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                                                              Abstract 

 

We develop a model of financial fragility under asymmetric information in the context of 

structured securities. Equilibrium comes from balancing higher holding costs for sellers with 

agency costs associated with adverse selection against buyers.  Structuring can cause fragility by 

introducing debt-like pieces into the structure. This produces two types of equilibria, one at low 

market share for selling and one with 100% market share. Movements between the two produce 

fragility that can lead to the equivalent of bank runs. Not taking account of these results can lead 

to underestimation of tail-risk and capital adequacy. 
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1. Introduction 

The defining characteristic of financial panics is abrupt changes in investor or depositor behavior 

in response to small changes in parameters, aka fragility. The recent Financial Crisis started in 

2007 with deteriorating quality of mortgage-backed securities, and it became the Great Recession 

when it morphed into runs at major financial institutions (see Gorton (2009) and FCIC (2011)). 

The key stylized fact of the crash is that there was a surge in the market share of securitization, 

which looked like a debt bubble, followed by runs on shadow banks. The bubble and crash were 

associated with the rise and fall of structured deals, such as Collateralized Debt Obligations 

(CDOs). We suggest that this was not a coincidence. Our conclusion is that selling pools of loans 

or securities by breaking them up into separate tranches can cause fragility in some of the tranches 

even if the pools as a whole are not fragile. This unintended consequence is a negative externality 

that is manifested in instability. 

 

Our results come from the interaction of adverse selection (with attendant agency costs) and 

holding costs in structured deals like CDOs with debt-like tranches. Our contribution is in bringing 

out the causal role of tranching and optionality in generating fragility. Optionality can produce two 

equilibria. The first is at low volume for the usual lemons type reasons, as agency costs increase 

until they equal holding cost. The other is at high volume due to optionality leading to an eventual 

decline in agency costs, as safer loans that are added to the pool being sold and loans become 

increasingly similar and easier to evaluate. This leads to a decline in agency costs, pushing market 

share to a corner solution, at 100% market share. Abrupt switches from low volume to high volume 

equilibria, and vice versa, are the source of the fragility. This can look like a bubble and bank run. 

The model can be applied to a range of structures, such as repurchase agreements (repos) and 

shadow banks. Fragility can be exacerbated by layering pieces of deals upon one another, such as 

CDOs made up of subprime pieces of debt tranches from other deals, and perhaps resecuritizing 

them. Each additional layer adds optionality and convexity.   

 

History and Literature 

Our models are variations on classic works by Akerlof (1970) and Diamond and Dibvig (1983). 

The former is the basis of the adverse selection model we use, and the latter is similar to our model 
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of abrupt changes in behavior, and panics and bank runs. Both are concerned with market failure 

rather than market structure. Our empirical point of departure is Gorton and Metrick (2012), which 

shows how smooth  increases in the ABX index (a proxy for risk in the subprime mortgage market) 

in 2008 were associated with a sudden jump in the LIBOR-OIS spread (a proxy for counterparty 

risk in the repo market). This is consistent with our model of a growing market in collateralized 

debt coming to a sudden halt after a seemingly small and continuous change in information from 

the ABX index.1  

 

More broadly, Caballero and Krishnamurthy (2008) explains the recent 2008 crash with a model 

of a liquidity shortage and Knightian uncertainty. It emphasizes uncertainty aversion on top of 

increased risk exposure. In particular, uncertainty aversion can result in an unanticipated and large 

increase in bid-ask spread, which ends in reduction of liquidity (see also Easley and O’Hara (2005), 

(2008)). Routledge and Zin (2004) also show that the widening bid-ask spread can be a result of 

uncertainty aversion, which ultimately causes market illiquidity. Loayza and Rancière (2006) 

address financial fragility as a short-run outcome of financial liberalization. Banks in good times 

tend to be less concerned with the quality of mortgagors, and tend to over-lend as demand becomes 

high, given financial liberalization. Beltran et al (2017) present a model of trading CDOs with 

adverse selection on the part of sellers, and they document the large amount of cross-referencing 

that occurred in CDOs and resecuritization, so that correlations among items in deals were higher 

than thought at origination. Van Order (2006) uses a model of fragility that is the basis of our 

models. However, it does not cover the role of structured deals as causal, and it treats the adverse 

selection equilibrium differently than we do.  

 

Acharya et al (2009) model how financial institutions owning high quality assets were not able to 

roll over their short-term debt as Repo depositors lost confidence in the quality of the assets 

securing their deposits. They point out in their theoretical model that the existence of a market 

freeze depends on whether the banks’ expectations on the rollover risk are optimistic or 

pessimistic. We add to this line of research by focusing explicitly on optionality as a cause to roll 

                                                           
1 See also Stanton and Wallace (2011) on ABX 
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over their short-term debt. More broadly, Gorton (2009) discusses the breakdown of liquidity in 

the Repo market in 2007.  

 

There is a considerable literature on security design and structure. Allen and Gale (1988) is a 

widely cited early example. Several papers discuss tranching as a tool in selling securities. 

Riddiough (1997) discusses security design with tranche retention and the benefits of a 

senior/subordinated structure. Hartman- Glaser et al (2012) discusses the efficiency of pooling 

and optimal contracts with underwriters. Boot and Thakor (1993) show the benefits of dividing a 

pool into informationally sensitive and insensitive pieces, so that they be sold to different 

investor types. Demarzo (2005) analyzes ways of selling securities when there is asymmetric 

information, in a model that consistent with ours. If the seller has superior information, then 

pooling and selling separate tranches might still be optimal by balancing the tradeoff between 

diversification and liquidity. Demarzo and Duffie (1999) present a model with an Akerlof 

asymmetric information problem, which provides a downward sloping demand curve that is 

similar to our marginal cost curve. In their model holding a piece of the deal can give positive 

signals to investors. Firla-Cuchr, and Jenkinson (2005) test various hypotheses about why there 

is tranching and find support for asymmetric information and market segmentation as 

explanations. These papers provide the framework for our structured deals 

 

Summary 

We take tranching as a given, and we develop models with adverse selection and a cost to sellers 

for holding securities as the reason for loan sales. Our main result is that debt tranches, e.g., in 

CDOs, can trigger fragility because at high levels of sales they unravel agency costs in a 

destabilizing manner. There are several different types of structures to which it applies, including 

repurchase agreements (repos), CDOs and shadow banks.  The fragility, which looks like a Poisson 

blip, is not likely to be detected from data, which can lead to underestimation of “tail risk,” capital 

adequacy and instability. Section 2 develops models of risk ordering, adverse selection and default. 

