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Advice for workers that works for firms too
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“If you are looking for a career where your services will be in high demand, you should 
find something where you provide a scarce, complementary service to something that 
is getting ubiquitous and cheap. So what’s getting ubiquitous and cheap? Data. And 
what is complementary to data? Analysis.” – Hal Varian, 2008 (Freakonomics Blog)



A specific story about TensorFlow, but with a general 
lesson
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TensorFlow affects talent
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Google has 
lots of assets 
that do this



Research Question: Who benefits from investments in 
technological talent?

1) Theory: How firm-specific intangible and human capital helps 
capture rents from high-skilled employees
• …even after wage premia are paid
• Price effects on sunk investments a likely story
• Other possibilities:

• Contemporaneous productivity
• Wage declines
• Capital quantity increases
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2)  Detailed LinkedIn panel data on job history and *skills* 
in engineering and technology



Research Question: How do firms benefit from 
investments in technological talent?
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3)  A natural experiment: Which firms capture value from a 
technology shock that makes skills abundant?

• Google’s TensorFlow dramatically decreased the cost of learning 
to do deep learning

• Firms whose engineers possessed more AI skills captured more 
value from the TensorFlow launch à 4-7% market value 
increase!
• Middle quintile firms get the biggest boost!
• Results hold up with alternative specifications

4) Does hiring more engineers increase firm value?
• Not when talent is available! But average value is ~$850k per 

engineer



Technological Labor is a driver of productivity

• …and market value (Jaffe 1986; B.H. Hall et al. 2005; R.E. 
Hall 1993, 2006; Tambe and Hitt 2012; Tambe 2014)

• Often related to intangible assets and co-invention 
(Bresnahan et al. 1996; Hall 2001; Bresnahan et al. 2002; 
Greenstein and Nagle 2014; Saunders and Tambe 2015; 
Peters and Taylor 2017; Brynjolfsson, Rock, and Syverson
2018; 2019)

• These are (often) firm-specific!
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The employer bargains away some of the surplus for 
firm-specific tasks

• Non-monetary compensation: Working with cutting-edge 
technology (Stern 2004; Roach and Sauermann 2010; Mas 
and Pallais 2017)

• Monopsony Power coming from frictions (Bhaskar et al. 2002; 
Ashenfelter et al. 2010; Azar et al. 2018; Stole and Zwiebel
1996a,b)

• Firm-specific Capital (Brynjolfsson et al. 2002; Coff and 
Raffiee 2015; Eisfeldt and Papanikolaou 2014; Kline et al. 
2018)

• Mobility (Campbell et al. 2012; Benmelech et al. 2018)
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We’re at an important crossroads with respect to 
technology workers

• STEM workers (Peri et al. 2015; Kerr et al. 2015; Ding et al. 2017; 
Glennon 2018)

• Unexplained productivity differences (Syverson 2011; Andrews et 
al. 2015; R.E. Hall 2018)

• The tools are changing (Teodoridis 2017; Thompson 2017; Ewens, 
Nanda, and Rhodes-Kropf 2018; Zyontz 2018; Agrawal et al. 2018, 
Choudhury et al. 2018)

• And breakthroughs are harder to find? (Jones 2009; Cockburn et al. 
2018; Webb et al. 2018)
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Value a firm by valuing its assets
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Returns to technological skill shocks can be shared by 
the employer – Does this happen with TensorFlow?

11



Asset price equilibrium is partly driven by the prices of 
complements

12Source: Hall (2001)



TensorFlow was a surprise

13Source: Google Trends



TensorFlow is (relatively) easy to learn
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Without TF



One small piece of what you’d have to do without it…
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TensorFlow makes building deep learning applications 
easy.
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Now the leading deep learning library

17Source: Jeff Dean (Talk at MIT 2018)



LinkedIn Skills data can reveal the labor effects of TF
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How do we aggregate the 35,000 skills on LinkedIn?

• Use Machine Learning! 
We helped to build an 
embedding space of 
skills into larger 
interpretable clusters
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Some groupings we get

• AI Skills: Machine Learning, computer vision, neural networks, 
speech recognition, NLP, expert systems, genetic algorithms, 
reinforcement learning, tensorflow, keras, pytorch

• Data Science: analytics, forecasting, experimental design, 
probability, tableau, decision trees, R

• Economics: valuation, econometrics, STATA, industrial organization, 
financial data

• Robotics: motion control, mechatronics, actuators, industrial robots, 
robocad, robotic design
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Where is AI/ML Talent?

