ± (M∗)T ±G∗η∗ − Ĝη∗∥max

≤ ∥Ĝη̂ − M̂T∥max + ∥M̂T − (M∗)T∥max + ∥(M∗)T −G∗η∗∥max + ∥G∗η∗ − Ĝη∗∥max

≤ 0 + ∥M̂T − (M∗)T∥max + 0 + ∥G∗ − Ĝ∥max∥η∗∥1

= ∥M̂T − (M∗)T∥max + ∥G∗ − Ĝ∥max∥η∗∥1.

where in the second inequality we appeal to Lemma F.2 and we apply Holder inequality

row-wise.

3. Second term

Finally, write

∥(Â−A(lr))η∗∥22 ≤ ∥Â−A(lr)∥22,∞∥η∗∥21.

Remark F.3 (Dictionary). The generalization of Lemma F.3 is

∥b(Â)η̂ − b{A(lr)}η∗∥22 ≤ C
[
∥V̂ kV̂

T
k (η̂ − η∗)∥1 ·∆RR ∨ ∥b(Â)− b{A(lr)}∥22,∞∥η∗∥21

]
.

F.4.2 Parameter

Lemma F.4. Let the conditions of Lemma F.1 hold. Then

∥V̂ kV̂
T
k (η̂ − η∗)∥22 ≤ C

{
1

ŝ2k
∥Â−A(lr)∥22,∞∥η∗∥21 +

1

ŝ4k
p ·∆2

RR

}
.
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Proof. As in Lemma E.5,

∥V̂ kV̂
T
k (η̂ − η∗)∥22 ≤

2

ŝ2k

{
∥Âη̂ −A(lr)η∗∥22 + ∥A(lr) − Â∥22,∞∥η∗∥21

}
.

Using Lemma F.3, we conclude that

∥V̂ kV̂
T
k (η̂ − η∗)∥22 ≤

C

ŝ2k

{
∥V̂ kV̂

T
k (η̂ − η∗)∥1 ·∆RR ∨ ∥A(lr) − Â∥22,∞∥η∗∥21

}
.

There are two cases, in which each of the two terms dominates:

1. ∥V̂ kV̂
T
k (η̂ − η∗)∥22 ≤ C 1

ŝ2k
∥V̂ kV̂

T
k (η̂ − η∗)∥1 ·∆RR. In this case,

∥V̂ kV̂
T
k (η̂ − η∗)∥22 ≤ C

1

ŝ2k

√
p∥V̂ kV̂

T
k (η̂ − η∗)∥2 ·∆RR.

Dividing both sides by ∥V̂ kV̂
T
k (η̂ − η∗)∥2

∥V̂ kV̂
T
k (η̂ − η∗)∥2 ≤ C

1

ŝ2k

√
p ·∆RR

hence

∥V̂ kV̂
T
k (η̂ − η∗)∥22 ≤ C

1

ŝ4k
p ·∆2

RR.

2. ∥V̂ kV̂
T
k (η̂ − η∗)∥22 ≤ C 1

ŝ2k
∥Â−A(lr)∥22,∞∥η∗∥21.

Remark F.4 (Dictionary). The generalization of Lemma F.4 is

∥V̂ r′V̂
T
r′(η̂ − η∗)∥22 ≤ C

[
1

ŝ2r′
∥b(Â)− b{A(lr)}∥22,∞∥η∗∥21 +

1

ŝ4r′
p′ ·∆2

RR

]
using the SVD of Remark E.1.

Lemma F.5. Let the conditions of Lemma F.1 hold. Then

∥η̂ − η∗∥22 ≤ C

{
∥V V T − V̂ kV̂

T
k ∥2∥η∗∥22 +

1

ŝ2k
∥Â−A(lr)∥22,∞∥η∗∥21 +

1

ŝ4k
p ·∆2

RR

}
.

Proof. As in Lemma E.5

∥η̂ − η∗∥22 = ∥V̂ kV̂
T
k (η̂ − η∗)∥22 + ∥V̂ k,⊥V̂

T
k,⊥η

∗∥22.

By Lemma F.4,

∥V̂ kV̂
T
k (η̂ − η∗)∥22 ≤ C

{
1

ŝ2k
∥Â−A(lr)∥22,∞∥η∗∥21 +

1

ŝ4k
p ·∆2

RR

}
.
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As in Lemma E.5

∥V̂ k,⊥V̂
T
k,⊥η

∗∥22 ≤ ∥V V T − V̂ kV̂
T
k ∥2∥η∗∥22.

Remark F.5 (Dictionary). The generalization of Lemma F.5 is

∥η̂ − η∗∥22 ≤ C

[
∥V V T − V̂ r′V̂

T
r′∥2∥η∗∥22 +

1

ŝ2r′
∥b(Â)− b{A(lr)}∥22,∞∥η∗∥21 +

1

ŝ4r′
p′ ·∆2

RR

]
using the SVD of Remark E.1.

F.4.3 High probability events

We wish to control ∆RR, which in turn depends on

∥M̂T − (M∗)T∥max, ∥G∗ − Ĝ∥max.

Define E := ∩9
k=1Ek where E1 to E5 are given in Appendix D, and

E6 =

{
max
j∈[p]

∣∣∣∣∣ 1n ∑
i∈train

{m̃ij − E[m̃ij]}

∣∣∣∣∣ ≤ C · C ′′
m

√
log(np)

n

}
;

E7 =

{
max
j∈[p]

∣∣∣∣∣ 12n ∑
i∈train,test

{α0(Wi,·)Aij − E[α0(Wi,·)Aij]}

∣∣∣∣∣ ≤ C · ᾱĀ
√

log(np)

n

}
;

E8 =

{
max
j,k∈[p]

∣∣∣∣∣ 1n ∑
i∈train

{AijAik − E[AijAik]}

∣∣∣∣∣ ≤ C · Ā2

√
log(np)

n

}
;

E9 =

{
max
j,k∈[p]

∣∣∣∣∣ 12n ∑
i∈train,test

{AijAik − E[AijAik]}

∣∣∣∣∣ ≤ C · Ā2

√
log(np)

n

}
.

We show Ej hold w.p. 1− 2
n10p10

en route to controlling ∥M̂T − (M∗)T∥max and ∥G∗− Ĝ∥max

and hence ∆RR.

Lemma F.6. Under Assumption F.1

P(Ec6) ≤
2

n10p10
.

Proof. By Assumption F.1, m̃ij ≤ C ′′
m. Hence by Hoeffding, for any j ∈ [p]

P

(∣∣∣∣∣ 1n ∑
i∈train

{m̃ij − E[m̃ij}]

∣∣∣∣∣ ≥ t

)
≤ 2 exp

{
− 2n2t2

n(2C ′′
m)

2

}
.
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Taking the union bound over j ∈ [p]

P

(
max
j∈[p]

∣∣∣∣∣ 1n ∑
i∈train

{m̃ij − E[m̃ij]}

∣∣∣∣∣ ≥ t

)
≤ 2p exp

{
− 2n2t2

n(2C ′′
m)

2

}
=

2

n10p10
.

Remark F.6 (Dictionary). A generalization of Lemma F.6 sufficient for our analysis is for

E ′
6 =

{
max
j∈[p′]

∣∣∣∣∣ 1n ∑
i∈train

{m̃ij − E[m̃ij]}

∣∣∣∣∣ ≤ C · C ′′
m

√
log(np′)

n

}
.

Lemma F.7. Under Assumption 5.1 and ∥α0∥∞ ≤ ᾱ,

P(Ec7) ≤
2

n10p10
.

Proof. By Assumption 5.1, |α0(Wi,·)Aij| ≤ ᾱĀ. Hence by Hoeffding, for any j ∈ [p]

P

(∣∣∣∣∣ 12n ∑
i∈train,test

{α0(Wi,·)Aij − E[α0(Wi,·)Aij]}

∣∣∣∣∣ ≥ t

)
≤ 2 exp

{
− 2(2n)2t2

(2n)(2ᾱĀ)2)

}
.

Taking the union bound over j ∈ [p]

P

(
max
j∈[p]

∣∣∣∣∣ 12n ∑
i∈train,test

{α0(Wi,·)Aij − E[α0(Wi,·)Aij]}

∣∣∣∣∣ ≥ t

)
≤ 2p exp

{
− 2(2n)2t2

(2n)(2ᾱĀ)2)

}
=

2

n10p10
.

Remark F.7 (Dictionary). A generalization of Lemma F.7 sufficient for our analysis is for

E ′
7 =

{
max
j∈[p′]

∣∣∣∣∣ 12n ∑
i∈train,test

{α0(Wi,·)bj(Ai,·)− E[α0(Wi,·)bj(Ai,·)]}

∣∣∣∣∣ ≤ C · ᾱĀ′

√
log(np′)

n

}
.

Lemma F.8. Suppose Assumptions 5.1, G.2, G.1, and F.1 hold, and ∥α0∥∞ ≤ ᾱ. Then

∥M̂ −M∗∥max|{E6, E7} ≤ ∆M =
√
C ′
m

1√
n
∥Â−A∥2,∞ + C · (C ′′

m + ᾱĀ)

√
ln(np)

n
+ ᾱ ·∆E.

Proof. We proceed in steps.

1. Decomposition
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Write

M̂ −M∗ =
1

n

∑
i∈train

(m̂i,· − m̃i,·)

+
1

n

∑
i∈train

{m̃i,· − E[m̃i,·]}

+
1

n

∑
i∈train

E[m̃i,·]−
1

2n

∑
i∈train,test

E[α0(Wi,·)Ai,·]

+
1

2n

∑
i∈train,test

{E[α0(Wi,·)Ai,·]− α0(Wi,·)Ai,·}

+
1

2n

∑
i∈train,test

{α0(Wi,·)Ai,· − α0(Wi,·)A
(lr)
i,· }

=
5∑

k=1

R(k).

By triangle inequality, it suffices to bound the j-th component of each difference in

absolute value, i.e. to bound R(k)
j .

2. First term

We analyze

{R(1)
j }2 =

{
1

n

∑
i∈train

(m̂ij − m̃ij)

}2

≤ 1

n

∑
i∈train

(m̂ij − m̃ij)
2

≤ 1

n
∥M̂ − M̃∥22,∞

≤ 1

n
C ′
m∥Â−A∥22,∞

appealing to Assumption F.1. Hence

|R(1)
j | ≤

√
C ′
m

1√
n
∥Â−A∥2,∞.

3. Second term

Write

R
(2)
j =

1

n

∑
i∈train

{m̃ij − E[m̃ij]},

then appeal to E6.
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4. Third term

Write

R
(3)
j =

1

n

∑
i∈train

E[m̃ij]−
1

2n

∑
i∈train,test

E[α0(Wi,·)Aij] = 0

by Riesz representation and ex-ante identical distribution of folds in the random

partition (train,test). In particular, since bsignal
j ∈ L2(W),

E[m̃ij] = E[m(Wi,·, b
signal
j )] = E[α0(Wi,·)b

signal
j (Wi,·)] = E[α0(Wi,·)bj(Ai,·)].

5. Fourth term

Write

−R(4)
j =

1

2n

∑
i∈train,test

{α0(Wi,·)Aij − E[α0(Wi,·)Aij]}

then appeal to E7.

6. Fifth term

Write the final term as

|R(5)
j | =

∣∣∣∣∣ 12n ∑
i∈train,test

α0(Wi,·)E
(lr)
ij

∣∣∣∣∣ ≤ ᾱ ·∆E

where α0(Wi,·) ≤ ᾱ.

Remark F.8 (Dictionary). The generalization of Lemma F.8 is

∥M̂ −M∗∥max|{E ′
6, E ′

7} ≤ ∆′
M =

√
C ′
m

1√
n
∥Â−A∥2,∞ +C · (C ′′

m+ ᾱĀ′)

√
ln(np′)

n
+ ᾱ ·∆′

E.

Lemma F.9. Under Assumption 5.1,

P(Ec8) ≤
2

n10p10
.

Proof. By Assumption 5.1, |AijAik| ≤ Ā2. Hence by Hoeffding, for any j, k ∈ [p]

P

(∣∣∣∣∣ 1n ∑
i∈train

{AijAik − E[AijAik]}

∣∣∣∣∣ ≥ t

)
≤ 2 exp

{
− 2n2t2

n(2Ā2)2

}
.

Taking the union bound over j, k ∈ [p]

P

(
max
j,k∈[p]

∣∣∣∣∣ 1n ∑
i∈train

{AijAik − E[AijAik]}

∣∣∣∣∣ ≥ t

)
≤ 2p2 exp

{
− 2n2t2

n(2Ā2)2

}
=

2

n10p10
.
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Remark F.9 (Dictionary). A generalization of Lemma F.9 sufficient for our analysis is for

E ′
8 =

{
max
j,k∈[p′]

∣∣∣∣∣ 1n ∑
i∈train

{bj(Ai,·)bk(Ai,·)− E[bj(Ai,·)bk(Ai,·)]}

∣∣∣∣∣ ≤ C · (Ā′)2
√

log(np′)

n

}
.

Lemma F.10. Under Assumption 5.1,

P(Ec9) ≤
2

n10p10
.

Proof. By Assumption 5.1, |AijAik| ≤ Ā2. Hence by Hoeffding, for any j, k ∈ [p]

P

(∣∣∣∣∣ 12n ∑
i∈train,test

{AijAik − E[AijAik]}

∣∣∣∣∣ ≥ t

)
≤ 2 exp

{
− 2(2n)2t2

(2n)(2Ā2)2

}
.

Taking the union bound over j, k ∈ [p]

P

(∣∣∣∣∣ 12n ∑
i∈train,test

{AijAik − E[AijAik]}

∣∣∣∣∣ ≥ t

)
≤ 2p2 exp

{
− 2(2n)2t2

(2n)(2Ā2)2

}
=

2

n10p10
.

Remark F.10 (Dictionary). A generalization of Lemma F.10 sufficient for our analysis is

for

E ′
9 =

{
max
j,k∈[p′]

∣∣∣∣∣ 12n ∑
i∈train,test

{bj(Ai,·)bk(Ai,·)− E[bj(Ai,·)bk(Ai,·)]}

∣∣∣∣∣ ≤ C · (Ā′)2
√

log(np′)

n

}
.

Lemma F.11. Suppose Assumptions 5.1 holds. Then

∥Ĝ−G∗∥max|{E8, E9} ≤ ∆G

where

∆G = (Ā+ ∥Â−A∥2,∞)
1√
n
∥Â−A∥2,∞ + C · Ā2

√
ln(np)

n
+ C · Ā∆E.

Proof. We proceed in steps.

1. Decomposition
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Write

Ĝ−G∗ =
1

n

∑
i∈train

{ÂTi,·Âi,· − ÂTi,·Ai,·}

+
1

n

∑
i∈train

{ÂTi,·Ai,· − ATi,·Ai,·}

+
1

n

∑
i∈train

{ATi,·Ai,· − E[ATi,·Ai,·]}

+
1

n

∑
i∈train

E[ATi,·Ai,·]−
1

2n

∑
i∈train,test

E[ATi,·Ai,·]

+
1

2n

∑
i∈train,test

{E[ATi,·Ai,·]− ATi,·Ai,·}

+
1

2n

∑
i∈train,test

{ATi,·Ai,· − ATi,·A
(lr)
i,· }

+
1

2n

∑
i∈train,test

[ATi,·A
(lr)
i,· − {A(lr)

i,· }TA(lr)
i,· ]

=
7∑
ℓ=1

S(ℓ).

By triangle inequality, it suffices to bound the j, k-th component of each difference in

absolute value, i.e. to bound S(ℓ)
jk .

2. First term

Write

S
(1)
jk =

1

n

∑
i∈train

Âij(Âik − Aik) ≤ ∥Â∥max ·
1

n

∑
i∈train

(Âik − Aik).

Hence

{S(1)
jk }

2 ≤ ∥Â∥2max ·

{
1

n

∑
i∈train

(Âik − Aik)

}2

≤ ∥Â∥2max ·
1

n

∑
i∈train

(Âik − Aik)
2

≤ ∥Â∥2max

1

n
∥Â−A∥22,∞.

In summary

|S(1)
jk | ≤ ∥Â∥max

1√
n
∥Â−A∥2,∞.

By Assumption 5.1

∥Â∥max ≤ ∥Â−A∥max + ∥A∥max ≤ ∥Â−A∥2,∞ + Ā.
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3. Second term

Write

S
(2)
jk =

1

n

∑
i∈train

(Âij − Aij)Aik ≤ Ā · 1
n

∑
i∈train

(Âij − Aij).

Hence

{S(2)
jk }

2 ≤ Ā2 ·

{
1

n

∑
i∈train

(Âij − Aij)

}2

≤ Ā2 · 1
n

∑
i∈train

(Âij − Aij)
2

≤ Ā2 1

n
∥Â−A∥22,∞.

In summary

|S(2)
jk | ≤ Ā

1√
n
∥Â−A∥2,∞.

4. Third term

Write

S
(3)
jk =

1

n

∑
i∈train

{AijAik − E[AijAik]}

then appeal to E8.

5. Fourth term

Write

S
(4)
jk =

1

n

∑
i∈train

E[AijAik]−
1

2n

∑
i∈train,test

E[AijAik] = 0

by ex-ante identical distribution of folds in the random partition (train,test).

6. Fifth term

Write

−S(5)
jk =

1

2n

∑
i∈train,test

{AijAik − E[AijAik]}

then appeal to E9.

