Volatility Uncertainty and Jumps

Thomas Grünthaler and Hendrik Hülsbusch¹

¹Finance Center Muenster, University of Muenster

Empirical Results

Option Pricing Models

Motivation

The 1987 stock market crash showed that option pricing models fail to price options with short TTM and deep-OTM puts

 \rightarrow Solution: state-dependent jump intensity that is linked to volatility (Bates, 2000)

$$\lambda_t = \alpha_0 + \lambda^V V_t + \dots$$

- \rightarrow Implications:
 - Strong linear link between jump intensity and volatility
 - Only source of time-variation in jump risks is volatility

Motivation	Methodology & Data	Empirical Results	Option Pricing Models	Conclusion
0000	00	00000	00	0

Linking jump risks to volatility seems reasonable

 $\rightarrow\,$ Negative jumps in stock market occur when volatility is high

Andersen, Fusari, Todorov (2015, 2019): After turbulent times, left tail stays elevated long after volatility mean-reverts

 $\rightarrow\,$ Disconnect between time-series dynamics?

Grünthaler and Hülsbusch

Motivation 00●0 Empirical Results

Option Pricing Models

This Paper

In an almost **non-parametric** setting, we ask:

- Are expected jump risks and volatility linearly tied?
 - Very weak relationship at best
 - Significance completely gone once higher moments are included
- Which moment is related to jump risks? Volatility Uncertainty
 - Main driver of evolution of jump risks
 - Higher volatility uncertainty increases downside risk and decreases upside potential
 - Predicts realized price jumps
- How can option pricing models account for our findings?
 - Decoupling jump risk evolution from volatility is crucial
 - Separately modeling left and right tail necessary

Methodology & Data 00 Empirical Results

Option Pricing Models

Conclusion O

Event Study - Large VIX and VVIX Shocks

 $\rightarrow\,$ Changes in volatility uncertainty have an isolated effect on tails

Higher Moments and Tail Measure

- Main analysis based on option-implied information (under risk-neutral measure)
- We extract higher moments in standard-fashion with portfolios of weighted option prices
 - $\ensuremath{\mathsf{Vol}}^2$ and SKEW using S&P500 options
 - VolVol 2 using VIX options
- For tail measure, we follow Bollerslev, Todorov, and Xu (2015)
 - Use (deep) out-of-the-money options
 - Fit them to jump intensity

$$\nu_t(dy) = \left(\phi_t^+ \times e^{-\alpha_t^+ y} \mathbf{1}_{\{y>0\}} + \phi_t^- \times e^{\alpha_t^- y} \mathbf{1}_{\{y<0\}}\right)$$

- independent left (LJV) and right (RJV) tail
- time-variations in shape of tail possible

Grünthaler and Hülsbusch

Empirical Results 00000 Option Pricing Models

Conclusion 0

Data

- Time-span: January 3, 2007 until April 29, 2016
- Option Metrics: monthly and weekly S&P500 options, monthly VIX options
- \blacksquare Basic filters; Time-to-maturity of options: $1 < \mathsf{TTM} < 45$
- Calculate our measures on a weekly basis, then
 - 1 orthogonalize them due to correlations
 - 2 take first differences due to autocorrelation
 - 3 standardize measures

Methodology & Data 00 Empirical Results •0000 Option Pricing Models

Conclusion 0

Evolution of Left Tail

$\Delta \mathsf{LJV}_t = \alpha + \beta \Delta X_t + \epsilon_t$

	(1)	(2)	(3)	(4)	(5)
ΔVol^2	0.2578 (1.67)		$0.1954 \\ (1.41)$		0.2241 (1.63)
$\Delta VolVol^2$		$0.2943 \\ (3.44)$			
$\Delta \mathrm{Vol}\mathrm{Vol}^{2,\perp}$			0.2025 (3.01)	$\begin{array}{c} 0.3156 \\ (4.22) \end{array}$	$\begin{array}{c} 0.2303 \\ (3.30) \end{array}$
Δ SKEW				-0.2061 (-4.66)	-0.2652 (-4.75)
adj. R^2	0.0644	0.0845	0.0996	0.1153	0.1345