Section 3 models securitization and structuring and how that can produce fragility. Section 4 

develops three similar models that have the same results. Section 5 adds two complications. 

Section 6 concludes 
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2. Adverse Selection, Dumping and Default 

We develop a model of securitization in which identical owners of assets put them into pools and 

sell pieces or tranches of them to identical investors. In what follows, deals are made up of loans 

that are taken from portfolios of loans owned by sellers. The sum of these identical portfolios is 

the potential market. The size of the representative seller portfolio is given by M and the size of 

the pool by N. N is endogenous; M is exogenous, and N/M is market share. Sales from portfolios 

into pools are assumed to have known asset classes with fixed sizes and two tranches, debt and 

equity. Shares in the deal are the total value of securities in the deal or tranche of the deal divided 

by N, and they are represented by lower case letters. Traders are all risk-neutral. Because of the 

use of representative individual and market results are interchangeable, and seller portfolios are 

the same as the market. 

 

We employ an Akerlof-type adverse selection model: Sellers (primary market or PM), have loan 

by loan information about the loans that form pools, and they sell to less informed buyers 

(secondary/securitization market or SM) who know only average default cost of each pool, so they 

cannot do loan level pricing.  PM has higher holding costs, which is what causes SM to exist. The 

loans are one period zero coupon bonds with default risk at the end of the period. We assume an 

infinitely elastic supply of funds from SM for pieces of deals at a price commensurate with average 

cost. So the action resides with choices made by identical sellers (in the PM) who place loans into 

pools as long as it is profitable. This choice determines equilibrium.  

 

2.1 The Cost Structure of Loans  

Let V(x) be the distribution function that gives the level of the characteristics (e.g., default 

probabilities) as the characteristics vary from worst to best for the loans in the seller’s portfolio. 

Let V-1(n) be the inverse of V, and D(n) (n (0, M)) is the segment of V-1(n) that includes only 

the loans in the pool that are taken from the portfolio. Marginal default cost, c(n), is the cost of 

the last loan put into the pool by PM, and it is given by 
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(1) c(n) = c(D(n)) 

       with        c' (n)= c'D' 

        and         c'' = c'D'' + D'c''. 

 

 

By construction c'<0.  We assume initially that that D(n) is linear, in which case the dumping 

function depends only on the shape of the default cost function.2 We will for most of the paper 

assume that D(n) is linear and let D’=1. Then we can focus on default modeling alone. 

Then each PM seller has a “Dumping Function,” which ranks loans in its portfolio from worst to best. 

It is given by c(n). We assume that n is continuous and represents the distance between the nth best 

loan and the worst loan.  

 

Now we turn to the determinants of c(n) from default models 

 

2.3  Default Models and c(n) 

Default on the nth loan happens at the end of the period if an indicator variable, x(n), takes on a 

value less than some critical value, X(n)  (e.g., see Hough (2016)). The probability of default is the 

probability that x(𝑛)  ≤ 𝑋(𝑛).  X and x can vary across loans.3 For instance, x(n) might be the value 

of the nth property securing the loan and X(n) the mortgage balance. Alternatively, X(n) might be 

a variable, like a credit shock, that we do not observe directly. The trigger variable x happens at 

the end of the period, and may be conditional on its initial value x(0), which is known to sellers 

and is the vehicle for adverse selection. 

 

Let Hn(x((n)) be the distribution function of x(n)  conditional on x(n(0)), where Hn(n) is the 

probability, p(n), that x(n) ≤ X(n), and let hn(n) be the corresponding density function.  We assume 

a loss rate ln(x(n)), conditional on default. As above, we use n to order loans from worst to best. 

The nth loan is the nth best loan in the pool 

                                                           
2 We relax this assumption in Section 4.4. 
3 For notational simplicity we do not characterize x or X by subscript or superscript until later. 
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Under risk neutral pricing, the expected cost of default is 

 

      (2)          𝑐(𝑛) = ∫ (𝑙𝑛(𝑥(𝜃))ℎ𝑛(𝑥(𝜃|𝑥(0))𝑑𝜃)
𝑋(𝑛)

−∞
 

 

 

We consider two cases.   

 

Case 1: The first version of our model is one in which x refers to exogenous default probabilities. 

So for the nth loan, with constant loss severity fixed at l. Then i  

 

       (3)       𝑐(𝑛) = 𝑝(𝑛)𝑙 

 

where p(n) is the default rate of the nth best loan. This model employs direct estimates of 

probability of default and loss; the indicator variable, x, is not needed. It is a simple version of 

models that have been used for losses in mortgage pools (see Hull (2006)). We pursue this as 

Model 1 in the next Section and later sections. 

 

Case 2: The loan is collateralized by property, with h(n) the value of the nth property, which is 

lognormally distributed with variance  Loss severity is the difference between mortgage value 

and house value. The value of c(n)) in this case is given by the Black-Scholes formula for a put 

option; and  c(n) is the value of put option value of the nth best loan. We use this approach in Model 

5 in 4.3. 

 

Next we apply default models and the structure of selling to the two market equilibria described above 

 

3.       Structuring and Optionality 

 

Many financial contracts and institutions have embedded options whose values depend on the 

value of some state variable. Optionality makes the relationship between the contract value and 
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the state variable driving value nonlinear. Most securitization deals are broken into pieces 

(tranches) to be sold to investors. In order to focus on tranching as the cause of convexity, we first 

model deals where underlying assets do not exhibit convexity and have fixed default rates (Case 1 

above ), which can vary across loans, and we show how structuring can induce fragility. Then we 

analyze variations on that model, and how they contribute to fragility in essentially the same way.  

 

3.1  Securitization: Model 1  

Model 1 uses the fixed loss rate model in Case 1 above. We assume that the exogenous variables 

are default rates, p(n), which is uniformly distributed, so that the last loan sold, c(n), is a linear and 

downward sloping function of n.  