7. Sixth term

By Assumption 5.1

S
(6)
jk =

1

2n

∑
i∈train,test

AijE
(lr)
ik ≤ Ā∆E.
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8. Seventh term

By Assumption 5.1 and Lemma C.4

S
(7)
jk =

1

2n

∑
i∈train,test

E(lr)A
(lr)
ik ≤ ∥E(lr)∥max∥A(lr)∥max ≤ 3Ā∆E.

Remark F.11 (Dictionary). The generalization of Lemma F.11 is

∥Ĝ−G∗∥max|{E ′
8, E ′

9} ≤ ∆′
G

where

∆′
G = {Ā′ + ∥b(Â)− b(A)∥2,∞} 1√

n
∥b(Â)− b(A)∥2,∞ + C · (Ā′)2

√
ln(np′)

n
+ C · Ā′∆′

E.

Lemma F.12. Suppose the conditions of Lemmas F.8 and F.11 hold. Then

∆2
RR|{E6, E7, E8, E9} ≤ Cn2∥η∗∥21

·
{(

Ā+
√
C ′
m

)2 1

n
∥Â−A∥42,∞ + (C ′′

m + ᾱĀ+ Ā2)2
ln(np)

n
+ (Ā+ ᾱ)2∆2

E

}
.

Proof. We proceed in steps.

1. Decomposition

Write

∆RR = n ·
{
∥M̂T − (M∗)T∥max + ∥G∗ − Ĝ∥max∥η∗∥1

}
≤ n(∆M +∆G∥η∗∥1).

Hence with probability 1−O{(np)−10}

∆2
RR ≤ Cn2(∆2

M +∆2
G∥η∗∥21).

2. ∆M

By Lemma F.8, with probability 1−O{(np)−10}

∆M =
√
C ′
m

1√
n
∥Â−A∥2,∞ + C · (C ′′

m + ᾱĀ)

√
ln(np)

n
+ ᾱ ·∆E.

Note that

∆2
M ≤ C

{
C ′
m

1

n
∥Â−A∥22,∞ + (C ′′

m + ᾱĀ)2
ln(np)

n
+ ᾱ2 ·∆2

E

}
.
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3. ∆G

By Lemma F.11, with probability 1−O{(np)−10}

∆G = (Ā+ ∥Â−A∥2,∞)
1√
n
∥Â−A∥2,∞ + C · Ā2

√
ln(np)

n
+ C · Ā∆E.

Note that

∆2
G ≤ C

{
(Ā2 + ∥Â−A∥22,∞)

1

n
∥Â−A∥22,∞ + Ā4 ln(np)

n
+ Ā2∆2

E

}
.

4. Combining terms

Certain terms in ∆2
M and ∆2

G can be combined. In particular,

C ′
m

1

n
∥Â−A∥22,∞ + (Ā2 + ∥Â−A∥22,∞)

1

n
∥Â−A∥22,∞

≤ (
√
C ′
m + Ā)2

1

n
∥Â−A∥22,∞ +

1

n
∥Â−A∥42,∞

≤ (
√
C ′
m + Ā)2

1

n
∥Â−A∥42,∞

using ∥Â−A∥22,∞ ≤ ∥Â−A∥42,∞. This inequality implicitly appeals to ∥Â−A∥22,∞ ≥ 1,

which we can enforce by taking 1∨∥Â−A∥22,∞ since the latter is a diverging sequence.

Remark F.12 (Dictionary). The generalization of Lemma F.12 is

∆2
RR|{E ′

6, E ′
7, E ′

8, E ′
9} ≤ Cn2∥η∗∥21

·
[(
Ā′C ′

b +
√
C ′
m

)2 1

n
∥Â−A∥42,∞ + {C ′′

m + ᾱĀ′ + (Ā′)2}2 ln(np
′)

n
+ (Ā′ + ᾱ)2(∆′

E)
2

]
.

Proof. When combining terms

C ′
m

1

n
∥Â−A∥22,∞ + {(Ā′)2 + ∥b(Â)− b(A)∥22,∞} 1

n
∥b(Â)− b(A)∥22,∞

≤ (
√
C ′
m +

√
C ′
bĀ)

2 1

n
∥Â−A∥22,∞ +

1

n
(C ′

b)
2∥Â−A∥42,∞

≤ (
√
C ′
m + C ′

bĀ
′)2

1

n
∥Â−A∥42,∞.
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F.4.4 Collecting results

Lemma F.13. Suppose the conditions of Theorem 5.1 hold. Further suppose Assump-

tions 5.6, 5.8, 5.9, and 5.10 hold and ∥α0∥∞ ≤ ᾱ. With probability at least 1−O{(np)−10}

∥V̂ rV̂
T
r (η̂ − η∗)∥22 ≤ (2) + (3)

defined below.

Proof. By Lemma F.4

∥V̂ kV̂
T
k (η̂ − η∗)∥22 ≤ C

{
1

ŝ2k
∥Â−A(lr)∥22,∞∥η∗∥21 +

1

ŝ4k
p ·∆2

RR

}
.

Consider each term with k = r, which we bound by (2) and (3), respectively.

1. 1
ŝ2r
∥Â−A(lr)∥22,∞∥η∗∥21

Note that

∥Â−A(lr)∥22,∞ ≤ C
{
∥Â−A∥22,∞ + ∥E(lr)∥22,∞

}
.

By Lemmas D.10 and D.15, with probability at least 1−O{(np)−10},∥∥∥Â−A
∥∥∥2
2,∞

≤ C(Ka + K̄Ā)2

ρ4min

{
r +

n(n+ p)∆2
H,op + n

∥∥∥E(lr)
∥∥∥2 + ln(np)npĀ2

s2r

}
ln2(np)

+ C
∥∥∥E(lr)

∥∥∥2
2,∞

.

In summary

(2) =
C(Ka + K̄Ā)2

ρ4min

ln2(np)

ŝ2r
∥η∗∥21

·

r +
n(n+ p)∆2

H,op + n
∥∥∥E(lr)

∥∥∥2 + ln(np)npĀ2

s2r
+ ∥E(lr)∥22,∞

 .

2. 1
ŝ4r
p ·∆2

RR

By Lemma F.12 with probability at least 1−O{(np)−10}

∆2
RR

≤ Cn2∥η∗∥21
{(

Ā+
√
C ′
m

)2 1

n
∥Â−A∥42,∞ + (C ′′

m + ᾱĀ+ Ā2)2
ln(np)

n
+ (Ā+ ᾱ)2∆2

E

}
≤ C(

√
C ′
m + C ′′

m + ᾱĀ+ Ā2)2n2∥η∗∥21
{
1

n
∥Â−A∥42,∞ +

ln(np)

n
+∆2

E

}
.
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By Lemma D.10 and Lemma D.15, with probability at least 1−O{(np)−10}∥∥∥Â−A
∥∥∥4
2,∞

≤ C(Ka + K̄Ā)4

ρ8min

{
r +

n(n+ p)∆2
H,op + n

∥∥∥E(lr)
∥∥∥2 + ln(np)npĀ2

s2r

}2

ln4(np)

+ C
∥∥∥E(lr)

∥∥∥4
2,∞

.

Therefore

∆2
RR ≤ C(

√
C ′
m + C ′′

m + ᾱĀ+ Ā2)2
(Ka + K̄Ā)4

ρ8min

ln4(np) · n2∥η∗∥21 1
n

r +
n(n+ p)∆2

H,op + n
∥∥∥E(lr)

∥∥∥2 + ln(np)npĀ2

s2r


2

+
1

n
∥E(lr)∥42,∞ +

ln(np)

n
+∆2

E

 .
Hence

(3) = C(
√
C ′
m + C ′′

m + ᾱĀ+ Ā2)2
(Ka + K̄Ā)4

ρ8min

ln4(np) · pn
2

ŝ4r
∥η∗∥21 1

n

r +
n(n+ p)∆2

H,op + n
∥∥∥E(lr)

∥∥∥2 + ln(np)npĀ2

s2r


2

+
1

n
∥E(lr)∥42,∞ +

ln(np)

n
+∆2

E

 .

Lemma F.14. Suppose the conditions of Lemma F.13 hold. With probability at least

1−O{(np)−10}

∥η̂ − η∗∥22 ≤ (1) + (2) + (3)

where (1) is defined below and (2), (3) are defined above.

Proof. By Lemma F.5

∥η̂ − η∗∥22 ≤ C

{
∥V V T − V̂ kV̂

T
k ∥2∥η∗∥22 +

1

ŝ2k
∥Â−A(lr)∥22,∞∥η∗∥21 +

1

ŝ4k
p ·∆2

RR

}
.

Consider each term, which we bound by (1), (2), and (3), respectively. The second and

third term are already bounded in Lemma F.13. Therefore we focus on the first term. As

in Lemma E.15, with probability at least 1−O{(np)−10}

∥V V T − V̂ rV̂
T
r ∥ ≤ C

ρminsr

{
(
√
n+

√
p)∆H,op + ∥E(lr)∥+ Ā

√
ln(np)

√
p
}
.
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Hence

(1) = C
∥η∗∥22
ρ2mins

2
r

{
(n+ p)∆2

H,op + ∥E(lr)∥2 + Ā2 ln(np) · p
}
.

Remark F.13 (Dictionary). In the generalization of Lemmas F.13 and F.14, note the new

appearances of C ′
b in (2) and (3):

(1) = C
∥η∗∥22

(ρ′min)
2s2r′

{
(n+ p)∆2

H,op + ∥E(lr)∥2 + Ā2 ln(np) · p
}
;

(2) =
CC ′

b(Ka + K̄Ā)2

ρ4min

ln2(np)

ŝ2r′
∥η∗∥21

·

r + n(n+ p)∆2
H,op + n

∥∥∥E(lr)
∥∥∥2 + ln(np)npĀ2

s2r
+ ∥E(lr)∥22,∞ + ∥b(A)− b{A(lr)}∥22,∞

 ;

(3) = C{
√
C ′
m + C ′′

m + ᾱĀ′ + C ′
bĀ

′ + (Ā′)2}2 (Ka + K̄Ā)4

ρ8min

ln4(np) · p
′n2

ŝ4r′
∥η∗∥21 1

n

r +
n(n+ p)∆2

H,op + n
∥∥∥E(lr)

∥∥∥2 + ln(np)npĀ2

s2r


2

+
1

n
∥E(lr)∥42,∞ +

ln(np′)

n
+ (∆′

E)
2

 .
Proof. For (1), see Remark E.8. For (2) and (3) recall that Remark F.4 gives

∥V̂ r′V̂
T
r′(η̂ − η∗)∥22 ≤ C

[
1

ŝ2r′
∥b(Â)− b{A(lr)}∥22,∞∥η∗∥21 +

1

ŝ4r′
p′ ·∆2

RR

]
.

Consider each term, which we bound by (2) and (3), respectively.

1. 1
ŝ2
r′
∥b(Â)− b{A(lr)}∥22,∞∥η∗∥21

Note that

∥b(Â)− {A(lr)}∥22,∞ ≤ C
{
C ′
b∥Â−A∥22,∞ + ∥b(A)− b{A(lr)}∥22,∞

}
.

By Lemmas D.10 and D.15, with probability at least 1−O{(np)−10},∥∥∥Â−A
∥∥∥2
2,∞

≤ C(Ka + K̄Ā)2

ρ4min

{
r +

n(n+ p)∆2
H,op + n

∥∥∥E(lr)
∥∥∥2 + ln(np)npĀ2

s2r

}
ln2(np)

+ C
∥∥∥E(lr)

∥∥∥2
2,∞

.
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In summary

(2) =
CC ′

b(Ka + K̄Ā)2

ρ4min

ln2(np)

ŝ2r′
∥η∗∥21

·

r + n(n+ p)∆2
H,op + n

∥∥∥E(lr)
∥∥∥2 + ln(np)npĀ2

s2r
+ ∥E(lr)∥22,∞ + ∥b(A)− b{A(lr)}∥22,∞

 .
2. 1

ŝ4
r′
p′ ·∆2

RR

By Remark F.12 with probability at least 1−O{(np)−10}

∆2
RR

≤ Cn2∥η∗∥21
[(
Ā′C ′

b +
√
C ′
m

)2 1

n
∥Â−A∥42,∞ + {C ′′

m + ᾱĀ′ + (Ā′)2}2 ln(np
′)

n
+ (Ā′ + ᾱ)2(∆′

E)
2

]
≤ C{

√
C ′
m + C ′′

m + ᾱĀ′ + C ′
bĀ

′ + (Ā′)2}2n2∥η∗∥21
{
1

n
∥Â−A∥42,∞ +

ln(np′)

n
+ (∆′

E)
2

}
.

By Lemma D.10 and Lemma D.15, with probability at least 1−O{(np)−10}∥∥∥Â−A
∥∥∥4
2,∞

≤ C(Ka + K̄Ā)4

ρ8min

{
r +

n(n+ p)∆2
H,op + n

∥∥∥E(lr)
∥∥∥2 + ln(np)npĀ2

s2r

}2

ln4(np)

+ C
∥∥∥E(lr)

∥∥∥4
2,∞

.

Therefore

∆2
RR ≤ C{

√
C ′
m + C ′′

m + ᾱĀ′ + C ′
bĀ

′ + (Ā′)2}2 (Ka + K̄Ā)4

ρ8min

ln4(np) · n2∥η∗∥21 1
n

r +
n(n+ p)∆2

H,op + n
∥∥∥E(lr)

∥∥∥2 + ln(np)npĀ2

s2r


2

+
1

n
∥E(lr)∥42,∞ +

ln(np′)

n
+ (∆′

E)
2

 .
Hence

(3) = C{
√
C ′
m + C ′′

m + ᾱĀ′ + C ′
bĀ

′ + (Ā′)2}2 (Ka + K̄Ā)4

ρ8min

ln4(np) · p
′n2

ŝ4r′
∥η∗∥21 1

n

r +
n(n+ p)∆2

H,op + n
∥∥∥E(lr)

∥∥∥2 + ln(np)npĀ2

s2r


2

+
1

n
∥E(lr)∥42,∞ +

ln(np′)

n
+ (∆′

E)
2

 .
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Proposition F.5 (Projected train error). Suppose the conditions of Theorem 5.1 hold.

Further suppose Assumptions 5.6, 5.8, 5.9, and 5.10 hold, and ∥α0∥∞ ≤ ᾱ. Let k = r and

ρmin ≫ C̃
√
r ln

3
2 (np)

(
1
√
p
∨ 1√

n
∨∆E

)
, C̃ := CĀ

(
κ+ K̄ +Ka

)
.

Then with probability at least 1−O{(np)−10}

∥V̂ rV̂
T
r (η̂ − η∗)∥22 ≤ CĀ10(

√
C ′
m + C ′′

m + ᾱ + Ā)2(Ka + K̄)4(κ+ K̄ +Ka)
4

· r4 · ln10(np) · ∥η
∗∥21

ρ8min

(
1

np
+

1

p2
+
n

p3
+

1

p
∆2
E +

n

p
∆4
E

)
.

Proof. We proceed in steps.

1. Recall the inequalities

s2r ≥ C
np

r
,
∥∥∥E(lr)

∥∥∥2 ≤ np∆2
E,

∥∥∥E(lr)
∥∥∥2
2,∞

≤ n∆2
E,

∥∥∥E(lr)
∥∥∥4
2,∞

≤ n2∆4
E.

Further,

∆2
H,op ≤ C · Ā2(κ+ K̄ +Ka)

2 ln3(np)

Moreover, n(n+ p)∆2
H,op dominates ln(np)npĀ2.

2. Simplifying the first term on the RHS of the bound in Lemma F.13

(2) =
C(Ka + K̄Ā)2

ρ4min

ln2(np)

ŝ2r
∥η∗∥21

·

r +
n(n+ p)∆2

H,op + n
∥∥∥E(lr)

∥∥∥2 + ln(np)npĀ2

s2r
+ ∥E(lr)∥22,∞


≤ C(Ka + K̄Ā)2

ρ4min

ln2(np)

ŝ2r
∥η∗∥21

{
r +

n(n+ p)∆2
H,op + n2p∆2

E

s2r
+ n∆2

E

}
≤ C(Ka + K̄Ā)2

ρ4min

r ln2(np)

ŝ2r
∥η∗∥21

{
1 +

(n+ p)

p
∆2
H,op + n∆2

E

}
≤ C(Ka + K̄)2Ā4(κ+ K̄ +Ka)

2

ρ4min

r ln5(np)

ŝ2r
∥η∗∥21

(
1 +

n

p
+ n∆2

E

)
where we bound (Ka + K̄Ā)2 ≤ Ā2(Ka + K̄)2. By Lemma E.9,

ŝ2r ≳ s2r ≥ C
np

r
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so as long as the regularity condition holds,

(2) ≤ C(Ka + K̄)2Ā4(κ+ K̄ +Ka)
2

ρ4min

r2

np
· ln5(np)∥η∗∥21

(
1 +

n

p
+ n∆2

E

)
≤ C(Ka + K̄)2Ā4(κ+ K̄ +Ka)

2

ρ4min

r2 · ln5(np)∥η∗∥21
(

1

np
+

1

p2
+

1

p
∆2
E

)
.

