# Luxury or Necessity: How will State and Local Governments Balance Budgets in the Wake of COVID-19?

## TROUP HOWARD

University of Utah, David Eccles School of Business

## ADAIR MORSE

University of California, Berkeley & NBER

## SETTING & QUESTION

| Estimates of Government Revenue Shortfall in FY2021 due to Pandemic: Different Scenarios |               |             |  |  |
|------------------------------------------------------------------------------------------|---------------|-------------|--|--|
|                                                                                          | Slow Recovery | Second Wave |  |  |
| State (Whitaker, 2020)                                                                   | -122.1 \$B    | -238.1 \$B  |  |  |
| Local (Whitaker, 2020)                                                                   | -48.7 \$B     | -111.8 \$B  |  |  |
| Cities (Chernick, Copeland, and Reschovsky, 2020)                                        | -9%           | -15%        |  |  |

## **Our Questions:**

- 1) For which public good & service expenditures are revenue shortfalls felt most?
- 2) How does that vary by geography and level of government?

## EMPIRICAL APPROACH

## Our Approach:

- Apply Deaton demand system to estimate budget share changes in face of declining income
- Use the Great Recession as an estimating sample and then project to pandemic, taking revenue shocks under several scenarios from emerging literature

## **Under H**<sub>0</sub>: Budget shares remain constant after income shock

- Non-trivial choice: much practitioner focus on optimal public budgeting frameworks
- Empirical literature tends not to support constant budget shares (Reid 1988, Hoene and Pagano 2009, Desai, 2018)

## HISTORICAL DATA ON EXPENDITURES: US CENSUS OF GOVERNMENTS

Near-universe of public entities: **86,608 governments**, including

- 50 states
- **3,021** counties
- 35,241 cities and towns
- 13,430 independent school districts
- 34,866 special government districts

All governments surveyed every five years (...2002, 2007, 2012...)

Major governments surveyed every year (representing >90% of total dollars)

## **GREAT RECESSION:**

- Large negative shock to public revenues
- We estimate response from changes in expenditure between 2007 and 2012

 Note: Public budgets tend to increase in real terms; even flat revenue is experienced as significant fiscal stress

#### Real Revenue by Gov Type (Base Year: 2000)



## PUBLIC GOODS AND SERVICES: BUDGET SHARES

#### Allocate expenditures to:

- Civil Administration
- Education Elementary
- Education Higher
- Public Safety
- Health
- Transport
- Parks Recreation
- Utilities
- Welfare
- Debt (current only)
- Retirement (current only)
- Unemployment (current only)

- Split all expenditures into current operations and capital outlays
- Intergovernmental transfers, where targeted, are allocated to funding entity
  - E.g.: State transfer to local governments for safety programs count as State current operations on safety

## STATS: SUMMATION OF EXPENDITURES ACROSS GOVERNMENTS

| Sums (combined cap & current)                   | 2007 -\$B | 2012 - \$B | 2007 - % | 2012 - % |
|-------------------------------------------------|-----------|------------|----------|----------|
| <ul> <li>Civil Administration</li> </ul>        | \$347     | \$352      | 11.0%    | 10.0%    |
| <ul> <li>Education – Elementary</li> </ul>      | \$899     | \$931      | 28.5%    | 26.4%    |
| <ul> <li>Education – Higher</li> </ul>          | \$280     | \$352      | 8.9%     | 10.0%    |
| <ul> <li>Public Safety</li> </ul>               | \$245     | \$273      | 7.8%     | 7.8%     |
| • Health                                        | \$225     | \$274      | 7.1%     | 7.8%     |
| <ul> <li>Transport</li> </ul>                   | \$288     | \$333      | 9.1%     | 9.5%     |
| <ul> <li>Parks Recreation</li> </ul>            | \$99      | \$98       | 3.1%     | 2.8%     |
| <ul> <li>Utilities</li> </ul>                   | \$247     | \$269      | 7.8%     | 7.6%     |
| <ul> <li>Welfare</li> </ul>                     | \$222     | \$228      | 7.0%     | 6.5%     |
| <ul> <li>Debt (current only)</li> </ul>         | \$105     | \$123      | 3.3%     | 3.5%     |
| <ul> <li>Retirement (current only)</li> </ul>   | \$167     | \$193      | 5.3%     | 5.5%     |
| <ul> <li>Unemployment (current only)</li> </ul> | \$29      | \$96       | 0.9%     | 2.7%     |
| Total                                           | \$3,153   | \$3,521    |          |          |