 

Income and Behavior 

We define a(n) as the average cost, associated with c(n), of the assets dumped to the buyers in SM 

up to the nth asset. That is 

 

(4)    a(n)= 
1

n
∫  

𝑛

0
𝑐(𝜃)𝑑𝜃 

 

This also represents the zero profit condition for PM. Figure 1 depicts the two curves if c(n) is 

linear. We assume that sellers in PM are price takers, but they have monopoly power over 

information because they know c(n). However, SM knows only a(n) and supplies funds elastically 

at that cost. Equilibrium price, r(n), is equal to average cost. As depicted in the figure, marginal 

and average costs intersect at the origin, which leads to an Ackerlof type solution where the 

information advantages of sellers prevent a market from forming. We obtain a solution by 

assuming that holding costs are larger for sellers than they are for buyers, or that there is a benefit 

(e.g. liquidity and/or diversification) to buyers, as a reason for buying loans despite an information 

advantage for sellers We call this cost difference b. For simplicity, we assume that SM has no costs, 

so b is sellers’ holding costs.  
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Sellers’ business is selling loans. Their income is the holding costs they shed by selling minus their 

costs of selling, which are the agency costs that come from buyers understanding the lemons 

problem. We let 

 

  5)         A(n) = a(n)-c(n) 

 

Then A(n) is a measure of the marginal agency cost of putting the nth, loan into the pool. That is, 

the last (marginal) loan costs only c(n) to the seller, but the buyers will only buy it at, a(n). The 

total agency cost is the sum of all marginal agency costs from 0 to n. This is given by 

 

(6 )     𝑠(𝑛) = ∫ ((𝑎(𝜃) − 
𝑛

0
𝑐(𝜃))𝑑𝜃 = ∫ (𝐴(𝜃)

𝑛

0
𝑑𝜃 

 

Seller income is given by 

 

(7)      y(n)== 𝑏𝑛 − 𝑠(𝑛) = ∫ (𝑏 − (𝑎(𝜃) − 
𝑛

0
𝑐(𝜃))𝑑𝜃=bn-∫ (𝐴(𝜃)

𝑛

0
𝑑𝜃 

 

The seller choses a pool size, N, that maximizes (7), taking account sales price equaling average 

cost, which is also determined by sales,  and that N is limited by the size of the market (seller 

portfolios) size), M. 

 

The first order condition is 

 

(8)        a(N)-c(N)=A(n) = b 

or 

                   if N < M 

      Otherwise N =M.  

 

The second order condition i 

 

    (9)   A’(n)≤ 0 



 

 

 

10 

 
 

This requires that b equal marginal agency costs. This is the equilibrium depicted in Figure 2. 

The first order condition puts equilibrium at A. However if the market is given by Ml the solution 

is constrained, the N=M.  

 

Model 1 is a parameterized example of this. We can write the model as 

 

  (10a)    c(n) = c(0)- αn   

         

      Then  

           

   (10b)        a(n)= 
1

n
∫  

𝑛

0
𝑐(𝑘)𝑑𝑘= c(0) -0.5αn   

 

with α = (c(n)-c(0))n , c(0)is the cost of the worst loan in the portfolio (dumped first).  

 

Then equating average and marginal costs we have the equilibrium size of the pool, N, given by: 

 

  (11)   c(N) = c(0)- αN =- 
1

2
 ( c(0)- αn )+b = r(N) 

 

Then if M>N enough, equilibrium level of market size,  

       

   (12)       N=2b/α 

 

If we let p* be the mean default rate for the pool, assuming zero interest rates, then the average 

cost of the deal is p*l. 

                                               

 

The equilibrium does not exhibit discontinuities. That is, continuous changes in b or α or market 

size do not lead to discontinuous changes in market size. Note that market share does not depend 

on the level of default costs, but rather on the slope of c(n), which measures the range of adverse 
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selection. We use this model as a lead in to the structuring model in order to emphasize that the 

fragility results do not depend directly on the level of risk or the slope of the marginal cost curve, 

but rather on its curvature, as is described next. 

 

3.2  Structuring: Model 2 

 

We consider the same representative pool of loans that were chosen as in Model I, but they are 

now put into structured deals that sell off debt and equity tranches of the pools. This could be for 

efficiency reasons as was discussed above. There are also some regulatory advantages to highly 

rated debt pieces, so a strong equity share of the pool can generate a relatively safe debt tranches 

that become AAA and AA bonds and sell at a premium. We assume that the equity tranche level 

in the structure is the minimal amounts necessary to get the desired rating, conditional on what the 

rating agencies know. In any event we take the structure as given. 

The cost advantage, b, is only for the debt piece. The equity piece of the structure, given by e, is 

exogenous and is kept by the PM (seller); the rest is the debt piece is sold to SM investors.  PM 

dumps loans into the securitized pool from the original portfolio from worst (highest default rate) 

to best as in Figure 1, except that the shapes of the curves are now different. A version of this is a 

repo deal where the seller keeps a piece of the deal, the “haircut,” but can select against the other 

side of the deal.  

 

The value of a pool as a whole, under risk-neutral pricing, depends only on the mean default rate 

and not the distribution of default rates. The sales, however, are structured deals with debt and 

equity pieces. Their values will depend on the distribution of default outcomes. We assume that 

log p(n), denoted by (π(n)), follows a one period binomial distribution with constant loss severity 

per loan, l.4 For independent draws the pools N loans have a variance about the mean given by 

𝜋(1 − 𝜋)/𝑁. For large enough N the distribution of p(n) can be taken to be a lognormal. 

 

However, we should not expect the draws across loans to be independent. For instance they might 

be correlated with a common market-wide factor. We assume that is the case and that there are 

                                                           
4 We chose this distribution because it allow the probabilities to be bunched at low level ands  



 

 

 

12 

 
 

two independent factors that affect 𝜎(𝑛): a market one, m, and the idiosyncratic one, given by 

𝜋(1−𝜋)

𝑁
. The marginal contribution of m to 𝜎(𝑛)is given by 𝜌(𝑛) .  Then the variance of the nth loan 

is  

 

(13) σ(n)2=
𝜋(1−𝜋)

𝑁
+ 𝜌(𝑛)2𝜎𝑚

2    

 

            and      

 

 (14)       
𝜕𝜎(𝑛)

𝜕𝜌(𝑛) 
= 𝜎𝑚 ≡ 𝑞 

 

A convenient special case is where the pool is sufficiently large that the first term in (13) can be 

ignored and 

 

(15) 𝜎(𝑛) = 𝜌(𝑛) 𝜎𝑚
  

 

Then σ(n) is the standard error of the loan with the nth highest level of diversification. Selection 

can be modeled as based on ρ(n), and in turn  σ(n). Again, we can approximate the distribution of 

p(n) with a lognormal distribution with density function: 𝑓(𝑝(𝑛), 𝜎(𝜌(𝑛)))      

 

The value of a share in the pool into which the N mortgages or loans are put is given by 

 

 (16) 𝑣𝑝 = (1 − 𝑙 ∫  
𝑁

0
𝑓(𝑛, 𝜎(𝜌𝑛))𝑛𝑑𝑛) = (1 − 𝑝∗𝑙). 