3. Simplifying the second term on the RHS of the bound in Lemma F.13

(3) = C(
√
C ′
m + C ′′

m + ᾱĀ+ Ā2)2
(Ka + K̄Ā)4

ρ8min

ln4(np) · pn
2

ŝ4r
∥η∗∥21 1

n

r +
n(n+ p)∆2

H,op + n
∥∥∥E(lr)

∥∥∥2 + ln(np)npĀ2

s2r


2

+
1

n
∥E(lr)∥42,∞ +

ln(np)

n
+∆2

E

 .
Note that n(n+p)∆2

H,op dominates ln(np)npĀ2; n
∥∥∥E(lr)

∥∥∥2 ≤ n2p∆2
E; and ∥E(lr)∥42,∞ ≤

n2∆4
E. Moreover,

(
√
C ′
m + C ′′

m + ᾱĀ+ Ā2)2
(Ka + K̄Ā)4

ρ8min

≤ Ā6(
√
C ′
m + C ′′

m + ᾱ + Ā)2
(Ka + K̄)4

ρ8min

.

Hence

(3) ≤ Ā6(
√
C ′
m + C ′′

m + ᾱ + Ā)2
(Ka + K̄)4

ρ8min

ln4(np) · pn
2

ŝ4r
∥η∗∥21[

1

n

{
r +

n(n+ p)∆2
H,op + n2p∆2

E

s2r

}2

+
ln(np)

n
+∆2

E + n∆4
E

]
.

Since s2r ≥ C np
r

,

(3) ≤ Ā6(
√
C ′
m + C ′′

m + ᾱ + Ā)2
(Ka + K̄)4

ρ8min

ln4(np) · pn
2

ŝ4r
∥η∗∥21[

1

n

{
r +

r(n+ p)

p
∆2
H,op + rn∆2

E

}2

+
ln(np)

n
+∆2

E + n∆4
E

]
.

Recall that ∆2
H,op ≤ C · Ā2(κ+ K̄ +Ka)

2 ln3(np) so that

(3) ≤ Ā10(
√
C ′
m + C ′′

m + ᾱ + Ā)2
(Ka + K̄)4(κ+ K̄ +Ka)

4

ρ8min

ln4(np) · pn
2

ŝ4r[
1

n

{
r +

(
r +

rn

p

)
ln3(np) + rn∆2

E

}2

+
ln(np)

n
+∆2

E + n∆4
E

]
.
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Within the final factor

1

n

{
r +

(
r +

rn

p

)
ln3(np) + rn∆2

E

}2

≤ C

n

{(
r +

rn

p

)
ln3(np) + rn∆2

E

}2

= C
r2

n

{(
1 +

n

p

)
ln3(np) + n∆2

E

}2

≤ C
r2

n

{(
1 +

n

p
+
n2

p2

)
ln6(np) + n2∆4

E

}
= Cr2

{(
1

n
+

1

p
+
n

p2

)
ln6(np) + n∆4

E

}
which dominates both ln(np)

n
and n∆4

E. In summary

(3) ≤ Ā10(
√
C ′
m + C ′′

m + ᾱ + Ā)2
(Ka + K̄)4(κ+ K̄ +Ka)

4

ρ8min

r2 · ln10(np)

· pn
2

ŝ4r
∥η∗∥21

(
1

n
+

1

p
+
n

p2
+∆2

E + n∆4
E

)
. (38)

By Lemma E.9,

ŝ4r ≳ s4r ≥ C
n2p2

r2

so that
pn2

ŝ4r
∥η∗∥21 ≤ Cr2

pn2

n2p2
∥η∗∥21 = C

r2

p
∥η∗∥21.

In summary

(3) ≤ CĀ10(
√
C ′
m + C ′′

m + ᾱ + Ā)2
(Ka + K̄)4(κ+ K̄ +Ka)

4

ρ8min

r4 · ln10(np)

· ∥η∗∥21
(

1

np
+

1

p2
+
n

p3
+

1

p
∆2
E +

n

p
∆4
E

)
.

4. We have shown

(2) ≤ CĀ4(Ka + K̄)2(κ+ K̄ +Ka)
2

ρ4min

r2 · ln5(np)∥η∗∥21
(

1

np
+

1

p2
+

1

p
∆2
E

)
;

(3) ≤ CĀ10(
√
C ′
m + C ′′

m + ᾱ + Ā)2
(Ka + K̄)4(κ+ K̄ +Ka)

4

ρ8min

r4 · ln10(np)

· ∥η∗∥21
(

1

np
+

1

p2
+
n

p3
+

1

p
∆2
E +

n

p
∆4
E

)
.

Clearly (3) dominates (2).
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Remark F.14 (Dictionary). The generalization of Proposition F.5 is as follows. Suppose

ρ′min ≫ C̃
√
r′ ln

3
2 (np)

(
1
√
p
∨ 1√

n
∨∆E

)
.

Then with probability at least 1−O{(np)−10}

∥V̂ r′V̂
T
r′(η̂ − η∗)∥22 ≤ CĀ10(C ′

b +
√
C ′
m + C ′′

m + ᾱ + Ā)2(Ka + K̄)4(κ+ K̄ +Ka)
4

· (r′)4 · ln10(np) · ∥η∗∥21
(ρ′min)

8

{
1

np
+

1

p2
+
n

p3
+ (∆′

E)
2 + n(∆′

E)
4

}
.

Proposition F.6 (train error). Suppose the conditions of Proposition F.5 hold. Then

with probability at least 1−O{(np)−10}

∥η̂ − η∗∥22 ≤ CĀ10(
√
C ′
m + C ′′

m + ᾱ + Ā)2(Ka + K̄)4(κ+ K̄ +Ka)
4

· r4 · ln10(np) · ∥η
∗∥22

ρ8min

(
1

n
+

1

p
+
n

p2
+∆2

E + n∆4
E

)
.

Proof. We proceed in steps.

1. Recall the inequalities

s2r ≥ C
np

r
,
∥∥∥E(lr)

∥∥∥2 ≤ np∆2
E,

∥∥∥E(lr)
∥∥∥2
2,∞

≤ n∆2
E,

∥∥∥E(lr)
∥∥∥4
2,∞

≤ n2∆4
E.

Further,

∆2
H,op ≤ C · Ā2(κ+ K̄ +Ka)

2 ln3(np)

Moreover, n(n+ p)∆2
H,op dominates ln(np)npĀ2.

2. Simplifying the first term on the RHS of the bound in Lemma F.14 as in Proposition E.3

(1) = C
∥η∗∥22
ρ2mins

2
r

{
(n+ p)∆2

H,op + ∥E(lr)∥2 + Ā2 ln(np) · p
}

≤ C · Ā2(κ+ K̄ +Ka)
2∥η∗∥22
ρ2min

· r ln3(np) ·
(
1

p
+

1

n
+∆2

E

)
.

3. We have shown, by the arguments above and in the proof of Proposition F.5

(1) ≤ C · Ā2(κ+ K̄ +Ka)
2∥η∗∥22
ρ2min

· r ln3(np) ·
(
1

p
+

1

n
+∆2

E

)
;

(2) ≤ CĀ4(Ka + K̄)2(κ+ K̄ +Ka)
2

ρ4min

r2 · ln5(np)∥η∗∥21
(

1

np
+

1

p2
+

1

p
∆2
E

)
;

(3) ≤ CĀ10(
√
C ′
m + C ′′

m + ᾱ + Ā)2
(Ka + K̄)4(κ+ K̄ +Ka)

4

ρ8min

r4 · ln10(np)

· ∥η∗∥21
(

1

np
+

1

p2
+
n

p3
+

1

p
∆2
E +

n

p
∆4
E

)
.

Clearly (3) dominates (2), which dominates (1) after bounding ∥η∗∥21 ≤ p∥η∗∥22.
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Remark F.15 (Dictionary). The generalization of Proposition F.6 is as follows. Suppose

ρ′min ≫ C̃
√
r′ ln

3
2 (np)

(
1
√
p
∨ 1√

n
∨∆E

)
.

Then with probability at least 1−O{(np)−10}

∥η̂ − η∗∥22 ≤ CĀ10(C ′
b +
√
C ′
m + C ′′

m + ᾱ + Ā)2(Ka + K̄)4(κ+ K̄ +Ka)
4

· (r′)4 · ln10(np) · ∥η∗∥22
(ρ′min)

8

{
1

n
+

1

p
+
n

p2
+ (∆′

E)
2 + n(∆′

E)
4

}
.

F.5 Test error

F.5.1 Decomposition

Lemma F.15. Let Assumptions 5.6 and 5.8 hold. Let k the PCA hyperparameter equal

r = rank{A(lr),train} = rank{A(lr),test}. Then

∥Âtestη̂ −Atestη∗∥22 ≤ C
3∑

m=1

∆m

where

∆1 :=
{
∥Ztest ρ̂−1−A(lr),test∥2 + ∥A(lr),test∥2∥V V T − V̂ rV̂

T
r ∥2
}
∥η̂ − η∗∥22;

∆2 :=
∥A(lr),test∥2

ŝ2r

{
∥V̂ kV̂

T
k (η̂ − η∗)∥1 ·∆RR ∨ ∥A(lr),train − Âtrain∥22,∞∥η∗∥21

}
;

∆3 := ∥Âtest −Atest∥22,∞∥η∗∥21.

Proof. As in Lemma E.16, consider

∥Âtestη̂ −Atestη∗∥22 ≤ 2∥Âtest(η̂ − η∗
)
∥22 + 2∥(Âtest −Atest)η∗∥22. (39)

We shall bound the two terms on the right hand side of (39) next. To analyze ∥Âtest(η̂ −
η∗
)
∥22, we proceed in steps.

1. Decomposition

As in Lemma E.16, write

∥Âtest(η̂ − η∗
)
∥22 ≤ 2∥{Âtest −A(lr),test}

(
η̂ − η∗

)
∥22 + 2∥A(lr),test(η̂ − η∗

)
∥22.

We analyze the former and latter term separately.
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2. Former term

As in Lemma E.16,

∥{Âtest −A(lr),test}
(
η̂ − η∗

)
∥22 ≤ 2∥Ztest ρ̂−1−A(lr),test∥2 · ∥η̂ − η∗∥22.

3. Latter term

As in Lemma E.16,

∥A(lr),test(η̂ − η∗
)
∥22 ≤ ∥A(lr),test∥2 ∥V V T

(
η̂ − η∗

)
∥22

and

∥V V T
(
η̂ − η∗

)
∥22 ≤ 2∥V V T − V̂ rV̂

T
r ∥2 ∥η̂ − η∗∥22 + 2∥V̂ rV̂

T
r

(
η̂ − η∗

)
∥22.

Recall from Lemma F.13 that

∥V̂ rV̂
T
r (η̂ − η∗)∥22 ≤

C

ŝ2r

{
∥V̂ kV̂

T
k (η̂ − η∗)∥1 ·∆RR ∨ ∥A(lr),train − Âtrain∥22,∞∥η∗∥21

}
.

Therefore

∥A(lr),test(η̂ − η∗
)
∥22

≤ C∥A(lr),test∥2∥V V T − V̂ rV̂
T
r ∥2 ∥η̂ − η∗∥22

+
C∥A(lr),test∥2

ŝ2r

{
∥V̂ kV̂

T
k (η̂ − η∗)∥1 ·∆RR ∨ ∥A(lr),train − Âtrain∥22,∞∥η∗∥21

}
.

Finally, to analyze ∥(Âtest −Atest)η∗∥22, we appeal to matrix Holder:

∥(Âtest −Atest)η∗∥22 ≤ ∥Âtest −Atest∥22,∞∥η∗∥21.

Remark F.16 (Dictionary). Let Assumption 5.6 hold. Let r′ = rank[b{A(lr),train}] =

rank[b{A(lr),test}]. Then,

∥b(Âtest)η̂ − b(Atest)η∗∥22 ≤ C

3∑
m=1

∆m

where

∆1 :=
[
{Ādmaxdmax∥Ztest ρ̂−1−A(lr),test∥}2 + ∥b{A(lr),test}∥2∥V V T − V̂ r′V̂

T
r′∥2
]
∥η̂ − η∗∥22;

∆2 :=
∥A(lr),test∥2

ŝ2r

[
∥V̂ r′V̂

T
r′(η̂ − η∗)∥1 ·∆RR ∨ ∥b{A(lr),train} − b{Âtrain}∥22,∞∥η∗∥21

]
;

∆3 := ∥b(Âtest)− b(Atest)∥22,∞∥η∗∥21.

Proof. The generalized analysis of the former term in ∆1 is similar to Remark E.15.
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F.5.2 High probability events

Define the new event

Ẽ5 :=
{
∆RR ≤ ∆̃5

}
∆̃5 := CĀ5(

√
C ′
m + C ′′

m + ᾱ + Ā)
(Ka + K̄)2(κ+ K̄ +Ka)

2

ρ4min

r · ln5(np)

· n∥η∗∥1
(
1

n
+

1

p
+
n

p2
+∆2

E + n∆4
E

) 1
2

.

Set Ẽ := ∩5
k=1Ẽk where the remaining events are defined in Appendix E.

Lemma F.16. Let the conditions of Proposition F.6 hold. Then Ẽ5 occurs with probability

at least O{1− 1/(np)10}.

Proof. In the proofs of Lemma F.14 and Proposition F.6, in particular (38), we have shown

1

ŝ4r
p ·∆2

RR ≤ (3)

≤ Ā10(
√
C ′
m + C ′′

m + ᾱ + Ā)2
(Ka + K̄)4(κ+ K̄ +Ka)

4

ρ8min

r2 · ln10(np)

· pn
2

ŝ4r
∥η∗∥21

(
1

n
+

1

p
+
n

p2
+∆2

E + n∆4
E

)
.

Hence

∆2
RR ≤ Ā10(

√
C ′
m + C ′′

m + ᾱ + Ā)2
(Ka + K̄)4(κ+ K̄ +Ka)

4

ρ8min

r2 · ln10(np)

· n2∥η∗∥21
(
1

n
+

1

p
+
n

p2
+∆2

E + n∆4
E

)
.

Remark F.17 (Dictionary). The generalization of Lemma F.16 involves the event

Ẽ ′
5 :=

{
∆RR ≤ ∆̃′

5

}
∆̃′

5 := CĀ5(C ′
b +
√
C ′
m + C ′′

m + ᾱ + Ā)
(Ka + K̄)2(κ+ K̄ +Ka)

2

(ρ′min)
4

r′ · ln5(np)

· n∥η∗∥1
(
1

n
+

1

p
+
n

p2
+ (∆′

E)
2 + n(∆′

E)
4

) 1
2

.

Lemma F.17. Let the conditions of Proposition F.6 hold. Then P(Ẽc) ≤ C
n10p10

.

Proof. Immediate from Lemmas E.17, E.18, E.19, E.20, and F.16 and the union bound.

161



F.5.3 Simplification

Remark F.18 (Dictionary). The following lemmas are algebraic and generalize in the

obvious way: replace (ρmin, r,∆E) with (ρ′min, r
′,∆′

E). We therefore skip the remarks until

Proposition F.7. The only subtlety is the presence of C ′
b in the definition of C ′

3.

Lemma F.18. Let the conditions of Proposition F.6 hold. Then

E[∆1 | Ẽ ] ≤ C3 · r5 ln13(np) · ∥η
∗∥22

ρ10min

·
{
1 +

p

n
+
n

p
+
n2

p2
+

(
n+ p+

n2

p

)
∆2
E + (np+ n2)∆4

E + n2p∆6
E

}
where

C3 = C · Ā14(
√
C ′
m + C ′′

m + ᾱ + Ā)2(Ka + K̄)4(κ+ K̄ +Ka)
6.

Proof. We proceed in steps. The following arguments are all conditional on Ẽ . Recall

∆1 =
{
∥Ztest ρ̂−1−A(lr),test∥2 + ∥A(lr),test∥2∥V V T − V̂ rV̂

T
r ∥2
}
∥η̂ − η∗∥22.

1. Former factor

As in Lemma E.22

∆̃2 + npĀ2∆̃3 ≤ CĀ4(κ+ K̄ +Ka)
2 · r ln

3(np)

ρ2min

(
p+ n+ np∆2

E

)
.

2. Latter factor

By Proposition F.6

∥η̂ − η∗∥22 ≤ CĀ10(
√
C ′
m + C ′′

m + ᾱ + Ā)2(Ka + K̄)4(κ+ K̄ +Ka)
4

· r4 · ln10(np) · ∥η
∗∥22

ρ8min

(
1

n
+

1

p
+
n

p2
+∆2

E + n∆4
E

)
.

3. Combining terms

Note that

p

(
1

n
+

1

p
+
n

p2
+∆2

E + n∆4
E

)
=
p

n
+ 1 +

n

p
+ p∆2

E + np∆4
E;

n

(
1

n
+

1

p
+
n

p2
+∆2

E + n∆4
E

)
= 1 +

n

p
+
n2

p2
+ n∆2

E + n2∆4
E;

np∆2
E

(
1

n
+

1

p
+
n

p2
+∆2

E + n∆4
E

)
= p∆2

E + n∆2
E +

n2

p
∆2
E + np∆4

E + n2p∆6
E.
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So that the relevant terms are

1 +
p

n
+
n

p
+
n2

p2
+

(
n+ p+

n2

p

)
∆2
E + (np+ n2)∆4

E + n2p∆6
E.

Lemma F.19. Let the conditions of Proposition F.6 hold. Then

E[∆2 | Ẽ ]

≤ CĀ12(
√
C ′
m + C ′′

m + ᾱ + Ā)2(Ka + K̄)4(κ+ K̄ +Ka)
4 · r4 · ln10(np)

· ∥η
∗∥21

ρ8min

(
1 +

n

p
+
n2

p2
+ n∆2

E + n2∆4
E

)
.