Grünthaler and Hülsbusch

Methodology & Data 00 Empirical Results

Option Pricing Models

Conclusion 0

Evolution of Right Tail

$\Delta \mathsf{RJV}_t = \alpha + \beta \Delta X_t + \epsilon_t$

	(1)	(2)	(3)	(4)	(5)
ΔVol^2	-0.0515 (-1.74)		-0.0097 (-0.46)		-0.0090 (-0.41)
ΔVolVol^2		-0.1220 (-3.17)			
$\Delta \text{VolVol}^{2,\perp}$			-0.1356 (-3.09)	-0.1297 (-3.28)	-0.1331 (-3.05)
Δ SKEW				-0.1006 (-1.88)	-0.0696 (-1.38)
adj. R^2	0.0006	0.0129	0.0153	0.0276	0.0248

Grünthaler and Hülsbusch

Predicting Realized Risks

Analysis so far under risk-neutral measure. Can volatility uncertainty also explain realized risks?

- Determine realized variance and tripower variation
- Difference isolates realized price jumps

Run predictive regressions of form

Realized
$$\operatorname{Risk}_{[t+h-1,t+h]} = \gamma + \beta_{Vol} \operatorname{Vol}_t^2 + \beta_{VolVol} \operatorname{VolVol}_t^2 + \epsilon_t,$$

 $h = 2, \dots, 25.$

and compare the R^2 of multiple regression to R^2 of simple regression. **Note:** Non-overlapping regressions, we predict the weekly avg. in t + h. Standard errors are HAC-estimators that correct for autocorrelation.

Motivation	Methodology & Data	Empirical Results	Option Pricing Models	Conclusion
0000	00	00000	00	0

Realized Variance

Almost no predictive power of volatility uncertainty on total risk

Motivation	Methodology & Data	Empirical Results	Option Pricing Models	Conclusion
0000	00	00000	00	0

Realized Price Jumps

- Price jumps can be well predicted by volatility uncertainty
- Vol uncertainty not only explains expected jump risks (Q) but also realized jump risks (P)

Conclusion

00

Testing Option Pricing Models

- What happens if jump intensity is only tied to volatility?
- Test model of Eraker (2004)

$$\begin{aligned} \frac{dS_t}{S_t} &= (r-\mu)dt + \sqrt{V_t}dW_t^{S,\mathbb{Q}} + dJ_t^{S,\mathbb{Q}} \\ dV_t &= \kappa^{\mathbb{Q}}(\theta^{\mathbb{Q}} - V_t)dt + \sigma_V\sqrt{V_t}dW_t^{V,\mathbb{Q}} + dJ_t^{V,\mathbb{Q}} \\ \lambda_t &= \lambda_0 + \lambda_1 V_t \end{aligned}$$

- How do we test? For each week
 - Extract state variables by minimizing distance between model's variance expectations and model-free IV
 - Simulate model 50,000 times
 - Determine model-implied option prices and risk measures

Motivation	Methodology & Data	Empirical Results	Option Pricing Models	Conclusion
0000	00	00000	0●	0

Eraker Model - Results

		ΔLJV			ΔRJV	
	(1)	(2)	(3)	(4)	(5)	(6)
ΔVol^2	0.8102 (3.49)		0.8115 (3.61)	0.1248 (1.92)		0.1254 (1.99)
$\Delta \mathrm{VolVol^2}$		-0.3104 (-4.77)			-0.0835 (-1.99)	
$\Delta \mathrm{Vol}\mathrm{Vol}^{2,\perp}$			-0.1015 (-2.45)			-0.0525 (-1.40)
adj. \mathbb{R}^2	0.6557	0.0945	0.6654	0.0136	0.0049	0.0143