  

The density function, 𝑓(𝑝, 𝜎(𝜌)), is known by all, but loan by loan details are known only to 

sellers. This corresponds to Model 1.  

 

Optionality and in turn convexity comes from creation of a debt tranche along with an equity 

tranche with limited liability for PM, who holds the equity tranche. We assume that p*l > e, that 
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is, the debt piece is initially “out of the money.” Then, assuming interest rates are zero, the value 

of a share in the debt piece is given by 

                                                                       

 (17)              𝑣𝑑 = ((1 − 𝑒) − 𝑁−1 ∫  
𝑁

𝑒
𝑓(𝑛, 𝜎(𝑛))𝑛𝑑𝑛) 

                          

                                                                 

The last term is the expected level of default costs beyond the equity piece, so asset price equals 

initial balance minus expected cost, and the value of an equity share is 1- 𝑣𝑑 , which is the 

difference between the pool value and the debt value.5 Note the simple negative relationship 

between cost and price.  We use the terms interchangeably, being careful to keep track of the 

sign difference. 

 

3.3  Properties of Model 2 

The second term inside the brackets in (17) is c(n) for this model. The value of this can be 

formulated (assuming that having all or nearly all of the loans default is very unlikely), as if it were 

a call option on a lognormally distributed underlying security, pl, with exercise price e. The value 

of a share of that is given by the Black-Scholes formula: 

 

 (18)    𝑐(𝑛) = 𝑐(𝑝(𝑛)𝑙 , 𝜎(𝑛)) = 𝑝𝑙𝐹(𝑑(𝑛)) + 𝑒𝐹(𝑑(𝑛) − 𝜎(𝑛))                                                                                              

 

where    𝑑(𝑛) =
𝑙𝑛

𝑝𝑙

𝑒
+

1

2
𝜎(𝑛)2

𝜎(𝑛)
, F() is cumulative normal, and  is the volatility of 𝜋; the length 

of the period is set to equal to one. This is expected loss to debt-holders from adding a loan to the 

pool. 

 

In Model 2 we assume that 𝜎(𝑛) is constant, and we focus on default rates as the selection vehicle. 

We will use 𝜎(𝑛) as a selection instrument in section 4. 

                                                           
5 It is straightforward to extend this to the case of pool wide insurance, which is a straightforward debt/equity 

structure that has the same general properties as c(n) in (24) and (25) below. 
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Then for Model 2 

 

(19) 𝑐′(𝑛) = 𝑐′(𝑝(𝑛)) =
𝜕𝑐

𝜕𝑝
(−𝑝′) = −𝑙𝐹(𝑑)𝑝′(𝑛) < 0, 

 

Convexity of c(n) at n is given by (note p’(n) is constant) 

 

(20)    
𝜕2𝑐(𝑛,𝜎)

𝜕𝑛2 = −𝑙𝑝′(𝑛) [
𝑙

𝑝(𝑛)𝜎
𝑓(𝑑)]>0 

 

So c(n) is convex and approaches zero from above as n increases (more and more safe loans put 

into the pool)..  

These properties are defining characteristics for our fragility results, and they are common to our 

other models. We provide some derivations in the appendix. However, much of our analysis 

applies standard text book theorems about marginal and average curves, so we describe solutions 

graphically. 

  

3.4  Equilibrium in Model 2 

 

Equilibrium comes form maximizing y(n). Again, the first order condition is given by 

 

(21)        𝑏 − 𝑠′(𝑁) ==b-𝐴(𝑁) = 0 

and the second order condition is 

 

(22)           A’(N) ≤0 

 

Its properties are derived in the Appendix. A(n, ) goes through the origin and is rising at the 

origin, has a maximum, then declines and approaches the horizontal axis as n increases without 
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limit. These are the key convexity properties. The equilibrium can both be described by variations 

on these. We next look at equilibrium from three views: 

 

View 1: cost-market size space 

A version of this equilibrium, View 1, is depicted in Figure 3. It is comparable to Figure 1 except 

that c(n) is not linear, and decreases from above with increase in value of loans, n, at a decreasing 

rate. Note the curves given by c(n), a(n) and c(n)+b. Because, from standard microeconomics, 

a(n) is average to the marginal of c(n), it meets c(n) at c(0), as before in the linear case. It is steeper 

at first but flatter as n gets larger. The addition of b shifts the c(n) curve up, guaranteeing the 

possibility of two solutions, as depicted. As b increases, it can be tangent to a(n), and without an 

equilibrium above the tangency, in which case the cost advantages of SM are so large that it takes 

over the whole market, at M. When c(n)+b moves from the tangent to just above it, there is a 

discrete shift in market share from a small n to the maximum market volume M. This creates 

fragility in the sense that the quick expansion looks like a debt bubble.  The next view illustrates 

the equilibrium more clearly. 

 

View 2: b-n space 

We know that A(n, ) is upward sloping at the origin, continuous and approaches zero for large n. 

This means it must have a maximum. We show in the appendix that this maximum is unique and 

there is no minimum. Figure 4 depicts 𝐴(𝑛, 𝜎) and intersection for values of b.  The maximum of 

A(n, ) corresponds to the tangency in Figure 3.  Equilibrium must be either at an intersection of b 

and 𝐴(𝑛, 𝜎) or at the intersection of b and market size M, with price, r(n),  equal to a(n). Along the 

segment OQ income is maximized, To left of it y(n) is increasing and the right it is decreasing. 

The arrows show the direction of adjustment to maximum y(n). The segment QH is shows minima. 

The arrows near it show adjustment away from it. For any level of b between b 1 and b * if market 

size is large, Mh, the result is ambiguous because taking over the whole market could be better than 

staying along GH, This raises the question of discrete jump, which is our version of fragility. We turn 

to view 3 
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View 3: y-n space 

Here we look at the model by looking at y vs n, given, b in figure 4. First, y(n) is maximized at A, 

which corresponds to and intersection of  b and A(n) in figure 4. After reaching the maximum the 

value of y(n) declines, corresponding to the downward sloping part of A(n) in Figure 2. Then it turns 

upward and eventually approaches the curve y=bn. This corresponds to c(n) and a(n) both 

approaching the horizontal axis in Figure 4,. The solution to maximizing income can be at A, the 

tangency or by taking over the whole market at Mh. which is the level of n at which income is as high 

as the maximum income at A. Which one it is depends on the size of the market. If the market size is 

Mh or greater, then income is maximized at the corner solution (selling off everything). However if 

the market is smaller, then the solution is the interior solution at A unless the market size is less than 

Ml.  