Proof. We proceed in steps. The following arguments are all conditional on Ẽ . Recall

∆2 :=
∥A(lr),test∥2

ŝ2r

{
∥V̂ rV̂

T
r (η̂ − η∗)∥1 ·∆RR ∨ ∥A(lr),train − Âtrain∥22,∞∥η∗∥21

}
.

1. Former factor

Note that conditioned on Ẽ ,

∥A(lr),test∥2

ŝ2r
≤ C

r

np
npĀ2 = CrĀ2.

2. Latter factor

Consider the first term.

By Proposition F.5

∥V̂ rV̂
T
r (η̂ − η∗)∥1 ≤

√
p∥V̂ rV̂

T
r (η̂ − η∗)∥2

≤ CĀ5(
√
C ′
m + C ′′

m + ᾱ + Ā)(Ka + K̄)2(κ+ K̄ +Ka)
2

· r2 · ln5(np) · ∥η
∗∥1

ρ4min

(
1

n
+

1

p
+
n

p2
+∆2

E + n∆4
E

) 1
2

.

By definition of Ẽ5

∆RR ≤ ∆̃5

= CĀ5(
√
C ′
m + C ′′

m + ᾱ + Ā)
(Ka + K̄)2(κ+ K̄ +Ka)

2

ρ4min

r · ln5(np) · n∥η∗∥1(
1

n
+

1

p
+
n

p2
+∆2

E + n∆4
E

) 1
2

.
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Hence

∥V̂ rV̂
T
r (η̂ − η∗)∥1 ·∆RR

≤ CĀ10(
√
C ′
m + C ′′

m + ᾱ + Ā)2(Ka + K̄)4(κ+ K̄ +Ka)
4 · r3 · ln10(np)·

n
∥η∗∥21
ρ8min

(
1

n
+

1

p
+
n

p2
+∆2

E + n∆4
E

)
= CĀ10(

√
C ′
m + C ′′

m + ᾱ + Ā)2(Ka + K̄)4(κ+ K̄ +Ka)
4 · r3 · ln10(np)

· ∥η
∗∥21

ρ8min

(
1 +

n

p
+
n2

p2
+ n∆2

E + n2∆4
E

)
.

Next consider the second term.

∥A(lr),train − Âtrain∥22,∞∥η∗∥21

≤ ∆̃1∥η∗∥21

≤ CĀ4(Ka + K̄)2(κ+ K̄ +Ka)
2 · r ln

5(np)

ρ4min

∥η∗∥21
(
1 +

n

p
+ n∆2

E

)
.

So the first term dominates the second term.

Lemma F.20.

E
[
∆3

∣∣∣ Ẽ] ≤ CĀ4(Ka + K̄)2(κ+ K̄ +Ka)
2 · r ln

5(np)

ρ4min

∥η∗∥21
(
1 +

n

p
+ n∆2

E

)
Proof. Recall

∆3 := ∥Âtest −Atest∥22,∞∥η∗∥21.

Using the definition of Ẽ , we have

E[∆3 | Ẽ ] ≤ ∆̃1∥η∗∥21 ≤ CĀ4(Ka + K̄)2(κ+ K̄ +Ka)
2 · r ln

5(np)

ρ4min

∥η∗∥21
(
1 +

n

p
+ n∆2

E

)
.

Lemma F.21. Let the conditions of Theorem 5.3 hold. Then

3∑
m=1

E[∆m|Ẽ ]

≤ C3 ·
r5 ln13(np)

ρ10min

· ∥η∗∥21
{
1 +

p

n
+
n

p
+
n2

p2
+

(
n+ p+

n2

p

)
∆2
E + (np+ n2)∆4

E + n2p∆6
E

}
.
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Proof. Recall Lemma F.15, Lemma F.18, Lemma F.19, and Lemma F.20:

E[∆1 | Ẽ ] ≤ C3 · r5 ln13(np) · ∥η
∗∥22

ρ10min

·
{
1 +

p

n
+
n

p
+
n2

p2
+

(
n+ p+

n2

p

)
∆2
E + (np+ n2)∆4

E + n2p∆6
E

}
;

E[∆2 | Ẽ ] ≤ CĀ12(
√
C ′
m + C ′′

m + ᾱ + Ā)2(Ka + K̄)4(κ+ K̄ +Ka)
4 · r4 · ln10(np) · ∥η

∗∥21
ρ8min(

1 +
n

p
+
n2

p2
+ n∆2

E + n2∆4
E

)
;

E
[
∆3

∣∣∣ Ẽ] ≤ CĀ4(Ka + K̄)2(κ+ K̄ +Ka)
2 · r ln

5(np)

ρ4min

∥η∗∥21
(
1 +

n

p
+ n∆2

E

)
.

∆2 dominates ∆3. Comparing ∆1 to ∆2, it is sufficient to bound ∥η∗∥2 ≤ ∥η∗∥1.

F.5.4 Collecting results

Proposition F.7 (test error). Let the conditions of Theorem 5.3 hold. Then

E[∥Âtestη̂ −Atestη∗∥22 1{E}]

≤ C3 ·
r5 ln13(np)

ρ10min

· ∥η∗∥21
{
1 +

p

n
+
n

p
+
n2

p2
+

(
n+ p+

n2

p

)
∆2
E + (np+ n2)∆4

E + n2p∆6
E

}
.

Proof. By Lemma F.15

E[∥Âtestη̂ −Atestη∗∥22 1{E}] = E[∥Âtestη̂ −Atestη∗∥22|Ẽ ]P(E)

≤ E[∥Âtestη̂ −Atestη∗∥22|Ẽ ]

≤ C
3∑

m=1

E[∆m|Ẽ ].

Finally appeal to Lemma F.21.

Remark F.19 (Dictionary). The generalization of Proposition F.7 is

E[∥b(Âtest)η̂ − b(Atest)η∗∥22 1{E}]

≤ C ′
3 ·

(r′)5 ln13(np)

(ρ′min)
10

· ∥η∗∥21
{
1 +

p

n
+
n

p
+
n2

p2
+

(
n+ p+

n2

p

)
(∆′

E)
2 + (np+ n2)(∆′

E)
4 + n2p(∆′

E)
6

}
where

C ′
3 = C · Ā14(C ′

b +
√
C ′
m + C ′′

m + ᾱ + Ā)2(Ka + K̄)4(κ+ K̄ +Ka)
6.
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F.6 Generalization error

F.6.1 Decomposition

Lemma F.22. Deterministically,

∥α̂−α0∥22 ≤ 2∥Ztest ρ̂−1 η̂ −Atestη∗∥22 + 2∥Atestη∗ −α0∥22.

Moreover

∥Ztest ρ̂−1 η̂ −Atestη∗∥22 ≤ 2∥Ztest ρ̂−1 η̂ − Âtestη̂∥22 + 2∥Âtestη̂ −Atestη∗∥22.

Proof. See Lemma E.28

We analyze each term separately.

1. Approximation error ∥Atestη∗ −α0∥22 = ∥ζtest∥22.

2. Test error ∥Âtestη̂ −Atestη∗∥22.

3. Implicit cleaning error ∥Ztest ρ̂−1 η̂ − Âtestη̂∥22.

Remark F.20 (Dictionary). The generalization with a dictionary considers

1. Approximation error ∥b(Atest)η∗ −α0∥22 = ∥ζtest∥22.

2. Test error ∥b(Âtest)η̂ − b(Atest)η∗∥22.

3. Implicit cleaning error ∥b(Ztest ρ̂−1)η̂ − b(Âtest)η̂∥22.

F.6.2 Implicit cleaning

Lemma F.23. Suppose Assumptions 5.6 and 5.8 hold and let k = r. Then

∥Ztest ρ̂−1 η̂ − Âtestη̂∥22

≤ C∥Ztest ρ̂−1−A(lr),test∥2 ·
{
∥η̂ − η∗∥22 + ∥V̂ ′

r(V̂
′
r)
T − V ′(V ′)T∥2∥η∗∥22

}
.

Proof. See Lemma E.29.
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Remark F.21 (Dictionary). The generalization of Lemma F.23 is

∥b(Ztest ρ̂−1)η̂ − b(Âtest)η̂∥22

≤ ∥b(Ztest ρ̂−1)− b{A(lr),test}∥2 ·
{
∥η̂ − η∗∥22 + ∥V̂ ′

r′(V̂
′
r′)

T − V ′(V ′)T∥2∥η∗∥22
}

using the SVDs in Remark E.1.

Proof. See Remark E.24.

Proposition F.8 (Implicit cleaning). Let the conditions of Theorem 5.3 hold. Then

E[∥Ztest ρ̂−1 η̂ − Âtestη̂∥22 1{Ẽ}]

≤ C3 ·
r5 ln13(np)

ρ10min

· ∥η∗∥21
{
1 +

p

n
+
n

p
+
n2

p2
+

(
n+ p+

n2

p

)
∆2
E + (np+ n2)∆4

E + n2p∆6
E

}
.

Proof. To begin, write

E[∥Ztest ρ̂−1 η̂ − Âtestη̂∥22 1{Ẽ}] = E[∥Ztest ρ̂−1 η̂ − Âtestη̂∥22|Ẽ ]P(Ẽ)

≤ E[∥Ztest ρ̂−1 η̂ − Âtestη̂∥22|Ẽ ].

By Lemma F.23, it is sufficient to analyze

∥Ztest ρ̂−1−A(lr),test∥2 ·
{
∥η̂ − η∗∥22 + ∥V̂ ′

r(V̂
′
r)
T − V ′(V ′)T∥2∥η∗∥22

}
under the beneficial event Ẽ . By Lemma F.5, the bound on the former term dominates the

bound on the latter term. Therefore we analyze

∥Ztest ρ̂−1−A(lr),test∥2 · ∥η̂ − η∗∥22.

By Lemma F.15

∥Ztest ρ̂−1−A(lr),test∥2 · ∥η̂ − η∗∥22 ≤ ∆1 ≤ C
3∑

m=1

∆m

so we can use the bound previously used for analyzing test error∥Âtestη̂ −Atestη∗∥22.

This loose bound is sufficient for our purposes, since the test error term will ultimately

give this rate. In summary,

E[∥Ztest ρ̂−1 η̂ − Âtestη̂∥22|Ẽ ] ≤ C

3∑
m=1

E[∆m|Ẽ ].

Finally, we appeal to Lemma F.21.
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Remark F.22 (Dictionary). The generalization of Proposition F.8 is

E[∥b(Ztest ρ̂−1)η̂ − b(Âtest)η̂∥22 1{Ẽ}]

≤ C ′
3 ·

(r′)5 ln13(np)

(ρ′min)
10

· ∥η∗∥21
{
1 +

p

n
+
n

p
+
n2

p2
+

(
n+ p+

n2

p

)
(∆′

E)
2 + (np+ n2)(∆′

E)
4 + n2p(∆′

E)
6

}
.

F.6.3 Bounded estimator moments

For the adverse case, we place a weak technical condition on how the estimator moments scale.

We state the technical condition then demonstrate that it is implied by the interpretable

condition given in the main text.

Assumption F.2 (Bounded estimator moments).√√√√√E

{ 1

n

∑
i∈test

α̂(Wi,·)2

}2
 ≤ polynomial(n, p) · C3 ·

r5 ln13(np)

ρ10min

· ∥η∗∥21

where C3 = CĀ14(
√
C ′
m + C ′′

m + ᾱ + Ā)2(Ka + K̄)4(κ+ K̄ +Ka)
6.

Recall from Appendix D that the powers of (n, p) are arbitrary in the probability of the

adverse event; P(Ẽc) ≤ C
polynomial(n,p) for any polynomial of (n, p). Therefore the moments

of our estimator α̂(Wi,·) can scale as any arbitrary polynomial of n and p, denoted by

polynomial(n, p). We are simply ruling out some extremely adversarial cases. Assump-

tion F.2 is essentially requiring that η̂ is well conditioned. Indeed, we are able to satisfy the

assumption under a simple condition on the smallest singular value used in PCR.

Proposition F.9 (Verifying bounded estimator moment). Suppose Assumptions 5.1, 5.2,

and F.1 hold. Further suppose ŝk ≳ 1
polynomial(m,p) . Then Assumption F.2 holds.

Remark F.23 (Dictionary). If Assumption C.2 holds then Assumption F.2 becomes√√√√√E

{ 1

n

∑
i∈test

α̂(Wi,·)2

}2
 ≤ polynomial(n, p) · C ′

3 ·
(r′)5 ln13(np)

(ρ′min)
10

· ∥η∗∥21.

Proposition F.9 generalizes accordingly: if Assumption 5.7 holds then the generalization of

Assumption F.2 holds.

We prove Proposition F.9 via a sequence of lemmas.
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Lemma F.24. Suppose Assumptions 5.1 and 5.2 hold. Then

E
[
∥Âtrain∥82,∞

]
≤ C · Ā8K8

a · ln8(np)n12.

Proof. We suppress the supersript to lighten notation. Write

∥Â∥2,∞ = max
j∈[p]

∥Â·,j∥2 ≤ max
j∈[p]

∥Ẑ·,j ρ̂
−1
j ∥2 = ∥Z(ρ̂)−1∥2,∞.

Finally appeal to Lemma E.30.

Lemma F.25. Deterministically, ∥M̂∥22 ≤
p
n
∥M̂∥22,∞.

Proof. Recall [M̂ ]ij = m̂ij and M̂j =
1
n

∑
i∈[n] m̂ij. Hence

∥M̂∥22 =
∑
j∈[p]

M̂2
j =

∑
j∈[p]

 1

n

∑
i∈[n]

m̂ij

2

≤
∑
j∈[p]

 1

n

∑
i∈[n]

m̂2
ij

 ≤ p

n
max
j∈[p]

∑
i∈[n]

m̂2
ij =

p

n
∥M̂∥22,∞.

Lemma F.26. Suppose Assumptions 5.1 and F.1 hold. Then

∥M̂∥22,∞ ≤ C · Ā2C ′
m(C

′′
m)

2(∥Âtrain∥22,∞ + n).

Proof. We suppress the superscript to lighten notation. Write

∥M̂∥22,∞ ≤ 2∥M̂ − M̃∥22,∞ + 2∥M̃∥22,∞.

Focusing on the former term, by Assumption F.1

∥M̂ − M̃∥22,∞ ≤ C ′
m∥Â−A∥22,∞.

Moreover,

∥Â−A∥22,∞ ≤ 2∥Â∥22,∞ + 2∥A∥22,∞ ≤ 2∥Â∥22,∞ + 2nĀ2.

In summary,

∥M̂ − M̃∥22,∞ ≤ C · C ′
mĀ

2(∥Â∥22,∞ + n).

Focusing on the latter term,

∥M̃∥22,∞ ≤ n(C ′′
m)

2.

Therefore

∥M̂∥22,∞ ≤ C · C ′
mĀ

2(∥Â∥22,∞ + n) + C(C ′′
m)

2n.

169



Lemma F.27. Suppose Assumptions 5.1, 5.2, and F.1 hold, and ŝk ≥ s. Then

E
[
∥η̂∥81

]
≤ C · Ā16(C ′

m)
4(C ′′

m)
8K8

a · ln8(np) · n
16p8

s16
.

Proof. We suppress the superscript to lighten notation. Recall that η̂ = V̂ kΣ̂
−2
k V̂ T

k (nM̂)T ,

hence

∥η̂∥1 ≤
√
p∥η̂∥2

≤ √
p∥V̂ k∥op∥Σ̂−2

k ∥op∥V̂ T
k ∥op∥(nM̂)T∥2

=
√
pnŝ−2

k ∥M̂∥2.

Therefore by Lemmas F.25 and F.26,

∥η̂∥81 ≤ p4n8s−16∥M̂∥82

≤ p4n8s−16 · p
4

n4
∥M̂∥82,∞

≤ p4n8s−16 · p
4

n4
· C · Ā8(C ′

m)
4(C ′′

m)
8(∥Â∥82,∞ + n4)

= C · Ā8(C ′
m)

4(C ′′
m)

8n4p8s−16(∥Â∥82,∞ + n4)

and hence

E
[
∥η̂∥81

]
≤ C · Ā8(C ′

m)
4(C ′′

m)
8n4p8s−16

{
E
[
∥Â∥82,∞

]
+ n4

}
.

Finally by Lemma F.24

E
[
∥Â∥82,∞

]
≤ C · Ā8K8

a · ln8(np)n12

which dominates n4.

Lemma F.28. Suppose the conditions of Lemma F.27 hold. Then√
E
[
∥Ztest ρ̂−1 η̂∥42

]
≤ C · Ā6C ′

m(C
′′
m)

2K4
a · ln4(np)

n7p2

s4
.

Proof. By Cauchy-Schwarz and Lemmas E.30 and F.27, write√
E
[
∥Ztest ρ̂−1 η̂∥42

]
≤
√

E
[
∥Ztest ρ̂−1 ∥42,∞∥η̂∥41

]
≤
√√

E
[
∥Ztest ρ̂−1 ∥82,∞

]√
E [∥η̂∥81]

≤ C · Ā2K2
a · ln2(np)n3 · Ā4C ′

m(C
′′
m)

2K2
a · ln2(np) · n

4p2

s4

= C · Ā6C ′
m(C

′′
m)

2K4
a · ln4(np)

n7p2

s4
.
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Proof of Proposition F.9. To begin, observe that√√√√√E

{ 1

n

∑
i∈test

α̂(Wi,·)2

}2
 =

√√√√√E

 1

n2

{ ∑
i∈test

α̂(Wi,·)2

}2
 =

1

n

√
E
[
∥Ztest ρ̂−1 η̂∥42

]
.

