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The Flexible Inverse Logit (FIL) model, a structural inverse demand model for products that are differentiated in a way that is both observed and
unobserved by the modeller. The FIL model has three main attractive features: (i) it is easy to estimate by linear IV regression; (ii) it provides rich
substitution patterns; (iii) it is consistent with utility maximization by heterogeneous consumers.

General Setting

J differentiated products (j = 1, . . . , J) and 1 outside good (j = 0).

• x = (x1, . . . ,xJ ): vector of observed characteristics,

• ξ = (ξ1, . . . ,ξJ ): vector unobserved characteristics terms,

• p = (p1, . . . ,pJ ): vector of prices,

• s = (s1, . . . , sJ ) ∈ ∆+
J : vector of non-zero market shares.

Linear Index Restriction (Berry and Haile, 2014). Set x =
(
x(1),x(2)

)
• x(1) will enter the (inverse) demand function through an index

δj = x(1)j β −αpj + ξj , j > 0, and δ0 = 0. (1)

• x(2) will enter in an unrestricted way.

Flexible Inverse Logit Model

The FIL model is the inverse demand function σ−1 : ∆+
J → RJ

σ−1j (s;µ) ≡ ln

 sj

1−
∑J

k=1 sk

−∑
i,j

µij ln
(

sj
si + sj

)
= δj , j > 0. (2)

Economic Restrictions. Imply that the FIL model (2) is invertible, i.e.,
defines a demand function (rather than a correspondence).

(R1)
∑

i,j µij < 1 for all j > 0,

(R2) µij = µji for all i, j > 0, i , j.

Motivations. The FIL model

1. allows deviations from IIA thanks to its parameters µij (it reduces
to the logit model when all µij = 0).

2. is a member of Fosgerau, Monardo and de Palma (2020)’s class of
closed-form inverse demand models based on nesting (with a nest
for each pair (i, j) of products and a nest for j = 0).

3. is specific instance of the large class of models of consumer hetero-
geneity studied by Allen and Rehbeck (2019): µ parametrizes the
distribution of preferences.

Substitution Patterns.

• The FIL model is flexible in the sense of Diewert (1974) in a large
class of well-defined inverse demand functions.

• (R1) and (R2) imply that (i) σj is strictly increasing in pj , and (ii)
does not restrict products to be substitutes in demand.

• µij governs the substitution between products i and j. Example:
J = 3, s1 = 0.15, s2 = 0.25, s3 = 0.20, p1 = p2 = p3 = 1 and µ23 = 0.2.

⇒ Higher µ12 implies a higher cross-price elasticity.

• Use the distance-metric of Pinkse, Slade and Brett (2002) to obtain
substitution patterns that depend on x(2) directly:

– Closer products in x(2) tends to be more substitutable.

– Example: projection into x ∈ [0,1] with similarity measure dij =

1− |xi − xj |: specify µ
(
dij ;γ

)
=

∑M
k=0γk

(
dij

)k
.

Estimation and Identification

Estimation by Linear IV Regression with Aggregate Data.

ln
(
sj
s0

)
= x(1)j β −αpj +

∑
i,j

µij ln
(

sj
si + sj

)
+ ξj , j > 0 (3)

• Assumption: prices and log-shares are endogenous (i.e., correlated
with ξ), but product characteristics are exogenous .

Identification = Identification of the parameters.

• Main identification assumption: existence of instruments z.

• Identification of δ. Easy!

– Higher market shares implies higher utility indexes: given µ,
there is a one-to-one mapping between δ and s.

– Parameters in δ: dealing with price endogeneity thanks to valid
supply-side instruments (cost shifters and/or markup shifters).

• Identification of µij ’s. More tricky (as random coefficients).

– Requires exogenous variation in the relative share of product j
with respect to product i, ln(sj /(si + sj )) = − ln(si /sj +1).

– Need instruments that reveal about the substitution patterns:
variables that generate exogenous variation in the choice set
(including changes in prices) are good candidates.

– Stylized example: J = 3, s1 = 0.15, s2 = 0.25, s3 = 0.20, p1 = p2 =
p3 = 1 and µ13 = µ23 = 0.2.