 

The critical part of this model, the change in slope of y(n) and approaching bn is due to optionality, 

which causes total agency cost, ∫ (𝑎(𝜃) − 
𝑛

0
𝑐(𝜃)𝑑𝜃, to decrease after increasing and to approach 

zero, so that y(n) approaches bn. This implies that there is always a market size, M, large enough 

for the solution to be to sell everything. 

 

3.5  Equilibrium and Fragility 

Fragility can be seen in Figure 5 from the two equilibria at A and B.  There is no equilibrium 

between Ml and Mh.  As y(n) increases and reaches a maximum level of y* equilibrium jumps from 

A to B. This jump is the model’s option-driven fragility. From B it increases continuously and 

approaches bn. The solution depends on how market size constrains the equilibrium. For a small 

market, Mi, fragility is not possible, but for any market size greater than Mh, there can be a jump 

from A to B and vice versa. This allows a discrete increase in SM size, followed by sharp decreases 

driven by small changes in underlying parameters. Note that this is not a model of two equally 

good equilibria (a sin Diamond-Dibvig), but of almost unique equilibria with distinct 

tipping/switch points. 

 

 

 



 

 

 

17 

 
 

Comparative Statics and fragility 

Here we derive comparative statics of the model. In particular, we look at effects of some 

parameters on disctrete shifts in  y(n, ) in the neighbor hood of fragilty, at Ml and  Mh . That is we 

ask: if we are close to fragilty, in which direction will parameter changes move us: toward fragility 

away? In Figure 5 the question is about the switch points at A and B.  

 

We first note that point A  is at a local maximum. Then the slope is zero, and being a little bit on 

either side of Ml will not affect eguilibirum. The action is at Mh where income is increasing in n. 

At B an upward shift in y(n) from a bit to the right of Mh to a bit to the left causes fragiity via a 

switch to Mh  from Ml . Things that cause y(n) to shift up at Mh will tend to promote fragility.  

 

It is shown in the appendix that  

 

(23)     
𝜕𝑦

𝜕𝜎
= − ∫

𝜕𝐴(𝑘,𝜃)

𝜕𝜎
𝑑𝜃

𝑛 

0

  < 0      

(24)      
𝜕𝑦

𝜕𝑒
= − ∫

𝜕𝐴(𝜃,𝜎)

𝜕𝑒
𝑑𝜃

𝑛

0

 >0 

(25)     
𝜕𝑦

𝜕𝑝𝑙
= − ∫

𝜕𝐴(𝜃,𝜎)

𝜕𝑝𝑙
𝑑𝑘 < 0

𝑛

0

 

 

and  

         

(26)     
𝜕𝑦

𝜕𝑏
 = n >0 

 

Then decreases in 𝜎 or pl (debt) and increases in e or b in the neighborhood of Mh cause discrete 

increases in market size, and vice versa. So, for instance, an increase in diversification can cause 

a sharp increase pool size and then a sudden decrease, if for instance opinions about it change. 
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3.6 An example: Securitization boom and bust 

Here we exploit the comparative statics in 3.5 to present a version of boom and bust. A stylized 

version of the crash in 2008 begins with a rise in the CDO market share, and it is followed by a 

sharp crash. In Figure 5 we assume an initial equilibrium with y(n) intersecting at a level just 

below that given by Ml. There is an increase in b (increased advantage of SM, which moves the 

equilibrium abruptly to Mh. This is the CDO and securitization boom. 

The sharp increase in market share and higher price for tranche shares can look like a debt 

bubble.  However, it is not really a bubble in the sense that there is nothing in the shift upward 

that suggests decline later, unless the process for b has something mean reversion. But the 

equilibrium can shift back, for instance if other parameters are stochastic. Assume for instance 

that   is stochastic with a 50-50 chance of rising or falling. Then a small decline in  shifts y(n) 

a bit to the left and the new new market size is too small land the market abruptly contracts. This 

looks like  a bubble bursting, but it comes from  falling, not b reverting, and  falling is not 

likely to be predictable. This is the sense in which the equilibrium is fragile; the crash can come 

from any parameter change. This is consistent with and the observation, referred to above, by 

Gorton and Metric (2012), that smooth increases in the ABX in 2008 were associated with a 

sudden jump in the LIBOR-OIS spread (a proxy for counterparty risk in the repo market).   

 

3.7 Comments   

Multiple equilibria, as depicted in Figure 5, are not unusual in economics. They require important 

non-linearities. The key difference between models one and two is that marginal agency cost, A(n), is 

quite nonlinear. In Model l there was a unique equilibrium because A(n)  is always increasing in n. In 

model two that is not the case. Agency costs decline again as the market increases so that income 

increases later. This shows up Figure 2 vs figure 5. 

 

The low volume equilibrium is stable, as in Figure 2, but the high volume minimum is not stable 

because selling more lowers agency costs, and the incentive is to keep expanding. The reason for this 

is that in the selection model increasing sales means putting safer loans into the pool, and the 

convergence of both marginal and average cost as this takes place makes the debt piece easier to 
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understand and agency cost go to zero. Then the stable equilibrium happens when SM takes over the 

entire market. Fragility happens from switching from low volume to high volume and back. This is 

conditional on market size. Small markets (small seller portfolios) do not have enough room for 

fragility. From Figure 5 it is clear that there is always a market (portfolio size) large enough for 

fragility to be possible. 

 

We have assumed that sellers have a monopoly on information and get to exploit it as they sell-by 

setting sales where marginal agency cost equals b. Another possibility is that they set price, perhaps 

do to entry or regulation, equal to cost with zero net income. In our model that is characterized by 

tipping points at D and E in Figure 5, and the model is essentially unchanged in terms of fragility. 

 

4.  Three Almost Isomorphic Models  

The central characteristic of the optionality in Model 2 is that c(n) is convex and approaches the 

origin from above. We now look at three models that mimic this property and, hence, will appear 

as depicted Figures (4) and (5). The first model is insurance on individual loans. The second is 

structuring based on inside information about volatility. The last one incorporates borrowers’ 

options at loan level. We go through these and show that the key characteristic of c(n) in each case 

is the same as in Model 2. 