21Source: Tambe, Hitt, Rock, and Brynjolfsson (2019)



The Prediction Question: Is AI Intangible Capital 
Priced?
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(1) (2) (3) (4) (5) (6)
Market Value (MM USD) AI Cluster +Data Science +Cloud Computing +Data Storage +Digital Literacy +Bus.Mgmt and Advertising

Log(Total Assets) 7,790*** 7,798*** 7,798*** 7,790*** 7,837*** 7,832***
(1,276) (1,277) (1,277) (1,275) (1,278) (1,275)

Log(Edu. Years) -1,582 -1,577 -1,578 -1,562 -1,535 -1,528
(1,014) (1,006) (1,009) (1,007) (997.5) (999.5)

Log(AI Index) -1,630 -1,616 -1,618 -1,610 -1,601 -1,592
(1,017) (1,022) (1,006) (1,006) (1,006) (1,002)

Log(AI Index x Post TF) 3,299*** 3,303*** 3,302*** 3,305*** 3,312*** 3,316***
(712.3) (712.0) (715.4) (715.7) (716.2) (719.5)

Log(Data Science Index) -133.0 -136.8 -104.9 187.4 176.2
(574.9) (559.0) (558.1) (446.5) (566.1)

Log(Cloud Computing Index) 16.68 46.40 80.63 81.93
(397.7) (398.8) (389.8) (419.9)

Log(Data Storage Technology 
Index)

-29,129 -26,872 -27,442

(21,191) (21,370) (21,357)
Log(Digital Literacy Index) -639.1 -672.9

(595.3) (768.3)
Log(Bus. Management Index) 290.6

(1,444)
Log(Advertising Index) -235.1

(422.4)

Observations 6,440 6,440 6,440 6,440 6,440 6,440
Firm and Year FE Yes Yes Yes Yes Yes Yes

AI-intensive companies are repriced in 2016
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Deep Learning per Skill Valuation Changes Over Time
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Is the change contemporaneous with the TensorFlow 
Launch?
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(1) (2) (3) (4) (5) (6)
Market Value (MM USD) AI Cluster +Data Science +Cloud Computing +Data Storage +Digital Literacy +Bus.Mgmt and Advertising

Log(Total Assets) 5,366*** 5,356*** 5,360*** 5,353*** 5,354*** 5,370***
(901.2) (900.5) (901.8) (900.6) (900.4) (902.9)

Log(Edu. Years) -740.1 -745.7 -763.0 -751.7 -751.5 -769.0
(555.1) (549.0) (546.8) (544.2) (540.6) (533.9)

Log(AI Index) 656.7 640.8 608.3 614.3 614.3 603.1
(643.3) (649.4) (647.9) (649.0) (648.4) (650.8)

Log(AI Index x Post TF) 980.0*** 974.3*** 958.5*** 958.4*** 958.5*** 944.9***
(290.8) (288.5) (289.6) (289.5) (289.7) (287.8)

Log(Data Science Index) 167.3 93.18 116.1 117.8 207.6
(465.3) (442.7) (440.6) (307.0) (473.0)

Log(Cloud Computing Index) 332.2 354.6 354.8 378.7
(284.7) (285.9) (275.4) (309.4)

Log(Data Storage Technology 
Index)

-21,531 -21,518 -20,920

(13,919) (14,125) (14,272)
Log(Digital Literacy Index) -3.713 127.4

(470.2) (693.5)
Log(Bus. Management Index) -799.1

(1,311)
Log(Advertising Index) 352.5

(356.3)

Observations 5,864 5,864 5,864 5,864 5,864 5,864
Firm and Year FE Yes Yes Yes Yes Yes Yes

Removing the top quintile of AI-Using firms
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Data Science per Skill Valuation Changes Over Time

27



Linear Regression per Skill Valuation Changes Over Time
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Management per Skill Valuation Changes Over Time
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Advertising per Skill Valuation Changes Over Time
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Synthetic Difference-in-Differences Coefficients are 
similar*
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Synthetic Difference-in-Differences Results

*Arkhangelsky, Dmitry, Susan Athey, David A. Hirshberg, Guido W. Imbens, and Stefan Wager. Synthetic difference in 
differences. No. w25532. National Bureau of Economic Research, 2019.



TensorFlow: A technological shock to the expected 
future talent supply
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Who will earn the returns to AI Talent?

• Engineering talent needed to implement new technology

• …but extensive firm co-investment requires to realize its returns

• Punchline: the engineering talent value goes to the company too
• When the margins change: 4-7% MV increase

• Middle firms benefit! TensorFlow was democratizing!
• Mostly an AI intangible price shock for AI-using firms

• Technological shocks help understand employer-employee 
relationships
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Thanks!

Contact: @danielrock, rockdi@wharton.upenn.edu
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