- Volatility is clearly the main driver
- Counterfactual negative link between left tail and volatility uncertainty
- VolVol² irrelevant for right tail
- $\rightarrow\,$ Overall, OTM option price dynamics are not in line with data

Grünthaler and Hülsbusch

Methodology & Data 00 Empirical Results

Option Pricing Models

Conclusion

Summary

- Paper analyzes the interdependencies between expected tail risks and higher moments of return distribution
- We show that volatility uncertainty has a distinct impact on both tails of the risk-neutral distribution
- Expected volatility uncertainty predicts realized price jumps but not realized volatility
- Findings present a challenge for many modern option pricing models
 - model tests suggest that decoupling the intensity from volatility is necessary
 - separately model left and right jump intensity

Backup – Liquidity of SPX Options

m	\in $(-\infty, -4]$	(-4, -2.5]	(-2.5, -1]	(-1, 1]	(1, 2.5]	(2.5, 4]	$(4,\infty)$
Vol[#]	0.10	0.02	0.02	0.05	0.02	0.01	0.04
Vol[\$]	0.96	0.21	0.40	1.18	0.32	0.13	0.32
$\widehat{\mathrm{Vol}[\%]}$	0.36	0.07	0.09	0.20	0.09	0.06	0.13
$\widetilde{\mathrm{Vol}[\%]}$	0.39	0.06	0.08	0.20	0.08	0.06	0.13
OI[#]	1.25	0.15	0.18	0.25	0.16	0.13	0.41
OI[\$]	43.55	3.80	4.69	6.97	4.34	3.32	21.58
$\widehat{OI[\%]}$	0.47	0.06	0.08	0.11	0.07	0.06	0.16
$\widetilde{OI[\%]}$	0.52	0.06	0.07	0.10	0.06	0.05	0.14
Bid-Ask Spread	d 0.21	0.07	0.06	0.06	0.08	0.15	0.25
Bid-Ask Spread	d 0.04	0.04	0.04	0.05	0.06	0.07	0.05

Appendix 000

Backup – Self-Exciting Jump Model

■ Kaeck (2018) uses a rich specification:

$$\begin{split} &\frac{dS_t}{S_t} = (r - q - \mu)dt + \sqrt{V_t}dW_t^{S,\mathbb{Q}} + dJ_t^{\lambda,\mathbb{Q}} \\ &dV_t = \kappa_V^{\mathbb{Q}}(m_t - V_t)dt + \sigma_V\sqrt{V_t}(\rho dW_t^{S,\mathbb{Q}} + \sqrt{1 - \rho^2}dW_t^{V,\mathbb{Q}}) + dJ_t^{\lambda,\mathbb{Q}} \\ &dm_t = \kappa_m^{\mathbb{Q}}(\theta_m^{\mathbb{Q}} - m_t)dt + \sigma_m\sqrt{m_t}dW_t^{m,\mathbb{Q}} \\ &d\lambda_t = \kappa_l^{\mathbb{Q}}(\theta_l^{\mathbb{Q}} - \lambda_t)dt + \sigma_l\sqrt{\lambda_t}dW_t^{l,\mathbb{Q}} + dJ_t^{\lambda,\mathbb{Q}} \end{split}$$

• λ_t is the jump intensity for all jumps

- follows independent process
- can jump itself (self-exciting)

Backup – Kaeck Model Results

		ΔLJV			ΔRJV		
	(1)	(2)	(3)	(4)	(5)	(6)	
ΔVol^2	-0.0094		-0.0449	0.0635		0.0268	
	(-1.38)		(-2.50)	(1.22)		(0.51)	
$\Delta VolVol^2$		0.1634			0.1818		
		(2.10)			(2.06)		
$\Delta VolVol^{2,\perp}$			0.1670			0.1906	
			(2.08)			(2.10)	
adj. \mathbb{R}^2	-0.0017	0.1231	0.1213	0.0045	0.0728	0.0811	

- Results for left tail close to empirics
- Counterfactual positive link between right tail and volatility uncertainty
- $\rightarrow\,$ Need to model left and right tail separately