 

4.1  Model 3: Loan Level Mortgage Insurance 

 

Here we introduce structuring and convexity in the form of insurance. It covers the first loss on 

each loan in a pool with a limit of e, representing the insurers’ equity per loan. We assume that 

pl > e, meaning insurance is not expected to cover average losses. The value of a share in the 

insured piece is given by 

                                                                       

 (27)                𝑣d = ((1 − 𝑒) − ∫  
𝑛

𝑒
𝑓(𝑛)(𝑘𝑙 − 𝑒)𝑑𝑛)                                                                        
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and equity (the insurers position) is the difference between pool value and debt value.6 This can 

also be applied to debt pieces of pools consisting of resecuritized debt pieces of other pools (rather 

than individual loans) that have the debt-equity structures taking the form of either the insurance 

on pools as a whole or with the equity piece.  

 

Properties of Model 3 

The second term in (27) is the value of the “put” that the insurer exercises against the insured 

investors.  Mathematically, as with Model 2, (27) generates a payoff that looks like a Black-

Scholes call option. The owner receives loan principal net of losses in the pool in excess of the 

insured losses, above e, and pl is the underlying “asset.” Pool losses at the end of the period are 

approximately lognormally distributed.  The value of debt, formulated as a call option on a 

lognormally distributed underlying security, is, again, given by  

 

(28)     𝑐(𝑝𝑙 , 𝜎) = 𝑝𝑙𝐹(𝑑) + 𝑒𝐹(𝑑 − 𝜎)                                                                                               

 

It is the case that 

 

(29) 
𝜕𝑐

𝜕𝑝
= 𝑙𝐹(𝑑) > 0, 

(30) 𝜕𝑐2/𝜕𝑝2 =
𝑙

𝜎
𝑓(𝑑) > 0. 

 

Assuming uniform distribution and suitable choice of units, we have          

   

 (31)  
𝜕𝑐

𝜕𝑛
=

𝜕𝑐

𝜕𝑝(𝑛)

𝜕𝑝(𝑛)

𝜕𝑛
= 𝑙𝐹(𝑑)

𝜕𝑝(𝑛)

𝜕𝑛
= −𝑙𝐹(𝑑) < 0 

  

 (32)      
𝜕2𝑐

𝜕𝑛2
= − (

l

𝜎
) 𝑓(𝑑)

𝜕𝑝(𝑛)

𝜕𝑛
= (

l

𝜎
) 𝑓(𝑑) > 0. 

                                                           
6 It is straightforward to extend this to the case of pool wide insurance, which is a plain debt/equity structure that has 

the same general properties as c(n) in expressions (18) and (19) below. 
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It can be seen from (31) and (32) that c(n) is downward sloping, concave, and it approaches 0 as n 

expands (that is, cost of default on debt approaches zero as the probability of default declines). As 

a result, Figure 3 can represent Model 3 in the same way as with Model 2. Adding optionality by 

structuring in the form of insurance can also introduce fragility to pools that would not be fragile 

otherwise.7 

 

4.2  Model 4: CDOs with Inside Information about Diversification 

Here we consider a version of Model 2 above, but with asymmetric information about a different 

dimension, diversification. A complaint about structured deals during the recession was that 

investors overestimated their diversification benefits. For instance, Beltran et al (2017) document 

hidden correlations among CDO tranches. We show that asymmetric information can generate 

fragility via the same sort of convexity as Model 2.  

 

We take the underlying securities in the CDOs (perhaps pieces of other deals) to be given by the 

same structures as the loans in Model 2. We assume that default probabilities across loans in the 

pool are the same, but their correlations are different, thus inducing different amounts of 

diversification in the pool, for instance because of regional or line-of-business similarities. We 

consider a model that is based on models used in pricing CDOs (see Hull and White (2004). 

 

From 3.2 above it is clear that sellers can use asymmetric information about diversification as a 

selection variable in the same way as default rates in Model 2. Here we assume the simple version 

of diversification, and we use 𝜎 as the choice variable. We next show that using 𝜎(𝑛) instead of 

p(n) does not affect the basic convexity properties of the model. 

 

 

                                                           
7 Note that we can easily handle multiple tranches. The senior or catastrophic piece is the same as above but with 

equity, e, and equal to that in all the previous tranches. Other (mezzanine) pieces with be like the catastrophic piece, 

but with a put when their balance is used up.     
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Properties of Model 4  

  

From (28) above: 

 

(33)    
𝜕𝑐

𝜕𝜎
= 𝑝𝑙𝑓(𝑑) 𝑞 > 0 

 

and  

 

(34)    
𝜕𝑐

𝜕𝑛
=

𝜕𝑐

𝜕𝜎
 
𝜕𝜎

𝜕𝑛
=< 0 

 

Because 𝑐(𝑛) is downward sloping and positive it approaches 0 as n increases it                                                                                                                                                                                                                                                                                                                                                                                                                                        

has the same convex shape as in Models 2 and 3. Hence, this model, with the sellers having inside 

information about diversification has the same properties, and therefore similar fragility, as 

depicted in Figure 3.  

 

4.3  Model 5: Borrower Options without Structuring 

Here we present a situation where default is modeled as a put option on property securing a 

mortgage at a strike price equal to the mortgage balance, and we call it Model 5. This uses the 

default model given by Case 2 in 2.3 above. The exogenous variables are initial ratios of house 

price to loan balance, which are uniformly distributed. The model here is adapted from Van Order 

(2006). An example of this sort of structures is the Private Label (PLS) market that securitized 

mortgages without guarantees on either the mortgages or the structure. That market rose and fell 

rapidly in the early stages of the millennium. 

 

We assume a particular version of the option model in which the change in the log of property 

values is normally distributed and traders are risk-neutral. Let h(n) be the initial property value 

relative to mortgage balance for the nth loan. We assume that it is uniformly distributed across 

loans. The model is for one period after which the borrower either exercises the default option or 

pays off the debt and the risk-free rate is zero. The default cost function for a particular loan, in 
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terms its rank, n, is like a put option on a non-dividend paying asset using Black-Scholes formula; 

that is 

 

(35) 𝑐(ℎ(𝑛), 𝜎) = 𝐹 (−𝑑 + 𝜎) − ℎ(𝑛)𝐹 (−𝑑)) 

 

The function c(h(n),) is smooth and convex in h, which approaches zero as n approaches infinity. 

The uniform distribution assumption for h(n) means that 
𝜕ℎ

𝜕𝑛
  is constant and positive (i.e. dumping 

is in the order of successively higher house price loans) and can be set equal to 1. Then  

 

(36)  
𝜕𝑐

𝜕𝑛
=  

𝜕𝑐

𝜕ℎ

𝜕ℎ

𝜕𝑛
 =

𝜕𝑐

𝜕ℎ
= [𝐹(−𝑑) − 1] < 0   

 

              and 

             

 (372)      
𝜕2𝑐

𝜕ℎ2
> 0 

 

 

Again, c(n) is downward sloping and strongly convex in n (it approaches zero as n approaches 

infinity), and Figure 3 applies. 