By Lemma F.28

n−1
√
E
[
∥Ztest ρ̂−1 η̂∥42

]
n4p5

≤ C · Ā6C ′
m(C

′′
m)

2K4
a · ln4(np)

n2

p3s4

≤ C · Ā6C ′
m(C

′′
m)

2K4
a · ln4(np)

≤ C3 ·
r5 ln13(np)

ρ10min

· ∥η∗∥21

where the penultimate inequality holds since s ≥
√
n

p
3
4

implies p3s4 ≥ n2 and the ultimate

inequality confirms Assumption F.2. More generally,√
E
[
∥Ztest ρ̂−1 η̂∥42

]
polynomial(n, p)

≤ C · Ā6C ′
m(C

′′
m)

2K4
a · ln4(np)

1

s4 · polynomial(n, p)

≤ C · Ā6C ′
m(C

′′
m)

2K4
a · ln4(np)

≤ C3 ·
r5 ln13(np)

ρ10min

· ∥η∗∥21

as long as s ≥ 1
polynomial(n,p) .

F.6.4 Main result

Proof of Theorem 5.3. We proceed in steps analogous to the proof of Theorem 5.2.

1. Decomposition

By Lemma F.22

∥α̂−α0∥22 ≤ 2∥Ztest ρ̂−1 η̂ −Atestη∗∥22 + 2∥ζtest∥22.

Hence

E∥α̂−α0∥22 ≤ 2E
[
∥Ztest ρ̂−1 η̂ −Atestη∗∥22 1{Ẽ}

]
+ 2E

[
∥Ztest ρ̂−1 η̂ −Atestη∗∥22 1{Ẽc}

]
+ 2∥ζtest∥22.
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2. Beneficial case

By Propositions F.7 and F.8,

E
[
∥Ztest ρ̂−1 η̂ −Atestη∗∥22 1{Ẽ}

]
≤ 2E

[
∥Ztest ρ̂−1 η̂ − Âtestη̂∥22 1{Ẽ}

]
+ 2E

[
∥Âtestη̂ −Atestη∗∥22 1{Ẽ}

]
≤ C3 ·

r5 ln13(np)

ρ10min

· ∥η∗∥21
{
1 +

p

n
+
n

p
+
n2

p2
+

(
n+ p+

n2

p

)
∆2
E + (np+ n2)∆4

E + n2p∆6
E

}
.

3. Adverse case

Write

E
[
∥Ztest ρ̂−1 η̂ −Atestη∗∥22 1{Ẽc}

]
≤ 2E

[
∥Ztest ρ̂−1 η̂∥22 1{Ẽc}

]
+ 2E

[
∥Atestη∗∥22 1{Ẽc}

]
.

Focusing on the latter term,

∥Atestη∗∥22 ≤ ∥Atest∥22,∞∥η∗∥21 ≤ nĀ2∥η∗∥21

hence by Lemma F.17

E
[
∥Atestη∗∥22 1{Ẽc}

]
≤ nĀ2∥η∗∥21P(Ẽc) ≤ C

Ā2∥η∗∥21
n9p10

which is clearly dominated by the bound on the beneficial case.

Focusing on the former term, Cauchy-Schwarz inequality and Lemma F.17 give

E
[
∥Ztest ρ̂−1 η̂∥22 1{Ẽc}

]
≤
√

E
[
∥Ztest ρ̂−1 η̂∥42

]√
E
[
1{Ẽc}

]
≤ C

n5p5

√
E
[
∥Ztest ρ̂−1 η̂∥42

]
which is dominated by the bound on the beneficial case if

1

n5p5

√
E
[
∥Ztest ρ̂−1 η̂∥42

]
≤ C3 ·

r5 ln13(np)

ρ10min

· ∥η∗∥21
{
1 +

p

n
+
n

p
+
n2

p2
+

(
n+ p+

n2

p

)
∆2
E + (np+ n2)∆4

E + n2p∆6
E

}
.

In the proof of Proposition F.9, we have precisely shown

n−1
√

E
[
∥Ztest ρ̂−1 η̂∥42

]
n4p5

≤ C3 ·
r5 ln13(np)

ρ10min

· ∥η∗∥21.
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Proof of Corollary 5.2. Identical to the proof of Theorem 5.3, appealing to the previous

remarks for the appropriate generalizations (C ′
3, ρ

′
min).

G Data cleaning-adjusted confidence intervals

The outline of this appendix is as follows

1. exposit general semiparametric estimands

2. exposit general nonparametric estimands

3. establish Neyman orthogonality

4. prove Gaussian approximation for the causal parameter

5. prove consistency for the asymptotic variance

6. prove validity for the confidence interval

G.1 From balancing weight to Riesz representer

We consider the goal of estimation and inference of some causal parameter θ0 ∈ R which is

a scalar summary of the regression γ0, e.g. a treatment effect, policy effect, or elasticity.

We consider a class of causal parameters of the form

θ0 =
1

n

n∑
i=1

θi, θi = E[m(Wi,·, γ0)]

in an i.n.i.d. data generating process with some structure. There are two aspects of this

structure that we emphasize: (i) mean square continuity and (ii) marginal distribution shift.

In particular, we generalize Assumptions 5.10 and 5.9 from the ATE example to the general

case. In doing so, we also generalize the balancing weight to a Riesz representer.

Assumption G.1 (Linearity and mean square continuity). Assume

1. The functional γ 7→ E[m(Wi,·, γ)] is linear.
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2. There exists Q̄ <∞ and q̄ ∈ (0, 1] such that ∀γ ∈ Γ,

E[m(Wi,·, γ)
2] ≤ Q̄ · {E[γ(Wi,·)

2]}q̄.

These restrictions generalize the usual bounded propensity score assumptions. For

example, for ATE we impose that the propensity score is bounded away from zero and one;

Assumption 5.10 in the main text is a special case of Assumption G.1. A consequence of

Assumption G.1 is the existence of the balancing weight.

Proposition G.1 (Riesz representation (Chernozhukov et al., 2022b)). Suppose Assump-

tion G.1 holds. Further suppose the restriction γ0 ∈ Γ that could be imposed in estimation.

Then there exists a Riesz representer α0 ∈ L2(W) such that ∀γ ∈ Γ

E[m(Wi,·, γ)] = E[α0(Wi,·)γ(Wi,·)].

There exists a unique minimal Riesz representer α0 ∈ Γ that satisfies this equation. Moreover,

denoting by M̄ the operator norm of γ 7→ E[m(Wi,·, γ)], we have that

{E[αmin
0 (Wi,·)

2]}
1
2 = M̄ ≤ Q̄

1
2 <∞.

The balancing weight in the main text is a special case of a Riesz representer. Hereafter,

we refer to the Riesz representer as a balancing weight nonetheless, since our estimator α̂

achieves balance across examples; see Proposition F.2, which generalizes Proposition 4.3.

To lighten notation, we will typically consider the case where Γ = L2(W) and αmin
0 = α0.

When we consider the more general case, as in Example A.4, we will use the richer notation.

In general, (γ0, α0) could vary for each observation. We impose that these functions

do not vary across observations. Such restrictions generalize the usual distribution shift

assumptions. For example, for ATE we impose that the marginal distribution of covariates

may shift across observations, but the outcome and treatment mechanisms, encoded by the

regression function and propensity score, do not vary; Assumption 5.9 in the main text is a

special case of Assumption G.2, which we now state.

Assumption G.2 (Marginal distribution shift). Assume

1. The regression γ0 does not vary across observations: E[γ0(Wi,·)v(Wi,·)] = E[Yiv(Wi,·)]

for all v ∈ L2(W) and i ∈ [n].
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2. The Riesz representer α0 does not vary across observations: E[α0(Wi,·)u(Wi,·)] =

E[m(Wi,·, u)] for all u ∈ L2(W) and i ∈ [n].

While Assumptions G.1 and G.2 may appear abstract, we verify that they hold under

simple and interpretable conditions for the leading examples.

Proposition G.2 (Verifying Assumptions G.1 and G.2). The following conditions verify

mean square continuity and marginal distribution shift for the leading examples. Recall that

∥α0∥∞ ≤ ᾱ, while (Q̄, q̄) are defined in Assumption G.1.

1. In Example A.1,

α0(Wi,·) =
Di

ϕ0(Xi,·, Hi,·, πi,·)
− 1−Di

1− ϕ0(Xi,·, Hi,·, πi,·)
, ϕ0(Xi,·, Hi,·, πi,·) := E[Di|Xi,·, Hi,·, πi,·].

Suppose the propensity score is bounded away from zero and one, i.e. 0 < ϕ ≤

ϕ0(Xi,·, Hi,·, ϕi,·) ≤ ϕ̄ < 1. Then

ᾱ =
1

ϕ
+

1

1− ϕ̄
, Q̄ =

2

ϕ
+

2

1− ϕ̄
, q̄ = 1

for Γ = L2(W). We impose that the outcome regression and treatment propensity

score do not vary across observations.

2. In Example A.2,

α0(Wi,·) =
Ui

ϕ0(Xi,·, Hi,·, πi,·)
− 1− Ui
1− ϕ0(Xi,·, Hi,·, πi,·)

, ϕ0(Xi,·, Hi,·, πi,·) := E[Ui|Xi,·, Hi,·, πi,·]

for the functionals in the numerator and denominator. Suppose the propensity score

is bounded away from zero and one, i.e. 0 < ϕ ≤ ϕ0(Xi,·, Hi,·, πi,·) ≤ ϕ̄ < 1. Then

ᾱ =
1

ϕ
+

1

1− ϕ̄
, Q̄ =

2

ϕ
+

2

1− ϕ̄
, q̄ = 1

for the functionals in the numerator and denominator when Γ = L2(W). We im-

pose that the outcome regression and instrument propensity score do not vary across

observations.

3. In Example A.3,

α0(Wi,·) = ω(Xi,·, Hi,·, πi,·)− 1, ω(Xi,·, Hi,·, πi,·) =
f{t(Xi,·, Hi,·, πi,·)}
f(Xi,·, Hi,·, πi,·)

.
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Suppose the density ratio ω(Xi,·, Hi,·, πi,·) is bounded above, i.e. ω(Xi,·, Hi,·, πi,·) ≤

ω̄ <∞. Then

ᾱ = ω̄ + 1, Q̄ = 2ω̄ + 2, q̄ = 1

for Γ = L2(W). We impose that the outcome regression and covariate density ratio do

not vary across observations.

4. In Example A.4,

α0(Wi,·) = −∇d ln f(Di | Xi,·, Hi,·, πi,·).

Suppose the density derivative is bounded above, i.e. −∇d ln f(Di | Xi,·, Hi,·, πi,·) ≤

f̄ <∞. Then

ᾱ = f̄, Q̄ = f̄(γ̄ + γ̄′), q̄ = 1/2

for Γ that consists of functions γ that are twice continuously differentiable in the first

argument and that satisfy a Sobolev type condition: E[{∇dγ(Di, Xi,·, Hi,·, πi,·)}2] ≤

γ̄2 < ∞ and E[{∂2dγ(Di, Xi,·, Hi,·, πi,·)}2] ≤ (γ̄′)2 < ∞. We impose that the outcome

regression and conditional density of goods do not vary across observations.

5. In Example A.5,

α0(Wi,·) = ℓi
Di − ϕ0(Xi,·, Hi,·, πi,·)

E[{Di − ϕ0(Xi,·, Hi,·, πi,·)}2]
, ϕ0(Xi,·, Hi,·, πi,·) := E[Di|Xi,·, Hi,·, πi,·].

Suppose treatment has non-degenerate conditional variance, i.e. E[{Di−ϕ0(Xi,·, Hi,·, πi,·)}2] >

ϕ, and the weights are bounded above and below, i.e. |ℓi| ≤ ℓ̄. Then

ᾱ =
2ℓ̄Ā

ϕ
, Q̄ =

4ℓ̄2Ā2

ϕ2 q̄ = 1

for Γ = L2(W). We impose that the outcome regression and treatment regression do

not vary across observations.

6. In Example A.6,

α0(Wi,·) = ℓi
Ui − ϕ0(Xi,·, Hi,·, πi,·)

E[{Ui − ϕ0(Xi,·, Hi,·, πi,·)}2]
, ϕ0(Xi,·, Hi,·, πi,·) := E[Ui|Xi,·, Hi,·, πi,·]

for the functionals in the numerator and denominator. Suppose treatment has non-

degenerate conditional variance, i.e. E[{Di − ϕ0(Xi,·, Hi,·, πi,·)}2] > ϕ, and the weights

are bounded above and below, i.e. |ℓi| ≤ ℓ̄. Then

ᾱ =
2ℓ̄Ā

ϕ
, Q̄ =

4ℓ̄2Ā2

ϕ2 q̄ = 1.

176



for the functionals in the numerator and denominator when Γ = L2(W). We impose

that the outcome regression and instrument regression do not vary across observations.

7. In Example A.7,

α0(Wi,·) = ℓh(Vi)

{
Di

ϕ0(Vi, Xi,·, Hi,·, πi,·)
− 1−Di

1− ϕ0(Vi, Xi,·, Hi,·, πi,·)

}
.

Suppose the propensity score ϕ0(Vi, Xi,·, Hi,·, πi,·) is bounded away from zero and one,

i.e. 0 < ϕ ≤ ϕ0(Vi, Xi,·, Hi,·, πi,·) ≤ ϕ̄ < 1 and other regularity conditions hold given in

Lemma G.1 below. Then

ᾱh ≤ C · 1
h

(
1

ϕ
+

1

1− ϕ̄

)
, Q̄h ≤ C · 1

h2

(
2

ϕ
+

2

1− ϕ̄

)
, q̄ = 1

when Γ = L2(W). We impose that the outcome regression and treatment propensity

score do not vary across observations.

Proof of Proposition G.2. We verify the result for each example. To lighten notation, we

suppress the arguments (H, π).

1. Example A.1. To characterize the Riesz representer, write

E[m(Wi,·, γ)] = E[γ(1, Xi,·)− γ(0, Xi,·)]

= E
[

Di

ϕ0(Xi,·)
γ(Di, Xi,·)−

1−Di

1− ϕ0(Xi,·)
γ(Di, Xi,·)

]
so α0(Di, Xi,·) =

Di

ϕ0(Xi,·)
− 1−Di

1−ϕ0(Xi,·)
and ᾱ = 1

ϕ
+ 1

1−ϕ̄ . To characterize mean square

continuity, write

E[m(Wi,·, γ)
2] = E[{γ(1, Xi,·)− γ(0, Xi,·)}2] ≤ 2E[γ(1, Xi,·)

2] + 2E[γ(0, Xi,·)
2].

Focusing on the former term

E[γ(1, Xi,·)
2] = E

[
Di

ϕ0(Xi,·)
γ(Di, Xi,·)

2

]
≤ 1

ϕ
E
[
γ(Di, Xi,·)

2
]
.

where 0 < ϕ ≤ ϕ0(Xi,·) ≤ ϕ̄ < 1 by hypothesis. Likewise

E[γ(0, Xi,·)
2] = E

[
1−Di

1− ϕ0(Xi,·)
γ(Di, Xi,·)

2

]
≤ 1

1− ϕ̄
E
[
γ(Di, Xi,·)

2
]
.

Hence Q̄ = 2
ϕ
+ 2

1−ϕ̄ and q̄ = 1.
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2. Example A.2 is similar to Example A.1.

3. Example A.3. To characterize the Riesz representer, write

E[m(Wi,·, γ)] = E[γ{t(Xi,·)} − γ(Xi,·)] = E
[
f{t(Xi,·)}
f(Xi,·)

γ(Xi,·)− γ(Xi,·)

]
so α0(Xi,·) = ω(Xi,·)− 1 and ᾱ = ω̄+1. To characterize mean square continuity, write

E[m(Wi,·, γ)
2] = E([γ{t(Xi,·)} − γ(Xi,·)]

2) ≤ 2E[γ{t(Xi,·)}2] + 2E[γ(Xi,·)
2].

Focusing on the former term

E[γ{t(Xi,·)}2] = E
[
f{t(Xi,·)}
f(Xi,·)

γ(Xi,·)
2

]
≤ ω̄ · E

[
γ(Xi,·)

2
]

where ω(Xi,·) < ω̄ <∞ by hypothesis. Hence Q̄ = 2ω̄ + 2 and q̄ = 1.

4. Example A.4. To characterize the Riesz representer, integrate by parts:

E [∇dγ0(Di, Xi,·)] = E
[
−γ0(Di, Xi,·)

∇df(Di, Xi,·)

f(Di, Xi,·)

]
=

[
−γ0(Di, Xi,·)

∇df(Di|Xi,·)

f(Di|Xi,·)

]
= [−γ0(Di, Xi,·)∇d ln f(Di | Xi,·)]

so α0(d, x) = −∇d ln f(d | x) and ᾱ = f̄ . See Chernozhukov et al. (2021, Lemmas S3

and S4) for mean square continuity.

5. Example A.5. Ignore ℓi for simplicity. To characterize the Riesz representer, let

ϵDi := Di − ϕ0(Xi,·) be the regression residual of Di. Then appealing to partial

linearity of γ0 and exogeneity

cov(Yi, ϵ
D
i ) = cov(Dθi, ϵ

D
i )θi = cov(ϵDi , ϵ

D
i )θi.