∗ Variation in cost shifters: ∆c1 = 10%.

⇒Monotonic relationships: the way prices and relative shares
change with ∆c1 drives the estimate of µ12.

Comparison to BLP

Simulated DGP based on Armstrong(2016).

• Simulate a fully structural static model of demand and supply.

– Demand: RCL model with utility linear in income and prices
and with one normally distributed coefficient on an exogenous
continuous characteristic x(2): βn ∼N (3,6).

– Supply: price competition model with multi-product firms.

Results.
Own-Elasticities Cross-Elasticities Markups Merger (∆p%) New Product (∆p%)

DGP with J = 25 and T = 100 All Firms Merging Firms Others All Firms

True -4.065 0.161 0.335 3.349 7.170 0.775 3.253
[-4.095 ; -4.035] [ 0.160 ; 0.163] [ 0.329 ; 0.341] [ 3.300 ; 3.400] [ 7.082 ; 7.258] [ 0.766 ; 0.784] [3.200 ; 3.305]

FIL -3.869 0.159 0.363 3.611 7.680 0.872 3.158
[-4.437 ; -3.300] [ 0.136 ; 0.182] [ 0.303 ; 0.424] [ 3.531 ; 3.691] [ 7.528 ; 7.831] [ 0.848 ; 0.896] [3.042 ; 3.274]

BLP -4.076 0.162 0.335 3.310 7.126 0.739 2.602
[-4.471 ; -3.681] [ 0.146 ; 0.178] [ 0.302 ; 0.368] [ 3.241 ; 3.377] [ 7.009 ; 7.243] [ 0.708 ; 0.770] [2.542 ; 2.662]

DGP with J = 50 and T = 200

True -4.157 0.081 0.329 3.266 7.009 0.777 2.883
[-4.173 ; -4.141] [ 0.080 ; 0.082] [ 0.325 ; 0.332] [ 3.246 ; 3.286] [ 6.976 ; 7.042] [ 0.773 ; 0.780] [2.860 ; 2.905]

FIL -4.009 0.080 0.341 3.389 7.277 0.804 2.584
[-4.287 ; -3.731] [ 0.074 ; 0.085] [ 0.318 ; 0.365] [ 3.361 ; 3.417] [ 7.222 ; 7.331] [ 0.797 ; 0.810] [2.563 ; 2.605]

BLP -4.138 0.080 0.330 3.284 7.046 0.782 2.430
[-4.333 ; -3.942] [ 0.076 ; 0.084] [ 0.314 ; 0.347] [ 3.258 ; 3.309] [ 6.999 ; 7.093] [ 0.775 ; 0.789] [2.404 ; 2.457]

DGP with J = 100 and T = 20

True -4.207 0.0401 0.325 3.207 6.890 0.774 2.602
[-4.242 ; -4.173] [ 0.040 ; 0.042] [ 0.318 ; 0.333] [3.151 ; 3.263] [ 6.806 ; 6.973] [0.764 ; 0.785] [2.548 ; 2.656]

FIL -4.3410 0.042 0.356 3.531 7.410 0.968 3.342
[-4.889 ; -3.794] [ 0.037 ; 0.048] [ 0.308 ; 0.403] [3.454 ; 3.607] [ 7.278 ; 7.543] [0.949 ; 0.987] [3.272 ; 3.412]

BLP -4.242 0.040 0.324 3.182 6.846 0.762 2.251
[-4.705 ; -3.779] [ 0.036 ; 0.045] [ 0.288 ; 0.360] [3.116 ; 3.248] [ 6.733 ; 6.958] [0.744 ; 0.779] [2.189 ; 2.312]

Notes: Summary statistics across 100 Monte Carlo replications. For each replication, I compute the average. Numbers are averages over replications; numbers in brackets are the bounds of the 95% CI.

Conclusion. Simulations show that the FIL is able to match the substi-
tution patterns of the RCL model pretty well and to obtain quite right
predictions of a merger/new product’s price effects.

Perspectives. The FIL model allows for complementarity in demand: (i)
simulation with Genztkow (2007)’s DGP; (ii) revisit his work on the sub-
stitution between offline and online channels with an application to the
hotel industry.