## EMPIRICAL METHODOLOGY (1)

Almost Ideal Demand System, Deaton and Muellbauer (1980) in 1st differences:

$$\Delta w_{ig} = \beta_i \Delta \log \left( \frac{X_g}{P} \right) + \sum_j \gamma_{ij} \Delta \log (p_{jg})$$

### <u>Variables</u>

- $\Delta w_{ig}$ : government g's budget share for good i
- $X_q/P$ : g's real expenditure on good i
- $p_{jg}$ : prices of the J goods available to g.

  (Each good i's demand is a function of all prices.)

## EMPIRICAL METHODOLOGY (2)

Almost Ideal Demand System, Deaton and Muellbauer (1980) in 1st differences:

$$\Delta w_{ig} = \beta_i \Delta \log \left(\frac{X_g}{P}\right) + \sum_j \gamma_{ij} \Delta \log(p_{jg})$$

#### **Features**

- 1.  $\beta_i$  is the sensitivity of budget share to a changes in real expenditures
- 2. Sum of all goods elasticities,  $\beta_i$ , equals zero in first differences.
- 3. The null,  $\beta_i = 0$ , is proportional changes in expenditures with changes in budget
- 4.  $\beta_i$  < 0 means that an income reduction leads to an increase in relative budget share for good i (less than one–for–one cuts).... a "necessity" good.
- 5.  $\beta_i > 0$  means that an income reduction leads to a decrease in relative budget share for good *I* (more than one-for-one cuts) .... a "luxury" good.

## RESULTS – PART 1

## ESTIMATING THE $\beta_i$ FROM $\Delta w_{ig} = \sum_j \gamma_{ij} \Delta \operatorname{LOG}(p_{jg}) + \beta_i \Delta \operatorname{LOG}(\frac{x_g}{P})$

- By expenditure category (education, health, etc.) and by jurisdiction type (state, county, etc.)
- Our best specification: Estimate the  $\beta_i$  for sub-state entities within each state to pick up elasticity heterogeneity

## RESULTS FROM $\beta_i$ ESTIMATIONS:

Summarizing which categories have statistically significant changes in budget shares

| Elasticity | Necessities                           | Luxuries                           |
|------------|---------------------------------------|------------------------------------|
| State      | Higher Education, Retirement          | Transport, Civil Admin             |
| County     | Public Safety, Civil Admin; Transport | Public Health, Capital Investments |
| Cities     | Public Safety; Civil Admin, Debt      | Utilities; Capital Investments     |

#### PREDICT THE EFFECT ON COVID-19 ON PUBLIC GOODS PROVISIONS

- Requires an assumption about the <u>intensity of the COVID-19 economic shock</u> on government budgets
- In the paper, we use 3 simulations:
  - A 9% government revenue shock (akin to "slow recovery" in literature)
  - A 15% government revenue shock (akin to "second wave" in literature)
  - Heterogeneous shocks by State (a la Whitaker (2020)):
    - "Second wave" with muted economic effects (e.g., partial shutdowns)







## RESULTS – PART 2: HETEROGENEITIES BY STATE

MAP WHAT MATTERS MORE / LESS ACROSS STATES

#### Reduction due to Rebalancing, 2nd Wave Scenario: Elem Ed (CUR)



#### Reduction due to Rebalancing, 2nd Wave Scenario: Transport (CUR)





#### Reduction due to Rebalancing, 2nd Wave Scenario: Parks/Rec (CUR)



## **TAKEAWAYS**

- 1. Crisis response of shifting capital allocations to current spending
- 2. Classification of public goods and services into "necessities" and "luxuries":
  - a) Necessities: education (K12 and Higher), retirement, public safety
  - b) Luxuries: capital spending, transportation, welfare
  - c) Priorities vary by level of government
- 3. Wide regional heterogeneities in budgetary priorities
  - a) Exogenous factors (weather; geography) shape fiscal response
  - b) Demographic factors also appear important (e.g., unemployment allocations)