Therefore

θi =
cov(Yi, ϵ

D
i )

cov(ϵDi , ϵ
D
i )

=
E[Yi{Di − ϕ0(Xi,·)}]
E[{Di − ϕ0(Xi,·)}2]

so α0(Di, Xi,·) =
Di−ϕ0(Xi,·)

E[{Di−ϕ0(Xi,·)}2] and ᾱ = 2Ā
ϕ

. To characterize mean square continuity,
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we use partial linearity to write

E[m(Wi,·, γ)
2] = m(Wi,·, γ)

2

= θ2i

= [E {γ0(Di, Xi,·)α0(Di, Xi,·)}]2

≤ E[{γ0(Di, Xi,·)α0(Di, Xi,·)}2]

≤ ᾱ2E[{γ0(Di, Xi,·)}2].

Hence Q̄ = ᾱ2 and q̄ = 1.

6. Example A.6 is similar to Example A.5.

7. Example A.7 is similar to Example A.1. See Chernozhukov et al. (2021, Theorem 2)

for the characterization of (ᾱh, Q̄h) with localization.

G.2 From semiparametrics to nonparametrics

A local functional θlim0 ∈ R is a scalar that takes the form

θlim0 = lim
h→0

θh0 , θh0 =
1

n

n∑
i=1

θhi , θhi = E[mh(Wi,·, γ0)] = E[ℓh(Wij)m(Wi,·, γ0)]

where ℓh is a Nadaraya Watson weighting with bandwidth h and Wij is a scalar component

of Wi,·. θlim0 is a nonparametric quantity. However, it can be approximated by the sequence

{θh0}. By this logic, finite sample semiparametric theory for θh0 translates to finite sample

nonparametric theory for θlim0 up to some approximation error, which we now define.

Definition G.1 (Nonparametric approximation error). The error from approximating the

nonparametric quantity θlim0 with a sequence of semiparametric quantities {θh0} is ∆h =

n1/2σ−1|θh0 − θlim0 |.

Each θh0 can be analyzed like θ0 above as long as we keep track of how certain quantities

depend on h, which we preview in Example A.7 of Proposition G.2. We now formalize how

these key quantities behave.
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Lemma G.1 (Characterization of key quantities; Theorem 2 of Chernozhukov et al.

(2021)). If response noise has finite variance then σ̄2 <∞. Suppose bounded moment and

heteroscedasticity conditions hold. Then for global functionals

ξ/σ ≲ σ ≍ M̄ <∞, ξ, χ ≲ M̄2 ≤ Q̄ <∞, ᾱ <∞.

Suppose bounded moment, heteroscedasticity, density, and derivative conditions hold. Then

for local functionals

ξh/σh ≲ h−1/6, σh ≍ M̄h ≍ h−1/2, ξh ≲ h−2/3, χh ≲ h−3/4, ᾱh ≲ h−1, Q̄h ≲ h−2

and ∆h ≲ n1/2hv+1/2 where v is the order of differentiability of the kernel K.

Equipped with this lemma, we prove validity of the data cleaning-adjusted confidence

interval for nonparametric quantities.

Corollary G.1 (Confidence interval coverage). Suppose the conditions of Corollary 5.3

and Lemma G.1. Update the rate conditions to be

1. Bandwidth regularity: n−1/2h−3/2 → 0 and ∆h → 0;

2. Error-in-variable regression rate: (h−1 + ᾱ′) {R(γ̂)}q̄/2 → 0;

3. Error-in-variable balancing weight rate: σ̄h−1{R(α̂)}1/2 → 0;

4. Product of rates is fast: h−1/2{nR(γ̂)R(α̂)}1/2 → 0.

Then the conclusions of Corollary 5.3 hold, replacing (θ̂, θ0) with (θ̂h, θlim0 ).

G.3 Neyman orthogonality

To lighten notation, we suppress indexing by i where possible. Recall

ψi = ψ(Wi,·, θi, γ0, α0), ψ(w, θ, γ, α) = m(w, γ) + α(w){y − γ(w)} − θ,

where γ 7→ m(w, γ) is linear. We take as given that (γ0, α0) exist, though the latter is

implied by Assumption G.1.
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Definition G.2 (Gateaux derivative). Let u(w), v(w) be functions and let τ, ζ in R be

scalars. The Gateaux derivative of ψ(w, θ, γ, α) with respect to its argument γ in the

direction u is

{∂γψ(w, θ, γ, α)}(u) =
∂

∂τ
ψ(w, θ, γ + τu, α)

∣∣∣∣
τ=0

.

The cross derivative of ψ(w, θ, γ, α) with respect to its arguments (γ, α) in the directions

(u, v) is

{∂2γ,αψ(w, θ, γ, α)}(u, v) =
∂2

∂τ∂ζ
ψ(w, θ, γ + τu, α + ζv)

∣∣∣∣
τ=0,ζ=0

.

Lemma G.2 (Calculation of derivatives; Proposition S1 of Chernozhukov et al. (2021)).

{∂γψ(w, θ, γ, α)}(u) = m(w, u)− α(w)u(w);

{∂αψ(w, θ, γ, α)}(v) = v(w){y − γ(w)};

{∂2γ,αψ(w, θ, γ, α)}(u, v) = −v(w)u(w).

Lemma G.3 (Neyman orthogonality). Suppose Assumption G.2 holds. For any (u, v),

E[∂γψi](u) = 0, E[∂αψi](v) = 0.

Proof. By Lemma G.2 and Assumption G.2,

E[∂γψi](u) = E[m(Wi,·, u)− α0(Wi,·)u(Wi,·)] = 0.

Likewise

E[∂αψi](v) = E[v(Wi,·){Yi − γ0(Wi,·)}] = 0.

G.4 Gaussian approximation

Train (γ̂ℓ, α̂ℓ) on observations in Icℓ , which serves as train. Let m = |Iℓ| = n/L be the

number of observations in Iℓ, which serves as test. Denote by Eℓ[·] the average over

observations in Iℓ. This generalized notation allows us to reverse the roles of train and

test, and to allow for more than two folds.

Definition G.3 (Foldwise target and oracle).

θ̂ℓ = Eℓ[m(Wi,·, γ̂ℓ) + α̂ℓ(Wi,·){Yi − γ̂ℓ(Wi,·)}];

θ̄ℓ = Eℓ[m(Wi,·, γ0) + α0(Wi,·){Yi − γ0(Wi,·)}].
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Lemma G.4 (Taylor expansion). Let u = γ̂ℓ − γ0 and v = α̂ℓ − α0. Then m1/2(θ̂ℓ − θ̄ℓ) =∑3
j=1∆jℓ where

∆1ℓ = m1/2Eℓ{m(Wi,·, u)− α0(Wi,·)u(Wi,·)};

∆2ℓ = m1/2Eℓ[v(Wi,·){Yi − γ0(Wi,·)}];

∆3ℓ =
1

2
m1/2Eℓ{−u(Wi,·)v(Wi,·)}.

Proof of Lemma G.4. An exact Taylor expansion gives

ψ(Wi,·, θi, γ̂ℓ, α̂ℓ)− ψi = {∂γψi}(u) + {∂αψi}(v) +
1

2
{∂2γ,αψi}(u, v).

Averaging over observations in Iℓ,

θ̂ℓ − θ̄ℓ = Eℓ[m(Wi,·, γ̂ℓ) + α̂ℓ(Wi,·){Yi − γ̂ℓ(Wi,·)}]− Eℓ[m(Wi,·, γ0) + α0(Wi,·){Yi − γ0(Wi,·)}]

= Eℓ{ψ(Wi,·, θi, γ̂ℓ, α̂ℓ)} − Eℓ{ψi}

= Eℓ{∂γψi}(u) + Eℓ{∂αψi}(v) +
1

2
Eℓ{∂2γ,αψi}(u, v).

Finally appeal to Lemma G.2.

Lemma G.5 (Residuals). Suppose Assumption G.1 holds and

E[ε2i |Wi,·] ≤ σ̄2, ∥α0∥∞ ≤ ᾱ.

Further suppose that for (i, j) ∈ Iℓ,

γ̂ℓ(Wi,·) |= γ̂ℓ(Wj,·)|Icℓ , α̂ℓ(Wi,·) |= α̂ℓ(Wj,·)|Icℓ .

Then with probability 1− ϵ/L,

|∆1ℓ| ≤ t1 =

(
6L

ϵ

)1/2

{(Q̄+ ᾱ2)R(γ̂ℓ)}q̄/2;

|∆2ℓ| ≤ t2 =

(
3L

ϵ

)1/2

σ̄{R(α̂ℓ)}1/2;

|∆3ℓ| ≤ t3 =
3L1/2

2ϵ
{nR(γ̂ℓ)R(α̂ℓ)}1/2.

Proof. We proceed in steps.
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1. Markov inequality implies

P(|∆1ℓ| > t1) ≤
E(∆2

1ℓ)

t21
;

P(|∆2ℓ| > t2) ≤
E(∆2

2ℓ)

t22
;

P(|∆3ℓ| > t3) ≤
E(|∆3ℓ|)

t3
.

2. Law of iterated expectations implies

E(∆2
1ℓ) = E{E(∆2

1ℓ | Icℓ )};

E(∆2
2ℓ) = E{E(∆2

2ℓ | Icℓ )};

E(|∆3ℓ|) = E{E(|∆3ℓ| | Icℓ )}.

3. Bounding conditional moments

Conditional on Icℓ , (u, v) are deterministic. Moreover, within fold Iℓ, Wi,· |=Wj,·. In

particular, u(Wi,·) |= u(Wj,·)|Icℓ where u(Wi,·) = γ̂ℓ(Wi,·)− γ0(Wi,·) since

γ̂ℓ(Wi,·) |= γ̂ℓ(Wj,·)|Icℓ , γ0(Wi,·) |= γ0(Wj,·)|Icℓ , γ̂ℓ(Wi,·) |= γ0(Wj,·)|Icℓ .

Likewise v(Wi,·) |= v(Wj,·)|Icℓ where v(Wi,·) = α̂ℓ(Wi,·)− α0(Wi,·) since

v(Wi,·) = α̂ℓ(Wi,·)−α0(Wi,·), α̂ℓ(Wi,·) |= α̂ℓ(Wj,·)|Icℓ α0(Wi,·) |= α0(Wj,·)|Icℓ , α̂ℓ(Wi,·) |= α0(Wj,·)|Icℓ .

Hence by Lemma G.3

E[∆2
1ℓ|Icℓ ] = E

[
m

1

m2

∑
i,j∈Iℓ

{m(Wi,·, u)− α0(Wi,·)u(Wi,·)}{m(Wj,·, u)− α0(Wj,·)u(Wj,·)}
∣∣∣∣Icℓ
]

= E

[
1

m

∑
i∈Iℓ

{m(Wi,·, u)− α0(Wi,·)u(Wi,·)}2
∣∣∣∣Icℓ
]

= E
[
Eℓ[{m(Wi,·, u)− α0(Wi,·)u(Wi,·)}2]|Icℓ

]
≤ 2E[Eℓ[m(Wi,·, u)

2]|Icℓ ] + 2E[Eℓ[{α0(Wi,·)u(Wi,·)}2]|Icℓ ]

≤ 2(Q̄+ ᾱ2){E[Eℓ[u(Wi,·)
2]|Icℓ ]}q̄.
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In the last line we use Jensen’s inequality and q̄ ∈ (0, 1] to argue that

E[Eℓ[m(Wi,·, u)
2]|Icℓ ] = Eℓ[E[m(Wi,·, u)

2|Icℓ ]]

≤ Q̄Eℓ[{E[u(Wi)
2|Icℓ ]}q̄]

≤ Q̄{Eℓ[E[u(Wi)
2|Icℓ ]]}q̄

= Q̄{E[Eℓ[u(Wi)
2]|Icℓ ]}q̄.

We also use the fact that E[Eℓ[u(Wi,·)
2]|Icℓ ] is vanishing and q̄ ∈ (0, 1] to argue that

E[Eℓ[{α0(Wi,·)u(Wi,·)}2]|Icℓ ] ≤ ᾱ2E[Eℓ[u(Wi,·)}2]|Icℓ ]

≤ ᾱ2{E[Eℓ[u(Wi,·)}2]|Icℓ ]}q̄.

Similarly by Lemma G.3

E[∆2
2ℓ|Icℓ ] = E

[
m

1

m2

∑
i,j∈Iℓ

{v(Wi,·)[Yi − γ0(Wi,·)]}{v(Wj,·)[Yj − γ0(Wj,·)]}
∣∣∣∣Icℓ
]

= E

[
1

m

∑
i∈Iℓ

{v(Wi,·)[Yi − γ0(Wi,·)]}2
∣∣∣∣Icℓ
]

= E
[
Eℓ[{v(Wi,·)[Yi − γ0(Wi,·)]}2]|Icℓ

]
≤ σ̄2E

[
Eℓ[v(Wi,·)

2]|Icℓ
]
.

Finally

E[|∆3ℓ||Icℓ ] =
1

2

√
mE[|Eℓ{−u(Wi,·)v(Wi,·)}||Icℓ ]

≤ 1

2

√
mE[Eℓ{|u(Wi,·)v(Wi,·)|}|Icℓ ].
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4. Law of iterated expectations and Jensen’s inequality imply

E[∆2
1ℓ] ≤ E

[
2(Q̄+ ᾱ2){E[Eℓ[u(Wi,·)

2]|Icℓ ]}q̄
]

≤ 2(Q̄+ ᾱ2){E
[
E[Eℓ[u(Wi,·)

2]|Icℓ ]
]
}q̄

= 2(Q̄+ ᾱ2){E
[
Eℓ[u(Wi,·)

2]
]
}q̄

= 2(Q̄+ ᾱ2)R(γ̂ℓ)
q̄

E[∆2
2ℓ] ≤ E

[
σ̄2E

[
Eℓ[v(Wi,·)

2]|Icℓ
]]

= E
[
σ̄2Eℓ[v(Wi,·)

2]
]

= σ̄2R(α̂ℓ)

E|∆3ℓ| ≤
1

2
E
[√
mE[Eℓ{|u(Wi,·)v(Wi,·)|}|Icℓ ]

]
=

1

2

√
mE[Eℓ{|u(Wi,·)v(Wi,·)|}]

≤ 1

2

√
m
√

R(γ̂ℓ)
√
R(α̂ℓ).

To verify the last line, use the shorthand ui = u(Wi,·) and vi = v(Wi,·). Then

E[Eℓ{|u(Wi,·)v(Wi,·)|}] =
1

m
E[uTv]

≤ 1

m
(E[uTu])1/2(E[vTv])1/2

=

(
1

m
E[uTu]

)1/2(
1

m
E[vTv]

)1/2

=

(
1

m
E[Eℓ[u2i ]]

)1/2(
1

m
E[Eℓ[v2i ]]

)1/2

=
√
R(γ̂ℓ)

√
R(α̂ℓ).

5. Collecting results gives

P(|∆1ℓ| > t1) ≤
2(Q̄+ ᾱ2)R(γ̂ℓ)

q̄

t21
=

ϵ

3L
;

P(|∆2ℓ| > t2) ≤
σ̄2R(α̂ℓ)

t22
=

ϵ

3L
;

P(|∆3ℓ| > t3) ≤
m1/2{R(γ̂ℓ)}1/2{R(α̂ℓ)}1/2

2t3
=

ϵ

3L
.
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Therefore with probability 1− ϵ/L, the following inequalities hold

|∆1ℓ| ≤ t1 =

(
6L

ϵ

)1/2

(Q̄+ ᾱ2)1/2{R(γ̂ℓ)}q̄/2;

|∆2ℓ| ≤ t2 =

(
3L

ϵ

)1/2

σ̄{R(α̂ℓ)}1/2;

|∆3ℓ| ≤ t3 =
3L

2ϵ
m1/2{R(γ̂ℓ)}1/2{R(α̂ℓ)}1/2.

Finally recall m = n/L.

Definition G.4 (Overall target and oracle). Let L be the number of folds. Define

θ̂ =
1

L

L∑
ℓ=1

θ̂ℓ, θ̄ =
1

L

L∑
ℓ=1

θ̄ℓ.

Lemma G.6 (Oracle approximation). Suppose the conditions of Lemma G.5 hold as well

as Assumption G.2. Then with probability 1− ϵ

n1/2

σ
|θ̂ − θ̄| ≤ ∆ =

3L

ϵσ

[
(Q̄1/2 + ᾱ){R(γ̂ℓ)}q̄/2 + σ̄{R(α̂ℓ)}1/2 + {nR(γ̂ℓ)R(α̂ℓ)}1/2

]
.

Proof. We confirm Chernozhukov et al. (2021, Proposition S6) generalizes to the new norm.

1. Decomposition.

By Lemma G.4

n1/2(θ̂ − θ̄) =
n1/2

m1/2

1

L

L∑
ℓ=1

m1/2(θ̂ℓ − θ̄ℓ) = L1/2 1

L

L∑
ℓ=1

3∑
j=1

∆jℓ.

2. Union bound.

Define the events

Eℓ = {∀j ∈ {1, 2, 3}, |∆jℓ| ≤ tj}, E = ∩Lℓ=1Eℓ, Ec = ∪Lℓ=1Ecℓ .

Hence by the union bound and Lemma G.5,

P(Ec) ≤
L∑
ℓ=1

P(Ecℓ ) ≤ L
ϵ

L
= ϵ.
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3. Collecting results.

Therefore with probability 1− ϵ,

n1/2|θ̂ − θ̄| ≤ L1/2 1

L

L∑
ℓ=1

3∑
j=1

|∆jk| ≤ L1/2 1

L

L∑
ℓ=1

3∑
j=1

tj = L1/2

3∑
j=1

tj.