 

4.4 Two Extensions: Layering Convexity and nonlinear loan distributions 

CDOs have often been composed of shares of debt pieces from other structured deals. Sometimes 

the debt tranches of a new/final CDO are in the debt tranches of previous deals, which makes the 

structures more complicated. Pieces that are dumped into the new CDOs are already convex to 

begin with, so there is layering of convexity. Here we use convexity (rather than optionality) 

properties of our models to show that resecuritizing debt tranches can make the new pieces more 

convex and therefore increase the likelihood of fragility.  
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We assume a pool of debt pieces made from debt pieces from other pools. This is the stage one 

deal, and we assume its cost and dumping function is given by  

 

(38)   q’(n) < 0 and q”(n) > 0. 

 

Stage two takes restructures these debt tranches, breaking it up into debt and equity tranches like 

those in the first stage. It’s costs are given by g(q(n)) . Then let 

H(n)= g(q(n)) be the valuation for the second stage debt  tranche. Then 

(39)   H’=g’q’  

Alternatively  

Log h’=log g’ + log q’  

Taking derivatives of this: 

(40)   H”/H’ = g”/g’ + q”/q’   

The items on the right had side of (40) are all positive. As a result, resecuritizing increases the 

elasticity of convexity relative to an increase in slope change. This is what we mean by layering 

convexity. It suggests that not only are resecuritized structures more complicated, they might be 

more prone to fragility, and fragility increases with increases in resecuritization of more layers of 

CDOs (e.g., “CDO-squared” deals that securitize CDO pieces). . 

 

Nonlinear Loan Distributions 

The assumptions of uniform distributions of probabilities of default or house prices are useful in 

bringing out the role of optionality and convexity in fragility. They are however restrictive because 

of the following. First, default rates or collateral values are generally clustered rather than evenly 
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spread out. Second, it implies that fragility only happens when SM has taken over the entire 

market. Here we provide an alternative assumption by adjusting Model 2 above. 8 

 

In Model 2, c(n) is convex throughout, and A(n, ) has no local minimum. However, c(n) can be 

concave over some range without affecting the basic results of the model.  Instead of being linear, 

we assume that F(X(0)) is S-shaped, for instance, because it is a segment of a lognormal 

distribution. This allows clustering of default rates. The highest value of X(0), corresponding to 

the safest loan, is at a point on F where F'' < 0. Then c(n) is still concave for low levels of n, but 

it may be convex for high levels, raising the possibility of multiple maxima in A(n, ). The main 

properties of A(n, ) still hold, but it can no longer be proven that A(n, ) does not have a local 

minimum. If there is a minimum it will be to the right of the maximum. Both average and marginal 

default costs still approach zero as n approaches infinity because the value of the put still goes to 

zero as asset value grows and F(X(0)) is bounded from above.  

 

We cannot say much more without knowing how nonlinear the distribution function is. We present 

a version this by adapted Figure 5 for a “hump” in the distribution, so that y(n) turns downward 

after the initial local maximum and then turns up again-because of the clustering loan types in the 

middle of the distribution that lead to the hump. This is depicted in Figure 6, which is the same as 

Figure 5 except that the distribution default probabilities in not linear. Equilibria can occur for 

markets along OA or DE or HI. Then there can be two sets of tipping points, from A to D and E 

to H (and vice versa), so there can be an intermediate jump before taking over the entire market. 

There are other possibilities, such the second bump being a local maximum with value less than 

y*, in which case the bump doesn’t affect anything. In any case, while there can be more than one 

tipping point, it is still the case that that there is always a market size large enough for fragility. 

 

 

                                                           
8 This section follows Van Order (2006) 
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5.  Conclusions  

 

We have developed models of securitization and structured deals. Equilibrium in the models is 

characterized by trading off holding cost that sellers shed against the agency cost from buyers 

understanding of adverse selection. In our first model (Model 1) this leads to a single equilibrium 

because agency costs rise as market increases. However, as we add structuring with a debt piece 

(in Model 2 and the rest) this changes. For instance in a debt tranche of a deal at low volume 

agency costs do rise with volume, but at high volume levels  average and marginal costs converge, 

and agency costs (the difference between average and marginal cost) go to zero, making the pool 

more knowable and decreasing the lemons problem. This is unstable and pushes the secondary 

market toward taking over the entire market. 

 

Then there can be two types of equilibria in larger markets-at a low level and at a high level. 

However, the second equilibrium is a corner solution because the optimizing (declining agency 

costs) requires expanding volume with increasing benefit, and that the answer is to sell everything 

to SM. This result is caused by the structuring that creates the debt tranche and is not inherent in 

the loans in the pool. Two side observations are that: fragility is likely to come from adding much 

safer loans to a deal, and that not only is adverse selection a source of inefficiency (first best is to 

transfer all loans to SM), it can also contribute to instability.  

 

The fragility is inherently difficult to predict. Discrete shifts can, for instance, begin with a small 

continuation of declining holding costs or increasing liquidity that reduces costs in the 

securitization market, which cross a critical value, leading to a discrete jump in market share, 

raising bond prices and looking like a bond market bubble. This can be reversed in the 

neighborhood of the critical value, for instance, by a decrease in diversification (or a revision of 

the model that predictions correlations) among securities in the pool. This can be interpreted as a 

crude description of the crash in the CDO market in 2007. It is not like the usual bubble in that it 

is not triggered by an endogenous reversion of costs back below the critical level. A crash is not 

inevitable (diversification or cost advantage can increase and move the market further away from 
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a critical point), and it can come from changes in unpredictable (to the source of the bubble) 

parameters that are urealted to the bubble trigger. 