Finally, we simplify (t1, t2, t3) from Lemma G.5. For a, b > 0, (a+ b)1/2 ≤ a1/2 + b1/2.

Moreover, 3 > 61/2 > 3/2. Finally, for ϵ ≤ 1, ϵ−1/2 ≤ ϵ−1. In summary

t1 =

(
6L

ϵ

)1/2

(Q̄+ ᾱ2)1/2{R(γ̂ℓ)}q̄/2 ≤
3L1/2

ϵ
(Q̄1/2 + ᾱ){R(γ̂ℓ)}q̄/2;

t2 =

(
3L

ϵ

)1/2

σ̄{R(α̂ℓ)}1/2 ≤
3L1/2

ϵ
σ̄{R(α̂ℓ)}1/2;

t3 =
3L1/2

2ϵ
{nR(γ̂ℓ)R(α̂ℓ)}1/2 ≤

3L1/2

ϵ
{nR(γ̂ℓ)R(α̂ℓ)}1/2.

Lemma G.7 (Berry Esseen Theorem for i.n.i.d. data; Shevtsova (2010)). Suppose Bi are

i.n.i.d. random variables with E[Bi] = 0, E[B2
i ] = σ2

i , E[B3
i ] = ξ3i . Let σ2 = En[σ2

i ] and

ξ3 = En[ξ3i ]. Then

sup
z∈R

∣∣∣∣P{n1/2

σ
En[Bi] ≤ z

}
− Φ(z)

∣∣∣∣ ≤ cBE
(
ξ

σ

)3

n− 1
2 , cBE = 0.5600.

Proof of Theorem 5.4. Fix z ∈ R. First, we show that

P
{
n1/2

σ
(θ̂ − θ0) ≤ z

}
− Φ(z) ≤ cBE

(
ξ

σ

)3

n− 1
2 +

∆

(2π)1/2
+ ϵ,

where Φ(z) is the standard Gaussian cumulative distribution function and ∆ is defined in

Lemma G.6.

1. High probability bound.

By Lemma G.6, w.p. 1− ϵ,

n
1
2

σ
(θ̄ − θ̂) ≤ n1/2

σ
|θ̂ − θ̄| ≤ ∆.

Observe that

P

{
n

1
2

σ
(θ̂ − θ0) ≤ z

}
= P

{
n

1
2

σ
(θ̄ − θ0) ≤ z +

n
1
2

σ
(θ̄ − θ̂)

}
≤ P

{
n

1
2

σ
(θ̄ − θ0) ≤ z +∆

}
+ ϵ.
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2. Mean value theorem.

There exists some z′ such that

Φ(z +∆)− Φ(z) = ∇zΦ(z
′) ·∆ ≤ ∆√

2π
.

3. Berry Esseen theorem.

By Lemma G.7

sup
z

∣∣∣∣P{n1/2

σ
(θ̄ − θ0) ≤ z

}
− Φ(z)

∣∣∣∣ ≤ cBE
(
ξ

σ

)3

n− 1
2

taking

θ̄ − θ0 =
1

n

∑
i∈[n]

[m(Wi, γ0) + α0(Wi){Yi − γ0(Wi)}]−
1

n

∑
i∈[n]

E[m(Wi,·, γ0)]

=
1

n

∑
i∈[n]

[m(Wi, γ0) + α0(Wi){Yi − γ0(Wi)} − θi]

=
1

n

∑
i∈[n]

ψi.

The choice of Bi = ψi satisfies the conditions of Lemma G.7 under Assumption G.2.

Hence

P

{
n

1
2

σ
(θ̂ − θ0) ≤ z

}
− Φ(z)

≤ P

{
n

1
2

σ
(θ̄ − θ0) ≤ z +∆

}
− Φ(z) + ϵ

= P

{
n

1
2

σ
(θ̄ − θ0) ≤ z +∆

}
− Φ(z +∆) + Φ(z +∆)− Φ(z) + ϵ

≤ cBE
(
ξ

σ

)3

n− 1
2 +

∆√
2π

+ ϵ.

Next, we show that

Φ(z)− P
{
n1/2

σ
(θ̂ − θ0) ≤ z

}
≤ cBE

(
ξ

σ

)3

n− 1
2 +

∆

(2π)1/2
+ ϵ.

1. High probability bound.

By Lemma G.6, w.p. 1− ϵ,

n
1
2

σ
(θ̂ − θ̄) ≤ n1/2

σ
|θ̂ − θ̄| ≤ ∆
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hence

z −∆ ≤ z − n
1
2

σ
(θ̂ − θ̄).

Observe that

P

{
n

1
2

σ
(θ̄ − θ0) ≤ z −∆

}
≤ P

{
n

1
2

σ
(θ̄ − θ0) ≤ z − n

1
2

σ
(θ̂ − θ̄)

}
+ ϵ

= P

{
n

1
2

σ
(θ̂ − θ0) ≤ z

}
+ ϵ.

2. Mean value theorem.

There exists some z′ such that

Φ(z)− Φ(z −∆) = ∇zΦ(z
′) ·∆ ≤ ∆√

2π
.

3. Berry Esseen theorem.

As argued above,

sup
z

∣∣∣∣P{n1/2

σ
(θ̄ − θ0) ≤ z

}
− Φ(z)

∣∣∣∣ ≤ cBE
(
ξ

σ

)3

n− 1
2 .

Hence

Φ(z)− P

{
n

1
2

σ
(θ̂ − θ0) ≤ z

}

≤ Φ(z)− P

{
n

1
2

σ
(θ̄ − θ0) ≤ z −∆

}
+ ϵ

= Φ(z)− Φ(z −∆) + Φ(z −∆)− P

{
n

1
2

σ
(θ̄ − θ0) ≤ z −∆

}
+ ϵ

≤ ∆√
2π

+ cBE
(
ξ

σ

)3

n− 1
2 + ϵ.

G.5 Variance estimation

Definition G.5 (Shorter notation). For i ∈ Iℓ, define

ψi = ψ(Wi,·, θi, γ0, α0);

ψ̂i = ψ(Wi,·, θ̂, γ̂ℓ, α̂ℓ).
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Lemma G.8 (Foldwise second moment). Suppose Assumption G.2 holds. Then

Eℓ{(ψ̂i − ψi + θ0 − θi)
2} ≤ 4

{
(θ̂ − θ0)

2 +
6∑
j=4

∆jℓ

}
,

where

∆4ℓ = Eℓ{m(Wi,·, u)
2};

∆5ℓ = Eℓ[{α̂ℓ(Wi,·)u(Wi,·)}2];

∆6ℓ = Eℓ[v(Wi,·)
2{Yi − γ0(Wi,·)}2].

Proof. Write

ψ̂i − ψi = m(Wi, γ̂ℓ) + α̂ℓ(Wi){Yi − γ̂ℓ(Wi)} − θ̂

− [m(Wi, γ0) + α0(Wi){Yi − γ0(Wi)} − θi]

± α̂ℓ{Yi − γ0(Wi)}

= (θi − θ̂) +m(Wi, u)− α̂ℓ(Wi)u(Wi) + v(Wi){Yi − γ0(Wi)}.

Hence

ψ̂i − ψi + θ0 − θi = (θ0 − θ̂) +m(Wi, u)− α̂ℓ(Wi)u(Wi) + v(Wi){Yi − γ0(Wi)}.

Therefore

(ψ̂i−ψi+θ0−θi)2 ≤ 4
[
(θ0 − θ̂)2 +m(Wi, u)

2 + {α̂ℓ(Wi)u(Wi)}2 + v(Wi)
2{Yi − γ0(Wi)}2

]
.

Finally take Eℓ[·] of both sides.

Lemma G.9 (Residuals). Suppose Assumption G.1 holds and

E[ε2i |Wi,·] ≤ σ̄2, ∥α̂ℓ∥∞ ≤ ᾱ′.

Then with probability 1− ϵ′/(2L),

∆4ℓ ≤ t4 =
6L

ϵ′
Q̄R(γ̂ℓ)

q̄;

∆5ℓ ≤ t5 =
6L

ϵ′
(ᾱ′)2R(γ̂ℓ);

∆6ℓ ≤ t6 =
6L

ϵ′
σ̄2R(α̂ℓ).
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Proof. We proceed in steps analogous to Lemma G.5.

1. Markov inequality implies

P(|∆4ℓ| > t4) ≤
E(|∆4ℓ|)

t4
;

P(|∆5ℓ| > t5) ≤
E(|∆5ℓ|)

t5
;

P(|∆6ℓ| > t6) ≤
E(|∆6ℓ|)

t6
.

2. Law of iterated expectations implies

E(|∆4ℓ|) = E{E(|∆4ℓ| | Icℓ )};

E(|∆5ℓ|) = E{E(|∆5ℓ| | Icℓ )};

E(|∆6ℓ|) = E{E(|∆6ℓ| | Icℓ )}.

3. Bounding conditional moments

Note that

E[∆4ℓ|Icℓ ] = E[Eℓ{m(Wi,·, u)
2}|Icℓ ] ≤ Q̄{E[Eℓ{u(Wi,·)

2}|Icℓ ]}q̄

where in the last expression we use Jensen’s inequality and q̄ ∈ (0, 1] to argue that

E[Eℓ[m(Wi,·, u)
2]|Icℓ ] = Eℓ[E[m(Wi,·, u)

2|Icℓ ]]

≤ Q̄Eℓ[{E[u(Wi)
2|Icℓ ]}q̄]

≤ Q̄{Eℓ[E[u(Wi)
2|Icℓ ]]}q̄

= Q̄{E[Eℓ[u(Wi)
2]|Icℓ ]}q̄.

Similarly

E[∆5ℓ|Icℓ ] = E[Eℓ[{α̂ℓ(Wi,·)u(Wi,·)}2]|Icℓ ] ≤ (ᾱ′)2E[Eℓ{u(Wi,·)
2}|Icℓ ].

Finally

E[∆6ℓ|Icℓ ] = E[Eℓ[{v(Wi,·)[Yi − γ0(Wi,·)]}2]|Icℓ ] ≤ σ̄2E[Eℓ{v(Wi,·)
2}|Icℓ ].

191



4. Law of iterated expectations and Jensen’s inequality imply

E[∆4ℓ] ≤ E
[
Q̄{E[Eℓ{u(Wi,·)

2}|Icℓ ]}q̄
]

≤ Q̄{E
[
E[Eℓ{u(Wi,·)

2}|Icℓ ]
]
}q̄

= Q̄{E
[
Eℓ{u(Wi,·)

2}
]
}q̄

= Q̄R(γ̂ℓ)
q̄;

E[∆5ℓ] ≤ E
[
(ᾱ′)2E[Eℓ{u(Wi,·)

2}|Icℓ ]
]

= E
[
(ᾱ′)2Eℓ{u(Wi,·)

2}
]

= (ᾱ′)2R(γ̂ℓ);

E[∆6ℓ] ≤ E
[
σ̄2E[Eℓ{v(Wi,·)

2}|Icℓ ]
]

= E
[
σ̄2Eℓ{v(Wi,·)

2}
]

= σ̄2R(α̂ℓ).

5. Collecting results gives

P(|∆4ℓ| > t4) ≤
Q̄R(γ̂ℓ)

q̄

t4
=

ϵ′

6L
;

P(|∆5ℓ| > t5) ≤
(ᾱ′)2R(γ̂ℓ)

t5
=

ϵ′

6L
;

P(|∆6ℓ| > t6) ≤
σ̄2R(α̂ℓ)

t6
=

ϵ′

6L
.

Therefore with probability 1− ϵ′/(2L), the following inequalities hold:

|∆4ℓ| ≤ t4 =
6L

ϵ′
Q̄R(γ̂ℓ)

q̄;

|∆5ℓ| ≤ t5 =
6L

ϵ′
(ᾱ′)2R(γ̂ℓ);

|∆6ℓ| ≤ t6 =
6L

ϵ′
σ̄2R(α̂ℓ).

Lemma G.10 (Oracle approximation). Suppose the conditions of Lemma G.9 as well as

Assumption G.2 hold. Then with probability 1− ϵ′/2

En{(ψ̂i − ψi + θ0 − θi)
2} ≤ ∆′ = 4(θ̂ − θ0)

2 +
24L

ϵ′
[
{Q̄+ (ᾱ′)2}R(γ̂ℓ)

q̄ + σ̄2R(α̂ℓ)
]
.

Proof. We proceed in steps.
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1. Decomposition.

By Lemma G.8

En{(ψ̂i − ψi + θ0 − θi)
2} =

1

L

L∑
ℓ=1

Eℓ{(ψ̂i − ψi + θ0 − θi)
2}

≤ 4(θ̂ − θ0)
2 +

4

L

L∑
ℓ=1

6∑
j=4

∆jℓ.

2. Union bound.

Define the events

E ′
ℓ = {∀j ∈ {4, 5, 6}, |∆jℓ| ≤ tj}, E ′ = ∩Lℓ=1E ′

ℓ, (E ′)c = ∪Lℓ=1(E ′
ℓ)
c.

Hence by the union bound and Lemma G.9,

P{(E ′)c} ≤
L∑
ℓ=1

P{(E ′
ℓ)
c} ≤ L

ϵ′

2L
=
ϵ′

2
.

3. Collecting results.

Therefore with probability 1− ϵ′/2,

En{(ψ̂i − ψi + θ0 − θi)
2} ≤ 4(θ̂ − θi)

2 +
4

L

L∑
ℓ=1

6∑
j=4

|∆jℓ|

≤ 4(θ̂ − θi)
2 +

4

L

L∑
ℓ=1

6∑
j=4

tj

= 4(θ̂ − θi)
2 + 4

6∑
j=4

tj.

Finally appeal to Lemma G.9 for (t4, t5, t6).

Lemma G.11 (Markov inequality). Suppose E[ψ4
i ] = χ4

i < ∞. Then with probability

1− ϵ′/2

|En(ψ2
i )− σ2| ≤ ∆′′ =

(
2

ϵ′

)1/2
χ2

n1/2
.
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Proof. Recall that

σ2 =
1

n

n∑
i=1

σ2
i , χ4 =

1

n

n∑
i=1

χ4
i .

Let

Bi = ψ2
i , B̄ = En[Bi].

Note that

E[B̄] =
1

n

n∑
i=1

E[Bi] =
1

n

n∑
i=1

E[ψ2
i ] =

1

n

n∑
i=1

σ2
i = σ2;

V[B̄] =

∑n
i=1 V(Bi)

n2
≤
∑n

i=1 E[B2
i ]

n2
=

∑n
i=1 E[ψ4

i ]

n2
=

∑n
i=1 χ

4
i

n2
=
χ4

n
.

By Markov inequality

P(|B̄ − E[B̄]| > t) ≤ V[B̄]

t2
=
ϵ′

2
.

Solving, the final inequality implies

t =

√
2

ϵ′
χ2

√
n
.

Proof of Theorem 5.5. We proceed in steps.

1. Decomposition of variance estimator.

Write

σ̂2 = En(ψ̂2
i )

= En{(ψ̂i − ψi + ψi)
2}

= En{(ψ̂i − ψi)
2}+ 2En{(ψ̂i − ψi)ψi}+ En(ψ2

i ).

Hence

σ̂2 − En(ψ2
i ) = En{(ψ̂i − ψi)

2}+ 2En{(ψ̂i − ψi)ψi}.

2. Decomposition of difference.

Next write

σ̂2 − (σ2 + bias) = {σ̂2 − En(ψ2
i )− bias}+ {En(ψ2

i )− σ2}

≤ {σ̂2 − En(ψ2
i )− bias}+∆′′
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where the last line holds with probability 1− ϵ′/2 by Lemma G.11. In what follows,

we focus on the former term. We solve for bias = bias1+bias2 as a function of ∆out,

using the decomposition

σ̂2 − En(ψ2
i )− bias = En{(ψ̂i − ψi)

2} − bias1 + 2En{(ψ̂i − ψi)ψi} − bias2.

3. bias1

Write

En{(ψ̂i − ψi)
2}

= En{(ψ̂i − ψi + θ0 − θi + θi − θ0)
2}

= En{(ψ̂i − ψi + θ0 − θi)
2}+ En{(θi − θ0)

2}+ 2En{(ψ̂i − ψi + θ0 − θi)(θi − θ0)}

≤ En{(ψ̂i − ψi + θ0 − θi)
2}+ En{(θi − θ0)

2}+ 2[En{(ψ̂i − ψi + θ0 − θi)
2}]1/2[En{(θi − θ0)

2}]1/2

≤ ∆′ +∆out + 2(∆′)1/2∆1/2
out.

where the last line holds with probability 1− ϵ′/2 appealing to Lemma G.10. Taking

bias1 = ∆out, we have shown

En{(ψ̂i − ψi)
2} − bias1 ≤ ∆′ + 2(∆′)1/2∆1/2

out.

4. bias2

Next, write

En{(ψ̂i − ψi)ψi}

≤
[
En{(ψ̂i − ψi)

2}
]1/2 {

En(ψ2
i )
}1/2

≤
[
En{(ψ̂i − ψi)

2}
]1/2 {

|En(ψ2
i )− σ2|+ σ2

}1/2
≤ {∆′ +∆out + 2(∆′)1/2∆1/2

out}1/2 · {∆′′ + σ2}1/2

where the last line holds with probability 1− ϵ′ appealing to Lemmas G.10 and G.11

as well as the analysis for bias1. In summary,

2En{(ψ̂i − ψi)ψi} ≤ 2{∆′ +∆out + 2(∆′)1/2∆1/2
out}1/2 · {∆′′ + σ2}1/2

≤ 2{(∆′)1/2 +∆1/2
out + 21/2(∆′)1/4∆1/4

out} · {(∆′′)1/2 + σ}
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Taking bias2 = 2∆
1/2
outσ, we have shown

2En{(ψ̂i−ψi)ψi}−bias2 ≤ 2(∆′)1/2{(∆′′)1/2+σ}+2∆1/2
out(∆

′′)1/2+23/2(∆′)1/4∆1/4
out{(∆′′)1/2+σ}.