 

The model can be applied to a range of financial structures such as securitized banking and 

structures like repos. Resecuritization can produce layered convexity. So can re-hypothecation in 

the repo market, and shadow banks holding pieces of CDOs. An implication of the paper is that 

modeling pieces of structured pools (and equivalent pieces of banks and shadow banks) by using 

historical loss probabilities, but not taking account of possibility of fragility in the loans’ structures, 

can lead to misspecification, underestimation of senior tranche risk, capital adequacy and 

overestimation of the optimality of structured deals. 
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Appendix 

 

Properties of marginal agency cost: the difference between the average and marginal costs 

 

Recall that marginal agency cost is given by 

𝐴(𝑛) = − (
1

𝑛
∫ 𝐶(𝜃, 𝜎)𝑑𝜃) − 𝐶(𝑛)

𝑛

0

) 

Then  

 

(A-1) 
𝜕𝐴

𝜕𝑛
= −

1

𝑛
(

1

𝑛
∫ 𝐶(𝜃, 𝜎)𝑑𝜃) − 𝐶(𝑛)

𝑛

0
) −

𝜕𝐶(𝑛,𝜎)

𝜕𝑛
 = −

1

𝑛
𝐴(𝑛, 𝜎) −

𝜕𝐶(𝑛,𝜎)

𝜕𝑛
  

 

(A-2) 
𝜕2𝐴

𝜕𝑛2 =
1

𝑛2 (𝐴(𝑛, 𝜎)) +
1

n

𝜕𝐴

𝜕𝑛
−

𝜕2𝐶(𝑛,𝜎)

𝜕𝑛2 =  
1

𝑛2 (𝐴(𝑛)) −
1

n
(

𝜕𝐴

𝜕𝑛
) −

𝜕2𝐶(𝑛,𝜎)

𝜕𝑛2  

 

At a maximum (from (A-1) 

 

(A-3)       
1

𝑛
𝐴(𝑛, 𝜎) = −

𝜕𝐶(𝑛,𝜎)

𝜕𝑛
 

 

Then at an extremum    

(A-4)   
𝜕2𝐴

𝜕𝑛2
=  −(

1

𝑛

𝜕𝐶(𝑛,𝜎)

𝜕𝑛
+

𝜕2𝐶(𝑛,𝜎)

𝜕𝑛2
)<0 

 

The first term inside the brackets on the right hand side is negative, and the second is positive.  

However, the relationship between the two is the same as the average and marginal curves above. 

The second is the marginal and the first average, and so the second is steeper. Therefore, 𝐴(𝑛, 𝜎) is 

concave at the maximum, and there is no minimum.  

 

Because the marginal and average costs are equal at n = 0, 

 

(A-5)    A(0, 0) = 0. 
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Then 

(A-6)   
𝜕𝐴

𝜕𝑛
> 0 at  n = 0, 

 

From the properties of the Black-Scholes model, it can be shown that  

 

 (A-6) A(n,) ≥ 0  for  n ≥ 0, and 𝜎𝑠 ≥ 0, 

   A(n,) → 0  as  n → ∞, 

 A(n,) → ∞ as   → ∞. 

 

These assure that 𝐴(𝑛, 𝜎) has a maximum and that it is concave in the neighborhood of n for which 

𝜕𝐴

𝜕𝑛
 = 0. 

 

Comparative Statics 

 Any expression of the form 

 

(A-7)     
1

𝑛
∫

𝜕𝐶(𝑥)

𝜕𝑥
𝑑𝜃 −

𝑛

0

𝜕𝐶(𝑥)

𝜕𝑥
   

 

has an “average-marginal” interpretation, the first term being the average of C(x) starting at zero 

and the second term being the marginal. The sign can be positive of negative. If C(x) is downward 

sloping then the term will be positive and vise-versa if upward sloping. 

 

Applying this:  

(A-8)     
𝜕𝑦

𝜕𝜎
= − ∫

𝜕𝐴(𝑘,𝜎)

𝜕𝜎
𝑑𝑘

𝑛 

0

  < 0   

(A-9)      
𝜕𝑦

𝜕𝑒
= − ∫

𝜕𝐴(𝑘,𝜎)

𝜕𝑒
𝑑𝑘

𝑛

0

 >0 

(A-10)     
𝜕𝑦

𝜕𝑝𝑙
= − ∫

𝜕𝐴(𝑘,𝜎)

𝜕𝑝𝑙
𝑑𝑘 < 0

𝑛

0
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Marginal dumping benefit: c(n)+b 

SM benefit (b) 

Equilibrium 

Average 

Cost 

Marginal 

default cost 

(c(n)) 

N 

Average default cost (a(n)) 

M 

FIGURES 

 

 

 

Figure 1 Equilibrium in Model 1 (Linear case) 
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                                                                                                           Market size 

                                               
  
                       
 

 

 

 

This shows marginal (for seller) and average (for buyer) curves. Equilibrium comes from the 

balance between buyers (primary market) and sellers (secondary market), given lower holding 

costs (b) for the secondary market. The size of the pools in the secondary market is N, and the 

entire market is M 
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Figure 2. Model 1: Both Monopoly Pricing and Free Entry (Linear Case) 
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Seller income, y, as a function of Market Size. The line given by y(n) is income from PM sales, 

given b. The curve rises at first reaches a maximum and the falls below zero. The monopoly 

solution is at A, and the free entry solution is at B. If the market size is Ml then the market is 

smaller than “optimal.” At Ml equilibrium is not constrained by market size. 
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Default Cost 

 

 

 

Figure 3 Equilibrium in Model 2: View 1 (Nonlinear case): cost-pool size space 
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This is the same model as in Figure one, except that the marginal and average cost curves are 

non-linear and there can be a discontinuous shift in market share between buyers and sellers at 

some critical level of b, and the secondary market suddenly takes over the entire market. 
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Figure 4: Equilibrium in Model 2: View in b-n space with y constant  
 

 

 

 

This is the same picture as in Figure 2 except that it depicts agency cost (A(n) its intersection with 

b. It shows multiple solutions, which generate fragility. In particular at b=b1, at point G a small 

increase in b will shift the equilibrium to H. Possible equilibria are along POG and HI. Above b* 

y is always positive 
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Figure 5: View in y-n space holding b constant 

 

 

 

 

 

 

 

 

 

 

 

                 

                                       

 

The curvy line depicts income, y(n), from PM sales, given b. The curve rises at first a reaches 

maximum at A and the falls below zero, then reaches a minimum and rises again. y* is the value 

of y at the local maximum. Equilibrium can be along OA or BE, and there is a discrete move 

possible from A to B (and vice versa). A key property is that there is always a market size that is 

large enough for sellers to sell everything. D and E are switch points if equilibrium is 

characterized by zero net income. 
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Figure 6. Equilibria with a Type of Nonlinear Distribution of Default Rates 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This is the same as Figure 6 except that the distribution default probabilities in not linear, but 

rather has a peak on the middle. Equilibria can occur for markets of sizes along OA or- DE or HI 

two sets of tipping points. There are two discrete moves possible points, from A to B and E to H 

(and vice versa) so there can be an intermediate jump before taking over the entire market. As 

before there is always a market size large enough for fragility. 
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