5. Collecting results

In summary, with probability 1− ϵ′.

σ̂2 − (σ2 + bias)

≤ {σ̂2 − En(ψ2
i )− bias}+∆′′

= En{(ψ̂i − ψi)
2} − bias1 + 2En{(ψ̂i − ψi)ψi} − bias2 +∆′′

≤ ∆′ + 2(∆′)1/2∆1/2
out

+ 2(∆′)1/2{(∆′′)1/2 + σ}+ 2∆1/2
out(∆

′′)1/2 + 23/2(∆′)1/4∆1/4
out{(∆′′)1/2 + σ}

+∆′′

= ∆′ +∆′′

+ 2(∆′)1/2{(∆′′)1/2 + σ +∆1/2
out}

+ 2∆1/2
out(∆

′′)1/2

+ 23/2(∆′)1/4∆1/4
out{(∆′′)1/2 + σ}

≤ ∆′ +∆′′

+ 3(∆′)1/2{(∆′′)1/2 + σ +∆1/2
out}

+ 3(∆′′)1/2{∆1/2
out + (∆′)1/4∆1/4

out}

+ 3(∆′)1/4∆1/4
outσ

= ∆′ +∆′′ + 3[(∆′)1/2{(∆′′)1/2 + σ +∆1/2
out}+ (∆′′)1/2{∆1/2

out + (∆′)1/4∆1/4
out}+ (∆′)1/4∆1/4

outσ].

Combining terms yields the desired result.

G.6 Confidence interval

Proof of Corollary 5.3. Immediately from ∆ in Theorem 5.4, θ̂ p→ θ0 and

lim
n→∞

P
(
θ0 ∈

[
θ̂ ± σ

n1/2

])
= 1− a.
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For the desired result, it is sufficient that σ̂2 p→ σ2 + bias, which follows from ∆′ and ∆′′ in

Theorem 5.5.

Proof of Corollary G.1. By Lemma G.1, write the regularity condition on moments as

By Lemma G.1, write the regularity condition on moments as By Lemma G.1, write the

regularity condition on moments as By Lemma G.1, write the regularity condition on

moments as {
(κ/σ)3 + ζ2

}
n−1/2 ≲

{(
h−1/6

)3
+ (h−3/4)2

}
n−1/2 ≲ h−3/2n−1/2.

By Lemma G.1, write the first learning rate condition as(
Q̄1/2 + ᾱ/σ + ᾱ′) {R(γ̂)}1/2 ≲

(
h−1 + h−1/h−1/2 + ᾱ′) {R(γ̂)}1/2 ≲

(
h−1 + ᾱ′) {R(γ̂)}1/2.

By Chernozhukov et al. (2021, Lemma S.9), write the second learning rate condition as

σ̄{R(α̂h)}1/2 ≲ σ̄h−1{R(α̂)}1/2.

By Lemma G.1 and Chernozhukov et al. (2021, Lemma S.9), write the third learning rate

condition as

{nR(γ̂)R(α̂h)}1/2/σ ≲ {nR(γ̂)R(α̂)}1/2h−1/h−1/2 = h−1/2{nR(γ̂)R(α̂)}1/2.

H Nonlinear factor model

H.1 Notation and preliminaries

We lighten notation by denoting Rγ = R(γ̂ℓ) and Rα = R(α̂ℓ). Note that the distinction

between n and m = n
2

is irrelevant in the context of (Rγ,Rα) due to the absolute constant

C.

Lemma H.1 (Low rank approximation (Agarwal et al., 2021)). Suppose Assumption 5.11

holds for some fixed H(q, S, CH). Then for any small δ > 0, there exists A(lr) such that

r = rank(A(lr)) ≤ C · δ−q, ∆E = ∥A−A(lr)∥max ≤ CH · δS

where C is allowed to depend on (q, S).
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H.2 Main result

Proof of Corollary 5.4. From Lemma H.1

r ≤ C · δ−q, ∆E ≤ C · δS.

The conditions Corollary 5.4 imply (σ, σ̄, ᾱ, ᾱ′, Q̄) are irrelevant, so we wish to verify the

following simplified rate conditions from Corollary 5.3:

Rγ → 0, Rα → 0,
√
nRγRα → 0.

Furthermore, under the conditions of Corollary 5.4, the relevant terms in (Rγ,Rα) simplify.

For Rγ, the relevant terms from Theorem 5.2 are

Rγ ≤ Cr3
{
1

n
+

p

n2
+

1

p
+
(
1 +

p

n

)
∆2
E + p∆4

E

}
.

For Rα, the relevant terms from Theorem 5.3 are

Rα ≤ Cr5
{
1

n
+

1

p
+

p

n2
+
n

p2
+

(
1 +

p

n
+
n

p

)
∆2
E + (n+ p)∆4

E + np∆6
E

}
.

There are two cases.

1. n ≥ p. In particular, n = pυ with υ ≥ 1. Then

Rγ ≤ Cr3
(
1

p
+∆2

E + p∆4
E

)
≤ Cδ−3q

(
1

p
+ δ2S + pδ4S

)
.

The three terms are equalized with δ2S = p−1. Hence

Rγ ≤ Cδ−3q 1

p
= Cp

3q
2S
1

p
= Cp

3q
2S

−1.

Similarly

Rα ≤ Cr5
(
n

p2
+
n

p
∆2
E + n∆4

E + np∆6
E

)
≤ Cδ−5q

(
n

p2
+
n

p
δ2S + nδ4S + npδ6S

)
.

The four terms are equalized with δ2S = p−1. Hence

Rα ≤ Cδ−5q n

p2
= Cp

5q
2S
n

p2
= Cp

5q
2S

−2n.

To satisfy Rγ ≤ Rα → 0, it is sufficient that

p
5q
2S

−2+υ → 0 ⇐⇒ 5q

2S
− 2 + υ < 0 ⇐⇒ q

S
<

2

5
(2− υ).
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To satisfy
√
nRγRα → 0, it is sufficient that

n
1
2p

3q
4S

− 1
2p

5q
4S

−1n
1
2 = np

2q
S
− 3

2 → 0 ⇐⇒ 2q

S
− 3

2
+ υ < 0 ⇐⇒ q

S
<

1

2

(
3

2
− υ

)
.

In summary, a sufficient generalized factor model is one in which

q

S
<

2

5
(2− υ) ∧ 1

2

(
3

2
− υ

)
, υ ≤ 3

2
.

2. n ≤ p. In particular, p = nυ with υ ≥ 1. Then

Rγ ≤ Cr3
( p
n2

+
p

n
∆2
E + p∆4

E

)
≤ Cδ−3q

( p
n2

+
p

n
δ2S + pδ4S

)
.

The three terms are equalized with δ2S = n−1. Hence

Rγ ≤ Cδ−3q p

n2
= Cn

3q
2S
p

n2
= Cn

3q
2S

−2p.

Similarly

Rα ≤ Cr5
( p
n2

+
p

n
∆2
E + p∆4

E + np∆6
E

)
≤ Cδ−5q

( p
n2

+
p

n
δ2S + pδ4S + npδ6S

)
.

The four terms are equalized with δ2S = n−1. Hence

Rα ≤ Cδ−5q p

n2
= Cn

5q
2S
p

n2
= Cn

5q
2S

−2p.

To satisfy Rγ ≤ Rα → 0, it is sufficient that

n
5q
2S

−2+υ → 0 ⇐⇒ 5q

2S
− 2 + υ < 0 ⇐⇒ q

S
<

2

5
(2− υ).

To satisfy
√
nRγRα → 0, it is sufficient that

n
1
2n

3q
4S

−1p
1
2n

5q
4S

−1p
1
2 = n

2q
S
− 3

2p→ 0 ⇐⇒ 2q

S
− 3

2
+ υ < 0 ⇐⇒ q

S
<

1

2

(
3

2
− υ

)
.

In summary, a sufficient generalized factor model is one in which

q

S
<

2

5
(2− υ) ∧ 1

2

(
3

2
− υ

)
, υ ≤ 3

2
.

Note that the latter condition binds for 1 ≤ υ ≤ 3
2
. In conclusion, a sufficient generalized

factor model is one in which n = pυ or p = nυ and

q

S
<

3

4
− υ

2
, 1 ≤ υ ≤ 3

2
.
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H.3 Nonlinearity

Remark H.1 (Dictionary). Under the conditions of Corollary 5.4, the relevant terms in

(Rγ,Rα) are as before, instead using (r′,∆′
E). To lighten notation, define q′ = dmax · q.

Then

r′ ≤ C · rdmax ≤ C · δ−qdmax = C · δ−q′

and

∆′
E ≤ CĀdmax · dmax∆E ≤ C ·∆E ≤ C · δS.

Therefore the proof of Corollary 5.4 remains the same, updating q as q′ = dmax · q.

I Simulation and application

I.1 Simulation design

Consider the following simulation design adapted from Agarwal et al. (2020a); Singh et al.

(2020), with fixed (n, p, r). We focus on average treatment effect with corrupted covariates

(Example A.1). A single observation consists of the triple (Yi, Di, Zi,·) for outcome, treatment,

and corrupted covariates where Y ∈ R, Di ∈ {0, 1}, and Zi,· ∈ Rp. A single observation is

generated is as follows.

First, we generate signal from a factor model. Sample U ∼ N (0, In×r) and V ∼

N (0, Ip×r). Then set X = UV T . By construction,

E[Xij] = E

[
r∑
s=1

UisVsj

]
=

r∑
s=1

E [Uis]E [Vsj] = 0;

V[Xij] = V

[
r∑
s=1

UisVsj

]
=

r∑
s=1

V [Uis]V [Vsj] = r.

Draw response noise as εi
i.i.d.∼ N (0, 1). Define the vector β ∈ Rp by βj = j−2. Then set

Di ∼ Bernoulli{Λ(0.25XTβ)}

Yi = 2.2Di + 1.2Xi,·β +DiX1i + εi

where Λ(t) = (0.95 − 0.05) exp(t)
1+exp(t)

+ 0.05 is the truncated logistic function. The average

treatment effect θ0 = 2.2 by construction.
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Rather than observing the signal covariate Xi,·, we observe the corrupted covariate

Zi,· = [Xi,· +Hi,·]⊙ πi,·.

Hij
i.i.d.∼ FH is drawn i.i.d. with mean zero and variance σ2

H . πij is 1 with probability ρ and NA

with probability 1− ρ. We consider different choices of the measurement error distribution

FH to corresponding to classical measurement error, discretization, and differential privacy.

In summary, the three data corruption parameters are (FH , σH , ρ). The remaining design

parameters are (n, p, r) corresponding to the sample size, dimension of covariates, and rank

of the signal.

For classical measurement error, FH = N (0, σ2
H). For discretization, we generate

Zij = sign(Xij) · Poisson(|Xij|) and implicitly define FH by Hij = Zij −Xij. Note that

E[Zij|Xij] = sign(Xij)E[Poisson(|Xij|)|Xij] = sign(Xij)|Xij| = Xij

as desired. Below, we show that σ2
H = V[Hij ] = 1.7 in this construction. In other words, we

consider discretization with about a third as much variance as the signal. For differential

privacy, FH = Laplace(0, σH√
2
).

Proposition I.1 (Discretization noise-to-signal ratio). Given some random variable X,

define P = Poisson(|X|). Suppose Z = sign(X) · P . Define H = Z −X. Then E[H] = 0

and V[H] = E[|X|].

Proof. To begin, write

E[Z|X] = sign(X) · E[P |X] = sign(X) · |X| = X.

By the law of total variance

V[H] = E[V[H|X]] + V[E[H|X]].

Focusing on the latter term

E[H|X] = E[Z −X|X] = E[Z|X]−X = 0.

Focusing on the former term

V[H|X] = V[Z|X] = E[Z2|X]− {E[Z|X]}2.
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Moreover

E[Z2|X] = E[P 2|X] = V[P |X] + {E[P |X]}2 = |X|+X2.

In summary

V[H|X] = |X|+X2 −X2 = |X|,

and hence

V[H] = E[|X|] + V[0].

I.2 Formalizing privacy

Proof of Proposition 6.1. Fix the commuting zone i ∈ [n]. We refer to the construction of

the summary statistic

Xij = fj(M
(i)) =

1

Li

Li∑
ℓ=1

M
(i)
ℓj

as the j-th query fj about M (i), where j ∈ [p]. To ensure privacy level ϵj for query fj, a

possible mechanism is, according to Dwork et al. (2006, Proposition 3.3)

Zij = Xij +Hij, Xij = fj(M
(i)), Hij

i.i.d.∼ Laplace(S(fj)/ϵj).

S(fj) is a quantity called the sensitivity of the query, to which we return below. If no

individual appears in two commuting zones, the Bureau can achieve privacy level ϵ while

publishing all j ∈ [p] variables for this commuting zone by setting ϵj = ϵ/p.

We wish to characterize the resulting sub-exponential parameters. They are, by inde-

pendence of the Laplacians,

Ka = ∥Hi,·∥ψa = max
j∈[p]

∥Hij∥ψa = max
j

√
2 · S(fj)/ϵj =

√
2/ϵ · pmax

j
S(fj);

κ2 = ∥E[HT
i,·Hi,·]∥op = max

ij
V(Hij) = 2max

j
S(fj)

2/ϵ2j = 2/ϵ2 · p2max
j
S(fj)

2.

What remains is to define and characterize the the sensitivity S(fj). The sensitivity of

the query fj is the most that the query may vary if one individual in the microdata were

replaced. Formally,

max
M (i),M (i′)

|fj(M (i))− fj(M
(i′))| ≤ S(fj)
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where M (i) and M (i′) are two possible data sets of Li individuals that differ in one individual.

In what follows, we suppress indexing by i to lighten notation. By hypothesis, each

entry of microdata is bounded: |Mℓj| ≤ Ā. This fact, together with the fact that the query

fj is a sample mean, provides a bound on the sensitivity S(fj). To begin, write

fj(M ) =
1

L

{
L∑
ℓ=1

Mℓj

}
=

1

L

{
L−1∑
ℓ=1

Mℓj +MℓL

}
.

Therefore without loss of generality

fj(M )− fj(M
′) =

1

L
(MℓL −M ′

ℓL)

and hence

S(fj) = max
M ,M ′

|fj(M )− fj(M
′)| = max

M ,M ′

∣∣∣∣ 1L(MℓL −M ′
ℓL)

∣∣∣∣ ≤ 2Ā

L
.

Proof of Proposition 6.2. Fix the individual i ∈ [n]. The query is Xij = fj(Xi,·). To ensure

privacy level ϵj for query fj, a possible mechanism is, according to Dwork et al. (2006,

Proposition 3.3)

Zij = Xij +Hij, {Hij}j∈[T ]
i.i.d.∼ Laplace(S(fj)/ϵj).

The Bureau can achieve privacy level ϵ while publishing j ∈ [T ] variables for this individual

by setting ϵj = ϵ/T .

We wish to characterize the resulting sub-exponential parameters. They are, by inde-

pendence of the Laplacians,

Ka = ∥Hi,·∥ψa = max
j∈[p]

∥Hij∥ψa = max
j

√
2 · S(fj)/ϵj =

√
2/ϵ · T max

j
S(fj);

κ2 = ∥E[HT
i,·Hi,·]∥op = max

ij
V(Hij) = 2max

j
S(fj)

2/ϵ2j = 2/ϵ2 · T 2max
j
S(fj)

2.

What remains is to characterize the the sensitivity S(fj). The sensitivity of the query fj

is the most that the query may vary if one entry in the microdata were replaced. Formally,

max
Xi,·,X′

i,·

|fj(Xi,·)− fj(X
′
i,·)| ≤ S(fj)
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where Xi,· and X ′
i,· are two descriptions of an individual that differ in one characteristic.

By hypothesis, each entry of microdata is bounded: |Xij| ≤ Ā. Therefore

S(fj) = max
Xi,·,X′

i,·

|fj(Xi,·)− fj(X
′
i,·)| = max

Xi,·,X′
i,·

|Xij −X ′
ij| ≤ 2Ā.

I.3 Empirical application

The variable definitions follow Autor et al. (2013). In the authors’ original specification

(Autor et al., 2013, Table 3, column 6), Xi,· ∈ R14 consists of: a constant, an indicator for

the 2000-2007 period, percentage of employment in manufacturing, percentage of college

educated population, percentage of foreign-born population, percentage of employment

among women, percentage of employment in routine occupations, average offshorability

index of occupations, and Census division dummies.

In our augmented specification Xi,· ∈ R30 consists of variables from the original speci-

fication as well as additional variables in (Autor et al., 2013, Appendix Table 2). These

include percentages of the working age population: employed in manufacturing, employed in

non-manufacturing, unemployed, not in the labor force, receiving disability benefits; average

log weekly wages: manufacturing, non-manufactuing; average benefits per capita: individual

transfers, retirement, disability, medical, federal income assistance, unemployment, TAA;

and average household income per working age adult: total, wage and salary.
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